
1

Foundations of

Computer Science

Section 1:

Automata, Languages, Grammars

Slide editing: Stathis Zachos, Aris Pagourtzis

ECE NTUA

2

Finite State Machines (FSM)

▪ A way to describe algorithms.

▪ Describe Finite State Systems:

▪ They model a fundamental (apparent) contradiction of

computational (and other) systems: finite system size, unlimited

input size.

▪ They are defined with internal states and a predefined way to

transition from one state to another based on the current state

and input. They may also have an output.

▪ Applications in a wide range of scientific fields.

3

Example: Coffee machine (i)

Specifications

• Two types of coffee: Greek or Freddo.

• Coffee cost: 40 cents.

• 10, 20, or 50 cent coins are allowed.

Design

• How many states do we need;

4

Example: Coffee machine (ii)

System Design

▪ Internal states: q0, q1, q2, q3, q4

▪ qi : 10*i cents incerted so far

▪ Possible inputs (actions): C1, C2, C5, B1, B2

▪ C1, C2, C5 : insertion of 10, 20, or 50 cent coins

▪ B1, B2 : Button 1 for Greek coffee, or Button 2 for Freddo

▪ Possible outputs: R1, R2, R3, R4, R5, G, F

▪ Ri: refund 10*i cents

▪ G: Greek coffee supply

▪ F: Freddo supply

5

Example: Coffee machine (iii)

q4, R5

q4, R4

q4, R3

q4, R2

q4, R1

C5

q0, G

q3, -

q2, -

q1, -

q0, -

B1

q0, Fq4, R2q4, R1q4

q3, -q4, R1q4, -q3

q2, -q4, -q3, -q2

q1, -q3, - q2, -q1

q0, -q2, -q1, -q0

B2C2C1
Input

State

▪ State Table: What the next state and output is for each

combination of current state and input. Initial state: q0.

6

Example: Coffee machine (iv)
▪ State Diagram: provides the same information as the

State Table in a more supervisory way. Initial state: q0

(marked with an arrow).

B1/-

B2/-

C1/-

q0 q1

B1/-

B2/-

q2

q3

q4

C1/-

C2/-

C5/R2

C1/R1

C2/R2

C5/R5

C5/R1B1/G

B2/F

C2/-

7

Example II: modulo arithmetic (i)

▪ Construct a machine that calculates n mod 3

▪ How many states are needed?

▪ Use the property: n mod 3 = (n1+...+nk) mod 3,

ni the (base 10) digits of n Prove it!

1,4,7 / 1

q0 q1

q2

0,3,6,9 / 0
0,3,6,9 / 1

1,4,7 / 2

0,3,6,9 / 2

2,5,8 / 2
1,4,7 / 0

2,5,8 / 0

2,5,8 / 1

8

Example II: modulo arithmetic (ii)

▪ Simplification: If only divisibility by 3 is of interest, no

output is needed

▪ We define acceptance states (double circle)

0,3,6,9
1,4,7

q0 q1

q2

0,3,6,9

1,4,7

0,3,6,9

2,5,8
1,4,7

2,5,8

2,5,8

Execution with input 403:

(q0)403 → 4(q1)03 → 40(q1)3 → 403(q1)

REJECT

9

Exercises in modulo arithmetic

▪ Exercise 1: design a machine that determines

whether a number is divisible with 5.

▪ Exercise 2: design a machine that determines

whether a number is divisible with 7.

10

▪ Finite State Machines with no output: Some states accept

(denoted by an extra circle), while others reject.

▪ An automaton has some internal states q0, q1, q7, q15, ... ,

and a transition function δ that determines the next state

of the automaton, based on the current state and the

input string. It accepts or rejects the input string.

▪ Language recognizers (ie. they solve decision problems,

properly described).

Automata

11

Automata and Formal Languages

▪ Formal Languages: used to describe computational

problems and to define programming languages.

e.g. L = {x  {0,1}* | x is a prime number in binary

representation}

▪ Automata: used to identify formal languages and to rank the

difficulty of the corresponding problems:

▪ Each automaton recognizes a formal language: the set of

strings that lead it to an accept state.

