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1. (α) ΄Εστω (X,A, µ) χώρος μέτρου και f : X → R μετρήσιμη συνάρτηση. Αν µ(X) > 0, αποδείξτε ότι

υπάρχει E ∈ A με µ(E) > 0 τέτοιο ώστε η f να είναι φραγμένη στο E.

(β) ΄Εστω (X,A, µ) χώρος μέτρου και f : X → [−∞,∞] μετρήσιμη συνάρτηση. Αποδείξτε ότι αν

∫
|f | dµ <

+∞ τότε µ({x ∈ X : |f(x)| = +∞}) = 0.

Υπόδειξη: (α) Για κάθε n ∈ N ορίζουμε En = {x ∈ X : |f(x)| 6 n}. Τότε, En ∈ A διότι η f είναι μετρήσιμη,

και αφού R =
⋃∞
n=1[−n, n] έχουμε ότι

X = f−1

( ∞⋃
n=1

[−n, n]

)
=

∞⋃
n=1

f−1([−n, n]) =
∞⋃
n=1

En.

Από την αριθμήσιμη υποπροσθετικότητα του µ,

0 < µ(X) 6
∞∑
n=1

µ(En),

άρα υπάρχει m ∈ N τέτοιος ώστε µ(Em) > 0. Θέτουμε E := Em. Τότε, E ∈ A, µ(E) > 0 και |f(x)| 6 m για

κάθε x ∈ E, δηλαδή η f είναι φραγμένη στο E.

(β) Από την ανισότητα Markov, για κάθε n ∈ N έχουμε ότι

µ({x ∈ X : |f(x)| > n}) 6 1

n

∫
|f | dµ.

Επίσης, {x ∈ X : |f(x)| = +∞} ⊆ {x ∈ X : |f(x)| > n}, άρα,

µ({x ∈ X : |f(x)| = +∞}) 6 µ({x ∈ X : |f(x)| > n})

για κάθε n ∈ N. ΄Επεται ότι

0 6 µ({x ∈ X : |f(x)| = +∞}) 6 1

n

∫
|f | dµ −→ 0,

απ’ όπου βλέπουμε ότι µ({x ∈ X : |f(x)| = +∞}) = 0.

2. ΄Εστω X 6= ∅ και A μια σ-άλγεβρα στο X. Θεωρούμε A ⊆ X και ορίζουμε FA = {E ∈ A : A ⊆
E ή A ∩ E = ∅}. Θεωρήστε γνωστό ότι η FA είναι σ-άλγεβρα.

΄Εστω τώρα f : X → R. Αποδείξτε ότι η f είναι FA-μετρήσιμη αν και μόνο αν η f είναι A-μετρήσιμη και η

f είναι σταθερή στο A.

Υπόδειξη: Υποθέτουμε πρώτα ότι η f είναι FA-μετρήσιμη. Τότε, για κάθε b ∈ R έχουμε ότι {f < b} ∈ FA ⊆ A,
άρα η f είναι A-μετρήσιμη. ΄Εστω ότι η f δεν είναι σταθερή στο A. Τότε, υπάρχουν a < b στο R και x 6= y στο

A ώστε f(x) = a και f(y) = b. Τότε, το σύνολο {f < b} ανήκει στην FA αφού η f είναι FA μετρήσιμη, άρα

το σύνολο C = {z ∈ A : f(z) < b} = A ∩ {f < b} ∈ FA. ΄Ομως, το C είναι μη κενό, διότι x ∈ C, άρα A ⊆ C
από τον ορισμό της FA. Αυτό είναι άτοπο, διότι y ∈ A \ C.

Αντίστροφα, έστω ότι η f είναι A-μετρήσιμη και παίρνει την τιμή a στο A. ΄Εστω b ∈ R. Τότε, αν b 6 a
έχουμε ότι A ∩ {x ∈ X : f(x) < b} = ∅ ενώ αν a < b έχουμε ότι {x ∈ X : f(x) < b} ⊇ {x ∈ X : f(x) = a} ⊇
A. ΄Επεται ότι, για κάθε b ∈ R το σύνολο {x ∈ X : f(x) < b} ανήκει στην FA, άρα η f είναι FA-μετρήσιμη.

