
1 Basic Topology
Topology, as its name suggests¹, deals with geometric properties of objects that depend
only on their relative positions and not on notions such as size or magnitude. The
properties studied by topology are preserved by certain continuous transformations.
Discontinuous transformations destroy topological properties. In this chapter we
present the basic items of point-set topology that are needed to examine certain
topics of applied analysis. We do not claim to have an exhaustive presentation of the
subject.

1.1 Basic Notions

We start with the definition of topology.

Definition 1.1.1. Let X be a set and let τ ⊆ 2X be such that the following hold:
(a) X and 0 both belong to τ;
(b) τ is closed under arbitrary unions, that is, if {Ui}i∈I ⊆ τ is any family of sets in τ,

then⋃i∈I Ui ∈ τ;
(c) τ is closed under finite intersections, that is, if {Ui}i∈I ⊆ τ is a finite family of sets in

τ, then⋂i∈I Ui ∈ τ.
Then we say that τ is a topology on X. The sets in τ are called open sets. The com-
plements of the elements of τ are called closed sets. In addition we say that the pair
(X, τ) is a topological space.

Remark 1.1.2. When the topology τ is clearly understood from the context, then we
drop it and simply say that X is a topological space. From the definition above it is clear
that the family of closed sets contains X and 0 and it is closed under finite unions and
arbitrary intersections. If X is a set with two topologies τ1 and τ2 such that τ1 ⊆ τ2,
then we say that τ1 isweaker than τ2 or that τ2 is stronger than τ1. The intersection
of any family of topologies on X is also a topology that is weaker than every member of
the family but stronger than any other topology with this property. Note that for any set
X there is a strongest topology on X, namely τ = 2X known as the discrete topology.
Moreover, there also exists aweakest topology on X, namely τ = {X, 0} known as the
trivial topology.

In general, a topology is a very large collection of subsets. So it is useful to have a
smaller collection of elements of τ, which generates the topology by taking unions.

Definition 1.1.3. Let (X, τ) be a topological space. A basis (or base) for the topology τ
is a subfamilyB of τ such that every member of τ is the union of elements inB. The

1 it comes from the Greek word τóπoς = location or position
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elements of B are called basic open sets and τ is the topology generated by B. A
subfamily L of τ is a subbasis of the topology τ if the family of finite intersections of
elements in L is a basis for τ. The elements of L are called subbasic open sets.

In the definition above, we have assumed a topology on X and defined a basis for it.
On the other hand, one might start with a basis and using it, generates a topology
on X by taking unions. However, not every family in 2X is a basis for a topology. The
next proposition gives necessary and sufficient conditions for a family to generate
a topology.

Proposition 1.1.4. A familyB ⊆ 2X is a basis for a topology on X if and only if
(a) ⋃B = X, that is, the union of the elements ofB is X;
(b) if B1, B2 ∈ B and x ∈ B1 ∩ B2, then there exists B ∈ B such that x ∈ B ⊆ B1 ∩ B2.

Proof. ⇒: The assertion in (a) follows from the fact that X is open; see Definition 1.1.3.
Let us prove (b). We know that B1 ∩ B2 is open. So, according to Definition 1.1.3, B1 ∩ B2
is the union of elements inB. Hence we can find B ∈ B such that x ∈ B ⊆ B1 ∩ B2.
⇐: Let τ be all unions of elements of B. We need to show that τ is a topology

on X; see Definition 1.1.1. Evidently 0 ∈ τ and X ∈ τ; see (a). In addition, from its
definition, τ is closed under arbitrary unions. We have to show that τ is closed under
finite intersections. So, let U1, U2 ∈ τ. Then U1 ∩ U2 ∈ τ. Given x ∈ U1 ∩ U2, there exist
B1, B2 ∈ B such that x ∈ B1 ⊆ U1 and x ∈ B2 ⊆ U2. Therefore, x ∈ B1 ∩ B2 ⊆ U1 ∩ U2.
By (b) there is B(x) ∈ B such that x ∈ B(x) ⊆ U1 ∩ U2. Obviously, U1 ∩ U2 = ⋃x Bx ∈ τ.
Thus τ is a topology on X.