12

Example: Odd number identification

▪ q0: last digit other than 1

▪ q1: last digit equal to 1

▪ q0 is called the initial state while q1 is called the accept (or

final) state

▪ Execution with input 0110:
(q0)0110 → 0(q0)110 → 01(q1)10 → 011(q1)0 → 0110(q0) REJECT

▪ Execution with input 101:
(q0)101 → 1(q1)01 → 10(q0)1 → 101(q1) ACCEPT

1

0

0 1q0 q1

13

Other automata

▪ Mechanisms: without input – output: δ(qi) = qj

execution: q0 -> qj -> qk -> qm . . .

▪ Pushdown Automata (PDA): much more capabilities as

they can use memory (in stack form).

▪ Turing Machines (TM): even more capabilities as the use

unlimited memory (in tape form, with the ability to return).

▪ Linearly Bounded Automata (LBA): ΤΜ with linear bounded

memory (the length of the tape is a linear function of the

size of the input).

14

Other formal languages

L1 = {w  {a,b}* | w starts with “a”}

L2 = {w  {a,b}* | w contains an even number of “a”}

L3= {w  {a,b}* | w is a palindrome}

15

Example: DFA for L1

Execution with abba input:

(q0)abba → a(q1)bba → ab(q1)ba → abb(q1)a → abba(q1)

ACCEPT

L1 = {w  {a,b}* | w starts with “a”}

16

DFA: Formal Definition

▪ Q : the set of states of Μ (finite),

e.g. Q = {q0, q1, q2}

▪ Σ : finite input alphabet (Σ  Q = ),

e.g. Σ = {a,b}

▪ δ : Q x Σ → Q : transition function, e.g. δ(q0,a) = q1

▪ q0  Q : initial (or start) state

▪ F  Q: set of accept states,

e.g. F = {q1}

▪ (Deterministic Finite Automaton, DFA):

tuple Μ = (Q,Σ,δ,q0,F)

17

▪ Extension of function δ: Q x Σ* → Q

the extended δ takes as arguments a state q and a string

u and returns the state where the automaton will reach if it

starts from q and reads u.

▪ Definitions of extended δ (primitive recursion scheme):

where w is a string of any length, and α is an alphabet

symbol

DFA acceptance: formal definitions

18

DFA acceptance: formal definitions

▪ DFA accepts a string u iff δ(q0,u)  F

▪ DFA M accepts language

 L(M) = {w | δ(q0,w)  F}

▪ Languages accepted by a DFA are called

 (Kleene) regular

19

There is no DFA that recognizes L3

(memory needed with size depending on the input)

L2 = {w  {a,b}* | w contains an even number of “a”}

L3= {w  {a,b}* | w is a palindrome}

Application: String Matching

20

Problem:

Suppose we are given a text from the alphabet Σ={a,b,c}.

How can we check if the string abac is contained in the text?

21

Non-deterministic automata

▪ Deterministic automata: for each state / input

symbol combination there is a unique next state.

▪ Non-deterministic automata:

▪ For each state/input symbol combinations

there is a number of possible subsequent

states

▪ Acceptance if any sequence leads to

acceptance.

22

Non-deterministic Finite

Automata

▪ NFA (Non-deterministic Finite Automaton): for

each state and input symbol, one state of a set of

possible subsequent states is selected.

▪ NFAε or ε-NFA (NFA with ε-transitions): can

change state without reading the next symbol.

23

Example: NFA

In the transition function, an

empty set means that the

current execution rejects.

(another may accept!).

L4 = {w  Σ* | w contains two consecutive “a”}

24

Example: NFA

Computation tree

for input ααbαα

ACCEPT

25

NFA: formal definition

tuple Μ = (Q,Σ,δ,q0,F)

▪ Q : the set of states of Μ (finite)

▪ Σ : finite input alphabet (Σ  Q = )

▪ δ : Q x Σ → Pow(Q) : transition function,

 e.g. δ(qi, α) = { qj , qk , qm }

▪ q0  Q : initial state

▪ F  Q: set of final states (accept)

Reminder: in the transition function, an empty set implies

that this execution rejects (note: another one may accept!).

26

NFA acceptance: formal definitions

▪ An NFA accepts string w if δ(q0,w)  F ≠ 

▪ An NFA accepts the language

L(M) = {w | δ(q0,w)  F ≠ }

▪ Note: function δ is extended to take as arguments a state

q and a string w and return the set of states where the

automaton can be found if it starts from q with w as an

input.

