
ΣΗΜΜΥ

Μαθηματική Ανάλυση

Επαναληπτικές Ασκήσεις (υποδείξεις)

Ασκηση 1. ΄Εστω x, y > 0 τέτοιοι ώστε x > γy για κάθε γ ∈ (0, 2). Αποδείξτε ότι x ≥ 2y.

Υπόδειξη: Εφόσον x, y > 0, από την x > γy παίρνουμε
x
y > γ για κάθε γ ∈ (0, 2). Αυτό σημαίνει ότι ο x/y

είναι άνω φράγμα του (0, 2), συνεπώς
x

y
≥ sup(0, 2) = 2

και έπεται ότι x ≥ 2y.

Ασκηση 2. Αποδείξτε ότι το σύνολο

A =
{ 1√

n
+

1

n
: n ∈ N

}
είναι φραγμένο και βρείτε τα supA και inf A. Εξετάστε αν το A έχει μέγιστο ή ελάχιστο στοιχείο.

Υπόδειξη: Για κάθε n ∈ N ισχύει ότι

1√
n

+
1

n
≤ 2 =

1√
1

+
1

1
∈ A.

Δηλαδή, ο 2 είναι το μέγιστο στοιχείο του A. ΄Επεται ότι supA = maxA = 2.
΄Εχουμε

1√
n

+ 1
n > 0 για κάθε n ∈ N, δηλαδή ο 0 είναι κάτω φράγμα του A. Επίσης, αν θέσουμε xn = 1√

n
+ 1
n

τότε η ακολουθία (xn) έχει όλους τους όρους της στο A και xn → 0. Από τον χαρακτηρισμό του infimum
μέσω ακολουθιών συμπεραίνουμε ότι inf A = 0. Το A δεν έχει ελάχιστο στοιχείο, αφού 0 /∈ A.

Ασκηση 3. ΄Εστω A,B μη κενά, άνω φραγμένα υποσύνολα του R με την εξής ιδιότητα: για κάθε a ∈ A
υπάρχει b ∈ B ώστε a < b. Αποδείξτε ότι supA ≤ supB.

Δώστε παράδειγμα στο οποίο ικανοποιείται η υπόθεση και ισχύει supA = supB.

Υπόδειξη: ΄Εστω a ∈ A. Από την υπόθεση υπάρχει b ∈ B (που εξαρτάται από το a) ώστε a < b. ΄Ομως,

b ≤ supB και άρα a < supB.

΄Ετσι, έχουμε ότι a ∈ A για κάθε a ∈ A, δηλαδή ο supB είναι άνω φράγμα του A. ΄Επεται ότι supA ≤ supB.

Το παράδειγμα των συνόλων A = (1, 2) και B = (0, 2) (ή ακόμα και B = A = (1, 2)) δείχνει ότι μπορεί να

ικανοποιείται η υπόθεση και να ισχύει ότι supA = supB.

Ασκηση 4. Αποδείξτε ότι το σύνολο

A = { n
√

2 : n ∈ N}

είναι φραγμένο και βρείτε τα supA και inf A. Εξετάστε αν το A έχει μέγιστο ή ελάχιστο στοιχείο.

Υπόδειξη: Για κάθε n ∈ N ισχύει ότι
n
√

2 ≤ 2 = 1
√

2 ∈ A. Δηλαδή, ο 2 είναι το μέγιστο στοιχείο του A. ΄Επεται

ότι supA = maxA = 2.
΄Εχουμε

n
√

2 > 1 για κάθε n ∈ N, δηλαδή ο 1 είναι κάτω φράγμα του A. Επίσης, αν θέσουμε xn = n
√

2 τότε

η ακολουθία (xn) έχει όλους τους όρους της στο A και xn → 1. Από τον χαρακτηρισμό του infimum μέσω

ακολουθιών συμπεραίνουμε ότι inf A = 1. Το A δεν έχει ελάχιστο στοιχείο, αφού 1 /∈ A.

Ασκηση 5. Ορίζουμε μια ακολουθία (xn) με 1 < x1 < 3 και

xn+1 =
x2n + 3

4
, n = 1, 2, . . . .