Remark 1.1.5. We say that τ is the topology generated byB and we often write τ(B) to
emphasize the basis generating the topology.

Corollary 1.1.6. If (X, τ) is a topological space andB is a subfamily of τ such that for
each U ∈ τ and x ∈ U, we can find V ∈ B such that x ∈ V ⊆ U, thenB is a basis for the
topology τ.

Proposition 1.1.7. If (X, τ) is a topological space andB is a basis for τ, then U ∈ τ, that
is, U is open, if and only if for every x ∈ U there exists Vx ∈ B such that x ∈ Vx ⊆ U.

Proof. ⇒: This follows from (b) of Proposition 1.1.4.
⇐: We have U = ⋃x Vx ∈ τ.

Definition 1.1.8. Two basesB andB of X are said to be equivalent if τ(B) = τ(B).

Directly from Propositions 1.1.4 and 1.1.7 we have the following characterization of
equivalent topological bases.

Proposition 1.1.9. Two basesB andB in X are equivalent if and only if
(a) for every B ∈ B and x ∈ B, there exists B ∈ B such that x ∈ B ⊆ B;
(b) for every B ∈ B and x ∈ B, there exists B ∈ B such that x ∈ B ⊆ B.
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Example 1.1.10. In ℝN with N ∈ ℕ, let B = {Br(x) : x ∈ ℝN , r > 0} with Br(x) = {u ∈
ℝN : |u − x| < r}. ThenB is a basis for the so-called Euclidean topology (or standard
topology) onℝN . So, every open set in ℝN is the union of open balls. More generally
this is also true for every metric space.

There is a local version of the notion of topological basis.

Definition 1.1.11. Let (X, τ) be a topological space and x ∈ X. We say thatB(x) ⊆ τ is a
local basis (or a local base) at x if the following hold:
(a) x ∈ V for every V ∈ B(x);
(b) if x ∈ U ∈ τ, then there exists V ∈ B(x) such that x ∈ V ⊆ U.

Definition 1.1.12. Let (X, τ) be a topological space and A ⊆ X.
(a) A neighborhood of x ∈ X is any open set U such that x ∈ U.
(b) We say that x ∈ A is an interior point of A if we can find U ∈ τ such that x ∈ U ⊆ A.

The interior of A, denoted by int A (or by
∘
A), is the set of all interior points of A.

(c) We say that x ∈ X is a cluster point (or a limit point or an accumulation point)
of A if every open set containing x contains a point of A distinct from x. The set
of all cluster points of A is called the derived set of A and is denoted by A. The
closure of A, denoted by A (or cl A), is the union of A with its set of cluster points,
that is, A = A ∪ A.

(d) We say that x ∈ X is a boundary point of A if x ∈ A ∩ (X \ A). The set of boundary
points of A is called the boundary of A and is denoted by bd A (or by ∂A).

Remark 1.1.13. Note that a cluster point or a boundary point of A need not belong to A.
In the sequel we denote byN(x) the family of all neighborhoods of x ∈ X.

Proposition 1.1.14. If (X, τ) is a topological space and A, C ⊆ X, then the following hold:
(a) int A = ⋃{U ∈ τ : U ⊆ A}, that is, int A is the largest open set contained in A;
(b) A is open if and only if A = int A;
(c) A ⊆ C implies int A ⊆ int C;
(d) int(A ∩ C) = int A ∩ int C.

Proof. (a) Let Ã = ⋃{U ∈ τ : U ⊆ A}. Then Ã is open and by Definition 1.1.12(b) it is clear
that int A ⊆ Ã. On the other hand, if x ∈ Ã, then there is U ∈ τ, U ⊆ A such that x ∈ U.
Hence, x is an interior point of A, therefore Ã ⊆ int A. We conclude that Ã = int A.