▪ Example: δ(q0, αα) = {q0 ,q1 ,q2} , δ(q0, bα) = {q0 ,q1}

27

NFA and DFA equivalence

▪ Rabin-Scott Theorem: for every NFA there

exists a DFA that accepts the same language.

▪ DFA and NFA recognize exactly the same

class of languages: the regular languages.

▪ Regular languages correspond to regular

expressions:

 e.g. (α+b)*bbab(α+b)*

28

NFA ➔ DFA (i)

NFA for language L4 ("2 consecutive a")

We construct the powerset of states.

Initial state: {q0}.

Final: those that contain a final.

Hint: We only test state sets that are accessible from {q0}.

29

DFA for language L4

NFA for language L4

NFA ➔ DFA (ii)

Hint: We only test

state sets that are

accessible from {q0}.

√

30

NFA for language L4

DFA for language L4

NFA ➔ DFA (iii)

√

√Hint: We only test

state sets that are

accessible from {q0}.

31

NFA for language L4

DFA for language L4

NFA ➔ DFA (iv)

√

√

√

Hint: We only test

state sets that are

accessible from {q0}.

32

NFA for language L4

DFA for language L4

NFA ➔ DFA (v)

√

√

√

√

Hint: We only test

state sets that are

accessible from {q0}.

33

NFA for language L4

DFA for language L4

NFA ➔ DFA (vi)

√

√

√

√

34

√

√

√

√

DFA for language L4

NFA for language L4

NFA ➔ DFA (vii)

Inaccessible states

are of no interest!

35

Suppose NFA Μ = (Q,Σ,q0,F,δ).

An equivalent DFA M'= (Q',Σ,q'
0,F',δ’), is defined as follows:

▪ Q' = Pow(Q), i.e. The states of Μ’ are all subsets of

states of Μ.

▪ q'
0 = {q0},

▪ F' = {R  Q' | R  F ≠ }, i.e. a state of Μ’ is final if it

contains a final state of Μ.

▪ δ'(R, α) = {q  Q | q  δ(r, α) for r  R}, i.e. it is the set of

possible M states starting from any state of the set R

and reading the symbol α (α-transition).

NFA ➔ DFA: the method, formally

Application: String Matching

36

Problem:

Suppose we are given a text from the alphabet Σ={a,b,c}.

How can we check if the string abac is contained in the text?

DFA

NFA

37

Automata with ε-transitions: NFAε

▪ They allow transitions without reading a symbol.

(equivalent: with input the empty string ε).

▪ They accept strings that can reach a final state using

(potentially) ε-transitions.

Example:

38

NFAε and DFA equivalence:

example

39

NFAε ➔ DFA: the method, formally

Let NFAε Μ = (Q,Σ,q0,F,δ).

An equivalent DFA M'= (Q',Σ,q'
0,F',δ’), is defined as follows:

▪ Q' = Pow(Q), i.e. the states of Μ’ are all subsets of

states of Μ.

▪ q'
0 = ε-closure(q0)= {p | p accessible from q0 only with ε-

transitions},

▪ F' = {R  Q' | R  F ≠ }, i.e. a state of Μ’ is final if it

contains a final state of Μ.

▪ δ'(R,a) = {q  Q | q  ε-closure(δ(r,α)) for r  R}, i.e.

δ'(R,α) is the set of states that Μ can reach starting from any state

of R , making an α-transition and then using any ε-transitions.

40

L4 = { w є {a,b}* | w contains 2 consecutive “a” }:

Initial DFA

Minimal DFA

DFA minimization: example

41

DFA minimization (i)

Two DFA states are said to be non-equivalent, that
is, distinguishable, if there is a string that leads
one of them to a final state and not the other.

0, 1

q0 q1

qi

qm

0

0,11

42

DFA minimization (ii)

Two states can be merged into one (they are
equivalent) if:

They lead to the same result with the same strings

1

0, 1

q0 q1

qi

qm

0

0

1

43

DFA minimization (iii)

Merging qi, qm

Initial DFA

1

0, 1

q0 q1

qi

qm

0

0

1

1
0, 1

q0
q1

qim
0

44

DFA minimization : 2nd example

Initial DFA

Minimal DFA

45

DFA minimization: 3rd example

DFA

Minimal DFA

46

DFA minimisation method

▪ Two states are k-distinguishable if with a string of length

exactly k they lead to a different result (and they are not i-

distinguishable for any i<k). Thus, two states are:

▪ 0-distinguishable iff one is final and the other is not

▪ (i+1)-distinguishable iff with a symbol they lead to

i-distinguishable states.