Εξετάστε αν η (xn) συγκλίνει σε πραγματικό αριθμό και, αν ναι, βρείτε το lim
n→∞

xn.
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Υπόδειξη: Δείχνουμε πρώτα με επαγωγή ότι 1 < xn < 3 για κάθε n ∈ N. Για το επαγωγικό βήμα παρατηρήστε

ότι αν 1 < xn < 3 τότε 1 < x2n < 9, άρα

1 =
1 + 3

4
< xn+1 =

x2n + 3

4
<

9 + 3

4
= 3.

Δείχνουμε επίσης ότι η (xn) είναι γνησίως φθίνουσα. Πράγματι, για κάθε n ∈ N έχουμε ότι

xn+1 − xn =
x2n + 3

4
− xn =

x2n − 4xn + 3

4
=

(xn − 1)(xn − 3)

4
< 0,

διότι xn − 1 > 0 και xn − 3 < 0.
Η (xn) είναι γνησίως φθίνουσα και κάτω φραγμένη από τον 1, άρα υπάρχει x ∈ R ώστε xn → x. Τότε,

xn+1 =
x2
n+3
4 → x2+3

4 και xn+1 → x, άρα x2+3
4 = x, δηλαδή (x− 1)(x− 3) = 0. ΄Ομως η (xn) είναι φθίνουσα,

άρα x ≤ x1 < 3, δηλαδή x 6= 3. ΄Ετσι, συμπεραίνουμε ότι x = 1.

Ασκηση 6. ΄Εστω (xn) ακολουθία πραγματικών αριθμών τέτοια ώστε xn → 1
2 . Ορίζουμε yn = [xn], όπου [x]

είναι το ακέραιο μέρος του x. Αποδείξτε ότι yn → 0.

Υπόδειξη: Επιλέγουμε ε = 1
4 . Αφού xn → 1

2 , υπάρχει n0 ∈ N τέτοιος ώστε για κάθε n ≥ n0 να έχουμε ότι∣∣∣xn − 1

2

∣∣∣ < 1

4
=⇒ 1

4
< xn <

3

4
=⇒ yn = [xn] = 0.

Εφόσον yn = 0 για κάθε n ≥ n0, έπεται ότι yn → 0.

Ασκηση 7. ΄Εστω (an) ακολουθία πραγματικών αριθμών. Εξετάστε αν κάθε μία από τις παρακάτω προτάσεις

είναι αληθής ή ψευδής (αιτιολογήστε την απάντησή σας).

(α) Αν an+1 − an → 0 τότε η (an) συγκλίνει σε πραγματικό αριθμό.

(β) Αν η (an) είναι αύξουσα και έχει υπακολουθία (akn) τέτοια ώστε akn → x ∈ R τότε an → x.

(γ) Αν η (an) δεν είναι άνω φραγμένη τότε an → +∞.

Υπόδειξη: (α) Ψευδής. ΄Ενα παράδειγμα δίνει η

an = 1 +
1√
2

+ · · ·+ 1√
n
.

΄Εχουμε

an+1 − an =

(
1 +

1√
2

+ · · ·+ 1√
n

+
1√
n+ 1

)
−
(

1 +
1√
2

+ · · ·+ 1√
n

)
=

1√
n+ 1

→ 0,

όμως

an = 1 +
1√
2

+ · · ·+ 1√
n
≥ n · 1√

n
=
√
n,

άρα an → +∞.

’λλο παράδειγμα δίνει η an = lnn. ΄Εχουμε

an+1 − an = ln(n+ 1)− lnn = ln

(
n+ 1

n

)
→ ln 1 = 0,

όμως an = lnn→ +∞.

(β) Αληθής. Αρχικά παρατηρούμε ότι η (akn) είναι επίσης αύξουσα. Για κάθε n έχουμε kn < kn+1, άρα

akn ≤ akn+1
αφού η (an) είναι αύξουσα.
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Αφού akn → x και η (akn) είναι αύξουσα, έχουμε akn ≤ x για κάθε n ∈ N.

Για κάθε n ∈ N ισχύει kn ≥ n, και αφού η (an) είναι αύξουσα παίρνουμε an ≤ akn ≤ x. Επομένως η (an)
είναι άνω φραγμένη. Αφού είναι και αύξουσα, συγκλίνει σε κάποιον y. Τότε όμως akn → y και αφού akn → x
έχουμε y = x. Δηλαδή, an → x.

