
1

Foundations of Computer

Science
ECE NTUA

Asymptotic Notation

Slides: Stathis Zachos, Aris Pagourtzis

2

Algorithm efficiency

▪ We measure the algorithm cost as a function of the

computational resources required, relative to the size of

the input in the worst case:

costA(n) = max {cost of algorithm Α for input x}

among all

inputs x

of size n

▪ Example: time-costMS(n) <= c nlogn

(MS = MergeSort, c a constant)

3

▪ We are usually interested in the time cost, or time

complexity.

▪ Also of interest is the space cost, or space complexity.

▪ Example: space-costMS(n) <= c’ n

(MS = MergeSort, c’ a constant)

Algorithm efficiency

4

Asymptotic Notation (i)

5

Ο Notation : examples

▪ BubbleSort: ΤBS(n) = Ο(n2)

▪ InsertionSort: ΤIS(n) = Ο(n2)

▪ MergeSort: ΤMS(n) = Ο(n logn)

▪ Warning: worst-case complexity: the worst-case

cost for MergeSort is at most cnlogn

6

Asymptotic Notation (ii)

7

Ω Notation : examples

▪ BubbleSort: ΤBS(n) = Ω(n2)

▪ InsertionSort: ΤIS(n) = Ω(n2)

▪ MergeSort: ΤMS(n) = Ω(n logn)

▪ Warning: worst-case complexity: the worst-case cost for

MergeSort is at most cnlogn

8

Asymptotic Notation (iii)

9

▪ BubbleSort: ΤBS(n) = Θ(n2)

▪ InsertionSort: ΤIS(n) = Θ(n2)

▪ MergeSort: ΤMS(n) = Θ(n logn)

▪ Warning: worst-case complexity: the worst-case cost for

MergeSort is at most cnlogn and at least c’nlogn

Θ Notation : examples

10

Asymptotic notation: conventions

and properties

▪ We write: g(n) = O(f(n)) instead of g(n) Є O(f(n))

▪ Θ(f) = O(f) ∩ Ω(f)

▪ p(n) = Θ(nk), for all polynomial p

▪ Ο(poly) = U O(nk) (for all k Є N)

11

log*n: how many times we have to logarithmize n to get

below 1 (inverse of hyperexponential)

A: Ackermann.

Asymptotic notation: conventions

and properties

12

Why?

http://bigocheatshee

t.com/

Source: bigocheatsheet.com/

13

Asymptotic notation: bounds proof

Theorem. log(n!) = Θ(n logn)

Proof: asymptotically (for n > n0) it holds that:

(n/2)n/2 < n! < nn =>

(1/2) n (logn - 1) < log(n!) < n logn =>

(1/4) n logn < log(n!) < n logn

14

Algorithm complexity: conventions

▪ We often consider as input size the number of input

elements only (ignoring their size in bits):

▪ A satisfactory estimate if the input numbers are «small»

in relation to the rest of the input

▪ Or if they are «large» their value does not affect the

number of elementary operations: e.g. sorting with

comparisons (BubbleSort, MergeSort, InsertionSort),

finding shortest paths (Dijkstra, Bellman-Ford), finding

MST (Prim, Kruskal).

15

Algorithm complexity: conventions

▪ We also assume that each elementary arithmetic

operation (addition, multiplication, comparison) has unit

cost (1 step):

that is called arithmetic complexity and is usually a

good estimate (see also word RAM model)

▪ An estimation of bit complexity is necessary when

numbers «grow» a lot during the execution: e.g. raise to

power, n-th Fibonacci

16

Problem complexity

■ Is the complexity of the optimal algorithm that solves the

problem

costΠ(n) = min {costA(n)}

among all the algorithms

Α that solve Π

■ Example: time-costSORT(n) = O(n logn)

(SORT = sorting problem)

■ To prove algorithm optimality we need proof of the

corresponding lower bound: Ω(n logn)

17

Time complexity analysis of

algorithms

Counting steps to be executed:

▪ either by direct summation of the number of the steps

(iterative algorithms)

▪ e.g.: TBS(n) <= c n2 = O(n2)
(BS = BubbleSort, c some constant)

▪ or by solving recursive relations

(recursive algorithms)

▪ e.g.: TMS(n) <= 2TMS(n/2)+cn =…= O(n logn)
(MS = MergeSort, c some constant)

18

Time complexity

Ο(1) a := b*c; simple operations

Ο(logn) if x<A[n/2] search(A[1,n/2])… binary search

Ο(n) for i:=1 to n do <Ο(1)> simple loop

Ο(n logn) mergesort(Α[1, n/2]) sorting

mergesort(Α[n/2+1, n]) with merge

merge(Α[1, n/2], Α[n/2+1, n])

Ο(n2) for i:=1 to n dο double loop

for j:=1 to n do <Ο(1)>

Ο(2n) for all S ⊆ {0,1}n do <Ο(1)> subsets

Ο(n!) for all σ in S[n] do <Ο(1)> permutations

Divide & Conquer algorithms
Ο(logn) if x<A[n/2] search(A[1,n/2])… binary search

Ο(max(len(a),len(b))3) GCD(a,b) := GCD(b,a mod b) find GCD

Ο(len(n)) * pow(a,n) := pow(a2,n/2) raise to power

Ο(len(n)) * matrix n-th

fast doubling Fibonacci

Ο(nlog3) Gauss-Karatsuba algorithm multiply

n-digit numbers

Ο(nlog7) Strassen algorithm multiply

n x n matrices

* arithmetic complexity, len(x) = #digits of x = Θ(log x)

	Slide 1: Foundations of Computer Science ECE NTUA
	Slide 2
	Slide 3
	Slide 4: Asymptotic Notation (i)
	Slide 5
	Slide 6: Asymptotic Notation (ii)
	Slide 7
	Slide 8: Asymptotic Notation (iii)
	Slide 9
	Slide 10: Asymptotic notation: conventions and properties
	Slide 11: Asymptotic notation: conventions and properties
	Slide 12: Why?
	Slide 13: Asymptotic notation: bounds proof
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Time complexity
	Slide 19: Divide & Conquer algorithms

