Foundations of Computer Science ECE NTUA

Section 1:

Automata, Languages, Grammars

Slide editing: Stathis Zachos, Aris Pagourtzis

Finite State Machines (FSM)

- A way to describe algorithms.
- Describe Finite State Systems:
 - They model a fundamental (apparent) contradiction of computational (and other) systems: finite system size, unlimited input size.
 - They are defined with internal states and a predefined way to transition from one state to another based on the current state and input. They may also have an output.
- Applications in a wide range of scientific fields.

Example: Coffee machine (i)

Specifications

- Two types of coffee: Greek or Freddo.
- Coffee cost: 40 cents.
- 10, 20, or 50 cent coins are allowed.

Design

How many states do we need;

Example: Coffee machine (ii)

System Design

- Internal states: q₀, q₁, q₂, q₃, q₄
 - q_i: 10*i cents incerted so far
- Possible inputs (actions): C1, C2, C5, B1, B2
 - C1, C2, C5 : insertion of 10, 20, or 50 cent coins
 - B1, B2 : Button 1 for Greek coffee, or Button 2 for Freddo
- Possible outputs: R1, R2, R3, R4, R5, G, F
 - Ri: refund 10**i cents*
 - G: Greek coffee supply
 - F: Freddo supply

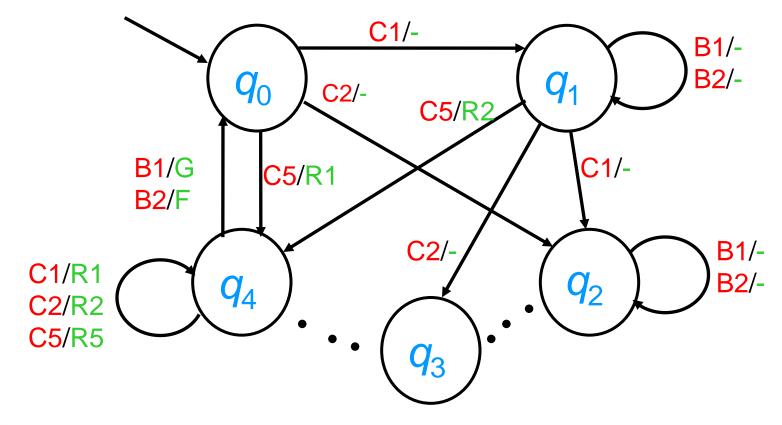
Example: Coffee machine (iii)

State Table: What the next state and output is for each combination of current state and input. Initial state: q_0 .

Input State	C1	C2	C 5	B1	B2
q ₀	q ₁ , -	q ₂ , -	q ₄ , R1	q ₀ , -	q ₀ , -
<i>q</i> ₁	q ₂ , -	q ₃ , -	q ₄ , R2	q ₁ , -	q ₁ , -
q ₂	q ₃ , -	q ₄ , -	q ₄ , R3	q ₂ , -	q ₂ , -
q ₃	q ₄ , -	q ₄ , R1	q ₄ , R4	q ₃ , -	q ₃ , -
q ₄	q ₄ , R1	q ₄ , R2	q ₄ , R5	q ₀ , G	q ₀ , F

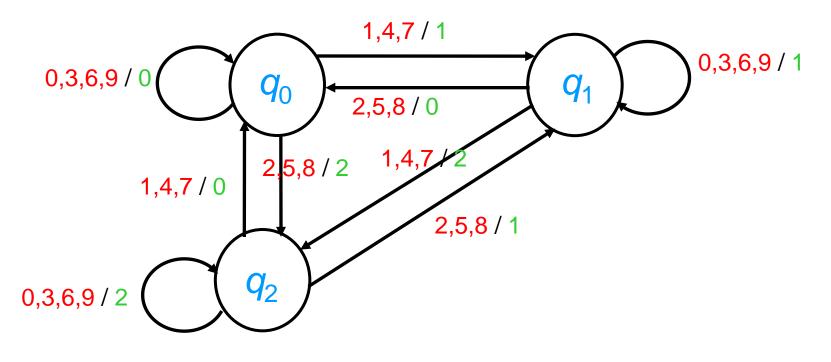
Example: Coffee machine (iv)

State Diagram: provides the same information as the State Table in a more supervisory way. Initial state: q₀ (marked with an arrow).



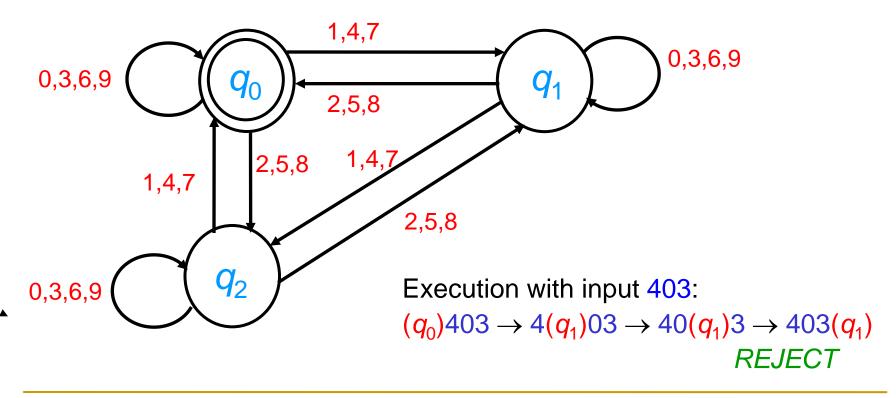
Example II: modulo arithmetic (i)

- Construct a machine that calculates n mod 3
- How many states are needed?
- Use the property: $n \mod 3 = (n_1 + \ldots + n_k) \mod 3$, n_i the (base 10) digits of n *Prove it!*



Example II: modulo arithmetic (ii)

- Simplification: If only divisibility by 3 is of interest, no output is needed
- We define acceptance states (double circle)



Exercises in modulo arithmetic

- Exercise 1: design a machine that determines whether a number is divisible with 5.
- Exercise 2: design a machine that determines whether a number is divisible with 7.

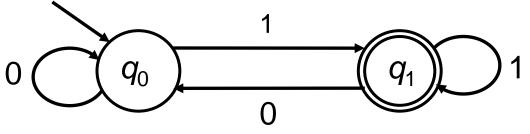
Automata

- Finite State Machines with no output: Some states accept (denoted by an extra circle), while others reject.
- An automaton has some internal states q₀, q₁, q₇, q₁₅, ..., and a transition function δ that determines the next state of the automaton, based on the current state and the input string. It accepts or rejects the input string.
- Language recognizers (ie. they solve decision problems, properly described).

Automata and Formal Languages

- Formal Languages: used to describe computational problems and to define programming languages.
 e.g. L = {x ∈ {0,1}* | x is a prime number in binary representation}
- Automata: used to identify formal languages and to rank the difficulty of the corresponding problems:
 - Each automaton recognizes a formal language: the set of strings that lead it to an accept state.

Example: Odd number identification



- q_0 : last digit other than 1
- q₁: last digit equal to 1
- q₀ is called the initial state while q₁ is called the accept (or final) state
- Execution with input 0110: $(q_0)0110 \rightarrow 0(q_0)110 \rightarrow 01(q_1)10 \rightarrow 011(q_1)0 \rightarrow 0110(q_0)$ REJECT
- Execution with input 101: $(q_0)101 \rightarrow 1(q_1)01 \rightarrow 10(q_0)1 \rightarrow 101(q_1) \quad \text{ACCEPT}$

Other automata

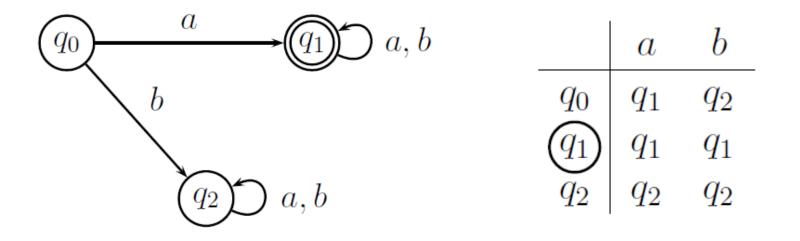
- Mechanisms: without input output: $\delta(q_i) = q_j$ execution: $q_0 \rightarrow q_j \rightarrow q_k \rightarrow q_m$...
- Pushdown Automata (PDA): much more capabilities as they can use memory (in stack form).
- Turing Machines (TM): even more capabilities as the use unlimited memory (in tape form, with the ability to return).
- Linearly Bounded Automata (LBA): TM with linear bounded memory (the length of the tape is a linear function of the size of the input).