3. ΄Εστω (X,A, µ) χώρος μέτρου με µ(X) > 0 και f : (X,A)→ R μετρήσιμη συνάρτηση. Αποδείξτε ότι: για

κάθε ε > 0 υπάρχει A ∈ A με µ(A) > 0 τέτοιο ώστε για κάθε x, y ∈ A να ισχύει ότι |f(y)− f(x)| < ε.



Υπόδειξη: ΄Εστω ε > 0. Για κάθε n ∈ Z ορίζουμε In = (nε, (n+ 1)ε], οπότε R =
⋃∞
n=−∞ In. Συνεπώς,

X = f−1(R) =
∞⋃

n=−∞
f−1(In).

Καθένα από τα σύνολα An = f−1(In) ανήκει στην A, διότι η f είναι μετρήσιμη. Επίσης,

0 < µ(X) 6
∞∑

n=−∞
µ(An),

άρα υπάρχει m ∈ Z τέτοιος ώστε µ(Am) > 0. Θέτουμε A = Am. Τότε, µ(A) > 0 και για κάθε x, y ∈ A ισχύει

ότι f(x), f(y) ∈ Im = (mε, (m+ 1)ε], άρα |f(x)− f(y)| < (m+ 1)ε−mε = ε.

4. ΄Εστω (X,A, µ) χώρος πιθανότητας και (fn)
∞
n=1, f ολοκληρώσιμες συναρτήσεις τέτοιες ώστε fn(x)→ f(x)

για κάθε x ∈ X και

∫
fn dµ →

∫
f dµ. Αποδείξτε ότι για κάθε ε > 0 υπάρχουν E ∈ A και n0 ∈ N τέτοια

ώστε, για κάθε n > n0, ∣∣∣∣∣
∫
X\E

fn dµ

∣∣∣∣∣ 6 ε και |fn(x)| 6 |f(x)|+ 1 για κάθε x ∈ E.

Υπόδειξη: Από την απόλυτη συνέχεια του ολοκληρώματος, υπάρχει δ > 0 τέτοιος ώστε∫
A

|f | dµ < ε

3

για κάθε A ∈ A με µ(A) < δ. Από το θεώρημα Egorov, υπάρχει E ∈ A τέτοιο ώστ µ(X \ E) < δ και fn → f
ομοιόμορφα στο E. Θεωρούμε τώρα n0 ∈ N τέτοιον ώστε, για κάθε n > n0 να ισχύουν οι

sup
x∈E
|fn(x)− f(x)| 6

1

3
min{1, ε} και

∣∣∣∣∫
X

(fn − f) dµ
∣∣∣∣ 6 ε

3
.

Τότε, για κάθε n > n0 και για κάθε x ∈ E έχουμε ότι

|fn(x)| 6 |f(x)|+ |fn(x)− f(x)| 6 |f(x)|+ 1,

και ∣∣∣∣∣
∫
X\E

fndµ

∣∣∣∣∣ =
∣∣∣∣∣
∫
X

fndµ−
∫
X

f dµ+

∫
X\E

f dµ+

∫
E

(f − fn) dµ

∣∣∣∣∣
6

∣∣∣∣∫
X

fndµ−
∫
X

f dµ

∣∣∣∣+ ∫
X\E
|f | dµ+

∫
E

|f − fn| dµ

6
ε

3
+
ε

3
+

1

3
min{1, ε} 6 ε.

5. (α) ΄Εστω fn : [0, 1]→ R Lebesgue μετρήσιμες συναρτήσεις τέτοιες ώστε∫
[0,1]

|fn|2 dλ 6
1

n2

για κάθε n > 1. Αποδείξτε ότι fn → 0 σχεδόν παντού.



(β) ΄Εστω fn : [0, 1]→ [0,∞) Lebesgue μετρήσιμες συναρτήσεις τέτοιες ώστε fn → 0 κατά σημείο και∫
[0,1]

fn dλ = 1

για κάθε n > 1. Αν g := supn fn, αποδείξτε ότι∫
[0,1]

g dλ = +∞.

Υπόδειξη: (α) Από το θεώρημα Beppo Levi έχουμε ότι∫
[0,1]

( ∞∑
n=1

|fn|2
)
dλ =

∞∑
n=1

∫
[0,1]

|fn|2 dλ 6
∞∑
n=1

1

n2
< +∞.

