
ΣΕΜΦΕ

Συναρτησιακή Ανάλυση

Λύσεις του 6ου φυλλαδίου ασκήσεων

Ασκηση 1. ΄Εστω X χώρος με νόρμα. Να δείξετε ότι για κάθε x ∈ X υπάρχει
f ∈ X∗

, τέτοιο ώστε f(x) = ∥x∥2 και ∥f∥ = ∥x∥.

Λύση. ΄Εστω x ∈ X. Θέτουμε M = ⟨x⟩ και ορίζουμε f : M → R με τύπο

f(λx) = λ∥x∥2 , για κάθε λ ∈ R .

Το f είναι ένα φραγμένο γραμμικό συναρτησοειδές πάνω στο M με ∥f∥ = ∥x∥.
Από το Θεώρημα Hahn-Banach το f επεκτείνεται σε ένα φραγμένο γραμμικό συ-
ναρτησοειδές πάνω σε όλο τοX. Συμβολίζοντας αυτήν την επέκταση για απλότητα
πάλι με f έχουμε το συμπέρασμα.

Ασκηση 2. ΄Εστω X χώρος με νόρμα και Y ένας γνήσιος κλειστός υπόχωρος
του X. Αν x0 /∈ Y να δείξετε ότι υπάρχει f ∈ X∗

, τέτοιο ώστε

∥f∥ =
1

d(x0, Y )
, f(x0) = 1 και f(y) = 0, για κάθε y ∈ Y .

Λύση. Θέτουμε M = ⟨Y ∪ {x0}⟩ και f : M → R με τύπο

f(y + λx0) = λ , για κάθε y ∈ Y, λ ∈ R .

Το f είναι προφανώς γραμμικό. Επιπλέον

|f(y + λx0)| = |λ| ≤ 1

d(x0, Y )
∥y + λx0∥ , για κάθε y ∈ Y, λ ∈ R

και επομένως ∥f∥ ≤ 1
d(x0,Y ) .

Θα δείξουμε ότι ∥f∥ ≥ 1
d(x0,Y ) . Προς αυτή την κατεύθυνση έστω (yn) ακο-

λουθία του U τέτοια ώστε

lim ∥yn − x0∥| = d(x0, Y ) .

Τότε

∥f∥ = sup
0̸=z∈M

|f(z)|
∥z∥

≥ |f(yn − x0)|
∥yn − x0∥

→ 1

d(x0, Y )

και άρα ∥f∥ ≥ 1
d(x0,Y ) . Συνδιάζοντας τα παραπάνω έχουμε ότι

∥f∥ =
1

d(x0, Y )
, f(x0) = 1 και f(y) = 0, για κάθε y ∈ Y .

Από το Θεώρημα Hahn-Banach το f επεκτείνεται σε ένα φραγμένο γραμμικό συ-
ναρτησοειδές πάνω σε όλο τοX. Συμβολίζοντας αυτήν την επέκταση για απλότητα
πάλι με f έχουμε το συμπέρασμα.
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Ασκηση 3. ΄Εστω M ένα υποσύνολο του χώρου με νόρμα X. Να δείξετε ότι
ένα στοιχείο x0 ∈ X ανήκει στο σύνολο ⟨M⟩ αν και μόνο αν f(x0) = 0, για κάθε
f ∈ X∗

, τέτοιο ώστε f |M = 0.

Λύση. Αν x0 ∈ ⟨M⟩ και f ∈ X∗
, τέτοιο ώστε f |M = 0, τότε λόγω της

συνέχειας του f έχουμε ότι f(x0) = 0.
Αντίστροφα αν x0 /∈ ⟨M⟩ από το Θεώρημα Hahn-Banach υπάρχει f ∈ X∗

,

τέτοιο ώστε f(x0) ̸= 0 και f(z) = 0, για κάθε z ∈ ⟨M⟩ και άρα f |M = 0. Συνεπώς
αν f(x0) = 0, για κάθε f ∈ X∗

, τέτοιο ώστε f |M = 0, τότε x0 ∈ ⟨M⟩.

