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Εισαγωγικές Έννοιες



Το ζητούμενο της επιβλεπόμενης 
μάθησης
• Εύρεση εκείνων των τιμών των παραμέτρων 𝜃 του συστήματος μάθησης, για τις 

οποίες η αντικειμενική συνάρτηση (objective function) ή συνάρτηση 
απώλειας (loss function) 𝐽(𝜃) γίνεται βέλτιστη

• Παραδείγματα
1. Γραμμική Παλινδρόμηση

𝐽 𝜽 = σ𝑖=1
𝑁 𝑥𝑖𝜽 − 𝑦 2 και min

𝜽
𝐽 𝜽

2. Εκτίμηση Μέγιστης Πιθανοφάνειας

𝐽 𝜽 = σ𝑖=1
𝑁 log 𝑝𝜽(𝑥𝑖) και max

𝜽
𝐽 𝜽

3. Μηχανικές Διανυσμάτων Υποστήριξης

𝐽 𝜽, 𝜉𝑖 = 𝜽 2 + 𝐶 σ𝑖=1
𝑁 𝜉𝑖 και min

𝜃
𝐽 𝜽

subject to 𝜉𝑖 ≤ 1 − 𝑦𝑖𝑥𝑖
𝑇𝜃, 𝜉𝑖 ≥ 0

• Χωρίς βλάβη της γενικότητας, θα υποθέσουμε ότι το ζητούμενο είναι να 
ελαχιστοποιήσουμε την αντικειμενική συνάρτηση
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Συναρτήσεις απώλειας
• Υποθέτουμε ότι το μοντέλο μας έχει δύο 

παραμέτρους (δεξιά σχήμα)

• Βέλτιστη τιμή παραμέτρων 𝜽∗

𝜽∗ ⟵ arg min
𝜽

𝐽(𝜽)

• Απλός αλγόριθμος προσδιορισμού 𝜽∗

1. Ξεκίνα με τυχαία αρχική ανάθεση 𝜽

2. Βρες κατεύθυνση 𝑣 όπου η 𝐽(𝜽) μειώνεται

3. 𝜽 ⟵ 𝜽 + 𝜂𝑣

4. Επανέλαβε τα βήματα 2 ως 4 μέχρι τη σύγκλιση 
στο 𝜽∗

• Το 𝜂 είναι μια μικρή σταθερά που καλείται 
ρυθμός μάθησης (learning rate) ή βήμα
(step size)
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Κατάβαση Κλίσης (Gradient Descent)
• Προς τα ποια κατεύθυνση μειώνεται η αντικειμενική συνάρτηση;

 Υπολογισμός της κλίσης
𝜕𝐽(𝜽)

𝜕𝜃𝑖
 της 𝐽(𝜽) ως προς παράμετρο 𝜃𝑖

• Κατεύθυνση μείωσης κλίσης 𝐽(𝜃𝑖) (δεξιά σχήμα)

a. Αν η κλίση της 𝐽 ως προς 𝜃𝑖 είναι αρνητική (αριστερό υποτμήμα), θα 
πρέπει να κινηθούμε προς τα δεξιά

b. Αν η κλίση της 𝐽 ως προς 𝜃𝑖 είναι θετική (δεξιό υποτμήμα), θα πρέπει 
να κινηθούμε προς τα αριστερά

• Σε κάθε περίπτωση και για κάθε παράμετρο κινούμαστε σε 
κατεύθυνση αντίθετη της κλίσης της αντικειμενικής 

συνάρτησης ως προς τη συγκεκριμένη παράμετρο 𝑣𝑖 = −
𝜕𝐽(𝜽)

𝜕𝜃𝑖

𝜽 ⟵ 𝜽 − 𝜂∇𝜽𝐽(𝜽)

∇𝜽𝐽 𝜽 =
𝜕𝐽(𝜽)

𝜕𝜃1
,
𝜕𝐽(𝜽)

𝜕𝜃2
, ⋯ ,

𝜕𝐽(𝜽)

𝜕𝜃𝑛
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Παράδειγμα Κατάβασης Κλίσης

6



Κατάβαση Κλίσης
Gradient Descent
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Τεχνικές Κατάβασης Κλίσης
• Διαφέρουν ως προς την ποσότητα των δεδομένων εκπαίδευσης που 

χρησιμοποιούνται σε κάθε ενημέρωση

1. Κατάβαση κλίσης με ενιαία δέσμη δεδομένων (batch gradient descent)

