
Σύντομες λύσεις ασκήσεων

Λύση:

(i ) Τριγωνική ανισότητα:
∣∣∥a⃗∥−∥u⃗∥

∣∣ ≤ ∥a⃗+ u⃗∥ ≤ ∥a⃗∥+ ∥u⃗∥ που εδώ γίνεται
√
38−

√
17 ≤

√
75 ≤√

38 +
√
17 που ισχύει.

Ανισότητα Cauchy-Schwarz:
∣∣⟨⃗a, u⃗⟩∣∣ ≤ ∥a⃗∥ ∥u⃗∥ που εδώ γίνεται 10 ≤

√
570.

(ii ) Ισχύει πως proja⃗u⃗ =
⟨⃗a, u⃗⟩
⟨⃗a, a⃗⟩

a⃗ = 10
17(-1, 4, 0) = (-1017 ,

40
17 , 0), και u⃗2 = u⃗ − proja⃗u⃗ = (2, 3, 5) −

(-1017 ,
40
17 , 0) = (4417 ,

11
17 , 5). (Ελέγχω και πως ⟨u⃗2, a⃗⟩ = 0.)

(iii ) Ψάχνω διάνυσμα
−→
b = (x, y, z) που να είναι κάθετο στα διανύσματα u⃗ = (2, 3, 5) και a⃗ = (-1, 4, 0),

δηλαδή συγγραμμικό στο u⃗× a⃗ = (-20, -5, 11) και άρα της μορφής b⃗ = κ(-20, -5, 11) για κ ∈ R.

Λύση: Αν a⃗ = a1u⃗+ a2v⃗ + a3w⃗ και b⃗ = b1u⃗+ b2v⃗ + b3w⃗, ο τύπος εσωτερικού γινομένου γίνεται

⟨⃗a, b⃗⟩ =⟨a1u⃗+ a2v⃗ + a3w⃗, b1u⃗+ b2v⃗ + b3w⃗⟩ = a1b1u⃗
2 + a1b2⟨u⃗, v⃗⟩+ a1b3⟨u⃗, w⃗⟩

+ a2b1⟨v⃗, u⃗⟩+ a2b2v⃗
2 + a3b1⟨w⃗, u⃗⟩+ a3b2⟨w⃗, v⃗⟩+ a3b3w⃗

2 =

=4a1b1 + 3
√
3a2b2 + 4a1b3 + 3

√
3a2b1 + 9a2b2 + 6

√
2a2b3 + 4a3b1 + 6

√
2a3b3 + 16a3b3

χρησιμοποιώντας τους τύπους x⃗2 = ∥x⃗∥2 και ⟨x⃗, y⃗⟩ = ∥x⃗∥∥y⃗∥ cos (̂x⃗, y⃗).
Λύση: Ισχύει πως ⟨

−−→
AB,

−→
AC⟩ = (2⃗i − 6⃗j)(3⃗i + j⃗) = 0 οπότε Â = 90o. (Από σχήμα με A(0, 0, 0),

βλέπω πως)
−−→
BC =

−→
AC −

−−→
AB = −⃗i − 7⃗j και

−−→
BA = 2⃗i − 6⃗j. Τότε ⟨

−−→
BC,

−−→
BA⟩ = 40, άρα cos(B̂) =

40

∥
−−→
BC∥ ∥

−−→
BA∥

=
4
√
10

10
οπότε B̂ = arcsin

(
4
√
10

10

)
. Τέλος Ĉ = 90o − B̂.

Λύση: Για να είναι κάθετα μεταξύ τους, πρέπει ⟨⃗a, b⃗⟩ = −2 + 3λ2 = 0 ⇒ λ = ±
√

2
3 αλλά και

⟨⃗a, c⃗⟩ = −2λ+ 3λ = 0 που είναι άτοπο, άρα δεν υπάρχουν τέτοια λ.
Για να είναι συγγραμμικά, πρέπει a⃗×b⃗ = b⃗×c⃗ = 0⃗, δηλαδή για παράδειγμα (−2λ−3λ, λ, 1) = (0, 0, 0)

που είναι αδύνατο.

