
National Technical University of Athens
School of Electrical and Computer Engineering

Foundations of Computer Science, 2024-25
2nd set of exercises

(algorithmic techniques – graph algorithms – arithmetic algorithms )

Exercise 1. (Minimum number of stops)
Given a directed graph with n vertices (the cities of a country) andm edges (roads) connecting cities.
Not all cities are necessarily connected by a road. There may be roads between two cities in both
directions, but it is not necessary. The weights of the edges represent the distances between two cities
(positive distances). A car starts from city s and wants to reach city t. The car has a known maximum
travel distance, assuming it starts with a full tank, of k kilometers; this distance is provided as part of
the input. In each city there is a gas station where the car can stop for refueling. Since the delay for
refueling is long, we wish to find the minimum number of refueling stops that the car needs to make
in order to reach its destination, and the corresponding route.

1. Give themost efficient algorithm possible for this problem. Explain the correctness and calculate
the complexity of the algorithm you propose.

2. Note that we do not want to find the route with the minimum total distance, but the one with the
fewest possible stops. Give an example in which these two routes differ.

3. Suppose that we also want to find the route with the least total distance among the routes with the
fewest stops. Give as efficient an algorithm as possible for this problem, explain its correctness
and find its complexity.

Exercise 2. (Distance reduction)
Let G(V,E) be a graph representing the road network of a country with V cities (the vertices of the
graph) and E roads (the edges of the graph). Each road ei has length wi. We want to add another road
e
′ of length w

′ between two cities. The candidate pairs of cities for adding the new road are included
in a set E′ , which is given as input. The road to be added must be the one that achieves the maximum
possible distance reduction between two given cities vi and vj . Describe an efficient algorithm to
determine the the best road in this respect. Explain the correctness and give the complexity of your
algorithm.

Exercise 3. (2nd-MST ) Consider an undirected connected graphG(V,E,w)with positive weights on
the edges, and assume that ∣E∣ ≥ ∣V ∣ and that all weights of the edges of G are distinct. Let T be the
set of all spanning trees of G and let t ∈ T be a minimum spanning tree of G. The Second Minimum
Spanning Tree (2nd-MST) of G is a spanning tree t′ ∈ T such that w(t′) = mint′′∈T∖{t}{w(t

′′
)}. In

other words, the second minimum spanning tree t′ is a spanning tree of G that has a weight greater
than or equal to the weight of the MST t and less than or equal to the weight of every other spanning
tree.

1. Show that the MST of G is unique, and that this is not necessarily true for the 2nd-MST of G.

1



2. Let t be the MST of G and t′ the 2nd-MST; show that t and t′ differ by only one edge, i.e., that
there exist edges e ∈ t and e

′
/∈ t such that t′ = t ∪ {e′} ∖ {e}

3. Let t be a spanning tree of G and, for any pair of vertices u, v ∈ V , let emax
uv be the edge of

maximum weight on the unique u → v path in t. Design an O(∣V ∣2) time algorithm that takes t
as input and determines the edge emax

uv for all pairs of vertices u, v ∈ V .

4. Design an efficient algorithm that computes the 2nd-MST ofG. Explain the correctness and find
the complexity of the algorithm you propose.

Exercise 4. (Cycle removal) Let be an undirected graph G(V,E,w) with positive weights w on its
edges.Wewant to remove a set of edges, with the minimum possible total weight, so that the remaining
graph is acyclic.
Suggest an efficient algorithm that computes the edges to be removed. Explain the correctness and
give the complexity of your algorithm.

Exercise 5. (Find GCD) Consider the following algorithm for finding GCD known as Binary GCD.

bgcd(a, b): (* assume a, b > 0)
- If a = b return a

- if a, b are even, return 2 ⋅ bgcd(a/2, b/2)
- if a is even and b odd return bgcd(a/2, b), and respectively if b is even and a odd
- if a, b are odd, return bgcd(min(a, b), ∣a − b∣/2)

(a) Prove the correctness of Binary GCD.
(b) What is its complexity and why?
(c) Implement it and compare its efficiencywith that of the Euclidean algorithm. Test the two algorithms
with at least 10 pairs of very large numbers.