2. Στοχαστική κατάβαση κλίσης (stochastic gradient descent - SGD)

3. Κατάβαση κλίσης με μικρό-δέσμες δεδομένων (mini-batch gradient descent)
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Ενιαία δέσμη δεδομένων
• Υπολογίζει την κλίση σε όλα τα 𝑁 στιγμιότυπα του συνόλου δεδομένων 

εκπαίδευσης

𝜽 ⟵ 𝜽 − 𝜂∇𝜽 ෍

𝑖=1

𝑁

𝐽(𝜽; 𝑥𝑖 , 𝑦𝑖 )

• Πλεονεκτήματα

 Εγγυημένη σύγκληση στο ολικό ελάχιστο για κυρτές (convex) αντικειμενικές 
συναρτήσεις και σε τοπικό ελάχιστο για μη-κυρτές (non-convex)

• Μειονεκτήματα

 Πολύ αργή σύγκλιση

 Μη-υπολογίσιμη (intractable) για πολύ μεγάλα σύνολα δεδομένων

 Που δεν χωράνε, δηλαδή, στη μνήμη του υπολογιστή

 Δεν υποστηρίζει την online μάθηση
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Στοχαστική κατάβαση κλίσης
• Υπολογίζει την κλίση σε κάθε στιγμιότυπο 𝑥𝑖 του 

συνόλου δεδομένων εκπαίδευσης

𝜽 ⟵ 𝜽 − 𝜂∇𝜽𝐽(𝜽; 𝑥𝑖 , 𝑦𝑖 )

• Πλεονεκτήματα

 Πολύ πιο γρήγορη από την κατάβαση κλίσης ενιαίας δέσμης 
δεδομένων (προηγούμενη περίπτωση)

 Υποστηρίζει την online μάθηση

• Μειονεκτήματα

 Μπορεί να εμφανίζεται μεγάλη απόκλιση στις ενημερώσεις 
των παραμέτρων 
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Πηγή: https://en.wikipedia.org/wiki/Stochastic_gradient_descent#/media/File:Stogra.png

https://en.wikipedia.org/wiki/Stochastic_gradient_descent#/media/File:Stogra.png


Σύγκριση των δύο μεθόδων
• Η στοχαστική κατάβαση κλίσης εμφανίζει παρόμοια συμπεριφορά σύγκλισης 

με τη κατάβαση κλίσης ενιαίας δέσμης αν ο ρυθμός μάθησης μειώνεται 
σταδιακά με το χρόνο
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Κατάβαση κλίσης σε μικρό-δέσμες 
δεδομένων
• Υπολογίζει την κλίση σε όλα τα p ≪ 𝑁 στιγμιότυπα του συνόλου δεδομένων 

εκπαίδευσης

𝜽 ⟵ 𝜽 − 𝜂∇𝜽 ෍

𝑖=1

𝑝

𝐽(𝜽; 𝑥𝑖 , 𝑦𝑖 )

• Πλεονεκτήματα

 Μειώνει τις αποκλίσεις μεταξύ των ενημερώσεων

 Μπορεί να υπολογιστεί γρήγορα με πράξεις πολλαπλασιασμού πινάκων 

• Μειονεκτήματα

 Το μέγεθος δέσμης είναι υπερ-παράμετρος της διαδικασίας εκπαίδευσης 

 Άρα πρέπει να βρεθεί η βέλτιστη τιμή της

 Συνήθως χρησιμοποιούνται δυνάμεις του 2 μεταξύ 8 και 256.

• Συνηθέστερα χρησιμοποιούμενη τεχνική

 Αναφέρεται και ως στοχαστική κατάβαση κλίσης παρότι χρησιμοποιούνται μικροδέσμες
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Σύγκριση τεχνικών

* Υπό την προϋπόθεση ότι μειώνεται σταδιακά ο ρυθμός μάθησης
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Τεχνική Ακρίβεια Ταχύτητα 

Ενημέρωσης

Χρήση 

Μνήμης

Online 

Μάθηση

Ενιαία δέσμη Καλή Χαμηλή Υψηλή Όχι

Στοχαστική Καλή* Υψηλή Χαμηλή Ναι

Μικρο-δέσμες Καλή Μεσαία Μεσαία Ναι



Προκλήσεις
1. Αποφυγή τοπικών ελαχίστων

2. Επιλογή ρυθμού μάθησης

3. Καθορισμός διαδικασίας μεταβολής (μείωσης) του ρυθμού μάθησης
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Απεικόνιση κατάβασης κλίσης
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Πηγή: https://distill.pub/2017/momentum/

