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Algorithm efficiency

▪ We measure the algorithm cost as a function of the 

computational resources required, relative to the size of 

the input in the worst case:

costA(n) = max {cost of algorithm Α for input x}

among all 

inputs x 

of size n

▪ Example:  time-costMS(n) <= c nlogn

(MS = MergeSort, c a constant)
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▪ We are usually interested in the time cost, or time 

complexity.

▪ Also of interest is the space cost, or space complexity.

▪ Example:  space-costMS(n) <= c’ n

(MS = MergeSort, c’ a constant)

Algorithm efficiency
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Asymptotic Notation (i)
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Ο Notation : examples

▪ BubbleSort:  ΤBS(n) = Ο(n2) 

▪ InsertionSort:  ΤIS(n) = Ο(n2)

▪ MergeSort:  ΤMS(n) = Ο(n logn)

▪ Warning: worst-case complexity: the worst-case 

cost for MergeSort is at most cnlogn
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Asymptotic Notation (ii)
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Ω Notation : examples

▪ BubbleSort:  ΤBS(n) = Ω(n2)

▪ InsertionSort:  ΤIS(n) = Ω(n2)

▪ MergeSort:  ΤMS(n) = Ω(n logn)

▪ Warning: worst-case complexity: the worst-case cost for 

MergeSort is at most cnlogn
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Asymptotic Notation (iii)



9

▪ BubbleSort:  ΤBS(n) = Θ(n2)

▪ InsertionSort:  ΤIS(n) = Θ(n2)

▪ MergeSort:  ΤMS(n) = Θ(n logn)

▪ Warning: worst-case complexity: the worst-case cost for 

MergeSort is at most cnlogn and at least c’nlogn

Θ Notation : examples
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Asymptotic notation: conventions 

and properties

▪ We write: g(n) = O(f(n)) instead of g(n) Є O(f(n))

▪ Θ(f) = O(f ) ∩ Ω(f )

▪ p(n) = Θ(nk), for all polynomial p

▪ Ο(poly) = U O(nk)   (for all k Є N)



11

log*n: how many times we have to logarithmize n to get 

below 1 (inverse of hyperexponential)

A: Ackermann.

Asymptotic notation: conventions 

and properties
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Why?

http://bigocheatshee

t.com/

Source: bigocheatsheet.com/
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Asymptotic notation:  bounds proof

Theorem. log(n!) = Θ(n logn)

Proof: asymptotically (for n > n0) it holds that: 

(n/2)n/2 < n! < nn => 

(1/2) n (logn - 1) < log(n!) < n logn => 

(1/4) n logn < log(n!) < n logn
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Algorithm complexity: conventions

▪ We often consider as input size the number of input 

elements only (ignoring their size in bits): 

▪ A satisfactory estimate if the input numbers are «small»

in relation to the rest of the input

▪ Or if they are «large» their value does not affect the 

number of elementary operations: e.g. sorting with 

comparisons (BubbleSort, MergeSort, InsertionSort), 

finding shortest paths (Dijkstra, Bellman-Ford), finding

MST (Prim, Kruskal).
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Algorithm complexity: conventions

▪ We also assume that each elementary arithmetic

operation (addition, multiplication, comparison) has unit

cost (1 step):

that is called arithmetic complexity and is usually a 

good estimate (see also word RAM model)

▪ An estimation of bit complexity is necessary when 

numbers «grow» a lot during the execution: e.g. raise to 

power, n-th Fibonacci
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Problem complexity

■ Is the complexity of the optimal algorithm that solves the 

problem

costΠ(n) = min {costA(n)}

among all the algorithms

Α that solve Π

■ Example: time-costSORT(n) = O(n logn)

(SORT = sorting problem)

■ To prove algorithm optimality we need proof of the 

corresponding lower bound:  Ω(n logn)
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Time complexity analysis of 

algorithms

Counting steps to be executed:

▪ either by direct summation of the number of the steps

(iterative algorithms) 

▪ e.g.:  TBS(n) <= c n2 = O(n2)
(BS = BubbleSort, c some constant)

▪ or by solving recursive relations

(recursive algorithms)

▪ e.g.:  TMS(n) <= 2TMS(n/2)+cn =…= O(n logn)
(MS = MergeSort, c some constant)
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Time complexity

Ο(1) a := b*c; simple operations

Ο(logn) if x<A[n/2] search(A[1,n/2])… binary search

Ο(n) for i:=1 to n do <Ο(1)> simple loop

Ο(n logn) mergesort(Α[1, n/2]) sorting

mergesort(Α[n/2+1, n]) with merge

merge(Α[1, n/2], Α[n/2+1, n])

Ο(n2) for i:=1 to n dο double loop

for j:=1 to n do <Ο(1)>

Ο(2n) for all S ⊆ {0,1}n do <Ο(1)> subsets

Ο(n!) for all σ in S[n] do <Ο(1)> permutations



Divide & Conquer algorithms
Ο(logn) if x<A[n/2] search(A[1,n/2])… binary search

Ο(max(len(a),len(b))3) GCD(a,b) := GCD(b,a mod b)    find GCD

Ο(len(n)) * pow(a,n) := pow(a2,n/2) raise to power

Ο(len(n)) * matrix n-th

fast doubling Fibonacci

Ο(nlog3) Gauss-Karatsuba algorithm multiply

n-digit numbers

Ο(nlog7) Strassen algorithm multiply

n x n matrices

* arithmetic complexity, len(x) = #digits of x = Θ(log x)
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