Other formal languages

- $L_1 = \{w \in \{a, b\}^* \mid w \text{ starts with "}a"\}$
- $L_2 = \{w \in \{a,b\}^* \mid w \text{ contains an even number of "a"}\}$
- $L_3 = \{w \in \{a, b\}^* \mid w \text{ is a palindrome}\}$

Example: DFA for L_1

 $L_1 = \{w \in \{a,b\}^* \mid w \text{ starts with "a"}\}$



Execution with *abba* input:

• $(q_0)abba \rightarrow a(q_1)bba \rightarrow ab(q_1)ba \rightarrow abb(q_1)a \rightarrow abba(q_1)$ ACCEPT

DFA: Formal Definition

• (Deterministic Finite Automaton, DFA): tuple $M = (Q, \Sigma, \delta, q_0, F)$

- Q: the set of states of M (finite), e.g. $Q = \{q_0, q_1, q_2\}$
- Σ : finite input alphabet ($\Sigma \cap Q = \emptyset$), e.g. $\Sigma = \{a, b\}$
- $\delta: Q \ge \Sigma \rightarrow Q$: transition function, e.g. $\delta(q_0, a) = q_1$
- $q_0 \in Q$: initial (or start) state
- $F \subseteq Q$: set of accept states, e.g. $F = \{q_1\}$

DFA acceptance: formal definitions

Extension of function δ : $Q \times \Sigma^* \rightarrow Q$ the extended δ takes as arguments a state q and a string u and returns the state where the automaton will reach if it starts from q and reads u.

• Definitions of extended δ (*primitive recursion* scheme):

$$\begin{cases} \delta(q,\varepsilon) = q\\ \delta(q,wa) = \delta(\delta(q,w),a) \end{cases}$$

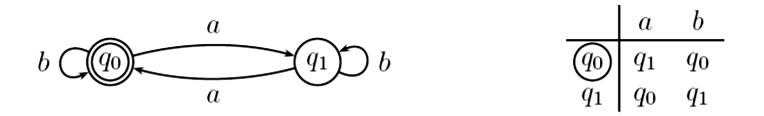
where w is a string of any length, and α is an alphabet symbol

DFA acceptance: formal definitions

- DFA accepts a string u iff $\delta(q_0, u) \in F$
- DFA M accepts language

 $L(M) = \{ w \mid \delta(q_0, w) \in F \}$

Languages accepted by a DFA are called (Kleene) regular $L_2 = \{w \in \{a,b\}^* \mid w \text{ contains an even number of "}a"\}$



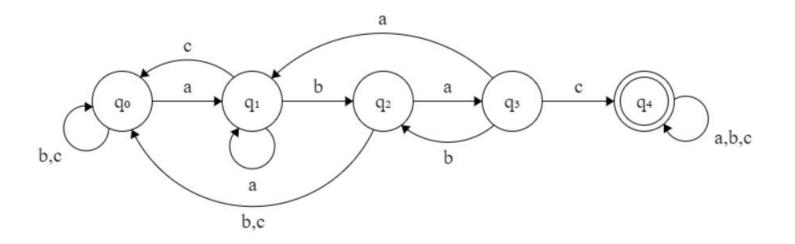
 $L_3 = \{w \in \{a, b\}^* \mid w \text{ is a palindrome}\}$

There is no DFA that recognizes L_3 (memory needed with size depending on the input)

Application: String Matching

Problem:

Suppose we are given a text from the alphabet $\Sigma = \{a, b, c\}$. How can we check if the string abac is contained in the text?



Non-deterministic automata

- Deterministic automata: for each state / input symbol combination there is a unique next state.
- Non-deterministic automata:
 - For each state/input symbol combinations there is a number of possible subsequent states
 - Acceptance if any sequence leads to acceptance.

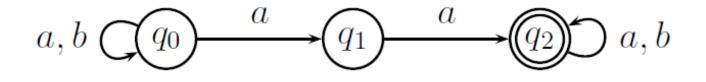
Non-deterministic Finite Automata

NFA (Non-deterministic Finite Automaton): for each state and input symbol, one state of a set of possible subsequent states is selected.

NFA_ε or ε-NFA (NFA with ε-transitions): can change state without reading the next symbol.

Example: NFA

 $L_4 = \{ w \in \Sigma^* \mid w \text{ contains two consecutive "a"} \}$



	a	b
q_0	$\{q_0, q_1\}$	$\{q_0\}$
q_1	$\{q_2\}$	Ø
(q_2)	$\{q_2\}$	$\{q_2\}$

In the transition function, an empty set means that the current execution rejects.

(another may accept!).

Example: NFA q_0 aa) a, ba, b q_1 q_0 aa q_0 aaa q_0 q_2 **Computation tree** bfor input aabaa q_0 l2aa q_0 aaaa q_0 ACCEPT

NFA: formal definition

tuple $M = (Q, \Sigma, \delta, q_0, F)$

- Q: the set of states of M (finite)
- Σ : finite input alphabet ($\Sigma \cap Q = \emptyset$)
- δ : $Q \times \Sigma \rightarrow Pow(Q)$: transition function, e.g. $\delta(q_i, \alpha) = \{ q_j, q_k, q_m \}$
- $q_0 \in Q$: initial state
- $F \subseteq Q$: set of final states (accept)

Reminder. in the transition function, an empty set implies that this execution rejects (*note*: *another one may accept!*).

NFA acceptance: formal definitions

- An NFA accepts string w if $\delta(q_0, w) \cap F \neq \emptyset$
- An NFA accepts the language

 $L(M) = \{ w \mid \delta(q_0, w) \cap F \neq \emptyset \}$

Note: function δ is extended to take as arguments a state *q* and a string *w* and return the set of states where the automaton can be found if it starts from *q* with *w* as an *input*.

• Example: $\delta(q_0, \alpha \alpha) = \{q_0, q_1, q_2\}, \delta(q_0, b\alpha) = \{q_0, q_1\}$

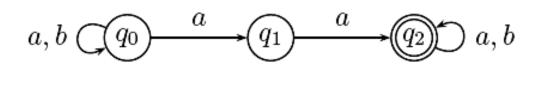
NFA and DFA equivalence

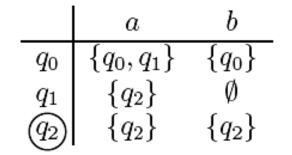
- Rabin-Scott Theorem: for every NFA there exists a DFA that accepts the same language.
- DFA and NFA recognize exactly the same class of languages: the regular languages.
- Regular languages correspond to regular expressions:

e.g.
$$(\alpha+b)^*bbab(\alpha+b)^*$$

NFA → DFA

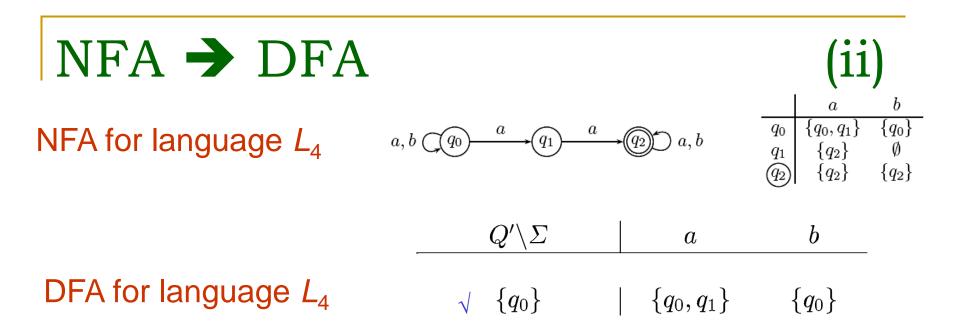
NFA for language L_4 ("2 consecutive a")





We construct the *powerset* of states. Initial state: $\{q_0\}$. Final: those that contain a final.

Hint: We only test state sets that are *accessible from* $\{q_0\}$.



