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Finite State Machines (FSM)

▪ A way to describe algorithms.

▪ Describe Finite State Systems:

▪ They model a fundamental (apparent) contradiction of 

computational (and other) systems: finite system size, unlimited

input size.

▪ They are defined with internal states and a predefined way to 

transition from one state to another based on the current state 

and input. They may also have an output.

▪ Applications in a wide range of scientific fields.
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Example: Coffee machine (i)

Specifications

• Two types of coffee: Greek or Freddo.

• Coffee cost: 40 cents.

• 10, 20, or 50 cent coins are allowed.

Design

• How many states do we need;
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Example: Coffee machine (ii)

System Design

▪ Internal states: q0, q1, q2, q3, q4

▪ qi : 10*i cents incerted so far

▪ Possible inputs (actions): C1, C2, C5, B1, B2

▪ C1, C2, C5 : insertion of 10, 20, or 50 cent coins 

▪ B1, B2 : Button 1 for Greek coffee, or Button 2 for Freddo

▪ Possible outputs: R1, R2, R3, R4, R5, G, F 

▪ Ri: refund 10*i cents

▪ G: Greek coffee supply

▪ F: Freddo supply
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Example: Coffee machine (iii)

q4, R5

q4, R4

q4, R3

q4, R2

q4, R1

C5

q0, G

q3, -

q2, -

q1, -

q0, -

B1

q0, Fq4, R2q4, R1q4

q3, -q4, R1q4, -q3

q2, -q4, -q3, -q2

q1, -q3, - q2, -q1

q0, -q2, -q1, -q0

B2C2C1
Input

State

▪ State Table: What the next state and output is for each 

combination of current state and input. Initial state: q0.
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Example: Coffee machine (iv)
▪ State Diagram: provides the same information as the 

State Table in a more supervisory way. Initial state: q0 

(marked with an arrow).

B1/-

B2/-

C1/-

q0 q1

B1/-

B2/-

q2

q3

q4

C1/-

C2/-

C5/R2

C1/R1 

C2/R2 

C5/R5

C5/R1B1/G 

B2/F

C2/-
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Example II: modulo arithmetic (i)

▪ Construct a machine that calculates n mod 3

▪ How many states are needed?

▪ Use the property: n mod 3 = (n1+...+nk) mod 3, 

ni the (base 10) digits of n    Prove it!

1,4,7 / 1

q0 q1

q2

0,3,6,9 / 0
0,3,6,9 / 1

1,4,7 / 2

0,3,6,9 / 2

2,5,8 / 2
1,4,7 / 0

2,5,8 / 0

2,5,8 / 1



8

Example II: modulo arithmetic (ii)

▪ Simplification: If only divisibility by 3 is of interest, no 

output is needed

▪ We define acceptance states (double circle)

0,3,6,9
1,4,7

q0 q1

q2

0,3,6,9

1,4,7

0,3,6,9

2,5,8
1,4,7

2,5,8

2,5,8

Execution with input 403: 

(q0)403 → 4(q1)03 → 40(q1)3 → 403(q1) 

REJECT
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Exercises in modulo arithmetic

▪ Exercise 1: design a machine that determines 

whether a number is divisible with 5.

▪ Exercise 2: design a machine that determines 

whether a number is divisible with 7.



10

▪ Finite State Machines with no output: Some states accept 

(denoted by an extra circle), while others reject. 

▪ An automaton has some internal states q0, q1, q7, q15, ... , 

and a transition function δ that determines the next state 

of the automaton, based on the current state and the 

input string. It accepts or rejects the input string.

▪ Language recognizers  (ie. they solve decision problems,

properly described).