Για να είναι συνεπίπεδα, πρέπει (⃗a b⃗ c⃗) = 0 δηλαδή

∣∣∣∣∣∣
1 −2 3
0 1 λ
0 λ 1

∣∣∣∣∣∣ = 0 ⇒ λ = ±1.

Λύση:

(i ) Ισχύει a⃗ × b⃗ = a⃗ × c⃗ ⇒ a⃗ × (⃗b − c⃗) = 0⃗ ⇒ b⃗ − c⃗ = λa⃗ για λ ∈ R. Τότε ισχύει και ⟨⃗a, b⃗⟩ =
⟨⃗a, c⃗⟩ ⇒ ⟨⃗a, b⃗− c⃗⟩ = 0 ⇒ λa⃗2 = 0 ⇒ λ = 0. ΄Αρα b⃗ = c⃗.

(ii ) Ισχύει (⃗a1+a⃗2 b⃗ c⃗) = ⟨(⃗a1 + a⃗2) × b⃗, c⃗⟩ = ⟨⃗a1 × b⃗ + a⃗2 × b⃗, c⃗⟩ = ⟨⃗a1 × b⃗, c⃗⟩ + ⟨⃗a2 × b⃗, c⃗⟩ =
(⃗a1 b⃗ c⃗) + (⃗a2 b⃗ c⃗).



(iii ) Ισχύει a⃗+ b⃗+ c⃗ = 0⃗ ⇒ a⃗+ b⃗ = −c⃗ ⇒ c⃗× (⃗a+ b⃗) = −c⃗× c⃗ ⇒ c⃗× a⃗+ c⃗× b⃗ = 0⃗ ⇒ c⃗× a⃗ = b⃗× c⃗ και
ομοίως το άλλο. Επίσης, (⃗a b⃗ c⃗) = (−b⃗− c⃗ b⃗ c⃗) = −(⃗b b⃗ c⃗)− (c⃗ b⃗ c⃗) = 0 από προηγούμενο
ερώτημα.

(iv ) Αφού είναι όλα συνεπίπεδα, τα a⃗ × b⃗ και c⃗ × d⃗ είναι κάθετα στο ίδιο επίπεδο και άρα παράλληλα
μεταξύ τους.

Λύση: Ισχύει πως x⃗+x⃗×a⃗ = b⃗ ⇒ x⃗×a⃗ = b⃗−x⃗ καθώς και ⟨⃗b, a⃗⟩ = ⟨(x⃗+x⃗×a⃗), a⃗⟩ = ⟨x⃗, a⃗⟩+⟨x⃗×a⃗, a⃗⟩ =
⟨x⃗, a⃗⟩. Τότε

b⃗× a⃗ = (x⃗+ x⃗× a⃗)× a⃗ = x⃗× a⃗+(x⃗× a⃗)× a⃗ = (⃗b− x⃗)+(⟨x⃗, a⃗⟩⃗a−∥a⃗∥2x⃗) = −(1+∥a⃗∥2)x⃗+ b⃗+ ⟨⃗b, a⃗⟩⃗a

⇒ x⃗ =
a⃗× b⃗+ b⃗+ ⟨⃗b, a⃗⟩⃗a

1 + ∥a⃗∥2

Μοναδικότητα; ΄Εστω ότι υπάρχουν δύο λύσεις, x⃗1 και x⃗2, της εξίσωσης. Τότε

x⃗1 + x⃗1 × a⃗ = b⃗ = x⃗2 + x⃗2 × a⃗ ⇒
x⃗1 − x⃗2 + (x⃗1 − x⃗2)× a⃗ = 0⃗ ⇒

⟨x⃗1 − x⃗2, x⃗1 − x⃗2 + (x⃗1 − x⃗2)× a⃗⟩ = 0 ⇒
(x⃗1 − x⃗2)

2 = 0 ⇒
x⃗1 − x⃗2 = 0⃗ ⇒

x⃗1 = x⃗2

Λύση:

(i ) Π2: θα είναι της μορφής 2x−y+3z+∆ = 0 με (0, 2, 0) να την επαληθεύει, δηλαδή −2+∆ = 0,
άρα η εξίσωση είναι 2x− y + 3z + 2 = 0.