Κάθε καμπύλη 

ίδιου χρώματος 

έχει την ίδια 

τιμή 𝐽(𝜃)

https://distill.pub/2017/momentum/


Επιφάνειες 
Συναρτήσεων 
Απώλειας
Loss surfaces
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Κίνηση αντίθετα από την κλίση
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• Η ενημέρωση των παραμέτρων του μοντέλου σε κατεύθυνση αντίθετη από την 
κλίση της συνάρτησης απώλειας δεν εγγυάται πάντα το καλύτερο αποτέλεσμα

 Ειδικά αν η συνάρτηση απώλειας είναι μη-κυρτή

• Υπενθύμιση

 Κυρτές συναρτήσεις είναι όσες είναι διπλά-παραγωγίσιμες στο πεδίο ορισμού τους 
και ταυτόχρονα η δεύτερη παράγωγος τους είναι παντού στο πεδίο ορισμού τους μη-
αρνητική



Συναρτήσεις απώλειας νευρωνικών
δικτύων

ResNet-56 χωρίς skip connections ResNet-56 με skip connections

18Πηγή: https://arxiv.org/abs/1712.09913

https://arxiv.org/abs/1712.09913


Ειδικές περιπτώσεις μη-κυρτότητας
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Τοπικό ελάχιστο «Οροπέδιο» Σαγματικό Σημείο



Ειδικές περιπτώσεις μη-κυρτότητας
• Τοπικά ελάχιστα

 Παρότι φαίνονται να είναι σοβαρό πρόβλημα, στην πράξη η επίδρασή τους μετριάζεται όσο 
αυξάνουν οι παράμετροι του μοντέλου

 Σε μεγάλα μοντέλα, παρότι υπάρχουν, εμπειρικά έχει φανεί πως δεν είναι πολύ χειρότερα από τα 
ολικά ελάχιστα

• Οροπέδια

 Δεν πρέπει να επιλέγουμε εξ’αρχής πολύ μικρούς ρυθμούς μάθησης για να μην «κολλάμε» σε 
οροπέδια

• Σαγματικά σημεία

 Πολύ μικρές κλίσεις στα σαγματικά σημεία

 Στην πράξη έχει παρατηρηθεί ότι τα περισσότερα «κρίσιμα» σημεία σε συναρτήσεις σφάλματος 
νευρωνικών δικτύων είναι σαγματικά σημεία
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Επιτάχυνση κλίσης
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Μέθοδος Newton
• Ανάπτυγμα Taylor συνάρτησης απώλειας γύρω από σημείο 𝜽0

𝐽 𝜽 ≈ 𝐽 𝜽0 + ∇𝜽𝐽 𝜽0 𝜽 − 𝜽0 +
1

2
𝜽 − 𝜽0

𝑇∇𝜽
2𝐽 𝜽0 (𝜽 − 𝜽0)

• Αν το μοντέλο έχει 𝑛 παραμέτρους τότε

 Κλίση ∇𝜽𝐽 𝜽0 =
𝜕𝐽(𝜽0)

𝜕𝜃1
,

𝜕𝐽(𝜽0)

𝜕𝜃2
, ⋯ ,

𝜕𝐽(𝜽0)

𝜕𝜃𝑛
έχει 𝑛 παραμέτρους

 Εσσιανός Πίνακας ∇𝜽
2𝐽 𝜽0 =

𝜕2𝐽(𝜽0)

𝜕𝜃1𝜕𝜃1
⋯

𝜕2𝐽(𝜽0)

𝜕𝜃1𝜕𝜃𝑛

⋮ ⋱ ⋮
𝜕2𝐽(𝜽0)

𝜕𝜃𝑛𝜕𝜃1
⋯

𝜕2𝐽(𝜽0)