Automata
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Automata and Formal Languages

▪ Formal Languages: used to describe computational 

problems and to define programming languages.

e.g. L = {x  {0,1}* | x is a prime number in binary 

representation}

▪ Automata: used to identify formal languages and to rank the 

difficulty of the corresponding problems: 

▪ Each automaton recognizes a formal language: the set of 

strings that lead it to an accept state.
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Example: Odd number identification

▪ q0: last digit other than 1

▪ q1: last digit equal to 1

▪ q0 is called the initial state while q1 is called the accept (or 

final) state

▪ Execution with input 0110: 
(q0)0110 → 0(q0)110 → 01(q1)10 → 011(q1)0 → 0110(q0)   REJECT

▪ Execution with input 101: 
(q0)101 → 1(q1)01 → 10(q0)1 → 101(q1) ACCEPT

1

0

0 1q0 q1
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Other automata

▪ Mechanisms: without input – output: δ(qi) = qj

execution: q0  -> qj -> qk -> qm  . . .

▪ Pushdown Automata (PDA): much more capabilities as 

they can use memory (in stack form).

▪ Turing Machines (TM): even more capabilities as the use 

unlimited memory (in tape form, with the ability to return). 

▪ Linearly Bounded Automata (LBA): ΤΜ with linear bounded 

memory (the length of the tape is a linear function of the 

size of the input).
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Other formal languages

L1 = {w  {a,b}* | w starts with “a”}

L2 = {w  {a,b}* | w contains an even number of “a”}

L3= {w  {a,b}* | w is a palindrome}
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Example: DFA for L1

Execution with abba input:

(q0)abba → a(q1)bba → ab(q1)ba → abb(q1)a → abba(q1)

ACCEPT

L1 = {w  {a,b}* | w starts with “a”}



16

DFA: Formal Definition

▪ Q : the set of states of Μ (finite), 

e.g. Q = {q0, q1, q2}

▪ Σ : finite input alphabet (Σ  Q = ), 

e.g. Σ = {a,b}

▪ δ : Q x Σ → Q : transition function, e.g. δ(q0,a) = q1

▪ q0  Q : initial (or start) state

▪ F  Q: set of accept states, 

e.g. F = {q1}

▪ (Deterministic Finite Automaton, DFA): 

tuple Μ =  (Q,Σ,δ,q0,F)
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▪ Extension of function δ: Q x Σ* → Q

the extended δ takes as arguments a state q and a string

u and returns the state where the automaton will reach if it 

starts from q and reads u.

▪ Definitions of extended δ (primitive recursion scheme):

where w is a string of any length, and α is an alphabet 

symbol

DFA acceptance: formal definitions
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DFA acceptance: formal definitions

▪ DFA accepts a string u iff δ(q0,u)  F

▪ DFA M accepts language

   L(M) = {w | δ(q0,w)  F}

▪ Languages accepted by a DFA are called

   (Kleene) regular
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There is no DFA that recognizes L3

(memory needed with size depending on the input)

L2 = {w  {a,b}* | w contains an even number of “a”}

L3= {w  {a,b}* | w is a palindrome}



Application: String Matching
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Problem:

Suppose we are given a text from the alphabet Σ={a,b,c}.

How can we check if the string abac is contained in the text?
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Non-deterministic automata

▪ Deterministic automata: for each state / input 

symbol combination there is a unique next state.

▪ Non-deterministic automata: 

▪ For each state/input symbol combinations 

there is a number of possible subsequent 

states

▪ Acceptance if any sequence leads to 

acceptance.



22

Non-deterministic Finite 

Automata

▪ NFA (Non-deterministic Finite Automaton): for 

each state and input symbol, one state of a set of 

possible subsequent states is selected.

▪ NFAε or ε-NFA (NFA with ε-transitions): can 

change state without reading the next symbol.
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Example: NFA

In the transition function, an 

empty set means that the 

current execution rejects.

(another may accept!).

L4 = {w  Σ* | w contains two consecutive “a”}
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Example: NFA

Computation tree

for input ααbαα

ACCEPT
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NFA: formal definition

tuple Μ =  (Q,Σ,δ,q0,F)

▪ Q : the set of states of Μ (finite)

▪ Σ : finite input alphabet (Σ  Q = )

▪ δ : Q x Σ → Pow(Q) : transition function, 

 e.g. δ(qi, α) = { qj , qk , qm }

▪ q0  Q : initial state

▪ F  Q: set of final states (accept) 

Reminder: in the transition function, an empty set implies 

that this execution rejects (note: another one may accept!).
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NFA acceptance: formal definitions

▪ An NFA accepts string w if δ(q0,w)  F ≠ 

▪ An NFA accepts the language 

L(M) = {w | δ(q0,w)  F ≠ }

▪ Note: function δ is extended to take as arguments a state 

q and a string w and return the set of states where the 

automaton can be found if it starts from q with w as an 

input.