(γ) Ψευδής. Θεωρούμε την ακολουθία (an) με a2k = k και a2k−1 = 1 για κάθε k ∈ N.

Τότε, για κάθεM > 0 υπάρχουν (και μάλιστα άπειροι) όροι της (an) που είναι μεγαλύτεροι απόM . Πράγματι,

υπάρχει k0 ∈ N ώστε k0 > M , και τότε, για κάθε k ≥ k0 ισχύει a2k = k ≥ k0 > M .

΄Ομως, an 6→ +∞: αν αυτό ίσχυε, θα έπρεπε όλοι τελικά οι όροι της (an) να είναι μεγαλύτεροι από 2, το

οποίο δεν ισχύει αφού όλοι οι περιττοί όροι της (an) είναι ίσοι με 1.

Ασκηση 8. ΄Εστω (ak) ακολουθία πραγματικών αριθμών. Εξετάστε αν κάθε μία από τις παρακάτω προτάσεις

είναι αληθής ή ψευδής (αιτιολογήστε την απάντησή σας).

(α) Αν k2ak → 0 τότε η σειρά

∞∑
k=1

ak συγκλίνει.

(β) Αν η σειρά

∞∑
k=1

ak συγκλίνει τότε η σειρά

∞∑
k=1

a2k συγκλίνει.

(γ) Αν η σειρά

∞∑
k=1

ak συγκλίνει τότε η σειρά

∞∑
k=1

ak
k συγκλίνει.

(δ) Αν η σειρά

∞∑
k=1

a2k συγκλίνει τότε η σειρά
∑∞
k=1 a

3
k συγκλίνει απολύτως.

Υπόδειξη: (α) Αληθής. Αφού k2ak → 0, υπάρχει k0 ∈ N τέτοιος ώστε |k2ak| ≤ 1 για κάθε k ≥ k0, ή ισοδύναμα,

|ak| ≤
1

k2
για κάθε k ≥ k0.

Αφού η σειρά

∞∑
k=1

1
k2 συγκλίνει, από το κριτήριο σύγκρισης η σειρά

∞∑
k=k0

|ak| συγκλίνει και έπεται ότι η σειρά

∞∑
k=1

ak συγκλίνει απολύτως.

(β) Ψευδής. Αν ak = (−1)k−1

√
k

τότε από το κριτήριο Leibniz η σειρά

∞∑
k=1

ak =

∞∑
k=1

(−1)k−1
1√
k

συγκλίνει (αφού η 1/
√
k είναι φθίνουσα και τείνει στο 0). ΄Ομως η σειρά

∞∑
k=1

a2k =

∞∑
k=1

1

k

αποκλίνει (αρμονική σειρά).

(γ) Αληθής. Αφού η σειρά

∞∑
k=1

ak συγκλίνει, η ακολουθία (sn) με sn = a1 + · · ·+an, των μερικών αθροισμάτων

είναι φραγμένη. Η ακολουθία bk = 1
k είναι φθίνουσα, έχει θετικούς όρους και συγκλίνει στο 0. Επομένως

ικανοποιούνται οι υποθέσεις του κριτηρίου Dirichlet και συμπεραίνουμε ότι η

∞∑
k=1

akbk =
∞∑
k=1

ak
k συγκλίνει.

(δ) Αληθής. Αφού η σειρά

∞∑
k=1

a2k συγκλίνει, έχουμε a2k → 0 άρα ak → 0. Συνεπώς, υπάρχει k0 ∈ N τέτοιος

ώστε: για κάθε k ≥ k0 έχουμε |ak| ≤ 1.
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Τότε, για κάθε k ≥ k0 έχουμε

|a3k| = |a2k| · |ak| = a2k · |ak| ≤ a2k.

Από το κριτήριο σύγκρισης, η

∞∑
k=k0

a3k συγκλίνει απολύτως, άρα και η

∞∑
k=1

a3k συγκλίνει απολύτως.

Ασκηση 9. ΄Εστω (ak) και (bk) ακολουθίες πραγματικών αριθμών. Αποδείξτε ότι αν η σειρά

∞∑
k=1

ak συγκλίνει

απολύτως και η σειρά

∞∑
k=1

bk συγκλίνει, τότε η σειρά

∞∑
k=1

akbk συγκλίνει.