▪ Two states are equivalent if they are not k-

distinguishable for any k.

47

DFA minimisation method

▪ Idea: for all i = 0, 1, 2, ... We identify the

i-distinguishable pair of states until no more occur. The

rest of the pairs are equivalent.

There are no (i+1)-distinguishable states if there are no

(i)-distinguishable states

48

▪ We write X0 to all pairs of states that are
0-distinguishable because one is final and the other is not.

▪ In each “round" i+1, we examine all unmarked pairs and write
Χi+1 to a pair, if out of its two states with a symbol, the DFA
reaches i -distinguishable states (already marked with Χi).

▪ Repeat until a round k where there is no pair marked with Χk .

▪ Unmarked pairs correspond to equivalent states (which are
therefore merged).

The method:
We construct a triangular table to compare each pair of
states. We write Xk in the corresponding position in the table,
the first time we find that two states are k-distinguishable, as
follows:

49

Applying the method: Example

Round 0:

nine pairs

0-distinguishable

states

50

Applying the method: Example

Round 1:

Two pairs

1-distinguishable

states

51

Applying the method: Example

Round 2:

No pair

2-distinguishable

states

52

Applying the method: Example

53

Languages, Automata, Grammars

▪ Formal Languages: used to describe computational

problems and programming languages.

▪ Automata: used to recognise formal languages and rank

the difficulty of the corresponding problems.

▪ Formal Grammars: another way of describing formal

languages. Every formal grammar produces a formal

language.

54

Language and Grammar Theory

Applications:

▪ Digital Design,

▪ Programming Languages,

▪ Compilers,

▪ Artificial Intelligence,

▪ Complexity Theory.

Important researchers:

▪ Chomsky, Backus, Rabin, Scott, Kleene, Greibach, …

55

Formal languages

▪ Primary concepts: symbols, concatenation.

▪ Alphabet: a finite set of symbols. e.g. {0,1}, {x,y,z}, {a,b}.

▪ Word (or string, or sentence) of an alphabet: a finite-

length sequence of symbols of the alphabet. e.g.

011001, abbbab.

▪ |w| : length of word w.

▪ ε : empty word, |ε| = 0.

▪ prefix, suffix, substring, reversal, palindrome.

56

Formal languages (cont.)

▪ vw = concatenation of words v and w.

▪ εx = xε = x, for every string x.

▪ define xn with primitive recursion:

▪ Σ*: the set of all the words of alphabet Σ.

▪ Language from alphabet Σ: any set of strings L  Σ*.

57

Formal Grammars

▪ A systematic way to transform strings through production
rules.

▪ Alphabet: terminal and non-terminal symbols and a start
symbol (non-terminal).

▪ Finite set of rules of the form α → β: define the capability
of replacing string α with string β.

▪ Every formal grammar produces a formal language: the
set of strings (with only termination symbols) that are
produced from the start symbol.

▪ Also known as rewriting systems or phase structure
grammars.

58

Example: Grammar for the language

of odd numbers

S → A 1

A → A 0

A → A 1

A → ε

S: start symbol

A: non-terminal symbol

0,1: terminal symbols

ε: the empty string

▪ S and A are replaced according to the rules.

▪ Every odd is produced from S with some sequence

of valid substitutions.

▪ regular expression: (0+1)*1

59

Formal grammars: definitions (i)

A formal grammar G consists of:

▪ An alphabet V of non-terminal symbols (variables),

▪ An alphabet T of terminal symbols (constants), s.t.

V  T = ,

▪ A finite set P of production rules, i.e. ordered pairs

(α,β), where α,β  (V  T)* and α ≠ ε

(convention: we write α → β instead of (α,β)),

▪ a start symbol (or axiom) S  V.