Π1: χρειαζόμαστε δύο μη συγγραμμικά διανύσματα u⃗, v⃗ παράλληλα στο επίπεδο (χρησιμοποιώντας
καθετότητα με το (2, -1, 3)), και ένα σημείο του επιπέδου, π.χ. το (0, -1, 1) ∈ Π1, και παίρνουμε

την διανυσματική εξίσωση r⃗ = κu⃗+ λv⃗ + (0, -1, 1). Εναλλακτικά, γράφω

Π1 = {(x, y, z) | y = 2x+ 3z − 4} = {(x, 2x+ 3z − 4, z) | x, z ∈ R} =

= {(κ, 2κ+ 3λ− 4, λ) | κ, λ ∈ R} = {κ(1, 2, 0) + λ(0, 3, 1) + (0,−4, 0) | κ, λ ∈ R}

Οι παραμετρικές εξισώσεις είναι 
x = κ

y = 2κ+ 3λ− 4

z = λ

(ii ) Παρατηρώ ότι τα επίπεδα είναι παράλληλα, οπότε παίρνω σημείο A(1, 1, 1) ∈ Π1 και υπολογίζω

την απόσταση με τον τύπο

d(Π1,Π2) = d(A,Π2) =
2 · 1 + (−1) · 1 + 3 · 1 + 2√

22 + (−1)2 + 32
=

6√
14

.



(iii ) Είτε παρατηρώ πως P0 ∈ Π1, οπότε προσδιορίζω το ίχνος του P (x, y, z) μέσω του συστήματος∥
−−→
P0P∥ =

6√
14

P ∈ Π2

είτε πιο γενικά, μπορώ να λύσω το

{−−→
P0P = λ(2, -1, 3)

P ∈ Π2

όπου έχω

{
(x, y + 4, z) = (2λ,−λ, 3λ)

2x− y + 3z + 2 = 0
⇒


x = 2λ

y = −λ− 4

z = 3λ

y = 2x+ 3z + 2

⇒ P =

(
-
6

7
, -
25

7
, -
9

7

)
.

(iv ) Το Π3 δίνεται από x+2y−5 = 0, φτιάχνοντας τρία διανύσματα και ζητώντας να είναι συνεπίπεδα,
μέσω του μικτού γινομένου για παράδειγμα∣∣∣∣∣∣

x− 5 y z − 1
x− 3 y − 1 z + 8
x− 7 y + 1 z

∣∣∣∣∣∣ = 0

ή εναλλακτικά, σχηματίζοντας το κάθετο διάνυσμα
−−−→
P1P2 ×

−−−→
P1P3 = (1, 2, 0) και παίρνοντας ένα

από τα 3 σημεία για τη ζητούμενη εξίσωση επιπέδου.

Τα Π1,Π3 δεν είναι παράλληλα (ούτε ταυτίζονται) άρα τέμνονται. Θα βρω τη γωνία τους, υ-

πολογίζοντας πρώτα την γωνία μεταξύ των καθέτων σε αυτά τα επίπεδα διανυσμάτων, και μετά

παίρνοντας την παραπληρωματική τους γωνία (σχήμα). ΄Εχω n1 = (2, -1, 3) και n3 = (1, 2, 0)
οπότε ⟨n1, n3⟩ = 0 άρα και η γωνία των δύο επιπέδων είναι 900.

Λύση:

(i ) ϵ1: παίρνουμε ως διάνυσμα διεύθυνσης το εξωτερικό γινόμενο των καθέτων διανυσμάτων στα δυο
επίπεδα των οποίων η τομή την ορίζει, δηλαδή

ϵ1 ∥ n⃗× n⃗′ = (1, 1, 1)× (1, 2,−1) =

∣∣∣∣∣∣
i⃗ j⃗ k⃗
1 1 1
1 2 −1

∣∣∣∣∣∣ = (−3, 2, 1)