(b) This is an immediate consequence of (a).
(c) We have int A ⊆ A ⊆ C and since int A is open, it follows that int A ⊆ int C, see

part (a).
(d) We have A ∩ C ⊆ A and A ∩ C ⊆ C. Then int(A ∩ C) ⊆ int A and int(A ∩ C) ⊆ int C

because of part (c). This gives

int(A ∩ C) ⊆ int A ∩ int C . (1.1.1)
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On the other hand, int A ∩ int C is an open subset of A ∩ C. Hence, because of (a),

int A ∩ int C ⊆ int(A ∩ C) . (1.1.2)

From (1.1.1) and (1.1.2) we conclude that int A ∩ int C = int(A ∩ C).

Remark 1.1.15. In general it is not true that int(A ∪ C) = int A ∪ int C. Indeed let X = ℝ
with the Euclidean topology, see Example 1.1.10, and let A = [0, 1] and C = [1, 2]. Then

int A = (0, 1) , int C = (1, 2) and int(A ∪ C) = (0, 2) .

In general we can easily show that if {Ai}i∈I is an arbitrary family of subsets of X, then

⋃
i∈I

int Ai ⊆ int⋃
i∈I
Ai .

There is an analogous proposition for the closure.

Proposition 1.1.16. If (X, τ) is a topological space and A, C ⊆ X, then the following hold:
(a) A = ⋂{D : D closed, D ⊇ A}, that is, A is the smallest closed set containing A;
(b) A is closed if and only if A = A;
(c) A ⊆ C implies A ⊆ C;
(d) A ∪ C = A ∪ C.

Proof. (a) Let A∗ = ⋂{D : D closed, D ⊇ A}. Evidently, A∗ is closed and so X\A∗ is open.
Hence, if x ̸∈ A∗, then we find U ∈ N(x) such that U ∩A = 0. Therefore, x ̸∈ (A∪A) = A
and so A ⊆ A∗. Now suppose that x ∈ A∗ \ A. Then there exists U ∈ N(x) such that
U ∩ A = 0. Let C = X \ U. Then C is closed and C ⊇ A. Hence A∗ ⊆ C and so x ∈ C, a
contradiction. Therefore A = A∗.

(b) This is an immediate consequence of (a).
(c) We have A ⊆ C ⊆ C and since C is closed, it follows that A ⊆ C, see part (a).
(d) Note that A ∪ C is closed and contains A ∪ C. Hence

A ∪ C ⊆ A ∪ C . (1.1.3)

Since A, C ⊆ A ∪ C, we have A, C ⊆ A ∪ C, see part (c). Hence

A ∪ C ⊆ A ∪ C . (1.1.4)

From (1.1.3) and (1.1.4) we conclude that A ∪ C = A ∪ C.

Remark 1.1.17. In general it is not true that A ∩ C = A ∩ C. To see this, let X = ℝwith
the Euclidean topology and let A = (0, 1) as well as C = (1, 2). Then A ∩ C = 0 and
A ∩ C = [0, 1] ∩ [1, 2] = {1}. In general we can easily show that if {Ai}i∈I is an arbitrary
family of subsets of X, then

⋂
i∈I
Ai ⊆⋂

i∈I
Ai .
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In addition, the following formulas are easy to verify:
– x ∈ A if and only if x ∈ (A \ {x});
– (A ∪ C) = A ∪ C, A \ C ⊆ (A \ C), A ⊆ A;

– (⋂
i∈I
Ai)


⊆⋂
i∈I
Ai with an arbitrary index set I;

– ⋃
i∈I
Ai ⊆ (⋃

i∈I
Ai)


with an arbitrary index set I;

– A = A;
– A ⊆ C implies A ⊆ C;
– (A \ {x}) = A = (A ∪ {x}).
The last formula means that the derived set remains unchanged if we add or remove a
finite number of elements. If x ∈ A \ A, then we say that x is isolated.