Υπόδειξη: Αφού η σειρά

∞∑
k=1

bk συγκλίνει, έχουμε bk → 0. Ειδικότερα, η (bk) είναι φραγμένη: υπάρχει M > 0

τέτοιος ώστε |bk| ≤M για κάθε k ≥ 1.
Παρατηρούμε τώρα ότι, για κάθε k ≥ 1,

|akbk| = |ak| · |bk| ≤M |ak|,

και αφού η σειρά

∞∑
k=1

|ak| συγκλίνει (από την υπόθεση), το κριτήριο σύγκρισης μας δίνει ότι η σειρά

∞∑
k=1

|akbk|

συγκλίνει. Επομένως, η σειρά

∞∑
k=1

akbk συγκλίνει και μάλιστα απολύτως.

Ασκηση 10. ΄Εστω f : (0,+∞) → R συνεχής συνάρτηση τέτοια ώστε lim
x→+∞

f(x) = +∞ και lim
x→0+

f(x) =

+∞. Αποδείξτε ότι η f παίρνει ελάχιστη τιμή.

Υπόδειξη: Αφού lim
x→0+

f(x) = +∞, υπάρχει 0 < a < 1 ώστε f(x) > f(1) για κάθε x ∈ (0, a). Ομοίως, αφού

lim
x→+∞

f(x) = +∞, υπάρχει b > 1 ώστε f(x) > f(1) για κάθε x ∈ (b,+∞).

Η f είναι συνεχής στο [a, b] άρα παίρνει ελάχιστη τιμή σε αυτό. Υπάρχει x0 ∈ [a, b] τέτοιο ώστε

f(x0) ≤ f(x) για κάθε x ∈ [a, b].

Παρατηρήστε ότι 1 ∈ [a, b], άρα f(x0) ≤ f(1). ΄Επεται ότι: αν x ∈ (0, a) τότε f(x0) ≤ f(1) < f(x) και αν

x ∈ (b,+∞) τότε f(x0) ≤ f(1) < f(x).
Από τα παραπάνω βλέπουμε ότι f(x0) ≤ f(x) για κάθε x ∈ [0,+∞), δηλαδή η f παίρνει ελάχιστη τιμή στο

x0.

Ασκηση 11. ΄Εστω f : [a, b]→ R συνεχής συνάρτηση. Υποθέτουμε ότι υπάρχουν xn ∈ [a, b] ώστε f(xn)→
0. Αποδείξτε ότι υπάρχει x0 ∈ [a, b] ώστε f(x0) = 0.

Υπόδειξη: Υποθέτουμε ότι η f δεν μηδενίζεται στο [a, b]. Εξηγήστε γιατί υπάρχει ε > 0 ώστε |f(x)| ≥ ε για

κάθε x ∈ [a, b] (χρησιμοποιήστε το γεγονός ότι η |f | παίρνει ελάχιστη τιμή). Από την υπόθεση όμως, υπάρχει

ακολουθία (xn) στο [0, 1] ώστε f(xn)→ 0. Για όλους τελικά τους n ∈ N πρέπει να ισχύει |f(xn)| < ε, το οποίο

οδηγεί σε άτοπο.

Ασκηση 12. Εξετάστε αν κάθε μία από τις παρακάτω προτάσεις είναι αληθής ή ψευδής. Αν είναι αληθής

αποδείξτε την και αν είναι ψευδής δώστε αντιπαράδειγμα.

(α) Υπάρχει συνάρτηση f : R→ R που είναι συνεχής στο 0 και ασυνεχής σε όλα τα άλλα σημεία.

(β) Αν η f : R→ R ικανοποιεί την |f(x)| ≤ x2 για κάθε x ∈ R, τότε είναι συνεχής στο 0.

(γ) Αν η f : [0, 1] → R είναι συνεχής, και αν f(0) = 0 και f(1) = 1, τότε το σύνολο τιμών της f είναι το

[0, 1].
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Υπόδειξη: (α) Σωστό. Θεωρήστε τη συνάρτηση f : R→ R με f(x) = x αν x ∈ Q και f(x) = −x αν x /∈ Q.

