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Algorithm efficiency

We measure the algorithm cost as a function of the
computational resources required, relative to the size of
the input in the worst case:

cost,(n) = max {cost of algorithm A for input x}

among all

inputs x

of size n

Example: time-cost,,s(n) <= ¢ nlogn
(MS = MergeSort, ¢ a constant)




Algorithm efficiency

We are usually interested in the time cost, or time
complexity.

Also of interest is the space cost, or space complexity.

Example: space-cost,,s(n) <=c¢’n
(MS = MergeSort, ¢’ a constant)




‘Asymptotic Notation (i)
cg(n)

f(n)

f=0(g)
O(g)={f | d¢>0, dng:¥n >nge f(n) <cg(n)}




\O Notation : examples

= BubbleSort: T;5(n) = O(n?)
= InsertionSort: Tc(n) = O(n?)

= MergeSort: T,,5(n) = O(n logn)

= Warning: worst-case complexity: the worst-case
cost for MergeSort is at most cnlogn




‘Asymptotic Notation (ii)

Ty

Qg) =4S | 3¢>0, Ing :Vn >mnge f(n) > cg(n)}
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\Q Notation : examples

= BubbleSort: T;<(n) = Q(n?)
« InsertionSort: Tc(n) = Q(n?)

= MergeSort: T,,5(n) =Q(n logn)

= Warning: worst-case complexity: the worst-case cost for
MergeSort is at most cnlogn




' Asymptotic Notation (iii)

cag(n)

f(n)
c19(n)

f=0(9)

f(n)

O(g)={f | de1 >0, Jeg >0, Ing :Vn >ng ¢ < ——= 2(0) < ¢}



\G) Notation : examples

= BubbleSort: T;(n) = O(n?)
= InsertionSort: T s(n) = O(n?)
= MergeSort: T,,5(n)=0O(n logn)

= Warning: worst-case complexity: the worst-case cost for
MergeSort is at most cnlogn and at least ¢’nlogn




\Asymptotic notation: conventions
and properties

We write: g(n) = O(f(n)) instead of g(n) € O(f(n))

o(f) = O®f) N Q(f)

p(n) = O(nX), for all polynomial p

o(poly) = U O (for all k € N)
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\Asymptotic notation: conventions

and properties
0O(1) < O(a(n)) < O(log™ n)

< O(log(n)) < O(v/n) < O(n)
< O(nlog(n)) < O(n*) < ... < O(poly)
<0(2") <O0(n!) <0O(n") <O(A(n))

log*n: how many times we have to logarithmize n to get
below 1 (inverse of hyperexponential)

A: Ackermann.
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Big-O Complexity
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‘Asymptotic notation: bounds proof

Theorem. log(n!) = ©(n logn)

Proof: asymptotically (for n > n,) it holds that:
(n/2)"2 < nl<n" =>
(1/2) n (logn - 1) <log(n!) < nlogn =>
(1/4) n logn < log(n!) < nlogn
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Algorithm complexity: conventions

We often consider as input size the number of input
elements only (ignoring their size in bits):

A satisfactory estimate if the input numbers are «small»
In relation to the rest of the input

Or if they are «large» their value does not affect the
number of elementary operations: e.g. sorting with
comparisons (BubbleSort, MergeSort, InsertionSort),

finding shortest paths (Dijkstra, Bellman-Ford), finding
MST (Prim, Kruskal).
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Algorithm complexity: conventions

We also assume that each elementary arithmetic
operation (addition, multiplication, comparison) has unit
cost (1 step):

that is called arithmetic complexity and is usually a
good estimate (see also word RAM model)

An estimation of bit complexity is necessary when

numbers «grow» a lot during the execution: e.g. raise to
power, n-th Fibonacci
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Problem complexity

Is the complexity of the optimal algorithm that solves the
problem

costry(n) = min {cost,(n)}
among all the algorithms
A that solve I

Example: time-costsyr(N) = O(n logn)
(SORT = sorting problem)

To prove algorithm optimality we need proof of the
corresponding lower bound: Q(n logn)
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Time complexity analysis of
algorithms

Counting steps to be executed:

either by direct summation of the number of the steps
(iterative algorithms)

e.g.. Tgs(n) <=cn?=0(n?
(BS = BubbleSort, c some constant)

or by solving recursive relations
(recursive algorithms)

e.g.. Tys(n) <=2Tys(n/2)+cn =...= O(n logn)
(MS = MergeSort, c some constant)
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\ Time complexity

O(1) a :=b*c; simple operations

O(logn) if x<A[n/2] search(A[1,n/2])... binary search

O(n) fori:=1to ndo<0O(1)> simple loop

O(n logn) mergesort(A[1, n/2]) sorting
mergesort(A[n/2+1, n]) with merge
merge(A[1, n/2], A[n/2+1, n])

O(n?) fori:=1to ndo double loop
for j:=1tondo<0O(1)>

O(2") forall S €{0,1}"do <O(1)> subsets

O(n!) for all oin S[n] do <O(1)> permutations
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Divide & Conquer algorithms

O(logn) if x<A[n/2] search(A[1,n/2])... binary search
O(max(len(a),len(b))?) GCD(a,b) := GCD(b,a mod b) find GCD
O(len(n)) *  pow(a,n) := pow(a?n/2) raise to power
O(len(n)) *  matrix n-th

fast doubling Fibonacci
O(nlog3) Gauss-Karatsuba algorithm multiply

n-digit numbers

O(n'°g7) Strassen algorithm  multiply
n X n matrices

* arithmetic complexity, len(x) = #digits of x = ©(log x)
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