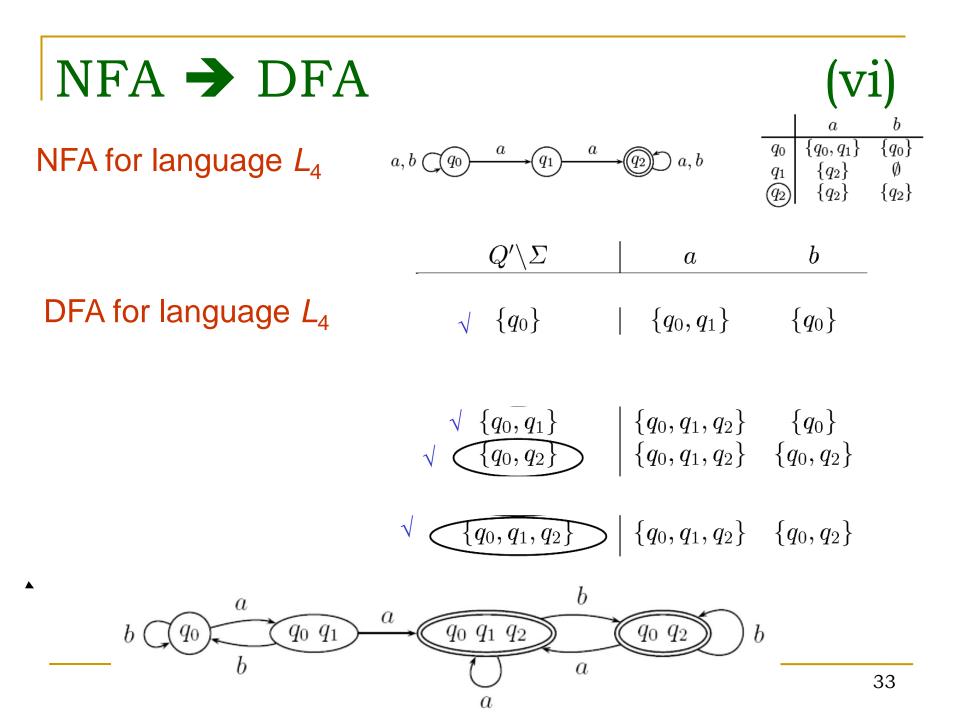
Hint: We only test state sets that are *accessible from* $\{q_0\}$.

NFA -> DFA		(111)
NFA for language L_4	$a, b \xrightarrow{q_0} a \xrightarrow{q_1} a \xrightarrow{q_2} a, b$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
DFA for language L_4	$Q'ackslash \Sigma = a \ \checkmark \ \{q_0\} = \ \{q_0,q_1\}$	$b \ \{q_0\}$
<i>Hint</i> : We only test state sets that are	$\checkmark \; \{q_0,q_1\} \; \{q_0,q_1,q_2\}$	$\{q_0\}$

accessible from $\{q_0\}$.

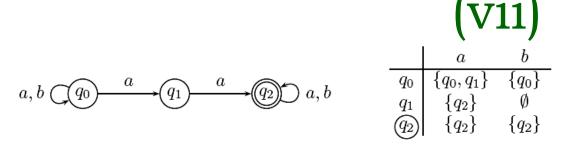
NFA → DFA		(iv)
NFA for language L_4	$a, b \xrightarrow{q_0} a \xrightarrow{q_1} a \xrightarrow{q_2} a, b$	$\begin{array}{c cccc} a & b \\ \hline q_0 & \{q_0, q_1\} & \{q_0\} \\ \hline q_1 & \{q_2\} & \emptyset \\ \hline q_2 & \{q_2\} & \{q_2\} \end{array}$
	$Q'ackslash \Sigma$ a	<i>b</i>
DFA for language L_4	$\checkmark \hspace{0.1 cm} \{q_0\} \hspace{0.1 cm} \hspace{0.1 cm} \{q_0,q_1\}$	$\{q_0\}$
<i>Hint</i> : We only test state sets that are	$\checkmark \ \{q_0, q_1\} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\{q_0\}$
accessible from $\{q_0\}$.	$\checkmark \fbox{q_0,q_1,q_2} \lbrace q_0,q_1,q_2 \rbrace$	$\{q_0,q_2\}$

NFA -> DFA		(V)
NFA for language L_4	$a, b \xrightarrow{q_0} a \xrightarrow{q_1} a \xrightarrow{q_2} a, b$	$\begin{array}{c cccc} a & b \\ \hline q_0 & \{q_0, q_1\} & \{q_0\} \\ q_1 & \{q_2\} & \emptyset \\ \hline q_2 & \{q_2\} & \{q_2\} \\ \end{array}$
	$Q'ackslash \Sigma$ a	<i>b</i>
DFA for language L_4	$\checkmark \hspace{0.1 cm} \{q_0\} \hspace{1.5cm} \mid \hspace{0.1 cm} \{q_0,q_1\}$	$\{q_0\}$
<i>Hint</i> : We only test state sets that are	$egin{array}{c} \sqrt{\{q_0,q_1\}} & \{q_0,q_1,q_2\} \ \sqrt{\{q_0,q_2\}} & \{q_0,q_1,q_2\} \end{array}$	$\{q_0\}\ \{q_0,q_2\}$
accessible from $\{q_0\}$.	$\checkmark \qquad \fbox{q_0,q_1,q_2} \qquad \fbox{q_0,q_1,q_2}$	$\{q_0,q_2\}$



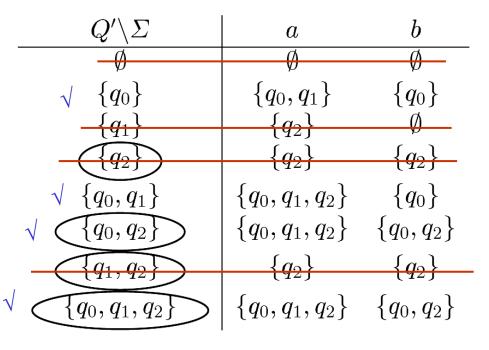
NFA → DFA

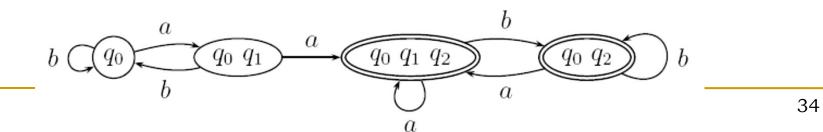
NFA for language L_4



DFA for language L_4

Inaccessible states are of no interest!





NFA \rightarrow DFA: the method, formally

Suppose NFA $M = (Q, \Sigma, q_0, F, \delta)$.

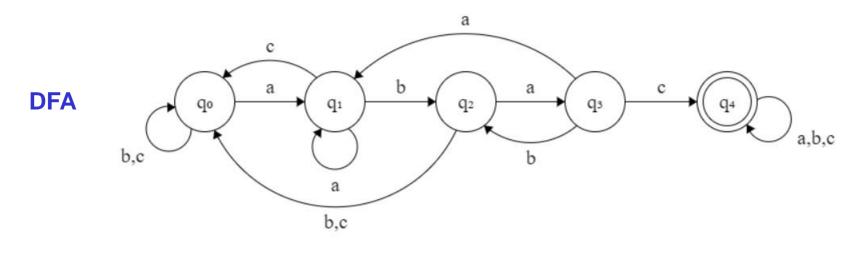
An equivalent DFA $M' = (Q', \Sigma, q'_0, F', \delta')$, is defined as follows:

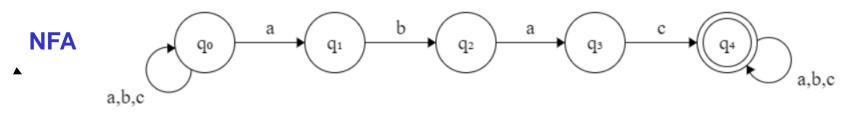
- Q' = Pow(Q), i.e. The states of M' are all subsets of states of M.
- $q'_0 = \{q_0\},$
- F' = { $R \in Q'$ | $R \cap F \neq \emptyset$ }, i.e. a state of M' is final if it contains a final state of M.
- $\delta'(R, \alpha) = \{q \in Q \mid q \in \delta(r, \alpha) \text{ for } r \in R\}$, i.e. it is the set of possible *M* states starting from any state of the set *R* and reading the symbol α (α -transition).

Application: String Matching

Problem:

Suppose we are given a text from the alphabet $\Sigma = \{a, b, c\}$. How can we check if the string abac is contained in the text?





Automata with ε -transitions: NFA $_{\varepsilon}$

- They allow transitions without reading a symbol. (equivalent: with input the empty string ε).
- They accept strings that can reach a final state using (potentially) ε-transitions.

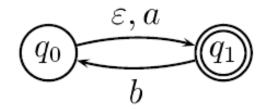
Example:
$$\operatorname{NFA}_{\varepsilon} \operatorname{IOF} L_{5} \coloneqq \{a \ b \ \} = \{a^{\circ}b^{\circ\circ} | n, m \in \mathbb{N}\}$$

$$a \overbrace{q_{0}}^{e} \xrightarrow{\varepsilon} \overbrace{q_{1}}^{e} b \qquad \qquad \frac{a \ b \ \varepsilon}{q_{0}} \quad \frac{a \ b \ \varepsilon}{q_{0}} \quad \frac{\varepsilon}{q_{0}} \quad \frac{\varepsilon}{q_{0}} \quad \frac{\varepsilon}{q_{0}} \quad \frac{\varepsilon}{q_{1}} \quad \frac{\varepsilon}{q_$$

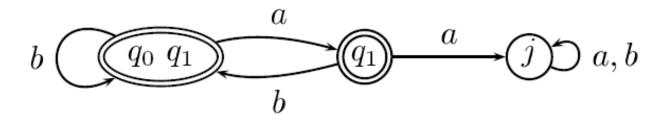
NICA for $I \rightarrow (a^*h^*) - (a^nh^m) a \rightarrow (a^nh^m)$

NFA $_{\varepsilon}$ and DFA equivalence: example

NFA_{ϵ} for $\overline{L_4}$ (not two consecutive "a"):



DFA for $\overline{L_4}$:



NFA_{ε} \rightarrow DFA: the method, formally

Let NFA_{ε} $M = (Q, \Sigma, q_0, F, \delta)$.