Exercise 6. (Repeated squaring – primality tests)
(a) Write a program in a language of your choice (should support operations with 100-digit numbers)
that checks whether a number is prime by using Fermat’s test:
If n is prime then for every a s.t. 1 < a < n − 1, it holds that

an−1 mod n = 1

So, if for a given n, a number a is found such that the above equality does not hold, then number n is
definitely composite. If the equality holds for the given a, then the test must be repeated with a new
a, since it is possible that the number is composite and yet the equality holds for some values of a. An
interesting property says that if n is composite, the probability that the equality holds is ≤ 1/2 (this
is true for all n except for some cases, called Carmichael numbers, see question (b) below). Thus, we
can significantly increase the probability of success (i.e., of confirming that number n is composite)
by repeating the test a few times (typically 30 times) with a different a. If all times the above equality
is found to hold, then we say that n “passes the test” and we declare n to be prime number; if the test
fails even once, then we are sure that the number is composite.

2



Your program should work correctly for numbers of thousands of digits. Try it with the numbers:

67280421310721,170141183460469231731687303715884105721,22281 − 1

Note: a22281−2 has an “astronomically” large number of digits (it doesn’t even fit in thewhole universe!),
while a22281−2 mod (22281 − 1) is relatively “small” (it has some hundreds of decimal digits only ,)
so it is possible to compute it (with some careful implementation).
(b) There are (few) composite numbers that have the property of passing the Fermat test for any a that is
relatively prime to n, so for them the test will will fail no matter how many tests are performed (unless
by chance we get a that is not relatively prime with n, which is quite unlikely for large enough n).
These numbers are called Carmichael – see also http://en.wikipedia.org/wiki/Carmichael_
number. Check your function with sufficiently large Carmichael numbers, which you can find e.g. at
http://de.wikibooks.org/wiki/Pseudoprimzahlen:_Tabelle_Carmichael-Zahlen.What
do you observe?
(c) Design and implement the Miller-Rabin test which is an improvement of Fermat’s test and gives
a correct answer with probability at least 1/2 for any natural number (so with 30 iterations we have
negligible probability of error for each input number). Test it with various Carmichael numbers. Do
you see any strange results? If so, how would you explain them?
(d)Write a program that finds all primeMersenne numbers, i.e. of the form n = 2x−1with 1 < x < 200
(note that if x is not prime, neither is 2x − 1 prime – can you prove it?). Compare your results with
what is stated at https://www.mersenne.org/primes/.

Exercise 7. (Fibonacci Numbers)
(a) Implement and compare the following algorithms for computing then-th Fibonacci number: recursive
with memorization, iterative, and the algorithm using 2 × 2 matrices.
Implement the algorithms in a language that supports very large integers (100s of digits), e.g., in
Python. Use the integer multiplication provided by the language. What do you conclude?
(b) Try to solve the above problem by exponentiation, using the relation of Fn to ϕ (golden ratio).
What do you observe?
(c) Implement a function, as efficient as possible, that takes as input two positive integers n, k and
computes the k least significant digits of the n-th Fibonacci number.
Assuming n = 10i, k = 17 find the largest i for which your function gives a correct result within 1
sec.
(d) Search for and consider the Fast Doublingmethod to solve question (c). Compare it with themethod
of using matrices 2 × 2 theoretically and computationally.

Exercise 8. (Divide and Conquer Algorithms)
[exercise from the book Algorithms, by Dasgupta, Papadimitriou, Vazirani]

A sequence of elements A[1], . . . ,A[n] is said to have a majority element if more than half of the
elements in the sequence are the same. Given a sequence, the goal is to design an efficient algorithm
that determines whether the sequence has a majority element, and if so, to find this element. The
elements of the sequence do not necessarily come from some ordered field of values such as integers,
and so there cannot be comparisons of the form “is A[i] > A[j]?”. (For example, you can consider the

3



sequence elements to be GIF files.) However, you can answer questions of the form: “isA[i] = A[j]?”
in constant time.

1. Show how to solve this problem in time O(n logn). (Hint: Divide the sequence A into two
sequences A1 and A2 of half the size. Does learning the majority elements of A1 and A2 help
you find the majority element of A; (If so, you can use a ‘divide and conquer’ approach.)

2. Can you find a linear-time algorithm?

(Hint: consider another ‘divide and conquer’ approach:

• Combine the elements of A in an arbitrary way to create n/2 pairs.

• Examine each pair: if the two elements are different, discard them both. If they are the
same, keep only one of them.
Show that after this procedure there are at most n/2 elements left, and that they have a
majority element in case the sequence A has such an element.)

Deadline for submission and instructions. Your deadline for submission is 15/12/2024, exclusively
through Helios (make sure the final file is <5MB in total).
It is strongly recommended that you dedicate enough time to solving the exercises on your own before seeking
assistance from external sources (such as the internet, literature, or discussions with peers). In any case, the
solutions should be strictly individual.
To be graded, you will need to briefly present your solutions on a date and time that will be announced later.
For questions/clarifications: send an email to focs@corelab.ntua.gr.

4