Proposition 1.1.18. If (X, τ) is a topological space and A ⊆ X, then the following hold:
(a) bd A = A ∩ (X \ A) = bd(X \ A);
(b) bd A, int A, int(X \ A) are pairwise disjoint sets whose union is X;
(c) bd A is a closed set;
(d) A = int A ∪ bd A;
(e) A is open if and only if bd A ⊆ X \ A;
(f) A is closed if and only if bd A ⊆ A;
(g) A is closed and open (usually called clopen) if and only if bd A = 0.

Proof. (a)–(d) These are immediate consequences of Definition 1.1.12.
(e) ⇒: Since A is open we have A = int A due to Proposition 1.1.14(b). From part

(b) we know that int A and bd A are disjoint sets. Therefore bd A ⊆ X \ A.
⇐: Since bd A ⊆ X \ A, no point of A is a boundary point. Hence, every point of A

is an interior point, see part (d). Therefore, A = int A, that is, A is open.
(f) This follows from (e) by taking complements.
(g) Combine (e) and (f).

Definition 1.1.19. A subset A of a topological space X is said to be dense if A = X. We
say that the topological space X is separable if it has a countable, dense subset.

Remark 1.1.20. It is easy to see that A is dense in the topological space (X, τ) if and
only if for every U ∈ τ, U ̸= 0 we have U ∩ A ̸= 0. Clearly ℝN is separable since we can
take the set of vectors with rational coordinates as a countable, dense set.

Definition 1.1.21. A subset A of a topological space X is said to be nowhere dense if
int A = 0.

Remark 1.1.22. From the definition above we see that A ⊆ X is nowhere dense if and
only if X \ A is dense in X. It follows that A ⊆ X is nowhere dense if and only if
X \ (X \ A) = 0 or that A is nowhere dense if and only if A ⊆ (X \ A). Any set A that
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contains a dense set is itself dense. Similarly, any subset of a nowhere dense set is
nowhere dense. The closure of a nowhere dense set is nowhere dense.

Proposition 1.1.23. If X is a topological space and A ⊆ X is open or closed, then bd A is
nowhere dense.

Proof. Suppose that A is open. Then bd A = A \ A, see Proposition 1.1.18(d). Hence,
int bd A = int(A \ A) = 0, which shows that bd A is nowhere dense.

Similarly, if A is closed, then bd A = A ∩ (X \ A), see Definition 1.1.12(d). Therefore,
by Proposition 1.1.14(d), int bd A = int A ∩ int (X \ A). Hence, int bd A = 0 and so bd A
is nowhere dense in X.

Definition 1.1.24. Let (X, τ) be a topological space and A ⊆ X. The subspace or rela-
tive topology on A is the family

τ(A) = {U ∩ A : U ∈ τ} .

It is also called the trace of τ on A. It is easy to see that τ(A) is a topology on A.

Proposition 1.1.25. If (X, τ) is a topological space,B is a basis for the topology τ and
A ⊆ X, thenB(A) = {U ∩ A : U ∈ B} is a basis for τ(A).

Proof. Let U ∈ τ and u ∈ U ∩ A. We can find V ∈ B such that u ∈ V ⊆ U. Then
u ∈ V ∩ A ⊆ U ∩ A. This implies thatB(A) is a basis for τ(A); see Corollary 1.1.6.

Proposition 1.1.26. If (X, τ) is a topological space, A ∈ τ and V ∈ τ(A), then V ∈ τ.

Proof. Since V ∈ τ(A) we have V = U ∩ A with U ∈ τ. But U ∩ A ∈ τ since A ∈ τ.

Proposition 1.1.27. If (X, τ) is a topological space and A ⊆ X, then D ⊆ A is τ(A)-closed
if and only if D = C ∩ A with closed C ⊆ X.

Proof. ⇒: Since D ⊆ A is τ(A)-closed, that is, relatively closed, we have A \ D = U ∩ A
with U ∈ τ. Then D = A \ (A \ D) = A \ (U ∩ A) = (X \ U) ∩ A = C ∩ A with closed
C = X \ U.
⇐: Let U = X \ C. Then U ∈ τ and we have

A \ D = A \ (C ∩ A) = (X \ C) ∩ A = U ∩ A ,

which implies that A \ D is τ(A)-open and so D is τ(A)-closed.