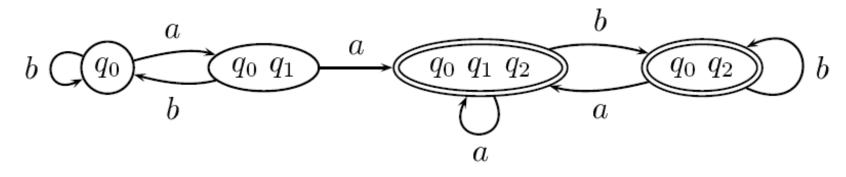
An equivalent DFA $M' = (Q', \Sigma, q'_0, F', \delta')$, is defined as follows:

- Q' = Pow(Q), i.e. the states of M' are all subsets of states of M.
- q'₀ = ε-closure(q₀) = {p | p accessible from q₀ only with εtransitions},
- F' = { $R \in Q'$ | $R \cap F \neq \emptyset$ }, i.e. a state of M' is final if it contains a final state of M.
- [■] $\delta'(R,a) = \{q \in Q \mid q \in ε$ -closure($\delta(r, α)$) for $r \in R\}$, i.e. $\delta'(R, α)$ is the set of states that *M* can reach starting from any state
- of R, making an α -transition and then using any ϵ -transitions.

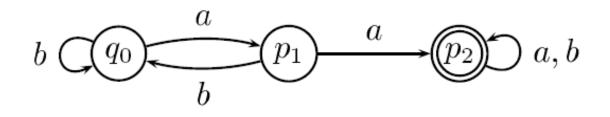
DFA minimization: example

 $L_4 = \{ w \in \{a,b\}^* | w \text{ contains 2 consecutive "}a" \}:$

Initial DFA

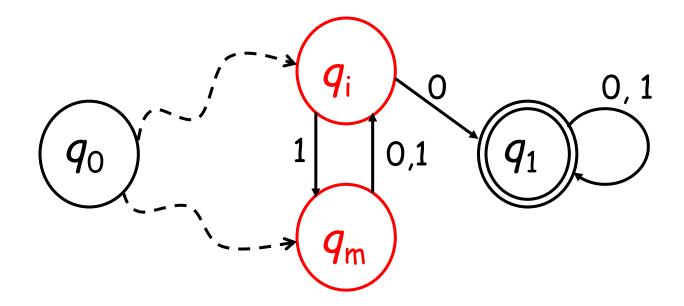


Minimal DFA



DFA minimization (i)

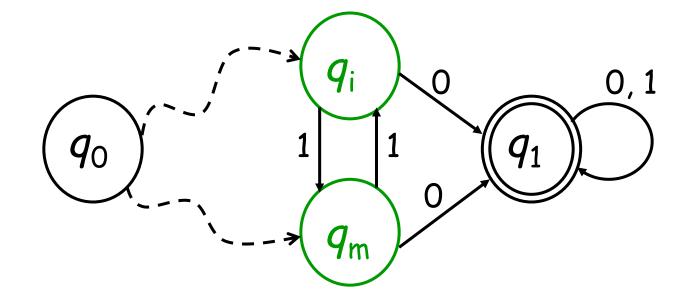
Two DFA states are said to be *non-equivalent*, that is, *distinguishable*, if there is a string that leads one of them to a final state and not the other.



DFA minimization (ii)

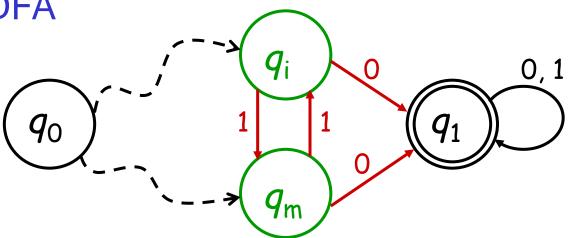
Two states can be merged into one (they are *equivalent*) if:

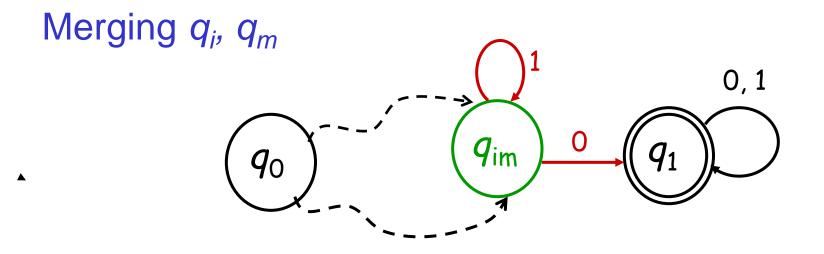
They lead to the same result with the same strings



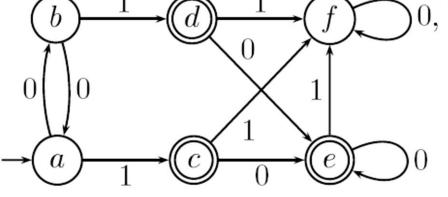
DFA minimization (iii)

Initial DFA

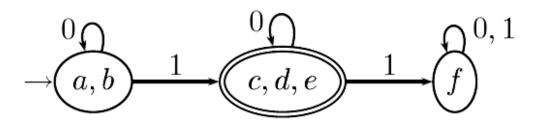




DFA minimization : 2^{nd} example Initial DFA $b \xrightarrow{1} (d) \xrightarrow{1} (f) \xrightarrow{0,1}$

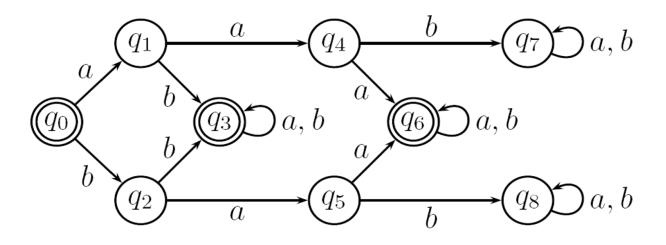


Minimal DFA

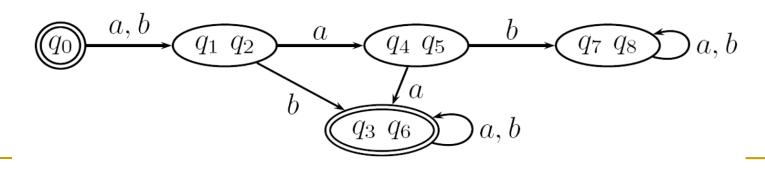


DFA minimization: 3rd example

DFA



Minimal DFA



DFA minimisation method

- Two states are k-distinguishable if with a string of length <u>exactly k</u> they lead to a different result (and they are not idistinguishable for any i<k). Thus, two states are:</p>
 - O-distinguishable iff one is final and the other is not
 - (*i*+1)-distinguishable iff with a symbol they lead to
 i-distinguishable states.
- Two states are equivalent if they are not kdistinguishable for any k.

DFA minimisation method

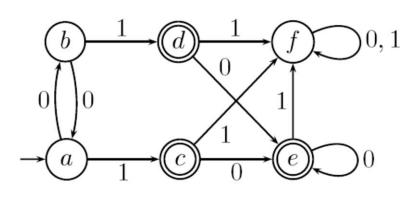
Idea: for all i = 0, 1, 2, ... We identify the i-distinguishable pair of states until no more occur. The rest of the pairs are equivalent.

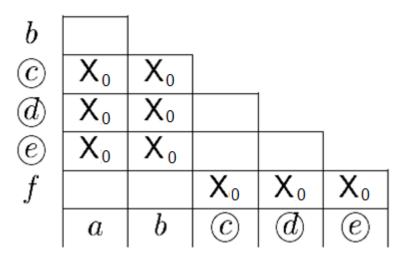
There are no (i+1)-distinguishable states if there are no (i)-distinguishable states

The method:

We construct a triangular table to compare each pair of states. We write X_k in the corresponding position in the table, the first time we find that two states are *k*-distinguishable, as follows:

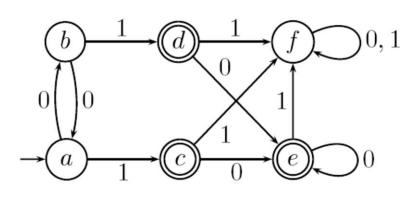
- We write X₀ to all pairs of states that are <u>0-distinguishable</u> because one is final and the other is not.
- In each "round" i+1, we examine all unmarked pairs and write X_{i+1} to a pair, if out of its two states with a symbol, the DFA reaches i-distinguishable states (already marked with X_i).
- Repeat until a round k where there is no pair marked with X_k .
- Unmarked pairs correspond to equivalent states (which are therefore merged).