60

Formal grammars: definitions(ii)

Convention for the use of letters:

▪ a, b, c, d, ...  T : lowercase Latin, the initials of the

alphabet, represent terminals

▪ A, B, C, D, ...  V : capital Latin, represent non-

terminals

▪ u, v, w, x, y, z ...  T* : lowercase Latin, the last of the

alphabet, represent terminal strings

▪ α, β, γ, δ, ...  (V  T)* : Greek represent any strings

(terminal and non-terminal)

61

Formal grammars: definitions(iii)
Production definitions:

▪ We say that γ1αγ2 produces γ1βγ2 , and we denote it by

γ1αγ2  γ1βγ2 , if α → β is a production rule (i.e. (α,β)  P).

▪ We denote by the reflexive transitive closure of ,

 (α derives β in zero or more steps), α β means that

there is a sequence α  α1  α2  ... αk  β.

▪ Language generated by grammar G:

L(G):= {w  T* | S w }

▪ grammars G1, G2 equivalent if L(G1) = L(G2).

62

Formal grammars: Example

S → ε | αSb: abbreviation of S → ε and S → αSb

A possible production sequence:

Produced language:

63

Chomsky Hierarchy

64

Chomsky Hierarchy

▪ Type 0 Τuring Μachines

▪ Type 1 Linear Bounded Automata

▪ Type 2 PushDown Automata

▪ Type 3 DFA (and NFA)

65

Regular Grammars

▪ Regular grammars are grammars where all the rules

are of the form:

▪ Right linear

A → wB or A → w

▪ Left linear

A → Bw or A → w

(w is a string of terminal language symbols)

Theorem:

Regular languages are equivalent to languages produced

by regular grammars.

66

Equivalence of regular grammars

and DFA

▪ Using the right-linear format:

▪ A → wB corresponds to

▪ A → w corresponds to

▪ S corresponds to q0

w
Α Β

w
Α

67

Another equivalence!

Theorem:

Regular languages are equivalent to languages

described by regular expressions.

68

Regular expressions

Languages L, L1, L2 Same alphabet Σ.

concatenation

union

intersection

Kleene star

69

Regular expressions (definitions)

Regular expressions: represent languages derived from

symbols of an alphabet using the operations of

concatenation, union, and Kleene star.

▪  : represents the empty language

▪ ε : represents {ε}

▪ α : represents {α}, α  Σ

▪ (r+s) : represents R U S, R = L(r), S = L(s)

▪ (rs) : represents RS, R = L(r), S = L(s)

▪ (r*) : represents R*, R = L(r)

 L(t) the language represented by reg.ex. t

70

Regular expressions (examples)

operator priority:

▪ Kleene star

▪ concatenation

▪ union

71

Equivalence of Regular Expressions

and Finite Automata

Theorem. A language L can be described with a regular

expression iff it is regular (i.e. L=L(M) for a finite automaton M).

Proof (idea):

‘=>’ : Induction on the structure of regular expression r :

1. Induction base case:

72

2. Induction step. Assume for regex r1, r2 automata Μ1, Μ2,

with final states f1, f2:

73

‘<=’ : Regular expression construction from a FA (GNFA).

Eliminate intermediate states:

Equivalence of Regular Expressions

and Finite Automata

74

FA → Regular Expression (example)

Initial NFA

Delete q2

75

FA → Regular Expression (example)

Delete q3

76

FA → Regular Expression (example)

Delete q0

77

FA → Regular Expression (example)

Final expression:

78

Which languages are regular?

▪ All finite.

▪ All produced from regular languages using the operations:

concatenation, union, Kleene star

▪ Also complementation, intersection, reverse, etc.

▪ Product of Automata: a way to construct DFA για

intersection (and union) of regular languages.

79

Product of Automata: DFA

▪ Assume DFA Μ1, Μ2 with states n, m respectively
(Q1={q0, ..., qn-1}, Q2={p0, ..., pm-1}) and a common alphabet, that
recognize languages L1, L2 respectively.

▪ The product of Μ1, Μ2 is a DFA with m.n states, one for every pair of
states of the initial automaton (state set Q = Q1 x Q2), the same
alphabet and initial state (q0,p0).

▪ Transition function: δ’((qi,pj),σ)=(qi’, pk’)  δ(qi,σ)=qi’  δ(pk,σ)=pk’

▪ Final states: dependent on the operation between L1, L2 . For the
intersection we set as finals, pairs that both are final states for Μ1, Μ2,
for union pairs that include at least one final state.