As a consequence of Proposition 1.1.26 we have the following observation concerning
neighborhoods of a point x ∈ A.

Corollary 1.1.28. If (X, τ) is a topological space, A ⊆ X, x ∈ A and V ⊆ A, then V ∈
NA(x), whereNA(x) denotes the τ(A)-neighborhoods of x, if and only if V = U ∩ A with
U ∈ N(x).

This discussion on relativization of topologies leads naturally to the following notion,
which will be used in the sequel.
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Definition 1.1.29. A property of topological spaces is said to be hereditary if every
subset with the relative (subspace) topology exhibits this property.

The notion of continuity is central in point-set topology. It is the main tool that allows
us to determine which mathematical properties are intrinsic to a particular topological
space.

Definition 1.1.30. Let X, Y be topological spaces. We say that a map f : X → Y is
continuous at x ∈ X if for every U ∈ N(f(x))we can find V ∈ N(x) such that f(V) ⊆ U.
We say that f : X → Y is continuous if it is continuous at every x ∈ X.

Remark 1.1.31. From the last definition it is clear that continuity is a local property.
The next proposition provides a useful global characterization of continuity.

Proposition 1.1.32. If (X, τX) and (Y, τY ) are two topological spaces and f : X → Y , then
f is continuous if and only if f−1(τY ) ⊆ τX, that is, f returns open sets in Y to open sets
in X.

Proof. ⇒: Let U ∈ τY . Then U is a neighborhood of each of its points. So, f−1(U)
contains a neighborhood of everyone of its points. Hence f−1(U) ∈ τX.
⇐: This is immediate from Definition 1.1.30.

Remark 1.1.33. Since f−1 preserves all set theoretic operations, in the proposition
above we may replace τY by a basisBY or even better by a subbasis LY .

We have a counterpart of Proposition 1.1.32 with closed sets instead of open sets.

Proposition 1.1.34. If X and Y are topological spaces and f : X → Y , then f is continuous
if and only if for every closed C ⊆ Y, f−1(C) is closed in X.

Proposition 1.1.35. If X and Y are topological spaces and f : X → Y, then the following
statements are equivalent.
(a) f is continuous;
(b) f(A) ⊆ f(A) for every A ⊆ X;
(c) f−1(C) ⊆ f−1(C) for every C ⊆ Y .

Proof. (a) ⇒ (b): Let A ⊆ X and x ∈ A. Consider U ∈ N(f(x)) and choose V ∈ N(x)
such that f(V) ⊆ U, see Definition 1.1.30. We have

x ∈ A ⇒ V ∩ A ̸= 0 ⇒ f(V ∩ A) ̸= 0
⇒ f(V) ∩ f(A) ̸= 0 ⇒ U ∩ f(A) ̸= 0 .

Since U ∈ N(f(x)) is arbitrary it follows that x ∈ f(A). Hence f(A) ⊆ f(A).
(b) ⇒ (c): Let A = f−1(C). Then by hypothesis f(A) ⊆ f(A) = f(f−1(C)) ⊆ C and so

A = f−1(C) ⊆ f−1(C).
(c) ⇒ (a): Let C ⊆ Y be closed. Then by hypothesis f−1(C) ⊆ f−1(C) and so

f−1(C) = f−1(C), that is, f−1(C) is closed. From Proposition 1.1.34 it follows that f is
continuous.
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Proposition 1.1.36. Let X, Y and Z be topological spaces.
(a) If f : X → Y and g : Y → Z are continuous maps, then g ∘ f : X → Z is continuous.
(b) If f : X → Y is a continuous map and A ⊆ X, then f A : A → Y is continuous for the

subspace topology of A.
(c) If X = ⋃i∈I Ui with Ui open and f : X → Y is a map such that f Ui is continuous, then

f : X → Y is continuous.

