Section outline

  • Περιεχόμενο του μαθήματος:

    Εισαγωγή στους πραγματικούς αριθμούς. Σύνολα, στοιχεία Λογικής. Ακολουθίες πραγματικών αριθμών. Σειρές πραγματικών αριθμών. Όριο και συνέχεια πραγμ. συναρτήσεων μιας μεταβλητής. Αντίστροφες κυκλικές – υπερβολικές συναρτήσεις. Διαφορικός Λογισμός συναρτήσεων μιας μεταβλητής. (Θεώρημα Taylor). Δυναμοσειρές. Αόριστο και ορισμένο ολοκλήρωμα. Τεχνικές ολοκλήρωσης. Εφαρμογές ορισμένου ολοκληρώματος. Συνήθεις διαφορικές εξισώσεις πρώτης τάξεως (γραφική λύση, χωριζομένων μεταβλητών, ομογενείς, γραμμικές, Bernoulli). Γραμμικές διαφορικές εξισώσεις 2ης τάξης με σταθερούς συντελεστές. Γενικευμένα ολοκληρώματα. Κριτήρια σύγκλισης. Συναρτήσεις Γάμμα και Βήτα.

    Βιβλιογραφία:

    • Διαφορικός και Ολοκληρωτικός Λογισμός: Μια Εισαγωγή στην Ανάλυση, M. Spivak.
    • Μαθηματική Ανάλυση Ι : Θεωρία, Λυμένες Ασκήσεις και Παραδείγματα, Θεμιστοκλής Μ. Ρασσιάς.  
    • Απειροστικός Λογισμός, Σ. Νεγρεπόντης, Σ. Γιωτόπουλος, Ε. Γιαννακούλιας (τόμοι Ι, ΙΙ & ΙΙΙ).
    • Μαθηματική Ανάλυση Ι, Π. Τσεκρέκος.
    • Μαθηματική Ανάλυση, Γ. Παντελίδης (τόμος Ι).
    • Μαθηματική Ανάλυση, L. Brand.
    • Απειροστικός Λογισμός, R. L. Finney, M. D. Weir, F. R. Giordano (τόμοι Ι & ΙΙ).
    • Διαφορικός και Ολοκληρωτικός λογισμός, T. M. Apostol (τόμοι Ι & ΙΙ). 
    • Understanding Analysis, S. Abbot, Springer, 2001. 
    • Advanced Calculus, P. M. Fitzapatrick, AMS, 2006. 

    Όλα τα βιβλία υπάρχουν στη βιβλιοθήκη.

    Διδάσκων:

    Β. Γρηγοριάδης, Επίκουρος Καθηγητής, Γραφείο 3.09 (Κτ. Ε΄ / Γενικές Έδρες / Σ.Ε.Μ.Φ.Ε. Γ΄ όροφος), email: vgregoriades@mail.ntua.gr, τηλ. 210 7721763