Ασκηση 4. ΄Εστω X χώρος με νόρμα και Y ένας κλειστός υπόχωρος του X. Θα
λέμε ότι το z ∈ X είναι κάθετο στο Y , και γράφουμε z ⊥ Y , αν dist(z, Y ) = ∥z∥.
Να δείξετε ότι z ⊥ Y αν και μόνο αν υπάρχει 0 ̸= f ∈ X∗

τέτοιο ώστε f |Y = 0
και |f(z)| = ∥f∥∥z∥. Επίσης να δείξετε ότι αν Y ̸= X και x0 /∈ Y , τότε το y0 ∈ Y
είναι το πλησιέστερο στοιχείο του Y στο X (δλδ 0 < dist(x0, Y ) = ∥x0 − y0∥) αν
και μόνο αν x0 − y0 ⊥ Y .

Λύση. ΄Εστω dist(z, Y ) = ∥z∥. Αφού z /∈ Y , από το 2ο Πόρισμα του Θε-
ωρήματος Hahn-Banach υπάρχει f ∈ X∗

, τέτοιο ώστε ∥f∥ = 1, f |Y = 0 και
f(z) = dist(z, Y ) και επομένως για αυτό το f ισχύει |f(z)| = ∥f∥∥z∥. Αντίστρο-
φα αν υπάρχει 0 ̸= f ∈ X∗

τέτοιο ώστε f |Y = 0 και |f(z)| = ∥f∥∥z∥, τοτε
για κάθε y ∈ Y έχουμε ότι ∥z + y∥∥f∥ ≥ |f(z + y)| = |f(z)|∥f∥∥z∥. Συνεπώς
∥z∥ = dist(x, Y ).
Εύκολα δείχνουμε ότι αφού y0 ∈ Y , τότε dist(x0 − y0, Y ) = dist(x0, Y ).

Συνεπώς dist(x0, Y ) = ∥x0 − y0∥ αν και μόνο αν dist(x0 − y0, Y ) = ∥x0 − y0∥
δηλαδή αν και μόνο αν x0 − y0 ⊥ Y .

Ασκηση 5. ΄Εστω X χώρος με νόρμα, Y ένας υπόχωρος του X και

F = {f ∈ X∗ : ∥f∥ ≤ 1 , f |Y = 0} .

Να αποδείξετε ότι:

(ι) Για κάθε x ∈ X
dist(x, Y ) = sup

f∈F
|f(x)| .

(ιι)

Y =
⋂
f∈F

ker f .

(Υπόδειξη: να χρησιμοποιήσετε την άσκηση 2.)

Λύση. (ι) Αφού για κάθε f ∈ F και y ∈ Y έχουμε ότι |f(x)| = |f(x− y)| ≤
∥x− y∥ παίρνοντας supremum πάνω σε όλα τα f ∈ F και στη συνέχεια infimum
πάνω σε όλα τα y ∈ Y έχουμε ότι supf∈F |f(x)| ≤ dist(x, Y ). Για την αντίστροφη
ανισότητα, αν dist(x, Y ) > 0, χρησιμοποιώντας το f από την άσκηση 2, έχουμε
ότι

dist(x, Y ) =
|f(x)|
∥f∥
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και αφού
f

∥f∥ ∈ F έχουμε ότι dist(x, Y ) ≤ supf∈F |f(x)|.
(ιι) Αν Y = X δεν έχουμε κάτι να αποδείξουμε. Διαφορετικά αν f ∈ F τότε
Y ⊆ ker f = ker f και συνεπώς Y ⊆

⋂
f∈F ker f . Για τον αντίστροφο εγκλεισμό

αν x /∈ Y , τότε από το 2ο Πόρισμα του Θεωρήματος Hahn-Banach υπάρχει f ∈ X∗

τέτοιο ώστε ∥f∥ = 1, f |Y = 0 και x /∈ ker f . Οπότε x /∈
⋂

f∈F ker f και συνεπώς⋂
f∈F ker f ⊆ Y .
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