Proof. (a) If U is open in Z, then g−1(U) is open in Y and f−1(g−1(U)) is open in X, see
Proposition 1.1.32. But recall that f−1(g−1(U)) = (g ∘ f)−1(U). So, by Proposition 1.1.32,
g ∘ f is continuous.

(b) Let i : A → X be the inclusion map where A is endowed with the subspace
topology. Evidently i is continuous and since f A = f ∘ i we derive the conclusion using
part (a).

(c) Let V ⊆ Y be open. Then f−1(V) ∩ Ui = (f Ui)
−1
(V) is open in X for all i ∈ I.

Therefore f−1(V) = ⋃i∈I f−1(V) ∩ Ui is open in X. Taking Proposition 1.1.32 into account
yields the continuity of f .

Continuing in the same way, we prove the so-called “Pasting Lemma.”

Proposition 1.1.37 (Pasting Lemma). If X and Y are topological spaces, X = A ∪ B with
closed subsets A and B of X, f : A → Y and g : B → Y are continuous maps where A
and B are endowed with the subspace topology and f(x) = g(x) for all x ∈ A ∩ B. Then
h : X → Y defined by

h(x) =
{
{
{

f(x) if x ∈ A
g(x) if x ∈ B

,

is continuous.

Proof. Let C be a closed subset of Y. Then

h−1(C) = f−1(C) ∪ g−1(C) . (1.1.5)

By hypothesis f−1(C) is closed in A and since A is closed in Y, from Proposition 1.1.27,
we have that f−1(C) is closed in X. Similarly g−1(C) is closed in X. From (1.1.5) it follows
that h−1(C) is closed in X. Hence, by Proposition 1.1.34, h is continuous.

In general the direct image of an open (resp. closed) set by a map need not be open
(resp. closed) even if the map is continuous. For this reason we introduce the following
definition.

Definition 1.1.38. Let X and Y be two topological spaces. We say that a map f : X → Y
is open (respectively, closed) if the image of every open (respectively, closed) set in X
is open (respectively, closed) in Y.

Remark 1.1.39. It is easy to see that the notions of continuous map, open map, and
closed map are independent.



1.2 Separation and Countability Properties – Convergence | 9

Proposition 1.1.40. Let (X, τX) and (Y, τY ) be topological spaces and f : X → Y, then
the following statements are equivalent:
(a) f is open;
(b) f(int A) ⊆ int f(A) for every A ⊆ X;
(c) ifBX is a basis for τX , then f(BX) ⊆ τY .

Proof. (a) ⇒ (b): We have f(int A) ⊆ f(A) and by hypothesis f(int A) is open. By
Proposition 1.1.14(a) it follows that f(int A) ⊆ int f(A).

(b) ⇒ (c): Let V ∈ BX. Then by hypothesis f(V) = f(int V) ⊆ int f(V). Hence,
f(V) = int f(V), that is, f(V) ∈ τY .

(c) ⇒ (a): Let V ⊆ X be open. Then V = ⋃i∈I Vi with Vi ∈ BX. We have

f(V) = f (⋃
i∈I
Vi) =⋃

i∈I
f(Vi) ∈ τY .

Therefore, f is open.

Next we identify a subfamily of continuous functions that is in the core of point-set
topology.

Definition 1.1.41. Let X and Y be two topological spaces and f : X → Y is a bijection.
We say that f is a homeomorphism if both f and f−1 are continuous. Then we say that
the spaces X and Y are homeomorphic. Instead of homeomorphism we also say that f
is bicontinuous.

As an easy consequence of this definition and of Proposition 1.1.40we have the following
proposition.

Proposition 1.1.42. Let X and Y be topological spaces and let f : X → Y be a bijection,
then the following statements are equivalent:
(a) f is a homeomorphism;
(b) f is continuous and open;
(c) f is continuous and closed;
(d) f(A) = f(A) for every A ⊆ X.

Remark 1.1.43. Given a homeomorphism f : X → Y, U ⊆ X is open if and only if
f(U) ⊆ Y is open. Thus a homeomorphism gives a bijection between the topologies of X
and Y. Hence, any property of X that is expressed using only the topology of X, yields
the same property on Y. Such a property of X is said to be a topological property of X.