▪ Example: δ(q0, αα) = {q0 ,q1 ,q2} , δ(q0, bα) = {q0 ,q1}



27

NFA and DFA equivalence

▪ Rabin-Scott Theorem:  for every NFA there 

exists a DFA that accepts the same language.

▪ DFA and NFA recognize exactly the same 

class of languages: the regular languages.

▪ Regular languages correspond to regular 

expressions:

 e.g.  (α+b)*bbab(α+b)*
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NFA ➔ DFA (i)

NFA for language L4 ("2 consecutive a")

We construct the powerset of states. 

Initial state: {q0}. 

Final: those that contain a final.

Hint: We only test state sets that are accessible from {q0}.
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DFA for language L4

NFA for language L4

NFA ➔ DFA (ii)

Hint: We only test 

state sets that are 

accessible from {q0}.

√
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NFA for language L4

DFA for language L4

NFA ➔ DFA (iii)

√

√Hint: We only test 

state sets that are 

accessible from {q0}.
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NFA for language L4

DFA for language L4

NFA ➔ DFA (iv)

√

√

√

Hint: We only test 

state sets that are 

accessible from {q0}.
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NFA for language L4

DFA for language L4

NFA ➔ DFA (v)

√

√

√

√

Hint: We only test 

state sets that are 

accessible from {q0}.
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NFA for language L4

DFA for language L4

NFA ➔ DFA (vi)

√

√

√

√
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√

√

√

√

DFA for language L4

NFA for language L4

NFA ➔ DFA (vii)

Inaccessible states 

are of no interest!
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Suppose NFA Μ =  (Q,Σ,q0,F,δ). 

An equivalent DFA M'= (Q',Σ,q'
0,F',δ’), is defined as follows:

▪ Q' = Pow(Q),  i.e. The states of Μ’ are all subsets of 

states of Μ.

▪ q'
0 = {q0}, 

▪ F' = {R  Q' | R  F ≠ }, i.e. a state of Μ’ is final if it 

contains a final state of Μ.

▪ δ'(R, α) = {q  Q | q  δ(r, α) for r  R}, i.e. it is the set of 

possible M states starting from any state of the set R 

and reading the symbol α (α-transition).

NFA ➔ DFA: the method, formally



Application: String Matching
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Problem:

Suppose we are given a text from the alphabet Σ={a,b,c}.

How can we check if the string abac is contained in the text?

DFA

NFA
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Automata with ε-transitions: NFAε

▪ They allow transitions without reading a symbol.

(equivalent: with input the empty string ε). 

▪ They accept strings that can reach a final state using 

(potentially) ε-transitions.

Example:
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NFAε and DFA equivalence: 

example
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NFAε ➔ DFA: the method, formally

Let NFAε Μ =  (Q,Σ,q0,F,δ). 

An equivalent DFA M'= (Q',Σ,q'
0,F',δ’), is defined as follows:

▪ Q' = Pow(Q),  i.e. the states of Μ’ are all subsets of 

states of Μ.

▪ q'
0 = ε-closure(q0)= {p | p accessible from q0 only with ε-

transitions}, 

▪ F' = {R  Q' | R  F ≠ }, i.e. a state of Μ’ is final if it 

contains a final state of Μ.

▪ δ'(R,a) = {q  Q | q  ε-closure(δ(r,α)) for r  R}, i.e.

δ'(R,α) is the set of states that Μ can reach starting from any state 

of R , making an α-transition and then using any ε-transitions.
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L4 = { w є {a,b}* | w  contains 2 consecutive “a” }:

Initial DFA

Minimal DFA

DFA minimization: example
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DFA minimization (i)

Two DFA states are said to be non-equivalent, that 
is, distinguishable, if there is a string that leads 
one of them to a final state and not the other.