καθώς και ένα σημείο που ανήκει στην τομή των επιπέδων, π.χ. (0, 5, 4) ∈ ϵ1. Η διανυσματική
εξίσωση της ευθείας τότε είναι r⃗ = λ(−3, 2, 1) + (0, 5, 4) και οι παραμετρικές της εξισώσεις είναι

x = −3λ

y = 2λ+ 5

z = λ+ 4

ϵ2: έχουμε t = x− 2 = y−5
2 = z

3 άρα η αναλυτικές εξισώσεις είναι

x− 2 =
y − 5

-2
=

z

3

(ii ) Η απόσταση του P από την ϵ1 υπολογίζεται παίρνοντας πρώτα το ίχνος του Q(a, b, c) μέσω των
a = −3λ

b = 2λ+ 5

c = λ+ 4

⟨
−−→
PQ, (−3, 2, 1)⟩ = 0 ⇔ (13− a)(−3) + (−2− b)2 + (1− c)1 = 0 ⇔ 3a− 2b− c− 42 = 0



αφού Q ∈ ϵ1 και
−−→
PQ κάθετο στην ευθεία. Βρίσκω το Q(12,−3, 0) και μετά ότι η απόσταση

∥P⃗Q∥ =
√
12 + 12 + 12 =

√
3.

(iii ) Για την εξίσωση επιπέδου, παίρνουμε τα διανύσματα διεύθυνσης (δεν είναι συγγραμμικά - οι ευθε-
ίες δεν είναι παράλληλες) και υπολογίζουμε το εξωτερικό τους γινόμενο (−3, 2, 1)× (1,−2, 3) =
(8, 10, 4) και η εξίσωση επιπέδου είναι 4x+5y+2z+∆ = 0. Βάζοντας π.χ. το Q να ανήκει στο
επίπεδο, παίρνουμε ∆ = −33.

Το Π0 είναι το επίπεδο 4x+ 5y + 2z = 0.

(iv ) Αφού τα διανύσματα διεύθυνσής τους, (−3, 2, 1) και (1, 0, 0) αντίστοιχα, δεν είναι συγγραμμικά,
σίγουρα δεν είναι παράλληλες. ΄Αρα είτε τέμνονται είτε είναι ασύμβατες.

Αν τέμνονται, το σημείο τομής προσδιορίζεται από τις εξισώσεις (πρέπει να συναληθεύονται)
x = −3λ = κ

y = 2λ = 1

z = λ+ 4 = 0

που είναι αδύνατο, άρα οι ευθείες είναι ασύμβατες. Η μεταξύ τους απόσταση βρίσκεται, όπως στις

σημειώσεις, να είναι
12√
13
.

Λύση:

(i ) Αφού οι πίνακες είναι τύπου 1× 3 και οι δύο, ορίζονται οι ακόλουθοι:

A⊤A =

−1
2
1

(−1 2 1
)
=

 1 −2 −1
−2 4 2
−1 2 1


B⊤B =

 2
−1
x

(2 −1 x
)
=

 4 −2 2x
−2 1 −x
2x −x x2


A⊤A−B⊤B =

 1 −2 −1
−2 4 2
−1 2 1

−

 4 −2 2x
−2 1 −x
2x −x x2

 =

 −3 0 −1− 2x
0 3 2 + x

−1− 2x 2 + x 1− x2


(ii ) Είναι αδύνατη, αφού π.χ. 3 ̸= 0 για το δεύτερο στοιχείο της διαγωνίου.

Λύση:

(i ) tr(λA) = tr(λaij) = λa11+ . . .+λann = λtr(aij) = λtr(A). Επίσης υπολογίζοντας τα γινόμενα
βλέπουμε

AB =


a11b11 + a12b21 + . . . a1nbn1 ∗ . . . ∗

∗ a21b12 + a22b22 + . . . a2nbn2 . . . ∗
. . .
∗ . . . ∗ an1b1n + an2b2n + . . . annbnn



BA =


b11a11 + b12a21 + . . . b1nan1 ∗ . . . ∗

∗ b21a12 + b22a22 + . . . b2nan2 . . . ∗
. . .
∗ . . . ∗ bn1a1n + bn2a2n + . . . bnnann


άρα στα ίχνη τους, και στις δύο περιπτώσεις, είναι όλοι οι όροι του αθροίσματος κοινοί.