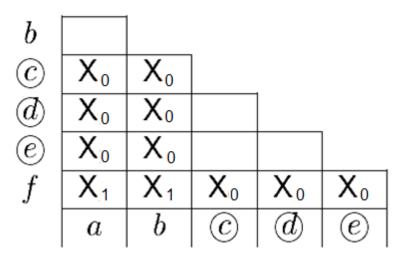




Round 0:

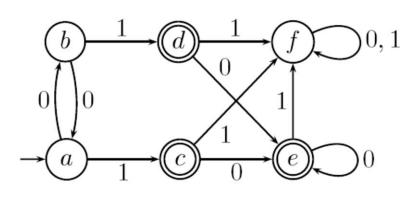
nine pairs **0-***distinguishable* states

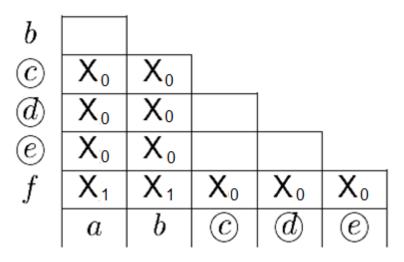




Round 1:

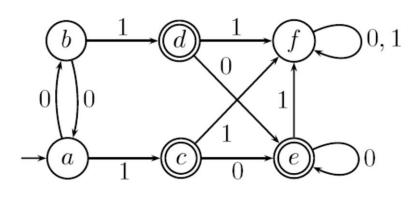
Two pairs 1-distinguishable states

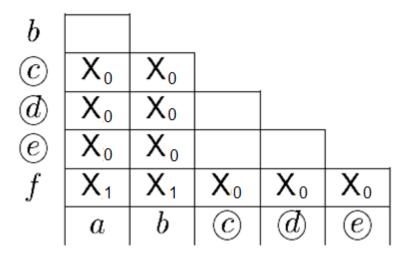




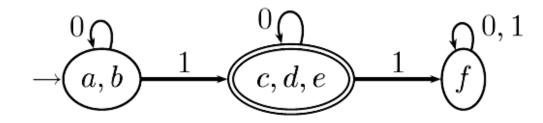
Round 2:

No pair 2-distinguishable states





 $a \equiv b, c \equiv d \equiv e$



Languages, Automata, Grammars

- Formal Languages: used to describe computational problems and programming languages.
- Automata: used to recognise formal languages and rank the difficulty of the corresponding problems.
- Formal Grammars: another way of describing formal languages. Every formal grammar produces a formal language.

Language and Grammar Theory

Applications:

- Digital Design,
- Programming Languages,
- Compilers,
- Artificial Intelligence,
- Complexity Theory.

Important researchers:

Chomsky, Backus, Rabin, Scott, Kleene, Greibach, …

Formal languages

- Primary concepts: symbols, concatenation.
- Alphabet: a finite set of symbols. e.g. {0,1}, {x,y,z}, {a,b}.
- Word (or string, or sentence) of an alphabet: a finitelength sequence of symbols of the alphabet. e.g. 011001, abbbab.
- Image: weight of word w.
- ϵ : empty word, $|\epsilon| = 0$.
- prefix, suffix, substring, reversal, palindrome.

Formal languages (cont.)

- vw = concatenation of words v and w.
- $\varepsilon x = x\varepsilon = x$, for every string x.
- define xⁿ with primitive recursion:

$$igg| egin{array}{c} x^0 = arepsilon \ x^{k+1} = x^k x \end{array}$$

- Σ^* : the set of all the words of alphabet Σ.
- Language from alphabet Σ: any set of strings $L \subseteq \Sigma^*$.

Formal Grammars

- A systematic way to transform strings through production rules.
- Alphabet: terminal and non-terminal symbols and a start symbol (non-terminal).
- Finite set of rules of the form $\alpha \rightarrow \beta$: define the capability of replacing string α with string β .
- Every formal grammar produces a formal language: the set of strings (with only *termination symbols*) that are produced from the start symbol.
- Also known as rewriting systems or phase structure grammars.

Example: Grammar for the language of odd numbers

$$S \rightarrow A \ 1$$
$$A \rightarrow A \ 0$$
$$A \rightarrow A \ 1$$
$$A \rightarrow \varepsilon$$

S: start symbol

- A: non-terminal symbol
- 0,1: terminal symbols
- ε: the empty string
- S and A are replaced according to the rules.
- Every odd is produced from S with some sequence of valid substitutions.
- regular expression: (0+1)*1

Formal grammars: definitions (i)

A formal grammar G consists of:

- An alphabet V of non-terminal symbols (variables),
- An alphabet T of *terminal* symbols (constants), s.t. $V \cap T = \emptyset$,
- A finite set *P* of *production rules*, i.e. ordered pairs (α,β) , where $\alpha,\beta \in (V \cup T)^*$ and $\alpha \neq \varepsilon$ (convention: we write $\alpha \rightarrow \beta$ instead of (α,β)),
- a start symbol (or axiom) $S \in V$.

Formal grammars: definitions(ii)

Convention for the use of letters:

- a, b, c, d, ... ∈ T: lowercase Latin, the initials of the alphabet, represent terminals
- A, B, C, D, ... ∈ V: capital Latin, represent nonterminals
- U, V, W, X, Y, Z ... ∈ T*: lowercase Latin, the last of the alphabet, represent terminal strings
- α, β, γ, δ, ... ∈ (V ∪ T)*: Greek represent any strings (terminal and non-terminal)

Formal grammars: definitions(iii) Production definitions:

- We say that $\gamma_1 \alpha \gamma_2$ produces $\gamma_1 \beta \gamma_2$, and we denote it by $\gamma_1 \alpha \gamma_2 \Rightarrow \gamma_1 \beta \gamma_2$, if $\alpha \to \beta$ is a production rule (i.e. $(\alpha, \beta) \in P$).
- We denote by $\stackrel{*}{\Rightarrow}$ the reflexive transitive closure of \Rightarrow , (α derives β in zero or more steps), $\alpha \stackrel{*}{\Rightarrow} \beta$ means that there is a sequence $\alpha \Rightarrow \alpha_1 \Rightarrow \alpha_2 \Rightarrow \dots \alpha_k \Rightarrow \beta$.
- Language generated by grammar G: $L(G) := \{ w \in T^* \mid S \stackrel{*}{\Rightarrow} w \}$
- grammars G_1 , G_2 equivalent if $L(G_1) = L(G_2)$.

Formal grammars: Example

$$G: V = \{S\}, T = \{a, b\}, P = \{S \rightarrow \varepsilon | aSb\}$$

 $S \rightarrow \varepsilon \mid \alpha Sb$: abbreviation of $S \rightarrow \varepsilon$ and $S \rightarrow \alpha Sb$

A possible production sequence:

 $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$

Produced language:

$$L(G) = \{a^n b^n \mid n \in N\}$$

Chomsky Hierarchy

Type 0: (general grammars, unrestricted, phrase structure, semi-Thue) $\alpha \rightarrow \beta, \ \alpha \neq \varepsilon$

Type 1: (context sensitive grammars, monotonic) $\alpha \rightarrow \beta$, $|\alpha| \leq |\beta|$ ($S \rightarrow \varepsilon$, allowed)

Type 2: (context free grammars) $A \rightarrow \alpha$ ($A \in V$)

Type 3: (regular grammars)Right linear: $A \rightarrow w, A \rightarrow wB$ $(w \in T^*, A, B \in V)$ or,Left linear: $A \rightarrow w, A \rightarrow Bw$ $(w \in T^*, A, B \in V)$

Chomsky Hierarchy

- Type 0 ↔ Turing Machines
- Type 1 ↔ Linear Bounded Automata
- Type 2 ↔ PushDown Automata
- **Type 3** \leftrightarrow **DFA** (and NFA)

Regular Grammars

- Regular grammars are grammars where all the rules are of the form:
 - Right linear

 $A \rightarrow wB$ or $A \rightarrow w$

Left linear

 $A \rightarrow Bw$ or $A \rightarrow w$

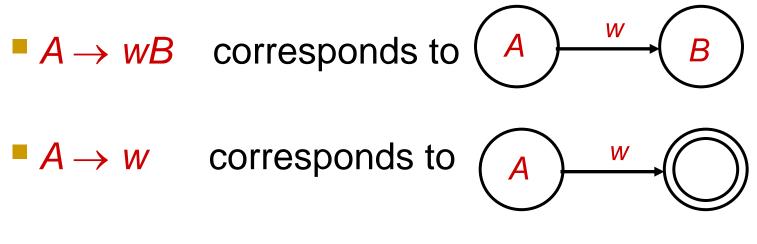
(w is a string of terminal language symbols)

Theorem:

Regular languages are equivalent to languages produced by regular grammars.