▪ Note: You can easily implement other operations between L1, L2

(difference, symmetric difference) by appropriately defining the final
states.

80

Product of Automata: NFA

▪ Defined in a similar way.

▪ Consider also ε-transitions and junk states

81

Are all languages regular?

▪ «No»

▪ To prove that we will use Pumping Lemma (or closure

properties)

82

▪ If a language L is regular, then it is accepted by a DFA with

a finite number of states, n.

▪ Let z be a word, |z|>=n that belongs to the language, so it

is accepted by the automaton.

▪ As we process z, the automaton has to go through a state

again (pigeonhole principle):

▪ Since z = uvw  L , uviw  L , for all i  N

Pumping Lemma (intuition)

83

Let a regular language L. Then:

▪ There exists a natural number n (= the number of states

of DFA) such that:

▪ For all z  L with length |z| ≥ n

▪ There exists a «split» of z into substrings u, v, w, i.e.

z = uvw, |uv| ≤ n and |v| > 0

▪ So that for all i = 0, 1, 2, ... :

uviw  L

Pumping Lemma

84

Use of the Lemma to prove non-

regularity

Use of Pumping Lemma to prove that a (non-finite)

language L is not regular:

Let L a regular language. Then:

– By the PL, there exists n. We for all n

– We choose a suitable z  L with length |z| ≥ n

– By the PL, there exists «split» z = uvw, |uv| ≤ n , |v|

> 0. We for all «split» z = uvw, |uv| ≤ n, |v| > 0

– We choose i so that the word uviw is not in the

language L, a CONTRADICTION!

(adversary argument)

85

▪ Theorem. Language L = {z | z has the same number of 0

and 1} is not regular.

▪ Proof: Suppose L regular. Then:

▪ By the PL, there exists n. We for all n

▪ We chose z = 0n1n L with length |z| = 2n > n

 z = 000000000…0111111111…1

▪ By the PL, there exists a «split» z = uvw, |uv| ≤ n, |v| > 0.

We for all «splits» z = uvw, |uv| ≤ n, |v| > 0

n

Using Pumping Lemma – Example (i)

n

86

▪ We observe that necessarily v = 0k for some k:

▪ w = 0...00...00…0111111111…1

▪ And we choose i = 2, finding that uviw = uv2w is not a
string of L, a contradiction.

▪ Therefore, L is not regular.

u v w

Using Pumping Lemma – Example (i)

87

Using Pumping Lemma – Example (ii)

Theorem. Language L = {z | z=0i1j, i > j} is not regular.

Proof: Suppose L regular. Then:

▪ By the PL there exists n. We for all n

▪ We chose z = 0n+11n L with length |z| = 2n+1 > n

▪ z = 000000000…01111111…1

▪ By the PL there exists a «split» z = uvw, |uv| ≤ n, |v| > 0.

We for all «splits» z = uvw, |uv| ≤ n, |v| > 0

n+1 n

88

▪ We observe that ότι necessarily v = 0k for some k:

z = 0...00...00…0111111111…1

• But repeating v gives strings of the language

• At first glance this seems problematic…

• But PL states that for all i  0: uviw  L

▪ We choose i = 0: sting uv0w is not a string of L, a

contradiction.

▪ Therefore, L is not regular.

u v w

Using Pumping Lemma – Example (ii)

89

Attention when using PL!

▪ Pumping Lemma is a necessary but not sufficient

condition for a language to be regular.

▪ There are non-regular languages that satisfy its

conditions!

▪ It is therefore only useful for proving non-regularity.

▪ Another way of proving language non-regularity: closure

of regular languages operations.

90

Grammars for non-regular languages

▪ Context-free (CF): type 2, corresponding to pushdown

automata (PDA)

▪ Context-sensitive (CS): type 1, corresponding to Linear

Bounded Automata (LBA)

▪ General: type 0, corresponding to Turing Machines (TM)

91

Applications:

▪ Programming languages syntax (Pascal, C, C++,

Java)

▪ Web pages description languages syntax (HTML,

XML), editors, ...