Αφού η

∞∑
n=1
|fn|2 είναι ολοκληρώσιμη, σχεδόν για κάθε x ∈ [0, 1] ισχύει ότι

∞∑
n=1

|fn(x)|2 < +∞ =⇒ |fn(x)|2 → 0 =⇒ fn(x)→ 0.

(β) Ας υποθέσουμε, προς άτοπο, ότι η g = sup
n
fn είναι ολοκληρώσιμη, δηλαδή

∫
[0,1]

(
sup
n
fn
)
dλ =

∫
g dλ <∞.

Αφού 0 6 fn 6 g για κάθε n και fn → 0 κατά σημείο, από το θεώρημα κυριαρχημένης σύγκλισης παίρνουμε

1 =

∫
[0,1]

fn dλ→ 0.

6. (α) Υπολογίστε το

∫ 1

0

lnx

1− x
dx.

(β) Αποδείξτε την ταυτότητα

∞∑
n=1

1

nn
=

∫ 1

0

x−xdx.

Υπόδειξη: (α) Γνωρίζουμε ότι
1

1−x =
∑∞
n=0 x

n
για κάθε x ∈ (−1, 1). ΄Αρα, για κάθε x ∈ (0, 1) (δηλαδή, σχεδόν

παντού στο [0, 1]) έχουμε ότι

lnx

1− x
=

∞∑
n=0

xn lnx.

Οι συναρτήσεις fn(x) = −xn lnx είναι μη αρνητικές στο (0, 1), άρα μπορούμε να χρησιμοποιήσουμε το θεώρημα

Beppo Levi: ∫ 1

0

(
− lnx

1− x

)
dx =

∞∑
n=0

∫ 1

0

(−xn lnx) dx.

Με ολοκλήρωση κατά παραάγοντες βλέπουμε ότι∫ 1

0

(−xn lnx) dx =
1

(n+ 1)2
, n > 0.



Συνεπώς, ∫ 1

0

lnx

1− x
dx = −

∞∑
n=0

1

(n+ 1)2
= −π

2

6
.

(β) Ξεκινώντας από την x−x = exp(−x lnx) γράφουμε

x−x =

∞∑
n=0

1

n!
xn(− lnx)n, x > 0.

Οι συναρτήσεις fn(x) = 1
n!x

n(− lnx)n είναι μη αρνητικές στο (0, 1), άρα μπορούμε να χρησιμοποιήσουμε το

θεώρημα Beppo Levi: ∫ 1

0

x−xdx =

∞∑
n=0

1

n!

∫ 1

0

xn(− lnx)ndx.

Ορίζουμε

Ip,q =

∫ 1

0

xp(− lnx)qdx, p, q > 0.

Με ολοκλήρωση κατά παράγοντες βλέπουμε ότι αν p > 0 και q > 1 τότε

Ip,q =
p

q + 1
Ip,q−1.

Επίσης, Ip,0 = 1
p+1 για κάθε p > 0. Χρησιμοποιώντας αυτές τις σχέσεις, και με επαγωγή, δείχνουμε ότι

In,n =
n!

(n+ 1)n+1
, n > 0.

Συνεπώς, ∫ 1

0

x−xdx =

∞∑
n=0

1

n!
In,n =

∞∑
n=0

1

n!

n!

(n+ 1)n+1
=

∞∑
n=0

1

(n+ 1)n+1
=

∞∑
n=1

1

nn
.

7. ΄Εστω f : R→ R παραγωγίσιμη συνάρτηση και έστω ότι η f ′ είναι φραγμένη στο R. Αποδείξτε ότι∫ 1

0

f ′(x) dx = f(1)− f(0).

Υπόδειξη: Η f είναι συνεχής, και ειδικότερα Lebesgue μετρήσιμη. Για κάθε n > 1 ορίζουμε gn : R→ R με

gn(x) = n
(
f
(
x+ 1

n

)
− f(x)

)
.