Equivalence of regular grammars and DFA

Using the right-linear format:



S corresponds to q_0

Another equivalence!

Theorem:

Regular languages are equivalent to languages described by regular expressions.

Regular expressions

Languages L, L_1, L_2 Same alphabet Σ .

•
$$L_1L_2 := \{uv \mid u \in L_1 \land v \in L_2\}$$
: concatenation

•
$$L_1 \cup L_2 := \{ w \mid w \in L_1 \lor w \in L_2 \}$$
: union

•
$$L_1 \cap L_2 := \{ w \mid w \in L_1 \land w \in L_2 \}$$
: intersection

- $L^0 := \{\varepsilon\}, L^{n+1} := LL^n$
- $L^* := \bigcup_{n=0}^{\infty} L^n$: Kleene star
- $L^+ := \bigcup_{n=1}^{\infty} L^n$

Regular expressions (definitions)

Regular expressions: represent languages derived from symbols of an alphabet using the operations of concatenation, union, and Kleene star.

- Image: Second Second
- ε : represents { ε }
- α : represents { α }, $\alpha \in \Sigma$
- (*r*+*s*) : represents $R \cup S$, R = L(r), S = L(s)
- (*rs*) : represents RS, R = L(r), S = L(s)
- (r^*): represents R^* , R = L(r)

L(t) the language represented by reg.ex. t

Regular expressions (examples)

$$L_{1} = a(a + b)^{*}$$

$$L_{2} = (b^{*}ab^{*}a)^{*}b^{*} = (b + ab^{*}a)^{*}$$

$$L_{3}$$

$$L_{4} = (a + b)^{*}aa(a + b)^{*}$$

$$\overline{L_{4}} = (a + \varepsilon)(ba + b)^{*}$$

$$L_{5} = a^{*}b^{*}$$

operator priority:

- Kleene star
- concatenation
- union

Equivalence of Regular Expressions and Finite Automata

Theorem. A language L can be described with a *regular* expression iff it is *regular* (i.e. L=L(M) for a finite automaton M).

Proof (idea):

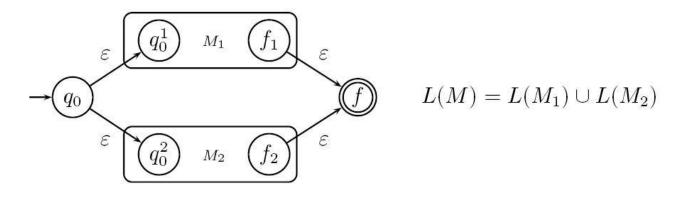
'=>': Induction on the structure of regular expression *r*:

1. Induction base case:

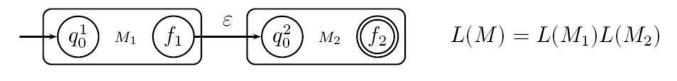
$$r = \varepsilon : \longrightarrow q_0, \qquad r = \emptyset : \longrightarrow q_0 \quad (q_f), \qquad r = a \in \Sigma : \longrightarrow q_0 \stackrel{a}{\longrightarrow} (q_f)$$

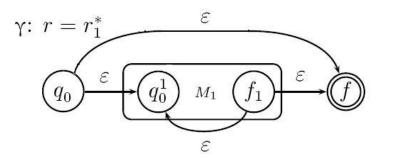
2. Induction step. Assume for regex r_1 , r_2 automata M_1 , M_2 , with final states f_1 , f_2 :

 α : $r = r_1 + r_2$



$$\beta$$
: $r = r_1 r_2$



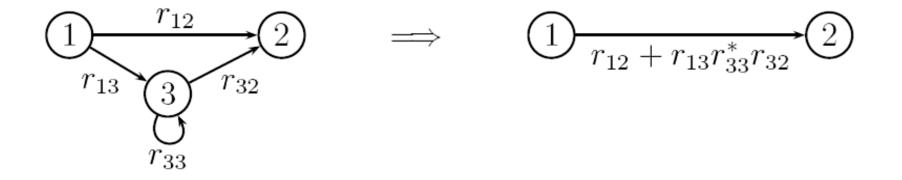


 $L(M) = L(M_1)^*$

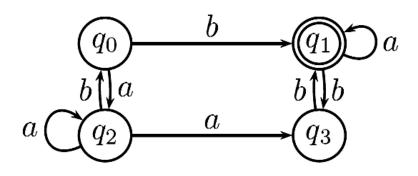
Equivalence of Regular Expressions and Finite Automata

'<=': Regular expression construction from a FA (GNFA).

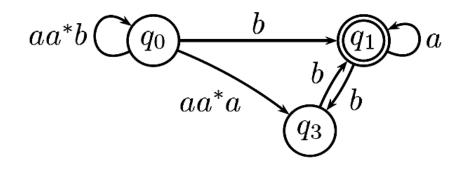
Eliminate intermediate states:

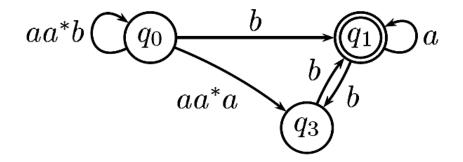


Initial NFA



Delete q_2





Delete q_3

$$aa^*b (q_0) \xrightarrow{b + aa^*ab} (q_1) a + bb$$

$$aa^*b (q_0) \xrightarrow{b + aa^*ab} (q_1) a + bb$$

Delete q_0

Final expression:

$$(aa^*b)^*(b + aa^*ab)(a + bb)^*$$

Which languages are regular?

- All finite.
- All produced from regular languages using the operations: concatenation, union, Kleene star
- Also complementation, intersection, reverse, etc.
- Product of Automata: a way to construct DFA για intersection (and union) of regular languages.

Product of Automata: DFA

- Assume DFA M₁, M₂ with states n, m respectively (Q₁={q₀, ..., q_{n-1}}, Q₂={p₀, ..., p_{m-1}}) and a common alphabet, that recognize languages L₁, L₂ respectively.
- The product of M₁, M₂ is a DFA with m·n states, one for every pair of states of the initial automaton (state set Q = Q₁ × Q₂), the same alphabet and initial state (q₀,p₀).
- Transition function: $\delta'((q_i, p_j), \sigma) = (q_{i', p_k}) \Leftrightarrow \delta(q_i, \sigma) = q_{i'} \land \delta(p_k, \sigma) = p_{k'}$
- Final states: dependent on the operation between L₁, L₂. For the intersection we set as finals, pairs that both are final states for M₁, M₂, for union pairs that include at least one final state.
- Note: You can easily implement other operations between L₁, L₂ (difference, symmetric difference) by appropriately defining the final states.

Product of Automata: NFA

Defined in a similar way.

Consider also ε-transitions and junk states

Are all languages regular?

- «No»
- To prove that we will use Pumping Lemma (or closure properties)

Pumping Lemma (intuition)

- If a language L is regular, then it is accepted by a DFA with a finite number of states, n.
- Let z be a word, |z|>=n that belongs to the language, so it is accepted by the automaton.
- As we process z, the automaton has to go through a state again (pigeonhole principle):

$$z = \overset{q_0}{\underbrace{u}} \overset{\dots}{\underbrace{v}} \overset{q}{\underbrace{w}} \overset{\dots}{\underbrace{w}} \overset{q_f}{\underbrace{w}} \overset{\dots}{\underbrace{q_f}} \\ \rightarrow \underbrace{q_0}_{u} \xrightarrow{\cdots} \xrightarrow{q_i} \underbrace{\cdots}_{w} \overset{q_f}{\underbrace{\cdots}} \overset{\dots}{\underbrace{q_f}} \\ \underbrace{\ddots}_{v} \overset{v}{\underbrace{v}} \end{aligned}$$
Since $z = uvw \in I$, $uv^iw \in I$, for all $i \in \mathbb{N}$

Pumping Lemma

Let a regular language *L*. Then:

- There exists a natural number n (= the number of states of DFA) such that:
- For all $z \in L$ with length $|z| \ge n$
- There exists a «split» of *z* into substrings *u*, *v*, *w*, i.e. z = uvw, $|uv| \le n$ and |v| > 0
- So that for all i = 0, 1, 2, ... :

 $uv^iw \in L$

Use of the Lemma to prove nonregularity

Use of Pumping Lemma to prove that a (non-finite) language *L* is not regular.

