
ΣΗΜΜΥ

Μαθηματική Ανάλυση

11ο Φυλλάδιο Ασκήσεων (υποδείξεις)

Ασκηση 1. ΄Εστω n ≥ 1 και f, g : (a, b) → R συναρτήσεις n φορές παραγωγίσιμες στο x0 ∈ (a, b) ώστε
f(x0) = f ′(x0) = · · · = f (n−1)(x0) = 0, g(x0) = g′(x0) = · · · = g(n−1)(x0) = 0 και g(n)(x0) 6= 0. Αποδείξτε
ότι

lim
x→x0

f(x)

g(x)
=
f (n)(x0)

g(n)(x0)
.

Υπόδειξη: Παρατηρήστε ότι

Tn,f,x0(x) =
f (n)(x0)

n!
(x− x0)n και Tn,g,x0(x) =

g(n)(x0)

n!
(x− x0)n.

Επίσης,

lim
x→x0

Rn,f,x0(x)

(x− x0)n
= lim

x→x0

Rn,g,x0(x)

(x− x0)n
= 0.

Συνεπώς,

lim
x→x0

f(x)

g(x)
= lim

x→x0

f(n)(x0)
n! +

Rn,f,x0
(x)

(x−x0)n

f(n)(x0)
n! +

Rn,f,x0
(x)

(x−x0)n

=
f (n)(x0)

g(n)(x0)
.

Ασκηση 2. Για καθεμία από τις δυναμοσειρές

(i) 1− x+
x2

2!
− x3

3!
+
x4

4!
+ · · ·

(ii) 1− x3 + x6 − x9 + · · ·

(iii)
x2

2
− x3

3 · 2
+

x4

4 · 3
− x5

5 · 4
+ · · ·

(iv) 1 +
x2

2!
+
x4

4!
+
x6

6!
+
x8

8!
+ · · ·

να βρείτε την ακτίνα σύγκλισης R και το σύνολο σύγκλισης της δυναμοσειράς, καθώς και τύπο για τη συνάρτηση
που ορίζεται από την δυναμοσειρά στο (−R,R).

Υπόδειξη: (α) Εφαρμόζουμε το κριτήριο του λόγου για να βρούμε για ποιες τιμές του x συγκλίνει απολύτως η

σειρά. Θέτοντας βk = (−1)k xk

k! έχουμε ότι

|βk+1|
|βk|

=
|x|
k + 1

→ 0 < 1,

άρα η δυναμοσειρά συγκλίνει απολύτως για κάθε x ∈ R. Δηλαδή, R = +∞ και το σύνολο σύγκλισης είναι το
R.
Αφού ex = 1 + x+ x2

2! +
x3

3! + · · · για κάθε x ∈ R, θέτοντας όπου x το −x έχουμε

e−x = 1− x+
x2

2!
− x3

3!
+ · · · , x ∈ R.

Το δεύτερο μέρος του συλλογισμού δείχνει έμμεσα ότι R = +∞, θα μπορούσαμε λοιπόν να παραλείψουμε το
πρώτο μέρος.
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(β) Είναι γεωμετρική σειρά με λόγο −x3. Γνωρίζουμε ότι συγκλίνει αν και μόνο αν | − x3| < 1, δηλαδή αν και
μόνο αν |x| < 1. Συνεπώς, R = 1 και το σύνολο σύγκλισης είναι το (−1, 1). Από τον τύπο για το άθροισμα
γεωμετρικής σειράς παίρνουμε

1− x3 + x6 − x9 + · · · = 1

1 + x3
, x ∈ (−1, 1).

(γ) Παρατηρούμε ότι lim
k→∞

k
√
|ak| = lim

k→∞
1

k
√

k(k−1)
= 1, άρα το κριτήριο της ρίζας μας δίνει ότι η δυναμοσειρά

∞∑
k=2

akx
k =

x2

2
− x3

3 · 2
+

x4

4 · 3
− x5

5 · 4
+ · · ·

έχει ακτίνα σύγκλισης R = 1. Για x = 1 και x = −1 βλέπουμε ότι οι σειρές
∑∞

k=2
(−1)k
k(k−1) και

∑∞
k=2

1
k(k−1)

αντίστοιχα, συγκλίνουν απολύτως. Επομένως, το σύνολο σύγκλισης είναι το [−1, 1].
Θεωρούμε τη συνάρτηση F (x) = x2

2 −
x3

3·2+
x4

4·3−
x5

5·4+· · · στο [−1, 1]. Σύμφωνα με το θεώρημα παραγώγισης
δυναμοσειρών, για κάθε x ∈ (−1, 1) μπορούμε να παραγωγίσουμε την F παραγωγίζοντας όρο προς όρο, δηλαδή

F ′(x) = x− x2

2
+
x3

3
− x4

4
+ · · · , x ∈ (−1, 1).

