
Functional Analysis I
(Solutions of problem sheet 5)

Exercise 1. Let X be a normed space. Show that for any x ∈ X there exists
f ∈ X∗, such that f(x) = ∥x∥2 and ∥f∥ = ∥x∥.

Solution. Let x ∈ X. Set M = ⟨x⟩ and define f : M → R by

f(λx) = λ∥x∥2 , for all λ ∈ R .

Then f is a bounded linear functional on M with ∥f∥ = ∥x∥. By the Hahn-
Banach theorem f may be extended to bounded linear functional on X. Denot-
ing this extenesion again by f we have the desired conclusion.

Exercise 2. Let X be a normed space and Y be a proper closed linear subspace
of X. If x0 /∈ Y show that there exists f ∈ X∗, such that

∥f∥ =
1

d(x0, Y )
, f(x0) = 1 and f(y) = 0, for all y ∈ Y .

Solution. Let M = ⟨Y ∪ {x0}⟩ and f : M → R defined by

f(y + λx0) = λ , for all y ∈ Y, λ ∈ R .

Then f is obviously linear. Moreover

|f(y + λx0)| = |λ| ≤ 1

d(x0, Y )
∥y + λx0∥ , for all y ∈ Y, λ ∈ R

and thus ∥f∥ ≤ 1
d(x0,Y ) .

We will show that ∥f∥ ≥ 1
d(x0,Y ) . To this end let (yn) be a sequence in Y

such that
lim ∥yn − x0∥| = d(x0, Y ) .

Then

∥f∥ = sup
0̸=z∈M

|f(z)|
∥z∥

≥ |f(yn − x0)|
∥yn − x0∥

→ 1

d(x0, Y )

and hence ∥f∥ ≥ 1
d(x0,Y ) . Combining the above we have that

∥f∥ =
1

d(x0, Y )
, f(x0) = 1 and f(y) = 0, for all y ∈ Y .

By the Hahn-Banach theorem f may be extended to bounded linear functional
on X. Denoting this extenesion again by f we have the desired conclusion.

Exercise 3. Let M be a subset of the nornmed space X. Show that x0 ∈ X
belongs to the set ⟨M⟩ if and only if f(x0) = 0, for all f ∈ X∗, such that
f |M = 0.
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Solution. If x0 ∈ ⟨M⟩ and f ∈ X∗, is such that f |M = 0, then by the
continuity of f we have that f(x0) = 0.

Conversly if x0 /∈ ⟨M⟩ by the Hahn-Banach theorem there exists f ∈ X∗,
such that f(x0) ̸= 0 and f(z) = 0, for all z ∈ ⟨M⟩ and hence f |M = 0. Therefore
if f(x0) = 0, for all f ∈ X∗, such that f |M = 0, then x0 ∈ ⟨M⟩.

Exercise 4. Let X be a normed space and Y be a closed linear subspace of X.
We say that z ∈ X is orthogonal to Y , and write z ⊥ Y , if dist(z, Y ) = ∥z∥.
Show that z ⊥ Y if and only if there exists 0 ̸= f ∈ X∗ such that f |Y = 0 and
|f(z)| = ∥f∥∥z∥. Moreover show that if Y ̸= X and x0 /∈ Y , then y0 ∈ Y is
the nearest point of Y to x (i.e. 0 < dist(x0, Y ) = ∥x0 − y0∥) if and only if
x0 − y0 ⊥ Y .

Solution. Assume that dist(z, Y ) = ∥z∥. Since z /∈ Y , from the second
corollary of the Hahn-Banach theorem there exists f ∈ X∗, such that ∥f∥ = 1,
f |Y = 0 and f(z) = dist(z, Y ) and hence for ths particular f we have that
|f(z)| = ∥f∥∥z∥.

Conversly if there exists 0 ̸= f ∈ X∗ such that f |Y = 0 and |f(z)| = ∥f∥∥z∥,
then for all y ∈ Y we have that ∥z + y∥∥f∥ ≥ |f(z + y)| = |f(z)|∥f∥∥z∥.
Therefore ∥z∥ = dist(x, Y ).

It is easy to show that since y0 ∈ Y , then dist(x0 − y0, Y ) = dist(x0, Y ).
Hence dist(x0, Y ) = ∥x0 − y0∥ if and only if dist(x0 − y0, Y ) = ∥x0 − y0∥ i.e. if
and only if x0 − y0 ⊥ Y .

Exercise 5. Let X be a normed space, Y be a linear subspace of X and

F = {f ∈ X∗ : ∥f∥ ≤ 1 , f |Y = 0} .

Prove that:

(i) For any x ∈ X
dist(x, Y ) = sup

f∈F
|f(x)| .

(ii)

Y =
⋂
f∈F

ker f .

(Hint: use exercise 2.)

Solution. (i) Since for any f ∈ F and y ∈ Y we have that |f(x)| = |f(x −
y)| ≤ ∥x− y∥ taking supremum over all f ∈ F and then infimum over all y ∈ Y
we have that supf∈F |f(x)| ≤ dist(x, Y ).

For the reverse inequality, if dist(x, Y ) > 0, using f from exercise 2, we have
that

dist(x, Y ) =
|f(x)|
∥f∥
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and since f
∥f∥ ∈ F we have that dist(x, Y ) ≤ supf∈F |f(x)|.

(ii) If Y = X we have nothing to prove. Otherwise if f ∈ F thenY ⊆ ker f =
ker f and hence Y ⊆

⋂
f∈F ker f .

For the reverse inclusion if x /∈ Y , from the second corollary of the Hahn-
Banach theorem there exists f ∈ X∗ such that ∥f∥ = 1, f |Y = 0 and x /∈ ker f .
Hence x /∈

⋂
f∈F ker f and thus

⋂
f∈F ker f ⊆ Y .
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