΄Εστω (xn) ακολουθία στο R με xn → 0. Τότε |f(xn)| = |xn| → 0, άρα f(xn)→ 0 = f(0). Από την αρχή

της μεταφοράς η f είναι συνεχής στο 0.
΄Εστω τώρα x 6= 0. Θεωρούμε ακολουθία ρητών (qn) και ακολουθία αρρήτων (ξn) ώστε qn → x και ξn → x.

Τότε, f(qn) = qn → x και f(ξn) = −ξn → −x. Αν η f ήταν συνεχής στο x, από την αρχή της μεταφοράς θα

είχαμε f(x) = lim f(qn) = lim f(ξn), δηλαδή x = −x, το οποίο είναι άτοπο αφού x 6= 0.

(β) Αληθής. Παρατηρήστε ότι |f(0)| ≤ 02 = 0, δηλαδή f(0) = 0. ΄Εστω (xn) ακολουθία στο R με xn → 0.
Τότε, από την −x2n ≤ f(xn) ≤ x2n και το κριτήριο παρεμβολής έπεται ότι f(xn)→ 0 = f(0). Από την αρχή της

μεταφοράς η f είναι συνεχής στο 0.

(γ) Ψευδής. Θεωρήστε μια συνάρτηση με f(1/2) = 2 και γραμμική σε καθένα από τα [0, 1/2] και [1/2, 1] (με

τύπο f(x) = 4x στο [0, 1/2] και f(x) = 3− 2x στο [1/2, 1]). Το σύνολο τιμών της f είναι το [0, 2].

Ασκηση 13. ΄Εστω f : [0,+∞) → R συνεχής συνάρτηση. Υποθέτουμε ότι η f είναι παραγωγίσιμη στο

(0,+∞) και για κάθε x > 0 ισχύει |f ′(x)| ≤ 1
x2 . Αποδείξτε ότι:

(i) Η σειρά

∞∑
k=1

|f(k + 1)− f(k)| συγκλίνει.

(ii) Η f είναι φραγμένη.

Υπόδειξη: (i) ΄Εστω k ∈ N. Από το θεώρημα μέσης τιμής υπάρχει ξk ∈ (k, k+1) τέτοιο ώστε f(k+1)−f(k) =
f ′(ξk)(k + 1 − k) = f ′(ξk). Από την υπόθεση έχουμε ότι |f ′(ξk)| ≤ 1

ξ2k
≤ 1

k2 , άρα |f(k + 1) − f(k)| ≤ 1
k2 .

΄Επεται ότι

M :=

∞∑
k=1

|f(k + 1)− f(k)| ≤
∞∑
k=1

1

k2
< +∞.

(ii) ΄Εστω x > 1. Υπάρχει k ∈ N ώστε k < x < k + 1. Τότε,

|f(x)| ≤ |f(x)− f(k + 1)|+ |f(k + 1)− f(k)|+ |f(k)− f(k − 1)|+ · · ·+ |f(2)− f(1)|+ |f(1)|
≤M + |f(1)|+ |f(x)− f(k + 1)|.

Από το θεώρημα μέσης τιμής υπάρχει ξx ∈ (x, k + 1) τέτοιο ώστε f(k + 1) − f(x) = f ′(ξx)(k + 1 − x). Από

την υπόθεση έχουμε ότι |f ′(ξx)| ≤ 1
ξ2x
≤ 1

k2 , άρα

|f(k + 1)− f(x)| ≤ 1

k2
(k + 1− x) ≤ 1

k2
≤ 1.

Συνεπώς, για κάθε x > 1 έχουμε ότι

|f(x)| ≤M + |f(1)|+ 1.

Η f είναι συνεχής στο [0, 1], άρα φραγμένη σε αυτό: υπάρχει α > 0 τέτοιος ώστε |f(x)| ≤ α για κάθε x ∈ [0, 1].
Συνδυάζοντας τα παραπάνω βλέπουμε ότι

|f(x)| ≤ max{M + |f(1)|+ 1, α}

για κάθε x ∈ [0,+∞). Δηλαδή, η f είναι φραγμένη.