0, 1

q0 q1

qi

qm

0

0,11
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DFA minimization (ii)

Two states can be merged into one (they are
equivalent) if:

They lead to the same result with the same strings

1

0, 1

q0 q1

qi

qm

0

0

1
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DFA minimization (iii)

Merging qi, qm

Initial DFA

1

0, 1

q0 q1

qi

qm

0

0

1

1
0, 1

q0
q1

qim
0
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DFA minimization : 2nd example

Initial DFA

Minimal DFA
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DFA minimization: 3rd example

DFA

Minimal DFA
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DFA minimisation method

▪ Two states are k-distinguishable if with a string of length

exactly k they lead to a different result (and they are not i-

distinguishable for any i<k). Thus, two states are:

▪ 0-distinguishable iff one is final and the other is not

▪ (i+1)-distinguishable iff with a symbol they lead to

i-distinguishable states.

▪ Two states are equivalent if they are not k-

distinguishable for any k.
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DFA minimisation method

▪ Idea: for all i = 0, 1, 2, ... We identify the

i-distinguishable pair of states until no more occur. The 

rest of the pairs are equivalent.

There are no (i+1)-distinguishable states if there are no    

(i)-distinguishable states 
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▪ We write X0 to all pairs of states that are
0-distinguishable because one is final and the other is not.

▪ In each “round" i+1, we examine all unmarked pairs and write
Χi+1 to a pair, if out of its two states with a symbol, the DFA 
reaches i -distinguishable states (already marked with Χi ).

▪ Repeat until a round k where there is no pair marked with Χk . 

▪ Unmarked pairs correspond to equivalent states (which are 
therefore merged).

The method:
We construct a triangular table to compare each pair of 
states. We write Xk in the corresponding position in the table, 
the first time we find that two states are k-distinguishable, as
follows:
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Applying the method: Example

Round 0:

nine pairs

0-distinguishable

states
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Applying the method: Example

Round 1:

Two pairs

1-distinguishable

states
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Applying the method: Example

Round 2:

No pair

2-distinguishable

states
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Applying the method: Example
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Languages, Automata, Grammars

▪ Formal Languages: used to describe computational 

problems and programming languages.

▪ Automata: used to recognise formal languages and rank 

the difficulty of the corresponding problems. 

▪ Formal Grammars: another way of describing formal 

languages. Every formal grammar produces a formal 

language.
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Language and Grammar Theory

Applications:

▪ Digital Design, 

▪ Programming Languages,

▪ Compilers, 

▪ Artificial Intelligence, 

▪ Complexity Theory.

Important researchers:

▪ Chomsky, Backus, Rabin, Scott, Kleene, Greibach, …
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Formal languages

▪ Primary concepts: symbols, concatenation.

▪ Alphabet: a finite set of symbols. e.g. {0,1}, {x,y,z}, {a,b}.

▪ Word (or string, or sentence) of an alphabet: a finite-

length sequence of symbols of the alphabet. e.g. 

011001, abbbab.

▪ |w| : length of word w.

▪ ε : empty word, |ε| = 0.

▪ prefix, suffix, substring, reversal, palindrome.
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Formal languages (cont.)

▪ vw = concatenation of words v and w.

▪ εx = xε = x, for every string x.

▪ define xn with primitive recursion:

▪ Σ*: the set of all the words of alphabet Σ.

▪ Language from alphabet Σ: any set of strings L  Σ*.
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Formal Grammars

▪ A systematic way to transform strings through production 
rules.

▪ Alphabet: terminal and non-terminal symbols and a start
symbol (non-terminal).

▪ Finite set of rules of the form α → β: define the capability 
of replacing string α with string β.

▪ Every formal grammar produces a formal language: the 
set of strings (with only termination symbols) that are 
produced from the start symbol.

▪ Also known as rewriting systems or phase structure 
grammars.
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Example: Grammar for the language 

of odd numbers

S → A 1

A → A 0

A → A 1

A → ε

S: start symbol

A: non-terminal symbol

0,1: terminal symbols 

ε: the empty string

▪ S and A are replaced according to the rules.

▪ Every odd is produced from S with some sequence 

of valid substitutions.