΄Ομως, η τελευταία δυναμοσειρά παριστάνει τη συνάρτηση ln(1 + x), δηλαδή F ′(x) = ln(1 + x). Συμπεραίνουμε
ότι η F είναι η παράγουσα της ln(1 + x) που ικανοποιεί την F (0) = 0, δηλαδή

F (x) = (1 + x) ln(1 + x)− x, x ∈ (−1, 1).

(δ) Παρατηρούμε ότι για κάθε x ∈ R ισχύουν οι

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+ · · ·

e−x = 1− x+
x2

2!
− x3

3!
+
x4

4!
− x5

5!
+ · · · .

Προσθέτοντας κατά μέλη και διαιρώντας με 2 παίρνουμε

∞∑
k=0

x2k

(2k)!
= 1 +

x2

2!
+
x4

4!
+
x6

6!
+
x8

8!
+ · · · = ex + e−x

2
, x ∈ R.

Ταυτόχρονα έχουμε δείξει απευθείας ότι R = +∞.

Ασκηση 3. Υπολογίστε τα παρακάτω αθροίσματα:

∞∑
k=0

(−1)k22kπ2k

(2k)!
,

∞∑
k=0

1

(2k)!
,

∞∑
k=0

1

2k + 1

(
1

2

)2k+1

,

∞∑
k=0

k

2k
,

∞∑
k=0

1

3k(k + 1)
,

∞∑
k=0

2k + 1

2kk!
.

(α) Γνωρίζουμε ότι cosx =

∞∑
k=0

(−1)k x2k

(2k)!
για κάθε x ∈ R. Θέτοντας x = 2π βλέπουμε ότι

∞∑
k=0

(−1)k22kπ2k

(2k)!
= cos(2π) = 1.
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(β) Παρατηρούμε ότι
ex + e−x

2
=

∞∑
k=0

xk + (−1)kxk

2 · k!
=

∞∑
k=0

x2k

(2k)!
για κάθε x ∈ R. Θέτοντας x = 1 βλέπουμε

ότι
∞∑
k=0

1

(2k)!
=
e+ e−1

2
=
e2 + 1

2e
.

(γ) Για κάθε x ∈ (−1, 1) έχουμε ότι ln(1 + x) =

∞∑
k=1

(−1)k−1x
k

k
και ln(1− x) =

∞∑
k=1

(−1)k−1 (−1)
kxk

k
, άρα

ln

(
1 + x

1− x

)
= ln(1 + x)− ln(1− x) =

∞∑
k=1

(−1)k−1x
k

k
−
∞∑
k=1

(−1)k−1 (−1)
kxk

k

=

∞∑
k=1

(−1)k−1[1− (−1)k]x
k

k
= 2

∞∑
k=0

x2k+1

2k + 1
.

Επιλέγοντας x = 1
2 βλέπουμε ότι

∞∑
k=0

1

2k + 1

(
1

2

)2k+1

=
1

2
ln

(
1 + 1/2

1− 1/2

)
=

1

2
ln 3.

(δ) Θεωρούμε την f(x) =
1

1− x
=

∞∑
k=0

xk, x ∈ (−1, 1). Παραγωγίζοντας, παίρνουμε
∞∑
k=1

kxk−1 = f ′(x) =

1

(1− x)2
, άρα

∞∑
k=1

kxk = xf ′(x) =
x

(1− x)2
για κάθε x ∈ (−1, 1). Θέτοντας x = 1

2 παίρνουμε

∞∑
k=0

k

2k
=

∞∑
k=1

k

2k
=

1/2

(1− 1/2)2
= 2.

(ε) Ολοκληρώνοντας την
1

1− x
=

∞∑
k=0

xk βλέπουμε ότι − ln(1−x) =
∞∑
k=0

xk+1

k + 1
για κάθε x ∈ (−1, 1). Θέτοντας

x = 1
3 παίρνουμε

∞∑
k=0

1

3k(k + 1)
= 3

∞∑
k=0

1

3k+1(k + 1)
= 3 ln

(
1

1− 1/3

)
= 3 ln(3/2).

(στ) Παρατηρούμε ότι

∞∑
k=0

2k + 1

2kk!
=

∞∑
k=0

2k

2kk!
+

∞∑
k=0

1

k!

(
1

2

)k

=

∞∑
k=1

1

(k − 1)!

(
1

2

)k−1

+

∞∑
k=0

1

k!

(
1

2

)k

=

∞∑
k=0

1

k!

(
1

2

)k

+

∞∑
k=0

1

k!