(ii ) ΄Εστω ότι υπάρχουν πίνακες A,B τέτοιοι ώστε AB − BA = In. Τότε από ιδιότητες ίχνους
tr(AB −BA) = tr(AB)− tr(BA) = 0 ενώ tr(I) = n · 1, άτοπο.

Λύση:

(i ) Στον EA αλλάζει η i-γραμμή με την j-γραμμή, στον BE αλλάζει η i-στήλη με την j-στήλη.

(ii ) Στον DA η i-γραμμή πολλαπλασιάζεται με λ, στον BD η i-στήλη πολλαπλασιάζεται με λ.

(iii ) Στον MA, στην i-γραμμή προστίθεται το λ-πολλαπλάσιο της j-γραμμής.

Λύση:

(i ) ΄Εχουμε ad− bc = 0, A2 =

(
a b
c d

)(
a b
c d

)
=

(
a2 + bc ab+ bd
ca+ dc cb+ d2

)
και

A3 =

(
a2 + bc ab+ bd
ca+ dc cb+ d2

)(
a b
c d

)
=

(
a3 + abc+ abc+ bcd a2b+ b2c+ abd+ bd2

a2c+ acd+ bc2 + cd2 abc+ cbd+ cbd+ d3

)
ad=bc
=

(
a3 + 2a2d+ ad2 a2b+ 2abd+ bd2

a2c+ 2acd+ cd2 a2d+ 2ad2 + d3

)
=

(
a(a+ d)2 b(a+ d)2

c(a+ d)2 d(a+ d)2

)
= (a+ d)2A

(ii ) Σε οποιονδήποτε διανυσματικό χώρο ξέρουμε ότι αν λ−→u =
−→
0 , τότε είτε λ = 0 είτε −→u =

−→
0 .

Εδώ έχουμε πως A3 = (a+ d)2A είναι ο μηδενικός πίνακας, οπότε είτε A = 0 οπότε και A2 = 0,

είτε a = −d οπότε και A2 =

(
a2 + bc ab+ bd
ca+ dc cb+ d2

)
d=−a,bc=−a2

=

(
a2 − a2 ab− ab
ca− ac −a2 + a2

)
= 0.

(iii ) A9 = (A3)3 = (a+ d)3A3 = (a+ d)6A οπότε εδώ με a = 2, d = −1 παίρνουμε A9 = A.

Λύση: Θα πρέπει det(A) = 0, άρα∣∣∣∣∣∣
1 0 1
x 2 1
0 x -1

∣∣∣∣∣∣ Σ3→Σ3−Σ1=

∣∣∣∣∣∣
1 0 0
x 2 1-x
0 x -1

∣∣∣∣∣∣ = 2− (1− x)x = x2 − x+ 2 = (x− 2)(x+ 1) = 0

΄Αρα για να αντιστρέφεται ο A, θα πρέπει x ̸= 2 ή x ̸= -1.
΄Εχουμε τα εξής αλγεβρικά συμπληρώματα

A11 =+

∣∣∣∣2 1
x −1

∣∣∣∣ = −2− x A21 = −
∣∣∣∣0 1
x −1

∣∣∣∣ = x A31 = +

∣∣∣∣0 1
2 1

∣∣∣∣ = −2

A12 =−
∣∣∣∣x 1
0 −1

∣∣∣∣ = x A22 = +

∣∣∣∣1 1
0 −1

∣∣∣∣ = −1 A32 = −
∣∣∣∣1 x
1 1

∣∣∣∣ = x− 1

A13 =+

∣∣∣∣x 2
0 x

∣∣∣∣ = x2 A23 = −
∣∣∣∣1 0
0 x

∣∣∣∣ = −x A33 = +

∣∣∣∣1 0
x 2

∣∣∣∣ = 2

άρα A−1 =
1

det(A)
adj(A) =

1

(x− 2)(x+ 1)

-2-x x -2
x -1 x-1
x2 -x 2

.
Για Gauss-Jordan σχηματίζω τον επαυξημένο με τον I3 και κάνω γραμμοπράξεις1 0 1 1 0 0
x 2 1 0 1 0
0 x −1 0 0 1