▪ regular expression: (0+1)*1
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Formal grammars: definitions (i)

A formal grammar G consists of:

▪ An alphabet V of non-terminal symbols (variables),

▪ An alphabet T of terminal symbols (constants), s.t. 

V  T = ,

▪ A finite set P of production rules, i.e. ordered pairs

(α,β),    where α,β  (V  T)* and α ≠ ε

(convention: we write α → β instead of (α,β)),

▪ a start symbol (or axiom) S  V.
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Formal grammars: definitions(ii)

Convention for the use of letters:

▪ a, b, c, d, ...  T : lowercase Latin, the initials of the 

alphabet, represent terminals

▪ A, B, C, D, ...  V : capital Latin, represent non-

terminals

▪ u, v, w, x, y, z ...  T* : lowercase Latin, the last of the 

alphabet, represent terminal strings

▪ α, β, γ, δ, ...  (V  T)* : Greek represent any strings 

(terminal and non-terminal)
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Formal grammars: definitions(iii)
Production definitions:

▪ We say that γ1αγ2 produces γ1βγ2 , and we denote it by 

γ1αγ2  γ1βγ2 , if α → β is a production rule (i.e. (α,β)  P).

▪ We denote by the reflexive transitive closure of ,

 (α derives  β in zero or more steps), α β means that 

there is a sequence α  α1  α2  ... αk  β. 

▪ Language generated by grammar G: 

L(G):= {w  T* | S w }

▪ grammars G1, G2 equivalent if L(G1) = L(G2).
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Formal grammars: Example

S → ε | αSb: abbreviation of S → ε and S → αSb

A possible production sequence:

Produced language:
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Chomsky Hierarchy
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Chomsky Hierarchy

▪ Type 0 Τuring Μachines 

▪ Type 1 Linear Bounded Automata

▪ Type 2 PushDown Automata 

▪ Type 3 DFA (and NFA)
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Regular Grammars

▪ Regular grammars are grammars where all the rules 

are of the form:

▪ Right linear

A → wB or A → w

▪ Left linear

A → Bw or A → w

(w is a string of terminal language symbols)

Theorem: 

Regular languages are equivalent to languages produced 

by regular grammars.
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Equivalence of regular grammars 

and DFA

▪ Using the right-linear format:

▪ A → wB corresponds to

▪ A → w      corresponds to

▪ S corresponds to q0

w
Α Β

w
Α
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Another equivalence!

Theorem: 

Regular languages are equivalent to languages 

described by regular expressions.
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Regular expressions

Languages L, L1, L2  Same alphabet Σ.

concatenation

union

intersection

Kleene star
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Regular expressions (definitions)

Regular expressions: represent languages derived from 

symbols of an alphabet using the operations of 

concatenation, union, and Kleene star.

▪  : represents the empty language

▪ ε : represents {ε} 

▪ α : represents {α}, α  Σ

▪ (r+s) : represents R U S, R = L(r), S = L(s)

▪ (rs) : represents RS, R = L(r), S = L(s)

▪ (r*) : represents R*, R = L(r)

 L(t) the language represented by reg.ex. t
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Regular expressions (examples)

operator priority: 

▪ Kleene star

▪ concatenation

▪ union
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Equivalence of Regular Expressions 

and Finite Automata

Theorem. A language L can be described with a regular

expression iff it is regular (i.e. L=L(M) for a finite automaton M).

Proof (idea):

‘=>’ :   Induction on the structure of regular expression r :

1. Induction base case:
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2. Induction step. Assume for regex r1, r2 automata Μ1, Μ2, 

with final states f1, f2:
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‘<=’ :   Regular expression construction from a FA (GNFA).

Eliminate intermediate states:

Equivalence of Regular Expressions 

and Finite Automata
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FA → Regular Expression (example)

Initial NFA

Delete q2
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FA → Regular Expression (example)

Delete q3
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FA → Regular Expression (example)

Delete q0
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FA → Regular Expression (example)

Final expression:
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Which languages are regular?

▪ All finite.

▪ All produced from regular languages using the operations: 

concatenation, union, Kleene star 

▪ Also complementation, intersection, reverse, etc.