𝜕𝜃𝑛𝜕𝜃𝑛

έχει 𝑛2 παραμέτρους

• Κλίση γύρω από το τοπικό ελάχιστο 𝜽∗ μηδενική, οπότε 

𝜽∗ ⟵ 𝜽0 − ∇𝜽
2𝐽 𝜽0

−1
∇𝜽𝐽 𝜽0

• Όρος ∇𝜽
2𝐽 𝜽0

−1
∇𝜽𝐽 𝜽0 έχει πολυπλοκότητα 𝒪(𝑛3) που τον καθιστά απαγορευτικό για μεγάλα 

μοντέλα

 Για αυτό το λόγο αποφεύγουμε μεθόδους που απαιτούν τον υπολογισμό δευτέρων παραγώγων και 
προσπαθούμε να «επιταχύνουμε» την κατάβαση κλίσης
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Ορμή (Momentum)
• Κεντρική Ιδέα

 Αν διαδοχικές κλίσεις «δείχνουν» προς την ίδια κατεύθυνση, θα πρέπει να κινηθούμε 
προς τα εκεί πιο γρήγορα

• Όρος ορμής

 Προσθήκη ενός κλάσματος 𝛾 (συνήθως 0,9) του διανύσματος του προηγούμενου 
βήματος στο τωρινό

𝑣𝑡 ⟵ 𝛾𝑣𝑡−1 + 𝜂∇𝜽𝐽(𝜽) και 𝜽 ⟵ 𝜽 − 𝑣𝑡

 Μειώνει το εύρος της ενημέρωσης για τις παραμέτρους εκείνες που αλλάζουν
κατεύθυνση στην κλίση

 Αυξάνει το εύρος της ενημέρωσης για τις παραμέτρους εκείνες που δεν αλλάζουν 
κατεύθυνση στην κλίση

23
SGD χωρίς ορμή SGD με ορμή



Επιταχυνόμενη Κλίση Nesterov
• Η προσθήκη όρου ορμής επιταχύνει την κατάβαση στα τυφλά

 Πρώτα υπολογίζει την κλίση και στη συνέχεια πραγματοποιεί ένα μεγάλο άλμα

• Η επιταχυνόμενη κλίση Nesterov (Nesterov Accelerated Gradient – NAG)

 Πρώτα πραγματοποιεί το άλμα στην κατεύθυνση της προηγούμενης κλίσης 𝜽 − 𝛾𝑣𝑡−1

 Κατόπιν «μετρά» που έχει καταλήξει και κάνει διόρθωση των παραμέτρων

𝑣𝑡 ⟵ 𝛾𝑣𝑡−1 + 𝜂∇𝜽𝐽(𝜽 − 𝛾𝑣𝑡−1) και 𝜽 ⟵ 𝜽 − 𝑣𝑡

24Όρος ορμής NAG



Κατάβαση κλίσης με ορμή
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Επίδραση Ρυθμού 
Μάθησης
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Χαμηλός ρυθμός μάθησης
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Υψηλός ρυθμός μάθησης
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Κανονικός ρυθμός μάθησης
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Επίδραση ρυθμού μάθησης 
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Adagrad
• Προσαρμόζει το ρυθμό μάθησης στις παραμέτρους του μοντέλου

 Μεγάλες ενημερώσεις για μη-συχνές παραμέτρους, μικρές ενημερώσεις για συχνές
παραμέτρους

• Κανόνας ενημέρωσης SGD: 𝜽𝑡+1 = 𝜽𝑡 − 𝜂 ∙ 𝑔𝑡 και 𝑔𝑡 = ∇𝜽𝑡
𝐽(𝜽𝑡)

• Ο Adagrad διαιρεί το ρυθμό μάθησης με την τετραγωνική ρίζα του αθροίσματος
των τετραγώνων των προηγούμενων κλίσεων

𝜽𝑡+1 = 𝜽𝑡 −
𝜂

𝐺𝑡 + 𝜖
⊙ 𝑔𝑡

 𝐺𝑡 ∈ ℝ𝑑×𝑑 διαγώνιος πίνακας με το i-οστό του στοιχείο να είναι ίσο με το άθροισμα των 
τετραγώνων των κλίσεων του 𝜃𝑖 μέχρι τη χρονική στιγμή 𝑡

  𝜖 όρος ομαλοποίησης για να αποφευχθεί η διαίρεση με το μηδέν

 ⊙ πολλαπλασιασμός Hadamard
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Adagrad
• Πλεονεκτήματα

 Κατάλληλος για χρήση όταν τα δεδομένα είναι αραιά

 Βελτιώνει σημαντικά την ευρωστία του SGD

 Δεν απαιτεί τη «χειροκίνητη» ρύθμιση του ρυθμού μάθησης

• Μειονεκτήματα

 Συσσωρεύει τετραγωνικές κλίσεις στον παρονομαστή και έτσι προκαλεί μεγάλη μείωση
του ρυθμού μάθησης
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Adadelta
• Αντιμετωπίζει το μειονέκτημα του Adagrad μέσω του περιορισμού του 

