The topics of seepage, compression and consolidation are examined briefly and are related to engineering practice and to current research work. By using an extended case study of the Tower of Pisa as a theme, the concepts can be applied to different soils and the long-term settlement of soil can be assessed. The major challenges facing designers of multi-propped deep excavations, particularly in crowded urban areas are examined. Embedded retaining walls such as secant bored pile walls and diaphragm walls used in the construction of deep sections of retained cuttings and cut-and-cover tunnels in road schemes and excavations in urban cities are studied with emphasis on the stress transfer and deformation mechanisms around diaphragm walls. The study of retaining systems is extended to include reinforced soil retaining walls and/or steepened embankments, as a relatively new cost effective method of construction which reduces embankment width and land-take and is environmentally acceptable. The classic preliminary design methods, including Eurocode 7, are presented both for retaining walls and reinforced soil. By using case studies (e.g. Egnatia Motorway) the Codes of practice are applied through analytical programs. The earthquake loading is assessed for conventional retaining walls, reinforced soil walls and bridge abutments.
- Teacher: Βασιλική Γεωργιάννου
- Teacher: Αντώνιος Ζερβός
Language : el