▪ Product of Automata: a way to construct DFA για 

intersection (and union) of regular languages.
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Product of Automata: DFA

▪ Assume DFA Μ1, Μ2 with states n, m respectively
(Q1={q0, ..., qn-1}, Q2={p0, ..., pm-1}) and a common alphabet, that 
recognize languages L1, L2 respectively.

▪ The product of Μ1, Μ2 is a DFA with m.n states, one for every pair of 
states of the initial automaton (state set Q = Q1 x Q2), the same
alphabet and initial state (q0,p0).

▪ Transition function: δ’((qi,pj),σ)=(qi’, pk’)  δ(qi,σ)=qi’  δ(pk,σ)=pk’

▪ Final states: dependent on the operation between L1, L2 . For the
intersection we set as finals, pairs that both are final states for Μ1, Μ2, 
for union pairs that include at least one final state. 

▪ Note: You can easily implement other operations between L1, L2

(difference, symmetric difference) by appropriately defining the final 
states. 



80

Product of Automata: NFA

▪ Defined in a similar way.

▪ Consider also ε-transitions and junk states
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Are all languages regular?

▪ «No»

▪ To prove that we will use Pumping Lemma (or closure 

properties)
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▪ If a language L is regular, then it is accepted by a DFA with 

a finite number of states, n.

▪ Let z be a word, |z|>=n that belongs to the language, so it 

is accepted by the automaton.

▪ As we process z, the automaton has to go through a state 

again (pigeonhole principle):

▪ Since z = uvw  L , uviw  L , for all i  N

Pumping Lemma (intuition)
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Let a regular language L. Then:

▪ There exists a natural number n (= the number of states 

of DFA) such that:

▪ For all z  L with length |z| ≥ n

▪ There exists a «split» of z into substrings u, v, w, i.e.

z = uvw, |uv| ≤ n and |v| > 0

▪ So that for all i = 0, 1, 2, ... :

uviw  L

Pumping Lemma 
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Use of the Lemma to prove non-

regularity

Use of Pumping Lemma to prove that a (non-finite) 

language L is not regular:

Let L a regular language. Then:

– By the PL, there exists n. We for all n

– We choose a suitable z  L with length |z| ≥ n

– By the PL, there exists «split» z = uvw, |uv| ≤ n ,     |v|

> 0. We for all «split» z = uvw, |uv| ≤ n, |v| > 0

– We choose i so that the word uviw is not in the 

language L, a CONTRADICTION!

(adversary argument)
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▪ Theorem. Language L = {z | z has the same number of 0 

and 1} is not regular.

▪ Proof:  Suppose L regular. Then:

▪ By the PL, there exists n. We for all n

▪ We chose z = 0n1n L with length |z| = 2n > n

    z = 000000000…0111111111…1

▪ By the PL, there exists a «split» z = uvw, |uv| ≤ n, |v| > 0. 

We for all «splits» z = uvw, |uv| ≤ n, |v| > 0

n

Using Pumping Lemma – Example (i)

n
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▪ We observe that necessarily v = 0k for some k:

▪ w = 0...00...00…0111111111…1

▪ And we choose i = 2, finding that uviw = uv2w is not a 
string of L, a contradiction.

▪ Therefore, L is not regular.

u v w

Using Pumping Lemma – Example (i)
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Using Pumping Lemma – Example (ii)

Theorem. Language L = {z | z=0i1j, i > j} is not regular.

Proof: Suppose L regular. Then:

▪ By the PL there exists n. We for all n

▪ We chose z = 0n+11n L with length |z| = 2n+1 > n

▪ z = 000000000…01111111…1

▪ By the PL there exists a «split» z = uvw, |uv| ≤ n, |v| > 0. 

We for all «splits» z = uvw, |uv| ≤ n, |v| > 0

n+1 n
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▪ We observe that ότι necessarily v = 0k  for some k:

z = 0...00...00…0111111111…1

• But repeating v gives strings of the language

• At first glance this seems problematic…

• But PL states that for all i  0: uviw  L 

▪ We choose i = 0: sting uv0w is not a string of L, a 

contradiction. 