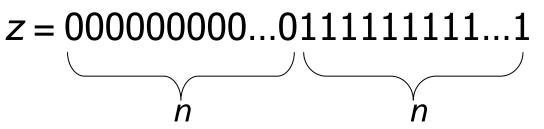
Let *L* a regular language. Then:

- By the PL, there exists *n*. We for all *n*
- We choose a suitable $z \in L$ with length $|z| \ge n$
- By the PL, there exists «split» z = uvw, $|uv| \le n$, |v| > 0. We for all «split» z = uvw, $|uv| \le n$, |v| > 0
- We choose *i* so that the word *uvⁱw* is not in the language *L*, *a contradiction*!

(adversary argument)

Using Pumping Lemma – Example (i)

- Theorem. Language L = {z | z has the same number of 0 and 1} is not regular.
- *Proof*: Suppose *L* regular. Then:
 - By the PL, there exists *n*. We for all *n*
 - We chose $z = 0^{n}1^{n} \in L$ with length |z| = 2n > n



By the PL, there exists a «split» z = uvw, $|uv| \le n$, |v| > 0. We for all «splits» z = uvw, $|uv| \le n$, |v| > 0

Using Pumping Lemma – Example (i)

• We observe that necessarily $v = 0^k$ for some k:

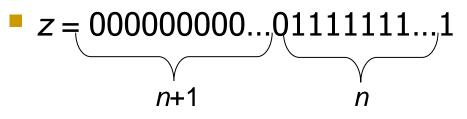
- And we choose i = 2, finding that $uv^i w = uv^2 w$ is not a string of *L*, a contradiction.
- Therefore, L is not regular.

Using Pumping Lemma – Example (ii)

Theorem. Language $L = \{z \mid z=0^{i}1^{j}, i > j\}$ is not regular.

Proof: Suppose *L* regular. Then:

- By the PL there exists *n*. We for all *n*
- We chose $z = 0^{n+1}1^n \in L$ with length |z| = 2n+1 > n



By the PL there exists a «split» z = uvw, $|uv| \le n$, |v| > 0. We for all «splits» z = uvw, $|uv| \le n$, |v| > 0

Using Pumping Lemma – Example (ii)

• We observe that ót necessarily $v = 0^k$ for some k:

- But repeating v gives strings of the language
- At first glance this seems problematic...
- But PL states that for all $i \ge 0$: $uv^i w \in L$
- We choose i = 0: sting uv⁰w is not a string of L, a contradiction.
- Therefore, L is not regular.

Attention when using PL!

- Pumping Lemma is a necessary but not sufficient condition for a language to be regular.
- There are non-regular languages that satisfy its conditions!
- It is therefore only useful for proving non-regularity.
- Another way of proving language non-regularity: closure of regular languages operations.

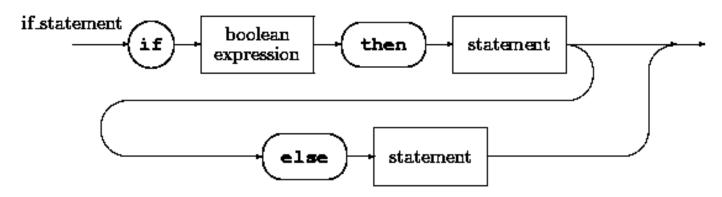
Grammars for non-regular languages

- Context-free (CF): type 2, corresponding to pushdown automata (PDA)
- Context-sensitive (CS): type 1, corresponding to Linear Bounded Automata (LBA)
- General: type 0, corresponding to Turing Machines (TM)

Context-Free Grammars (i)

Applications:

 Programming languages syntax (Pascal, C, C++, Java)



Web pages description languages syntax (HTML, XML), editors, ...

Context-Free Grammars (ii)

- **Rule form:** $A \rightarrow \alpha$, A non-terminal
- Example:

$$G_1: \quad V = \{S\}, \ T = \{a, b\}, \ P = \{S \to \varepsilon, S \to aSb\}$$

Possible production sequence:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$$

Produced Language:

$$L(G_1) = \{a^n b^n | n \in \mathbb{N}^*\}$$

Context-Free Grammars (iii)

2nd example:

G₂: $T = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, *\}$ $V = \{S\}$

 $P: S \to S+S, \quad S \to S^*S, \\ S \to 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$

Possible production sequences:

 $S \Rightarrow 3$, $S \Rightarrow S+S \Rightarrow 3+S \Rightarrow 3+S^*S \Rightarrow 3+4^*7$

Context-Free Grammars (iv)

• 3rd example:

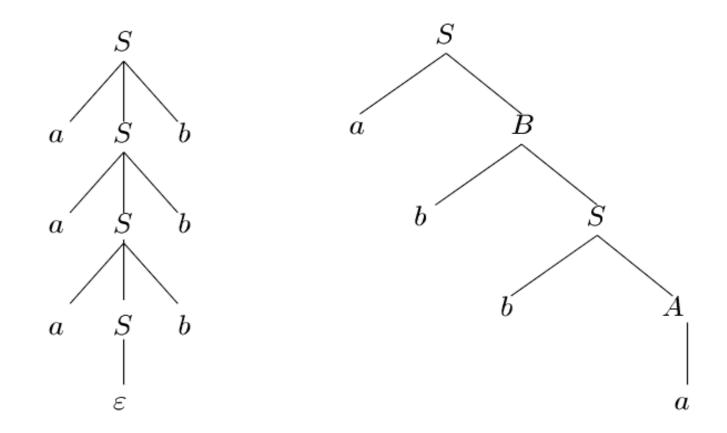
*G*₃: $V = \{S, A, B\}, T = \{a, b\}$, and P includes: $S \rightarrow aB \mid bA, \quad A \rightarrow a \mid aS \mid bAA, \quad B \rightarrow b \mid bS \mid aBB$ Possible production sequence:

$$S \Rightarrow aB \Rightarrow abS \Rightarrow abbA \Rightarrow abba$$

Produced Language (that is not obvious):

 $L(G_3) = \{w \in T^+ | w \text{ has an equal number of } "a" \text{ and } "b" \}$

Parse Trees



Leafstring: *aaabbb* and *abba* respectively.

Parse Trees

Let $G=\{V, T, P, S\}$ a context-free grammar. A tree is a parse tree of G if:

- Each node in the tree has a label, which is a symbol (terminal, or non-terminal, or ε).
- The label of the root is S.
- If an internal node is labeled A, then A is a non terminal symbol. If its children, from left to right, have labels $X_1, X_2, ..., X_k$ then $A \rightarrow X_1, X_2, ..., X_k$ is a production rule.
- If a node is labeled ε, then it is a leaf and is the only child of its parent.

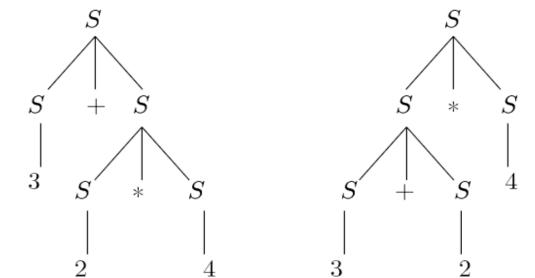
Parse Trees

Theorem. Let $G=\{V,T,P,S\}$ be a context-free grammar. Then $S \stackrel{*}{\Rightarrow} \alpha$ iff there exists a parse tree of G with leafstring α .

Ambiguous grammars

A grammar G is called ambiguous if two parse trees exist with the same leafstring $w \in L(G)$

Example:



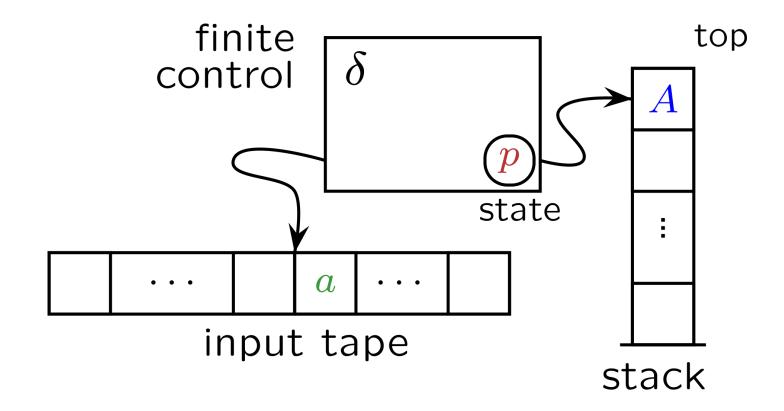
CF grammar recognition algorithm: CYK

- In an exhaustive way we can decide whether a string x is generated by a CF grammar in exponential time.
- The properties of the Chomsky Normal Form allow for a faster recognition of a string.
- CYK algorithm (Cocke, Younger, Kasami): decides whether a string x is generated from a grammar in time O(|x|³), as long as the grammar is given in Chomsky Normal Form.