Ασκηση 14. ΄Εστω f : R→ R συνεχής συνάρτηση. Ορίζουμε an = f(1/n) για κάθε n = 1, 2, . . .. Αποδείξτε

ότι:

(1) Αν η σειρά
∑∞
n=1 an συγκλίνει τότε f(0) = 0.

(2) Αν υπάρχει η f ′(0) και αν η σειρά
∑∞
n=1 an συγκλίνει τότε f ′(0) = 0. [Υπόδειξη: παρατηρήστε ότι

f ′(0) = lim
n→∞

nan.]
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Υπόδειξη: (1) Παρατηρούμε ότι, αφού η f είναι συνεχής στο 0, από την αρχή της μεταφοράς έχουμε

f(0) = lim
n→∞

f(1/n) = lim
n→∞

an

και an → 0 αφού η σειρά

∞∑
n=1

an συγκλίνει. Επομένως, f(0) = 0.

(2) Παρατηρούμε ότι αφού υπάρχει η f ′(0) θα πρέπει να είναι ίση με

f ′(0) = lim
n→∞

f(1/n)− f(0)

1/n
= lim
n→∞

nf(1/n) = lim
n→∞

(nan).

Χρησιμοποιήσαμε την αρχή της μεταφοράς και το γεγονός ότι f(0) = 0 από το (α).

Επομένως nan → ` = f ′(0). Για να ολοκληρώσουμε την απόδειξη θα αποκλείσουμε τις ` > 0 και ` < 0,
οπότε f ′(0) = ` = 0.

΄Εστω ότι nan → ` > 0. Τότε υπάρχει n0 ∈ N τέτοιος ώστε nan >
`
2 για κάθε n ≥ n0. ΄Ομως τότε, για

κάθε n ≥ n0 έχουμε an ≥ `
2n και η σειρά

∞∑
n=n0

`
2n αποκλίνει στο +∞, άρα η

∞∑
n=n0

an αποκλίνει, άτοπο.

΄Εστω ότι nan → ` < 0. Τότε υπάρχει n0 ∈ N τέτοιος ώστε nan <
`
2 για κάθε n ≥ n0. ΄Ομως τότε, για

κάθε n ≥ n0 έχουμε an ≤ `
2n και αφού ` < 0 η σειρά

∞∑
n=n0

`
2n αποκλίνει στο −∞, άρα η

∞∑
n=n0

an αποκλίνει στο

−∞, άτοπο.

Συνεπώς, f ′(0) = lim
n→∞

nan = ` = 0.

Ασκηση 15. ΄Εστω g : [a, b] → R ολοκληρώσιμη συνάρτηση με
∫ b
a
g(x)dx > 0. Αποδείξτε ότι υπάρχει

διάστημα [γ, δ] ⊆ [a, b] τέτοιο ώστε g(x) > 0 για κάθε x ∈ [γ, δ]. [Υπόδειξη: Εξηγήστε πρώτα γιατί υπάρχει

διαμέριση P του [a, b] τέτοια ώστε L(g, P ) > 0.]

Υπόδειξη: Γνωρίζουμε ότι

sup{L(g, P ) : P διαμέριση του [a, b]} =

∫ b

a

g(x)dx > 0.

Επομένως, υπάρχει διαμέριση P0 = {a = x0 < x1 < · · · < xn = b} του [a, b] τέτοια ώστε

L(g, P0) =

n−1∑
k=0

mk(xk+1 − xk) > 0.

΄Επεται ότι υπάρχει k τέτοιος ώστε mk(xk+1 − xk) > 0, δηλαδή mk > 0. ΄Ομως,

mk = inf{g(x) : xk ≤ x ≤ xk+1}.

Θετοντας γ = xk και δ = xk+1 έχουμε g(x) ≥ mk > 0 για κάθε x ∈ [γ, δ].