 Γ2→Γ2−xΓ1∼

1 0 1 1 0 0
0 2 1− x −x 1 0
0 x −1 0 0 1

 Γ2→ 1
2
Γ2∼

1 0 1 1 0 0
0 1 1−x

2 −x
2

1
2 0

0 x −1 0 0 1





Γ3→Γ3−xΓ2∼

1 0 1 1 0 0
0 1 1−x

2 −x
2

1
2 0

0 0 (x−2)(x+1)
2

x2

2 −x
2 1


Γ3→ 2

(x−2)(x+1)
Γ3

∼

1 0 1 1 0 0
0 1 1−x

2 −x
2

1
2 0

0 0 1 x2

(x−2)(x+1) − x
(x−2)(x+1)

2
(x−2)(x+1)


Γ1→Γ1−Γ3∼

Γ2→Γ2− 1−x
2

Γ3

1 0 0 −x−2
(x−2)(x+1)

x
(x−2)(x+1) − 2

(x−2)(x+1)

0 1 0 ∗ ∗ ∗
0 0 1 x2

(x−2)(x+1) − x
(x−2)(x+1)

2
(x−2)(x+1)


Παρατηρώ ότι γενικά, με παραμέτρους, η μέθοδος Gauss-Jordan δυσκολεύει, κυρίως λόγω αλγεβρικών
πράξεων.

Λύση:∣∣∣∣∣∣∣∣
λ− 1 0 0 0
3− a λ− a+ 1 a− 3 1
4− a 3− a λ− 5 + a 1
2 2 −2 λ− 1

∣∣∣∣∣∣∣∣ = (λ− 1)

∣∣∣∣∣∣
λ− a+ 1 a− 3 1
3− a λ− 5 + a 1
2 −2 λ− 1

∣∣∣∣∣∣ Σ2→Σ2+Σ1=

(λ− 1)

∣∣∣∣∣∣
λ− a+ 1 λ− 2 1
3− a λ− 2 1
2 0 λ− 1

∣∣∣∣∣∣ Γ1→Γ1+Γ2= (λ− 1)

∣∣∣∣∣∣
λ− 2 0 0
3− a λ− 2 1
2 0 λ− 1

∣∣∣∣∣∣ = (λ− 1)2(λ− 2)2

οπότε οι λύσεις είναι λ = 1, 2.
Λύση: Το 3 × 3-σύστημα θα έχει μοναδική λύση αν και μόνο αν η ορίζουσα των συντελεστών είναι
διάφορη του μηδενός (τύπου Cramer).

D =

∣∣∣∣∣∣
1 a b2

1 a ab
b a2 a2b

∣∣∣∣∣∣ Γ2→Γ2−Γ1=

∣∣∣∣∣∣
1 a b2

0 0 b(a− b)
b a2 a2b

∣∣∣∣∣∣ Laplace= −b(a− b)

∣∣∣∣1 a
b a2

∣∣∣∣ = −ab(a− b)2

a ̸= 0, b ̸= 0, a ̸= b

Dx =

∣∣∣∣∣∣
1 a b2

a a ab
a2b a2 a2b

∣∣∣∣∣∣ = . . . = a3b(b− 1)(a− b)

Dy =

∣∣∣∣∣∣
1 1 b2

1 a ab
b a2b a2b

∣∣∣∣∣∣ = . . . = ab(a− 1)(b− 1)

Dz =

∣∣∣∣∣∣
1 a 1
1 a a
b a2 a2b

∣∣∣∣∣∣ = . . . = a(b− 1)(a− 1)

Η μοναδική λύση σε αυτή την περίπτωση δίνεται από(
Dx

D
,
Dy

D
,
Dz

D

)
=

(
a2(1− b)

a− b
,
((a− 1)(b− 1)

a− b
,

a− 1

b(a− b)