πλήθους των παρελθοντικών κλίσεων που λαμβάνονται υπόψη, σε παράθυρο 
σταθερού μεγέθους

• Ενημέρωση SGD

𝜽𝑡+1 = 𝜽𝑡 + Δ𝜽𝑡και Δ𝜽𝑡 = −𝜂 ∙ 𝑔𝑡

• Ορίζει έναν τρέχοντα μέσο όρο του τετραγώνου των κλίσεων 𝔼 𝑔2
𝑡 τη χρονική 

στιγμή 𝑡

𝔼 𝑔2
𝑡 = 𝛾𝔼 𝑔2

𝑡−1 + (1 − 𝛾)𝑔𝑡
2

 𝛾: όρος αντίστοιχου του παράγοντα ορμής, συνήθως λαμβάνει την τιμή 0,9

• Ενημέρωση Adadelta
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RMSProp
• Προτάθηκε από τον Geoff Hinton την ίδια περίοδο με τον Adadelta και έχει 

παρόμοια φιλοσοφία

• Επίσης διαιρεί το ρυθμό μάθησης με τον τρέχοντα μέσο όρο του τετραγώνου 
των κλίσεων

𝔼 𝑔2
𝑡 = 𝛾𝔼 𝑔2

𝑡−1 + (1 − 𝛾)𝑔𝑡
2

𝜽𝑡+1 = 𝜽𝑡 −
𝜂

𝔼 𝑔2
𝑡 + 𝜖

𝑔𝑡

• Ο όρος φθοράς 𝛾 συνήθως τίθεται στο 0,9 ενώ ο ρυθμός μάθησης 𝜂 στο 0,001
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Επίδραση Ρυθμού 
Μάθησης και Ορμής
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Adaptive Moment Estimation (Adam)
• Όπως oι Adadelta και RMSprop, ο Adam υπολογίζει τον κινούμενο μέσο όρο των 

προηγούμενων τετραγωνικών κλίσεων 𝑣𝑡

• Όπως οι βελτιστοποιητές με παράγοντα ορμής, υπολογίζει τον κινούμενο μέσο όρο 
των προηγούμενων κλίσεων 𝑚𝑡

• Ενημέρωση Adam

𝒎𝑡 = 𝛽1𝒎𝑡−1 + 1 − 𝛽1 𝒈𝑡

𝒗𝑡 = 𝛽2𝒗𝑡−1 + 1 − 𝛽2 𝒈𝑡
2

 𝒎𝑡: μέση τιμή κλίσεων (διάνυσμα που αρχικοποιείται στο 0)

 𝒗𝑡: (μη-κεντραρισμένη) διασπορά κλίσεων (διάνυσμα που αρχικοποιείται στο 0)

 𝛽1, 𝛽2: ρυθμός φθοράς

• Αφαίρεση μεροληψίας (bias) προς το 0 από 𝑚𝑡 , 𝑣𝑡

ෞ𝒎𝑡 =
𝒎𝑡

1−𝛽1
𝑡 και ෞ𝒗𝑡 =

𝒗𝑡

1−𝛽2
𝑡

• Κανόνας Ενημέρωσης Adam: 𝜽𝑡+1 = 𝜽𝑡 −
𝜂

ෞ𝑣𝑡+𝜖
ෞ𝑚𝑡
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Οπτικοποίηση των αλγορίθμων

Επιφάνειες συναρτήσεων απώλειας Σαγματικό σημείο

37Πηγή: https://imgur.com/a/visualizing-optimization-algos-Hqolp
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Καταλληλότητα
• Μέθοδοι του προσαρμοστικού ρυθμού μάθησης (Adagrad, Adadelta, 

RMSProp, Adam) είναι καταλληλότεροι για προβλήματα με αραιά
χαρακτηριστικά

• Adagrad, Adadelta, RMSProp, Adam έχουν ικανοποιητική απόδοση σε 
παρόμοιες συνθήκες

• Οι δημιουργοί του Adam ισχυρίζονται ότι το βήμα διόρθωσης της μεροληψίας
τον καθιστά ελαφρώς καλύτερο από τον RMSProp
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