Οι gn είναι συνεχείς και από τον ορισμό της παραγώγου βλέπουμε ότι gn(x) → f ′(x) για κάθε x ∈ R. ΄Αρα, η

f ′ είναι μετρήσιμη. Υπολογίζουμε το∫ 1

0

gn(x) dx = n

∫ 1+1/n

1/n

f(x) dx− n
∫ 1

0

f(x) dx = n

∫ 1+1/n

1

f(x) dx− n
∫ 1/n

0

f(x) dx

και έχουμε ότι ∫ 1

0

gn(x) dx −→ f(1)− f(0) (1)

λόγω της συνέχειας της f .



Η f ′ είναι φραγμένη: υπάρχει M > 0 τέτοιος ώστε |f ′(ξ)| 6 M για κάθε ξ ∈ R. ΄Εστω x ∈ R. Από το

θεώρημα μέσης τιμής, υπάρχει ξx,n ∈ (x, x+ 1/n) τέτοιο ώστε f(x+ 1/n)− f(x) = 1
nf
′(ξx,n), άρα

|gn(x)| = |f ′(ξx,n)| 6M.

Τα παραπάνω δείχνουν ότι οι gn : [0, 1] → R είναι μετρήσιμες, gn → f ′ κατά σημείο, και |gn| 6 M στο [0, 1].
Από το θεώρημα φραγμένης σύγκλισης και την (1),∫ 1

0

f ′(x) dx = lim
n→∞

∫ 1

0

gn(x) dx = f(1)− f(0).

8. ΄Εστω fn : R→ [0,∞) ολοκληρώσιμες συναρτήσεις. Υποθέτουμε ότι, για κάποιους αn > 0, ισχύουν οι∫
R
fn(x)dλ(x) = α2

n και

∞∑
n=1

αn <∞.

Αποδείξτε ότι:

(α) Αν En = {x ∈ R : fn(x) > αn} τότε lim
N→∞

λ (
⋃∞
n=N En) = 0.

(β) Η ακολουθία
fn(x)
αn

είναι φραγμένη σχεδόν για κάθε x ∈ R.

Υπόδειξη: (α) Από την ανισότητα Markov, για κάθε n ∈ N έχουμε

λ(En) 6
1

αn

∫
R
fn dλ =

1

αn
· α2

n = αn,

άρα
∞∑
n=1

λ(En) 6
∞∑
n=1

αn < +∞.

Από το λήμμα Borel-Cantelli έπεται ότι

lim
N→∞

λ

( ∞⋃
n=N

En

)
= λ (lim supEn) = 0.

(β) Από το (α) έχουμε ότι σχεδόν κάθε x ∈ R ανήκει σε πεπερασμένα το πλήθος En, δηλαδή υπάρχει Nx ∈ N
ώστε για κάθε n > Nx να ισχύει

fn(x) 6 αn =⇒ fn(x)

αn
6 1.

Για κάθε τέτοιο x είναι φανερό ότι η
fn(x)
αn

είναι φραγμένη, άρα έχουμε το ζητούμενο.

9. ΄Εστω g : [0, 1]→ R φραγμένη και μτρήσιμη συνάρτηση. Αποδείξτε ότι η συνάρτηση F : R→ R με

F (t) =

∫ 1

0

|t− g(x)| dx

είναι παραγωγίσιμη στο t0 ∈ R αν και μόνο αν λ({x ∈ [0, 1] : g(x) = t0}) = 0.

Υπόδειξη: ΄Εστω t0 ∈ R και έστω (hn) ακολουθία με hn → 0+. Για κάθε x ∈ [0, 1] έχουμε

|t0 + hn − g(x)| − |t0 − g(x)|
hn

→ 1 αν t0 > g(x)



και

|t0 + hn − g(x)| − |t0 − g(x)|
hn

→ −1 αν t0 < g(x).

Επιπλέον, ∣∣∣∣ |t0 + hn − g(x)| − |t0 − g(x)|
hn

∣∣∣∣ 6 1

από την τριγωνική ανισότητα για την απόλυτη τιμή. Από το θεώρημα κυριαρχημένης σύγκλισης έπεται ότι

F (t0 + hn)− F (t0)
hn

=

∫ 1

0

|t0 + hn − g(x)| − |t0 − g(x)|
hn

dx

−→
∫ 1

0

(χ{g6t0} − χ{t0<g}) dx

= λ({x : g(x) 6 t0})− λ({x : g(x) > t0}).

΄Αρα, υπάρχει η

F ′+(t0) = λ({x : g(x) 6 t0})− λ({x : g(x) > t0}).