)



a = b ̸= 0 Το σύστημα γίνεται


x+ ay + a2z = 1

x+ ay + a2z = a

ax+ a2y + a3z = a3
που αν a ̸= 1 είναι αδύνατο. Αν a = 1,

τότε ανάγεται στο x+ y + z = 1 το οποίο έχει διπαραμετρική απειρία λύσεων, τις

{(1− y − z, y, z) | y, z ∈ R} = {κ(−1, 1, 0) + λ(−1, 0, 1) + (1, 0, 0) | κ, λ ∈ R}.

a = 0 ̸= b Το σύστημα γίνεται


x+ b2z = 1

x = 0

bx = 0

άρα x = 0, z = 1
b2
. Λόγω της ελεύθερης πα-

ραμέτρου y ∈ R, το σύστημα έχει μονοπαραμετρική απειρία λύσεων, με σύνολο λύσεων {κ(0, 1, 0) +
(0, 0, 1

b2
) | κ ∈ R}.

b = 0 ̸= a Το σύστημα γίνεται


x+ ay = 1

x+ ay = a

a2y = 0

που είναι αδύνατο αν a ̸= 1. Αν a = 1, έχουμε

y = 0, a = 1 και z ∈ R άρα μονοπαραμετρική απειρία λύσεων {κ(0, 0, 1) + (1, 0, 0) | κ ∈ R}.
a = 0 = b Το σύστημα είναι αδύνατο.

Λύση: ‘⇐’ Προφανές αφού τότε V1 ∪ V2 = Vi για το υπερσύνολο Vi, και Vi ≤ V εξ΄ υποθέσεως.
‘⇒’ ΄Εστω V1 ∪ V2 ≤ V και έστω ότι V1 ̸⊆ V2 και V2 ̸⊆ V2. Τότε υπάρχουν διανύσματα v ∈ V1

με v ̸∈ V2 και u ∈ V2 με u ̸∈ V1. ΄Ομως v, u ∈ V1 ∪ V2 οπότε u + v ∈ V1 ∪ V2 αφού η ένωση είναι

υπόχωρος. ΄Ομως αν u + v ∈ V1, τότε (u + v) − u ∈ V1 ≤ V άτοπο, και ομοίως αν u + v ∈ V2 τότε

u ∈ V2, άτοπο.

Λύση: ΄Εστω λv⃗ + λ1v⃗1 + . . . + λkv⃗k = 0⃗. Τότε λv⃗ = −λ1v⃗1 − . . . − λkv⃗k. Αν λ ̸= 0, τότε
v⃗ = − v⃗1

λ1
− . . .− v⃗k

λk
⇒ v⃗ ∈ [v⃗1, . . . , v⃗k], άτοπο εξ΄ υποθέσεως. ΄Αρα αναγκαστικά λ = 0. Τότε έχουμε

λ1v⃗1 + . . .+ λkv⃗k = 0⃗ που από γραμμική ανεξαρτησία μας δίνει τα υπόλοιπα λ1 = . . . = λk = 0.
Λύση: dimR(C2) = 4 με βάση {(1, 0), (i, 0), (0, 1), (0, i)}, dimC(C2) = 2 με βάση {(1, 0), (0, 1)}.
Λύση:

(i ) Αφού B είναι βάση, κάθε v⃗ ∈ V γράφεται κατά μοναδικό τρόπο ως v⃗ = λ1v⃗1 + λ2v⃗2 + λ3v⃗3...

(ii ) ΄Εστω λ1v⃗1 + λ2v⃗2 + λ3(v⃗1 − v⃗2 +2v⃗3) = 0⃗ ⇒ (λ1 + λ3)v⃗1 + (λ2 − λ3)v⃗2 +2λ3v⃗3 = 0⃗. Αφού τα
v⃗1, v⃗2, v⃗3 είναι γραμμικά ανεξάρτητα, αναγκαστικά 2λ3 = 0 ⇒ λ3 = 0 και τότε και λ1 = λ2 = 0,
άρα και το B αποτελείται από γραμμικά ανεξάρτητα διανύσματα. Επίσης, από πρόταση μαθήματος,
[v⃗1, v⃗2, v⃗3] = [v⃗1, v⃗2, v⃗1 − v⃗2 + 2v⃗3] = V , άρα το καινούργιο σύνολο είναι βάση.