Ασκηση 16. ΄Εστω f : [a, b]→ R ολοκληρώσιμη συνάρτηση. Αποδείξτε ότι(∫ b

a

f(t) sin t dt

)2

+

(∫ b

a

f(t) cos t dt

)2

≤ (b− a)

∫ b

a

|f(t)|2 dt.
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Υπόδειξη: Από την ανισότητα Cauchy-Schwarz,(∫ b

a

f(t) sin t dt

)2

+

(∫ b

a

f(t) cos t dt

)2

≤

(∫ b

a

|f(t)|2
)[∫ b

a

sin2 t dt+

∫ b

a

cos2 t dt

]

=

(∫ b

a

|f(t)|2dt

)[∫ b

a

(sin2 t+ cos2 t) dt

]

=

(∫ b

a

|f(t)|2dt

)[∫ b

a

1 dt

]

= (b− a)

∫ b

a

|f(t)|2 dt.

Ασκηση 17. ΄Εστω b > a > 0. Υπολογίστε (με αιτιολόγηση) το

lim
n→∞

∫ b

a

sin(nx)

x
dx.

Υπόδειξη: Γράφουμε ∫ b

a

sin(nx)

x
dx =

∫ b

a

(
− cos(nx)

n

)′
1

x
dx

= − 1

n

cos(nx)

x

∣∣∣b
a
− 1

n

∫ b

a

cos(nx)
1

x2
dx.

Παρατηρούμε ότι ∣∣∣∣ 1n cos(nx)

x

∣∣∣b
a

∣∣∣∣ =
1

n

∣∣∣∣cos(nb)

b
− cos(na)

a

∣∣∣∣ ≤ 1

n

(
1

b
+

1

a

)
→ 0

και

1

n

∣∣∣∣∣
∫ b

a

cos(nx)
1

x2
dx

∣∣∣∣∣ ≤ 1

n

∫ b

a

1

x2
dx =

1

n

(
1

a
− 1

b

)
→ 0,

άρα

lim
n→∞

∫ b

a

sin(nx)

x
dx = 0.

Ασκηση 18. ΄Εστω f : [1,+∞) → [0,+∞) συνεχής και φθίνουσα. Αποδείξτε ότι η ακολουθία an =∑n
k=1 f(k)−

∫ n
1
f(x)dx συγκλίνει.

Υπόδειξη: Γράφουμε

an+1 − an =

n+1∑
k=1

f(k)−
∫ n+1

1

f(x)dx−
n∑
k=1

f(k) +

∫ n

1

f(x)dx

= f(n+ 1)−
∫ n+1

n

f(x)dx =

∫ n+1

n

(f(n+ 1)− f(x))dx ≤ 0
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διότι f(n + 1) ≤ f(x) για κάθε x ∈ [n, n + 1] αφού η f είναι φθίνουσα. Συνεπώς, η (an) είναι φθίνουσα.

Παρατηρούμε τώρα ότι ∫ n

1

f(x)dx =

n−1∑
k=1

∫ k+1

k

f(x)dx ≤
n−1∑
k=1

f(k),

άρα

an =

n∑
k=1

f(k)−
∫ n

1

f(x)dx ≥
n∑
k=1

f(k)−
n−1∑
k=1

f(k) = f(n) ≥ 0,

άρα η (an) είναι κάτω φραγμένη από το 0, και αφού είναι φθίνουσα έπεται ότι συγκλίνει.

Ασκηση 19. ΄Εστω f : [0,+∞) παραγωγίσιμη συνάρτηση με συνεχή παράγωγο f ′ και f(0) = 0. Αποδείξτε,

ότι για κάθε x > 0,

|f(x)|2 ≤ x
∫ x

0

|f ′(t)|2dt.

Υπόδειξη: Γράφουμε

|f(x)|2 = |f(x)− f(0)|2 =
∣∣∣ ∫ x

0

f ′(t) dt
∣∣∣2

≤
(∫ x

0

1 · |f ′(t)| dt
)2

≤
(∫ x

0

12dt

)(∫ x

0

|f ′(t)|2dt
)

= x

∫ x

0

|f ′(t)|2dt,

χρησιμοποιώντας την υπόθεση ότι f(0) = 0, το θεμελιώδες θεώρημα του Απειροστικού Λογισμού και την

ανισότητα Cauchy-Schwarz.

Ασκηση 20. ΄Εστω f : [0,+∞)→ [0,+∞) συνεχής συνάρτηση τέτοια ώστε το
∫∞
0
f(t)dt να υπάρχει και να

είναι πεπερασμένο. Αποδείξτε ότι limx→+∞
∫ x
x/2

f(t)dt = 0. Αν επιπλέον υποθέσουμε ότι η f είναι φθίνουσα,

αποδείξτε ότι limx→+∞(xf(x)) = 0.