Context-Free Grammars (i)

92

Context-Free Grammars (ii)

Possible production sequence:

Produced Language:

▪ Rule form: Α → α, Α non-terminal

▪ Example:

93

Context-Free Grammars (iii)

Possible production sequences:

S  3, S  S+S  3+S  3+S*S  3+4*7

▪ 2nd example:

 G2: T = {0,1,2,3,4,5,6,7,8,9,+,*} V = {S }

P : S → S+S, S → S*S,

S → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

94

Context-Free Grammars (iv)

Possible production sequence:

▪ 3rd example:

G3: , and P includes:

95

Leafstring: αααbbb and αbbα respectively.

Parse Trees (i)

96

Parse Trees (ii)

▪ Each node in the tree has a label, which is a symbol

(terminal, or non-terminal, or ε).

▪ The label of the root is S.

▪ If an internal node is labeled A, then Α is a non terminal

symbol. If its children, from left to right, have labels

X1,X2,...,Xk then A → X1,X2,...,Xk is a production rule.

▪ If a node is labeled ε, then it is a leaf and is the only

child of its parent.

Let G={V,T,P,S} a context-free grammar. A tree is a parse

tree of G if:

97

Parse Trees (iii)

Theorem. Let G={V,T,P,S} be a context-free grammar.

Then S α iff there exists a parse tree of G with

leafstring α.

*

98

Ambiguous grammars
A grammar G is called ambiguous if two parse trees exist with

the same leafstring wL(G)

Example:

G2: T = {0,1,2,3,4,5,6,7,8,9,+,*} V = {S }

P : S → S+S | S*S | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

99

CF grammar recognition algorithm:

CYK

▪ In an exhaustive way we can decide whether a string x

is generated by a CF grammar in exponential time.

▪ The properties of the Chomsky Normal Form allow for a

faster recognition of a string.

▪ CYK algorithm (Cocke, Younger, Kasami): decides

whether a string x is generated from a grammar in time

O(|x|3), as long as the grammar is given in Chomsky

Normal Form.

100

Pushdown Automata (PDA) (i)

▪ They have a one-way input tape (like FA) but have

additional memory in the form of a stack.

▪ Access only to the top of the stack using functions:

▪ push(x): places element x at the top of the stack

▪ pop: reads and removes element from the top of the

stack

101

Pushdown Automata (PDA) (i)

102

Pushdown Automata (PDA) (ii)

Example: PDA for language recognition of

Automaton description

▪ push(a) onto the stack for every 0 in the input,

push(b) onto the stack for every 1 in the input,

continue until c is read

▪ After that, pop: if the top stack element matches

the input (a with 0, b with 1) continue

▪ Acceptance with an empty stack

103

PDA: formal definition

▪ Q : the set of states of Μ (finite)

▪ Σ : input alphabet

▪ Γ : stack alphabet

▪ δ : Q x Σ U {ε} x Γ → Pow(Q x Γ*) : transition function

(non-determinism, ε-transitions)

▪ q0  Q : initial state

▪ Ζ0  Γ : initial stack symbol

▪ F  Q : set of final states

Pushdown Automaton, PDA:

tuple Μ = (Q,Σ,Γ,δ,q0,Z0,F)

104

Pushdown Automata (PDA) (iv)

PDA acceptance

▪ If it reaches a final state (i.e. accepted) once the entire

input has been read, regardless of stack content

▪ If the PDA has an empty stack once the entire input has

been read, regardless of the state

Languages are defined accordingly:

▪ Lf (M): acceptance with final state

▪ Le (M): acceptance with empty stack

105

Pushdown Automata (PDA) (v)

▪ For the following language to be accepted

i.e. without the middle symbol c we necessarily need a

non- deterministic PDA.

▪ Non-deterministic PDAs are more powerful than the

deterministic ones.

▪ By PDA we usually refer to non-deterministic PDAs.

106

CF grammars and PDA equivalence

Theorem. The following are equivalent for a language L:

▪ L = Lf (M), M is PDA.

▪ L = Le (M’), M’ is PDA.

▪ L is context-free language

107

Which languages are Context Free?

▪ All regular.

▪ Those formed from CF languages using the operations:

concatenation, union, Kleene star.