Pushdown Automata (PDA) (i)

- They have a one-way input tape (like FA) but have additional memory in the form of a stack.
- Access only to the top of the stack using functions:
 - push(x): places element x at the top of the stack
 - pop: reads and removes element from the top of the stack

Pushdown Automata (PDA) (i)



Pushdown Automata (PDA) (ii)

Example: PDA for language recognition of

$$L = \{wcw^R \mid w \in (0+1)^*\}$$

Automaton description

- push(a) onto the stack for every 0 in the input, push(b) onto the stack for every 1 in the input, continue until c is read
- After that, pop: if the top stack element matches the input (a with 0, b with 1) continue
- Acceptance with an *empty stack*

PDA: formal definition

Pushdown Automaton, PDA: tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$

- Q: the set of states of M (finite)
- Σ : input alphabet
- F: stack alphabet
- δ: Q x Σ U {ε} x Γ → Pow(Q x Γ*): transition function (non-determinism, ε-transitions)
- $q_0 \in Q$: initial state
- $Z_0 \in \Gamma$: initial stack symbol
- $F \subseteq Q$: set of final states

Pushdown Automata (PDA) (iv)

PDA acceptance

- If it reaches a final state (i.e. accepted) once the entire input has been read, regardless of stack content
- If the PDA has an empty stack once the entire input has been read, regardless of the state

Languages are defined accordingly:

- $L_f(M)$: acceptance with final state
- $L_e(M)$: acceptance with empty stack

Pushdown Automata (PDA) (v)

For the following language to be accepted

$$L_1 = \{ ww^R \mid w \in (0+1)^* \}$$

i.e. without the middle symbol *c* we necessarily need a non-deterministic PDA.

- Non-deterministic PDAs are more powerful than the deterministic ones.
- By PDA we usually refer to non-deterministic PDAs.

CF grammars and PDA equivalence

Theorem. The following are equivalent for a language *L*:

- $L = L_f(M)$, *M* is PDA.
- $L = L_e(M'), M'$ is PDA.
- L is context-free language

Which languages are Context Free?

- All regular.
- Those formed from CF languages using the operations: concatenation, union, Kleene star.
- But not necessarily with the operations intersection, complement:

e.g. language{ $a^n b^n c^n \mid n \in \mathbb{N}$ } is not CF, while being an intersection of two CF languages:

 $\{a^{n}b^{n}c^{n} \mid n \in \mathbb{N}\} = \{a^{n}b^{n}c^{m} \mid n,m \in \mathbb{N}\} \cap \{a^{k}b^{n}c^{n} \mid k,n \in \mathbb{N}\}$

Are all languages Context Free?

- «No».
- To prove that we use another pumping lemma, the Pumping Lemma for context-free languages.
- It is based on the syntax tree (more in the course «Computability and Complexity»).

Context Sensitive Grammars (i)

Type 1: Context sensitive or monotonic

$$\alpha \rightarrow \beta$$
, $|\alpha| \leq |\beta|$ S $\rightarrow \varepsilon$, $\alpha \neq \varepsilon$

«context sensitive» because they can be put in the following normal form:

Context Sensitive Grammars (ii)

CS grammar for the language $1^n 0^n 1^n$:

 $S \rightarrow 1Z1$ $Z \rightarrow 0 \mid 1Z0A$ $A0 \rightarrow 0A$ $A1 \rightarrow 11$

Conversion to normal form (1st attempt) $A0 \rightarrow H0 \qquad H0 \rightarrow HA \qquad HA \rightarrow 0A$ Not yet regular (why?)

Other examples: $\{1^{i} 0^{j} 1^{k} : i \le j \le k\},\$ $\{ww \mid w \in \Sigma^{*}\}, \{a^{n} b^{n} a^{n} b^{n} \mid n \in \mathbb{N}\}$

Context Sensitive Grammars (ii)

CS grammar for the language $1^n 0^n 1^n$:

$$S \rightarrow 1Z1$$

$$Z \rightarrow U \mid 1ZUA$$

$$AU \rightarrow UA$$

$$A1 \rightarrow 11$$

$$U \rightarrow 0$$

Conversion to normal form

 $AU \rightarrow HU$ $HU \rightarrow HA$ $HA \rightarrow UA$

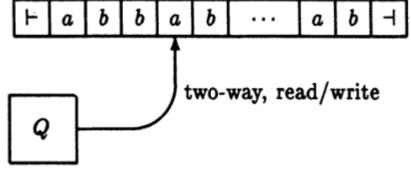
Other examples: $\{1^i \ 0^j \ 1^k : i \le j \le k\},\$ $\{ww \mid w \in \Sigma^*\}, \{a^n \ b^n \ a^n \ b^n \mid n \in \mathbb{N}\}$

CS grammars and LBA equivalence

Linear Bounded Automaton (LBA):

Is a non-deterministic Turing Machine that its head is constrained to move only in the part containing the initial input. $F a b b a b \dots a$

Equivalent form:



PDA with 2 stacks, linearly bounded.

Theorem. The following are equivalent (*L* without ε):

1. Language *L* is accepted by LBA.

2. Language *L* is context sensitive.

General Grammars (i)

Type 0: general, unrestricted

$$\alpha \rightarrow \beta, \, \alpha \neq \varepsilon$$

Example: $\{a^{2^n} \mid n \in \mathbb{N}\}$

$$\begin{array}{l} S \rightarrow AaCB \\ CB \rightarrow E \mid DB \\ aE \rightarrow Ea \\ AE \rightarrow \varepsilon \\ aD \rightarrow Da \\ AD \rightarrow AC \\ Ca \rightarrow aaC \end{array}$$

General Grammars (ii)

Theorem. The following are equivalent:

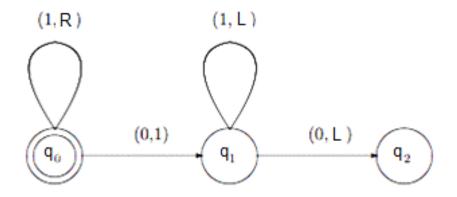
- 1. Language *L* is accepted by a Turing Machine
- 2. L=L(G), where G is a general grammar

Such a language is also called *recursively enumerable*.

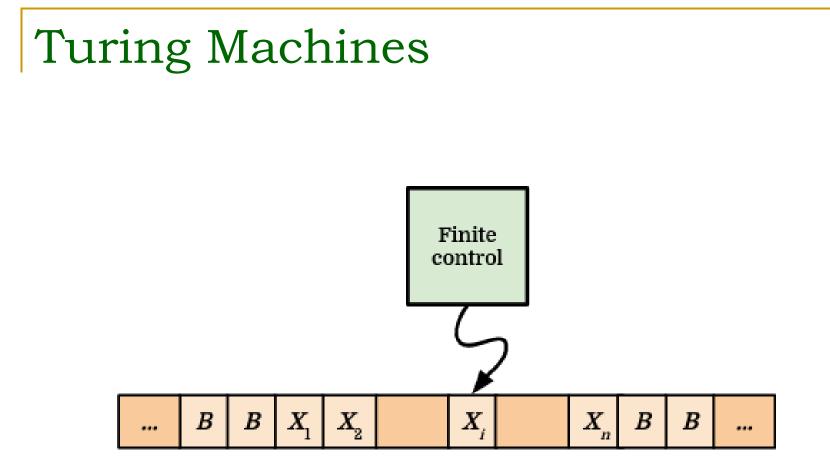
Turing Machines

Automata with indefinitely long tape. Input is initially written in the tape, the head can move left-right and write symbols on the tape.

Transition function example:



 $< q_0, 1, q_0, R >$ $< q_0, 0, q_1, 1 >$ $< q_1, 1, q_1, L >$ $< q_1, 0, q_2, R >$



Language class hierarchy

Hierarchy Theorem.

 $\begin{array}{l} \mbox{regular} \subsetneq \mbox{context free} \subsetneq \mbox{context sensitive} \subsetneq \\ \mbox{recursiverly enumerable} \end{array}$

- Type 0 ↔ TM (Turing Machines)
- Type 1 ↔ LBA (Linear Bounded Automata)
- Type 2 ↔ PDA (Pushdown Automata)
- **Type 3** \leftrightarrow DFA (and NFA)