▪ Therefore, L is not regular.

u v w

Using Pumping Lemma – Example (ii)
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Attention when using PL!

▪ Pumping Lemma is a necessary but not sufficient

condition for a language to be regular.

▪ There are non-regular languages that satisfy its 

conditions!

▪ It is therefore only useful for proving non-regularity.

▪ Another way of proving language non-regularity: closure 

of regular languages operations.
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Grammars for non-regular languages

▪ Context-free (CF): type 2, corresponding to pushdown

automata (PDA)

▪ Context-sensitive (CS): type 1, corresponding to Linear 

Bounded Automata (LBA)

▪ General: type 0, corresponding to Turing Machines (TM)
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Applications:

▪ Programming languages syntax (Pascal, C, C++, 

Java)

▪ Web pages description languages syntax (HTML, 

XML), editors, ...

Context-Free Grammars (i)
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Context-Free Grammars (ii)

Possible production sequence:

Produced Language:

▪ Rule form: Α → α, Α non-terminal

▪ Example: 
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Context-Free Grammars (iii)

Possible production sequences:

S  3, S  S+S  3+S  3+S*S  3+4*7

▪ 2nd example: 

 G2:  T = {0,1,2,3,4,5,6,7,8,9,+,*}     V = {S }

P :  S → S+S,     S → S*S, 

S → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
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Context-Free Grammars (iv)

Possible production sequence:

▪ 3rd example: 

G3:          , and P includes:
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Leafstring: αααbbb and αbbα respectively. 

Parse Trees              (i)
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Parse Trees      (ii)

▪ Each node in the tree has a label, which is a symbol 

(terminal, or non-terminal, or ε).

▪ The label of the root is S.

▪ If an internal node is labeled A, then Α is a non terminal 

symbol. If its children, from left to right, have labels 

X1,X2,...,Xk then A → X1,X2,...,Xk is a production rule.

▪ If a node is labeled ε, then it is a leaf and is the only 

child of its parent.

Let G={V,T,P,S} a context-free grammar. A tree is a parse 

tree of G if:
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Parse Trees      (iii)

Theorem. Let G={V,T,P,S} be a context-free grammar. 

Then S α iff there exists a parse tree of G with

leafstring α.

*
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Ambiguous grammars
A grammar G is called ambiguous if two parse trees exist with 

the same leafstring wL(G)  

Example:

G2:  T = {0,1,2,3,4,5,6,7,8,9,+,*} V = {S }

P :  S → S+S | S*S | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
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CF grammar recognition algorithm:

CYK

▪ In an exhaustive way we can decide whether a string x

is generated by a CF grammar in exponential time.

▪ The properties of the Chomsky Normal Form allow for a 

faster recognition of a string.

▪ CYK algorithm (Cocke, Younger, Kasami): decides 

whether a string x is generated from a grammar in time

O(|x|3), as long as the grammar is given in Chomsky 

Normal Form.
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Pushdown Automata (PDA) (i)

▪ They have a one-way input tape (like FA) but have 

additional memory in the form of a stack.

▪ Access only to the top of the stack using functions:

▪ push(x): places element x at the top of the stack

▪ pop: reads and removes element from the top of the 

stack



101

Pushdown Automata (PDA) (i)
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Pushdown Automata (PDA) (ii)

Example: PDA for language recognition of

Automaton description

▪ push(a) onto the stack for every 0 in the input, 

push(b) onto the stack for every 1 in the input, 

continue until c is read

▪ After that, pop: if the top stack element matches 

the input (a with 0, b with 1) continue

▪ Acceptance with an empty stack
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PDA: formal definition

▪ Q : the set of states of Μ (finite) 

▪ Σ : input alphabet

▪ Γ : stack alphabet

▪ δ : Q x Σ U {ε} x Γ → Pow(Q x Γ*) : transition function 

(non-determinism, ε-transitions)

▪ q0  Q : initial state

▪ Ζ0  Γ : initial stack symbol

▪ F  Q : set of final states

Pushdown Automaton, PDA: 

tuple Μ =  (Q,Σ,Γ,δ,q0,Z0,F)
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Pushdown Automata (PDA) (iv)

PDA acceptance

▪ If it reaches a final state (i.e. accepted) once the entire 

input has been read, regardless of stack content

▪ If the PDA has an empty stack once the entire input has 

been read, regardless of the state 

Languages are defined accordingly:

▪ Lf (M): acceptance with final state

▪ Le (M): acceptance with empty stack
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Pushdown Automata (PDA) (v)

▪ For the following language to be accepted

i.e. without the middle symbol c we necessarily need a

non- deterministic PDA.