Με τον ίδιο τρόπο βλέπουμε ότι

F ′−(t0) = λ({x : g(x) < t0})− λ({x : g(x) > t0}).

Συνεπώς, η F είναι παραγωγίσιμη στο t0 αν και μόνο αν

2λ({x : g(x) = t0}) = F ′+(t0)− F ′−(t0) = 0,

και έχουμε το ζητούμενο.

10. ΄Εστω X 6= ∅ και (Y,B) ένας μετρήσιμος χώρος. ΄Εστω f : X → Y συνάρτηση. Ορίζουμε

A = {f−1(B) : B ∈ B}.

(α) Αποδείξτε ότι η A είναι σ-άλγεβρα.

(β) ΄Εστω g : (X,A) → R μη αρνητική Borel μετρήσιμη. Αποδείξτε ότι υπάρχει Borel μετρήσιμη συνάρτηση

h : (Y,B)→ R τέτοια ώστε g = h ◦ f .

(γ) Αποδείξτε ότι το ίδιο ισχύει και χωρίς την υπόθεση ότι η g είναι μη αρνητική.

Υπόδειξη: (α) Το κενό σύνολο ανήκει στην A, διότι ∅ = f−1(∅). Αν A ∈ A τότε A = f−1(B) για κάποιο

B ∈ B. Αφού Bc ∈ B και Ac = f−1(Bc), έπεται ότι Ac ∈ A. Τέλος, αν (An) είναι μια ακολουθία συνόλων

στην A τότε μπορούμε να γράψουμε An = f−1(Bn) για κάποια ακολουθία (Bn) στην B. Εφόσον
⋃∞
n=1Bn ∈ A

και
⋃∞
n=1 = F−1 (

⋃∞
n=1Bn), βλέπουμε ότι

⋃∞
n=1An ∈ A.

(β) Αρχίζουμε με την περίπτωση που η g είναι απλή, μετρήσιμη και μη αρνητική. Γράφουμε

g =

m∑
k=1

akχAk

όπου τα Ak ανήκουν στην A, είναι ξένα, και οι ak είναι διακεκριμένοι. Από τον ορισμό της A μπορούμε να

βρούμε Bk ∈ B ώστε Ak = f−1(Bk). Εφόσον τα Ak είναι ξένα, το ίδιο ισχύει για τα Bk. Θεωρούμε τη

συνάρτηση

h =

m∑
k=1

akχBk
.



Τότε, g = h ◦ f . Πράγματι, αν x ∈ X και x ∈ Ak για κάποιον k, τότε g(x)ak, ενώ f(x) ∈ Bk, οπότε

(h ◦ f)(x) = h(f(x)) = ak. Αν το x δεν ανήκει σε κανένα από τα Ak τότε το f(x) δεν ανήκει σε κανένα από

τα Bk, άρα πάλι, g(x) = 0 = (h ◦ f)(x).
΄Εστω τώρα g : (X,A)→ R μη αρνητική Borel μετρήσιμη. Υπάρχει αύξουσα ακολουθία (sn) μη αρνητικών

απλών μετρήσιμων συναρτήσεων τέτοια ώστε sn → g. Από το προηγούμενο βήμα, για κάθε n ∈ N μπορούμε

να βρούμε απλή μετρήσιμη tn : Y → R τέτοια ώστε sn = tn ◦ f . Ορίζουμε h = infn sn. Τότε, η h είναι μη

αρνητική, μετρήσιμη και για κάθε x ∈ X έχουμε

sn(x) = tn(f(x))

άρα

g(x) = lim sn(x) = lim tn(f(x)) = h(f(x)),

δηλαδή g = h ◦ f .
(γ) ΄Εστω g : X → R μετρήσιμη. Γράφουμε g = f+ − g− και, από το (β), βρίσκουμε μη αρνητικές μετρήσιμες

h+, h− : Y → R τέτοιες ώστε f+ = h+ ◦f και f− = h− ◦f . Αν ορίσουμε h = h+−h− τότε η h είναι μετρήσιμη

και

h(f(x)) = h+(f(x))− h−(f(x)) = g+(x)− g−(x) = g(x)

για κάθε x ∈ X, δηλαδή g = h ◦ f .