(
1

2

)k

= 2e1/2 = 2
√
e.

Ασκηση 4. Βρείτε το πολυώνυμο Taylor Tn,f,0 για τη συνάρτηση

f(x) =

∫ x

0

e−t
2

dt, (x ∈ R).
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Υπόδειξη: Από το ανάπτυγμα της εκθετικής συνάρτησης, για κάθε x ∈ R έχουμε

e−t
2

=

n∑
k=0

(−1)kt2k

k!
+ gn(t)

όπου

|gn(t)| ≤
et

2

(n+ 1)!
(t2)n+1.

Επομένως,

f(x) =

∫ x

0

e−t
2

dt =

n∑
k=0

(−1)k

k!

∫ x

0

t2kdt+

∫ x

0

gn(t)dt.

Παρατηρούμε ότι ∣∣∣∣∫ x

0

gn(t) dt

∣∣∣∣ ≤ ex
2

(n+ 1)!

∣∣∣∣∫ x

0

t2n+2dt

∣∣∣∣ ≤ ex
2 |x|2n+3

(n+ 1)!(2n+ 3)
.

Θέτουμε

P2n+1(x) =

n∑
k=0

(−1)k

k!

∫ x

0

t2kdt =

n∑
k=0

(−1)kx2k+1

k!(2k + 1)
.

Τότε, ∣∣∣∣f(x)− P2n+1(x)

x2n+2

∣∣∣∣ = ∣∣∣∣ 1

x2n+2

∫ x

0

gn(t) dt

∣∣∣∣ ≤ ex
2 |x|2n+3

|x|2n+2(n+ 1)!(2n+ 3)
→ 0

όταν x→ 0. Από τον χαρακτηρισμό του πολυωνύμου Taylor Ts,f,0 έπεται ότι

T2n+1,f,0(x) = T2n+2,f,0(x) = P2n+1(x) =

n∑
k=0

(−1)kx2k+1

k!(2k + 1)
.

΄Ενας πιο άμεσος τρόπος είναι με χρήση του θεωρήματος παραγώγισης και ολοκλήρωσης δυναμοσειρών.

Ολοκληρώνοντας όρο προς όρο την

e−t
2

=

∞∑
k=0

(−1)kt2k

k!
, t ∈ R

παίρνουμε

f(x) =

∫ x

0

e−t
2

dt =

∞∑
k=0

(−1)k

k!

∫ x

0

t2kdt =

∞∑
k=0

(−1)k

k!(2k + 1)
x2k+1, x ∈ R.

΄Επεται ότι

T2n+1,f,0(x) = T2n+2,f,0(x) =

n∑
k=0

(−1)kx2k+1

k!(2k + 1)
.

Ασκηση 5. (α) Υπολογίστε το ανάπτυγμα Taylor (με κέντρο το 0) της συνάρτησης

g(x) =
ex − 1

x
.

Για ποιες τιμές του x συγκλίνει; Να βρεθούν οι g(20)(0) και g(21)(0).

(β) Υπολογίστε το ανάπτυγμα Taylor (με κέντρο το 0) της συνάρτησης g(x) = (sinx)2. Για ποιες τιμές
του x συγκλίνει; Να βρεθούν οι g(20)(0) και g(21)(0). [Υπόδειξη: Υπολογίστε πρώτα το ανάπτυγμα της
f(x) = cos(2x).]
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Υπόδειξη: (α) ΄Εχουμε ότι ex − 1 =
∑∞

k=1
xk

k! για κάθε x ∈ R, άρα

g(x) =
ex − 1

x
=

∞∑
k=1

xk−1

k!

για κάθε x ∈ R (στο σημείο x = 0 επεκτείνουμε τη συνάρτηση g(x) = ex−1
x δίνοντας την τιμή g(0) = 1 =

lim
x→0

ex−1
x , και η παραπάνω ισότητα εξακολουθεί να ισχύει). Συνεπώς, η δυναμοσειρά

∑∞
k=1

xk−1

k! συγκλίνει για

κάθε x ∈ R. Αφού η g αναπαρίσταται από τη δυναμοσειρά
∑∞

k=1 ak−1x
k−1
με ak−1 = 1

k! σε ολόκληρο το R, για
κάθε k ≥ 1 ισχύει ότι g(k−1)(0) = (k− 1)!ak−1 = (k− 1)! 1

k! =
1
k . Ειδικότερα, g

(20)(0) = 1
21 και g

(21)(0) = 1
22 .

(α) ΄Εχουμε ότι (sinx)2 = 1−cos(2x)
2 για κάθε x ∈ R, άρα

g(x) =
1

2
−
∞∑
k=0

(−1)k(2x)2k

(2k)!
= −1

2
+

∞∑
k=1

(−1)k−14kx2k

(2k)!