Υπόδειξη: Θέτουμε

I =

∫ ∞
0

f(t)dt = lim
y→∞

∫ y

0

f(t)dt.

΄Εστω ε > 0. Υπάρχει y0 > 0 τέτοιος ώστε: για κάθε y > y0,
∣∣∣ ∫ y0 f(t)dt − I

∣∣∣ < ε
2 . Τότε, για κάθε x > 2y0

έχουμε x > y0 και x/2 > y0, άρα∣∣∣ ∫ x

x/2

f(t)dt
∣∣∣ =

∣∣∣ ∫ x

0

f(t)dt−
∫ x/2

0

f(t)dt
∣∣∣

≤
∣∣∣ ∫ x

0

f(t)dt− I
∣∣∣+
∣∣∣I − ∫ x/2

0

f(t)dt
∣∣∣ < ε

2
+
ε

2
= ε.

Αυτό αποδεικνύει ότι limx→+∞
∫ x
x/2

f(t)dt = 0.

Για τον δεύτερο ισχυρισμό παρατηρούμε ότι αν η f είναι φθίνουσα τότε

0 ≤ xf(x) = 2 · x
2
f(x) ≤ 2

∫ x

x/2

f(t)dt −→ 0

όταν x→∞, από τον πρώτο ισχυρισμό.
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Ασκηση 21. ΄Εστω f : [0, 1]→ R συνεχής. Αποδείξτε ότι

lim
ε→0+

∫ 4ε

2ε

f(x)

x
dx = f(0) · ln 2.

[Υπόδειξη: Παρατηρήστε ότι
∫ 2a

a
1
xdx = ln 2 για κάθε a > 0.]

Υπόδειξη: ΄Εστω δ > 0. Υπάρχει ε0 > 0 τέτοιος ώστε |f(x)− f(0)| ≤ δ
ln 2 για κάθε x ∈ [0, ε0]. Τότε, για κάθε

0 < ε < ε0
4 , χρησιμοποιώντας και την ∫ 4ε

2ε

1

x
dx = ln(4ε)− ln(2ε) = ln 2

έχουμε ∣∣∣ ∫ 4ε

2ε

f(x)

x
dx− f(0) · ln 2

∣∣∣ =
∣∣∣ ∫ 4ε

2ε

f(x)

x
dx− f(0) ·

∫ 4ε

2ε

1

x
dx
∣∣∣

=
∣∣∣ ∫ 4ε

2ε

(f(x)− f(0))
1

x
dx
∣∣∣ ≤ ∫ 4ε

2ε

|f(x)− f(0)| 1
x
dx ≤ δ

ln 2

∫ 4ε

2ε

1

x
dx = δ.

Από τον ορισμό του ορίου έχουμε το ζητούμενο.

Ασκηση 22. ΄Εστω f : [0, a]→ R συνάρτηση με συνεχή παράγωγο και f(0) = 0. Δείξτε ότι∫ a

0

|f(t)f ′(t)| dt ≤ a

2

∫ a

0

|f ′(t)|2dt.

Υπόδειξη: Θεωρούμε τη συνάρτηση g(x) =
∫ x
0
|f ′(t)|dt. ΄Εχουμε g(0) = 0 και g′(t) = |f ′(t)| για κάθε t ∈ [0, a].

Επίσης,

|f(x)| = |f(x)− f(0)| =
∣∣∣ ∫ x

0

f ′(t)dt
∣∣∣ ≤ ∫ x

0

|f ′(t)|dt = g(x)

για κάθε x ∈ [0, a], άρα ∫ a

0

|f(t)f ′(t)|dt ≤
∫ a

0

g(t)g′(t)dt =
1

2

∫ a

0

[g2(t)]′dt =
1

2
g2(a).

Τέλος,

1

2
g2(a) =

1

2

(∫ a

0

g′(t)dt

)2

≤ a

2

∫ x

0

(g′(t))2dt =
a

2

∫ a

0

|f ′(t)|2dt

από την ανισότητα Cauchy-Schwarz και την g′(t) = |f ′(t)|.
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