Λύση:

(i ) Από ορισμό γραμμικής θήκης, W1 ≤ R3
. Για W2 είτε μέσω του ορισμού υποχώρου, είτε εκφράζω

ως γραμμική θήκη.

W2 ={(x, y, z) | x− 2y + 3z = 0} = {(2y − 3z, y, z) | y, z ∈ R} = {(2κ− 3λ, κ, λ) | κ, λ ∈ R} =

={κ(2, 1, 0) + λ(−3, 0, 1) | κ, λ ∈ R} = [(2, 1, 0), (−3, 0, 1)]

(ii ) Για τον W2, τα δύο διανύσματα είναι γραμμικά ανεξάρτητα γιατί μπορώ να τα φέρω σε κλιμα-

κωτή μορφή

(
2 1 0
−3 0 1

)
∼
(
2 1 0
0 3

2 1

)
, άρα μια βάση του είναι η {(2, 1, 0), (−3, 0, 1)} (ή και

η {(2, 1, 0), (0, 32 , 1)}) και η διάστασή του είναι 2. Αντίστοιχα για τον W1, μια βάση είναι η

{(2, 0, 3), (1,−1, 1)} και η διάστασή του είναι 2.



Για το άθροισμά τους, ισχύει από ορισμό ότι W1 +W2 = [(2, 0, 3), (1,−1, 1), (2, 1, 0), (−3, 0, 1)]
και ελέγχω γραμμική ανεξαρτησία.

1 −1 1
2 0 3
2 1 0
−3 0 1

 ∼


1 −1 1
0 2 1
0 3 −2
0 −3 4

 ∼


1 −1 1
0 2 1
0 0 −7

2
0 0 0


΄Αρα τα τρία πρώτα διανύσματα είναι γραμμικά ανεξάρτητα, και μία βάση είναι η {(2, 0, 3), (1,−1, 1), (2, 1, 0)}
(είτε η {(1,−1, 1), (0, 2, 1), (0, 0,−7

2} είτε η {(1, 0, 0, ), (0, 1, 0), (0, 0, 1)}) και η διάσταση είναι 3.
Για την τομή τους, μπορώ να φέρω τον W1 σε μορφή εξίσωσης [που ουσιαστικά ισοδυναμεί με

το να φέρω το επίπεδο σε αναλυτική μορφή εξίσωσης, από διανυσματική που είναι τώρα: αν το

σκεφτώ, παίρνω εξωτερικό γινόμενο για κάθετο διάνυσμα στο επίπεδο]. Για τυχαίο διάνυσμα,

ισχύει x = 2κ + λ, y = −λ, z = 3κ + λ ⇒ W1 = {(x, y, z) | 3x − 2z = −y} βρίσκοντας τους
κατάλληλους συντελεστές. Τότε

W1 ∩W2 =

{
(x, y, z) |

{
x− 2y + 3z = 0

3x+ y − 2z = 0

}
= (π.χ.Gauss...) = [(1, 11, 7)]

Βάση το {(1, 11, 7)}, διάσταση 1. Εναλλακτικά, ζητάω από ένα στοιχείο της γραμμικής θήκης
του W1 να ικανοποιεί τη σχέση που εκφράζει τον W2.

(iii ) Δεν είναι ευθύ, γιατί W1 ∩W2 ̸= {⃗0}. Το στοιχείο γράφεται ως

(1, 0, 0) = a(2, 0, 3)+b(1,−1, 1)+c(2, 1, 0)+d(−3, 0, 1) = (2a+b+2c−3d,−b+c, 3a+b+d) ⇒
2a+ b+ 2c− 3d = 1

−b+ c = 0

3a+ b+ d = 0

Ψάχνω μόνο δύο λύσεις, οπότε παίρνω για παράδειγμα τα b = c = 0, a = 1
11 , d = − 3

11 και

a = 0, b = c = 1
6 , d = −1

6 .

(iv ) Οι υπόχωροι W1,W2 είναι επίπεδα που διέρχονται από το (0, 0, 0), η τομή τους είναι η ευθεία που
ορίζεται από αυτά τα δύο, και το άθροισμά τους είναι όλος ο R3

.