για κάθε x ∈ R. Συνεπώς, αυτή η δυναμοσειρά συγκλίνει για κάθε x ∈ R. Αφού η g αναπαρίσταται από τη
δυναμοσειρά − 1

2 +
∑∞

k=1 a2kx
2k
με a2k = (−1)k−14k

(2k)! σε ολόκληρο το R, για κάθε k ≥ 1 ισχύει ότι g(2k)(0) =

(2k)!a2k = (−1)k−14k και g(2k−1)(0) = 0. Ειδικότερα, g(20)(0) = −410 και g(21)(0) = 0.

Ασκηση 6. Υπολογίστε το ανάπτυγμα Taylor με κέντρο το 0 της

f(x) = ln

(
1 + x

1− x

)
στο διάστημα (−1, 1) και χρησιμοποιώντας το υπολογίστε το άθροισμα

2

∞∑
k=1

1

32k−1(2k − 1)
.

Υπόδειξη: Για κάθε x ∈ (−1, 1) έχουμε ότι

ln(1 + x) =

∞∑
k=1

(−1)k−1x
k

k
και ln(1− x) =

∞∑
k=1

(−1)k−1 (−1)
kxk

k
,

άρα

ln

(
1 + x

1− x

)
= ln(1 + x)− ln(1− x) =

∞∑
k=1

(−1)k−1x
k

k
−
∞∑
k=1

(−1)k−1 (−1)
kxk

k

=

∞∑
k=1

(−1)k−1[1− (−1)k]x
k

k
=

∞∑
m=1

2x2m−1

2m− 1
.

Επιλέγοντας x = 1
3 βλέπουμε ότι

ln 2 = ln

(
1 + 1/3

1− 1/3

)
= 2

∞∑
m=1

1

32m−1(2m− 1)
= 2

∞∑
m=1

1

32k−1(2k − 1)
.

Ασκηση 7. Υπολογίστε το ανάπτυγμα Taylor της συνάρτησης f(x) = ex
2/2 − e−x2/2

με κέντρο το 0 στο R,
και χρησιμοποιώντας το αποδείξτε ότι

x2 +
x6

24
≤ ex

2/2 − e−x
2/2

για κάθε x ∈ R.
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Υπόδειξη. Από το ανάπτυγμα Taylor της εκθετικής συνάρτησης έχουμε ότι, για κάθε x ∈ R,

ex
2

=

∞∑
k=0

x2k

k!
και e−x

2

=

∞∑
k=0

(−1)kx2k

k!
,

άρα

f(x) = ex
2/2 − e−x

2/2 =

∞∑
k=0

x2k

2kk!
−
∞∑
k=0

(−1)kx2k

2kk!
=

∞∑
k=0

[1− (−1)k]x2k

2kk!

=

∞∑
m=0

2x2(2m+1)

22m+1(2m+ 1)!
=

∞∑
m=0

x4m+2

22m(2m+ 1)!
= x2 +

x6

24
+

x10

16 · 5!
+ · · · .

Παρατηρούμε ότι όλοι οι όροι αυτής της σειράς είναι μη αρνητικοί (εμφανίζονται μόνο άρτιες δυνάμεις του x,
πολλαπλασιασμένες με θετικές σταθερές), άρα

f(x) = ex
2/2 − e−x

2/2 ≥ x2 + x6

24
.

Ασκηση 8. ΄Εστω f : R→ R δύο φορές παραγωγίσιμη συνάρτηση με

f(x) ≥ 0 , για κάθε x ∈ R .

Υποθέτουμε ότι

f ′′(x) ≤ 0 , για κάθε x ∈ R .

Να δείξετε ότι η f είναι σταθερή.

Υπόδειξη: ΄Εστω x ∈ R. Για κάθε y 6= x στο R, από το θεώρημα Taylor υπάρχει ξ ανάμεσα στα x και y ώστε

0 ≤ f(y) = f(x) + f ′(x)(y − x) + f ′′(ξ)

2
(y − x)2 ≤ f(x) + f ′(x)(y − x),

διότι f(y) ≥ 0 και f ′′(ξ) ≤ 0 από την υπόθεση.
Αν f ′(x) > 0 τότε αφήνοντας το y → −∞ καταλήγουμε σε άτοπο, αφού lim

y→−∞
(f(x)+f ′(x)(y−x)) = −∞.

Αν f ′(x) < 0 τότε αφήνοντας το y → +∞ καταλήγουμε ομοίως σε άτοπο.
΄Επεται ότι f ′(x) = 0 για το τυχόν x ∈ R, άρα η f είναι σταθερή.
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