▪ Non-deterministic PDAs are more powerful than the 

deterministic ones.

▪ By PDA we usually refer to non-deterministic PDAs.
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CF grammars and PDA equivalence

Theorem. The following are equivalent for a language L: 

▪ L = Lf (M), M is PDA. 

▪ L = Le (M’), M’ is PDA.

▪ L is context-free language
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Which languages are Context Free?

▪ All regular.

▪ Those formed from CF languages using the operations: 

concatenation, union, Kleene star. 

▪ But not necessarily with the operations intersection, 

complement:

e.g. language{anbncn | n  Ν} is not CF, while being an 

intersection of two CF languages:

{anbncn | n  Ν} = {anbncm | n,m  Ν} ∩ {akbncn | k,n  Ν}



108

Are all languages Context Free?

▪ «No».

▪ To prove that we use another pumping lemma, the

Pumping Lemma for context-free languages.

▪ It is based on the syntax tree (more in the course

«Computability and Complexity»).
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Context Sensitive Grammars (i)

«context sensitive» because they can be put in the following 

normal form: 

S→ε,  α = ε

Type 1: Context sensitive or monotonic
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Context Sensitive Grammars (ii)

Α0 → Η0 Η0 → ΗΑ ΗΑ → 0Α

Conversion to normal form

(1st attempt) S → 1Z1

Z → 0 | 1Z0A

A0 → 0A

A1 → 11

CS grammar for the language 1n0n1n : 

Other examples: {1i 0j 1k : i <= j <= k }, 

       { ww | w  Σ* },    {an bn an bn | n  Ν} 

Not yet regular (why?) 
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Context Sensitive Grammars (ii)

ΑU → ΗU ΗU → ΗΑ ΗΑ → UΑ

Conversion to normal formS → 1Z1

Z → U | 1ZUA

AU → UA

A1 → 11

U → 0

CS grammar for the language 1n0n1n : 

Other examples: {1i 0j 1k : i <= j <= k }, 

       { ww | w  Σ* },    {an bn an bn | n  Ν} 
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CS grammars and LBA equivalence

Theorem. The following are equivalent (L without ε):

1. Language L is accepted by LBA.

2. Language L is context sensitive.

Linear Bounded Automaton (LBA): 

Is a non-deterministic Turing Machine that its head is 

constrained to move only in the part containing the initial 

input.

Equivalent form:

PDA with 2 stacks, linearly bounded.
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General Grammars (i)

Example: {a2n
 | n є Ν}

Type 0: general, unrestricted
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General Grammars (ii)

Theorem. The following are equivalent:

1. Language L is accepted by a Turing Machine

2. L=L(G), where G is a general grammar

Such a language is also called recursively enumerable.



115

Turing Machines

< q0, 1, q0, R >

< q0, 0, q1, 1 >

< q1, 1, q1, L >

< q1, 0, q2, R >

Automata with indefinitely long tape. Input is initially written 

in the tape, the head can move left-right and write symbols 

on the tape. 

Transition function example: 
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Turing Machines
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Language class hierarchy

Hierarchy Theorem. 

regular      context free context sensitive

recursiverly enumerable

▪ Type 0 ΤΜ (Turing Machines)

▪ Type 1 LBA (Linear Bounded Automata)

▪ Type 2 PDA (Pushdown Automata)

▪ Type 3 DFA (and NFA)
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Language class hierarchy

Chomsky Hierarchy Levels. Source: W. Tecumseh Fitch, Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and 

comparative cognition, Physics of Life Reviews, Volume 11, Issue 3, 2014, Pages 329-364, ISSN 1571-0645
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