▪ But not necessarily with the operations intersection,

complement:

e.g. language{anbncn | n  Ν} is not CF, while being an

intersection of two CF languages:

{anbncn | n  Ν} = {anbncm | n,m  Ν} ∩ {akbncn | k,n  Ν}

108

Are all languages Context Free?

▪ «No».

▪ To prove that we use another pumping lemma, the

Pumping Lemma for context-free languages.

▪ It is based on the syntax tree (more in the course

«Computability and Complexity»).

109

Context Sensitive Grammars (i)

«context sensitive» because they can be put in the following

normal form:

S→ε, α = ε

Type 1: Context sensitive or monotonic

110

Context Sensitive Grammars (ii)

Α0 → Η0 Η0 → ΗΑ ΗΑ → 0Α

Conversion to normal form

(1st attempt) S → 1Z1

Z → 0 | 1Z0A

A0 → 0A

A1 → 11

CS grammar for the language 1n0n1n :

Other examples: {1i 0j 1k : i <= j <= k },

 { ww | w  Σ* }, {an bn an bn | n  Ν}

Not yet regular (why?)

111

Context Sensitive Grammars (ii)

ΑU → ΗU ΗU → ΗΑ ΗΑ → UΑ

Conversion to normal formS → 1Z1

Z → U | 1ZUA

AU → UA

A1 → 11

U → 0

CS grammar for the language 1n0n1n :

Other examples: {1i 0j 1k : i <= j <= k },

 { ww | w  Σ* }, {an bn an bn | n  Ν}

112

CS grammars and LBA equivalence

Theorem. The following are equivalent (L without ε):

1. Language L is accepted by LBA.

2. Language L is context sensitive.

Linear Bounded Automaton (LBA):

Is a non-deterministic Turing Machine that its head is

constrained to move only in the part containing the initial

input.

Equivalent form:

PDA with 2 stacks, linearly bounded.

113

General Grammars (i)

Example: {a2n
 | n є Ν}

Type 0: general, unrestricted

114

General Grammars (ii)

Theorem. The following are equivalent:

1. Language L is accepted by a Turing Machine

2. L=L(G), where G is a general grammar

Such a language is also called recursively enumerable.

115

Turing Machines

< q0, 1, q0, R >

< q0, 0, q1, 1 >

< q1, 1, q1, L >

< q1, 0, q2, R >

Automata with indefinitely long tape. Input is initially written

in the tape, the head can move left-right and write symbols

on the tape.

Transition function example:

116

Turing Machines

117

Language class hierarchy

Hierarchy Theorem.

regular context free context sensitive

recursiverly enumerable

▪ Type 0 ΤΜ (Turing Machines)

▪ Type 1 LBA (Linear Bounded Automata)

▪ Type 2 PDA (Pushdown Automata)

▪ Type 3 DFA (and NFA)

118

Language class hierarchy

Chomsky Hierarchy Levels. Source: W. Tecumseh Fitch, Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and

comparative cognition, Physics of Life Reviews, Volume 11, Issue 3, 2014, Pages 329-364, ISSN 1571-0645

	Slide 1: Foundations of Computer Science
	Slide 2: Finite State Machines (FSM)
	Slide 3: Example: Coffee machine (i)
	Slide 4: Example: Coffee machine (ii)
	Slide 5: Example: Coffee machine (iii)
	Slide 6: Example: Coffee machine (iv)
	Slide 7: Example II: modulo arithmetic (i)
	Slide 8: Example II: modulo arithmetic (ii)
	Slide 9: Exercises in modulo arithmetic
	Slide 10: Automata
	Slide 11: Automata and Formal Languages
	Slide 12: Example: Odd number identification
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Application: String Matching
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Application: String Matching
	Slide 37
	Slide 38
	Slide 39
	Slide 40: DFA minimization: example
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Languages, Automata, Grammars
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58: Example: Grammar for the language of odd numbers
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79: Product of Automata: DFA
	Slide 80: Product of Automata: NFA
	Slide 81
	Slide 82: Pumping Lemma (intuition)
	Slide 83
	Slide 84: Use of the Lemma to prove non-regularity
	Slide 85
	Slide 86
	Slide 87: Using Pumping Lemma – Example (ii)
	Slide 88
	Slide 89
	Slide 90: Grammars for non-regular languages
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114: General Grammars (ii)
	Slide 115
	Slide 116
	Slide 117
	Slide 118