1.2 Separation and Countability Properties – Convergence
The so-called separation properties determine how rich the supply is of open sets in a
given topological space. This is important because the supply of open sets determines
the supply of continuous functions. We need to have a rich enough supply of continuous
functions in order to produce interesting results.
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We start with a notion, which for analysis, is the minimal requirement for a topo-
logical space.

Definition 1.2.1. A topological space X is said to be Hausdorff (or T2-space) if for
every pair x, u ∈ X we can find U ∈ N(x) and V ∈ N(u) such that U ∩ V = 0.

Since our aim is to use topology to investigate problems in analysis, from now on all
topological spaces considered are Hausdorff. Let us give an example of a space that is
important in algebraic geometry and that is not Hausdorff.

Example 1.2.2. Let n ∈ ℕ and let P denote the set of all polynomials in n variables
{x1, . . . , xn}. Given p ∈ P, let

Z(p) = {(x1, . . . , xn) ∈ ℝn : p(x1, . . . , xn) = 0} .

LetB be the family of all complements of the set Z(p) with p ∈ P. One can show thatB
is a basis for a topology of ℝn. This topology is called the “Zariski topology” on ℝn and
it turns out that it is not Hausdorff.

Proposition 1.2.3. The Hausdorff property is hereditary and topological.

Proof. Let (X, τ) be the topological space and A ⊆ X endowed with the subspace
topology τ(A). Consider two distinct points x, u ∈ A. We can find U, V ∈ τ with x ∈ U
and u ∈ V such that U∩V = 0. Then U∩A ∈ τ(A), V∩A ∈ τ(A) and (U∩A)∩(V∩A) = 0.
Hence, (A, τ(A)) is Hausdorff.

Let X be a Hausdorff topological space, Y a topological space, and f : X → Y a
homeomorphism. If y, v ∈ Y are distinct points, then f−1(y), f−1(v) ∈ X are distinct as
well. Since X is Hausdorff we can find U, V ∈ τ such that f−1(y) ∈ U, f−1(v) ∈ V and
U∩V = 0. This implies that y ∈ f(U), v ∈ f(V) are both open sets in Y and f(U)∩ f(V) = 0.
Therefore, Y is Hausdorff as well.

Proposition 1.2.4. If X is a Hausdorff topological space and A ⊆ X is finite, then A is
closed.

Proof. It suffices to show that every singleton {x} is closed. So let u ∈ X with u ̸= x.
Then we can find U ∈ N(x) and V ∈ N(u) such that U ∩ V = 0. This means that x ̸∈ {u}.
Therefore {x} = {x} and so every singleton {x} is closed.

Proposition 1.2.5. If X is a Hausdorff topological space and A ⊆ X, then x ∈ A, that is,
x is a cluster point of A, if and only if every U ∈ N(x) contains infinitely many points of A.

Proof. ⇒: Arguing by contradiction, suppose that we can find U ∈ N(x) such that
U ∩ A is a finite set. Then U ∩ (A \ {x}) is finite. Let U ∩ (A \ {x}) = {xk}nk=1. From
Proposition 1.2.4 we know that {xk}nk=1 is a closed subset of X. Hence X \ {xk}

n
k=1 is open.

Then
V = U ∩ (X \ {xk}nk=1) ∈ N(x)

and V ∩ A = 0, a contradiction to the fact that x ∈ A.
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⇐: By hypothesis, every U ∈ N(x) intersects A at infinitely many points. Then
according to Definition 1.1.12(c), we have x ∈ A.

Proposition 1.2.6. For a topological space X the following statements are equivalent:
(a) X is Hausdorff;
(b) Given x ∈ X and u ̸= x we can find U ∈ N(x) such that u ̸∈ U;
(c) For every x ∈ X we have {x} = ⋂{U : U ∈ N(x)}.

Proof. (a) ⇒ (b): Let x ∈ X and u ̸= x. Since by hypothesis X is Hausdorff we can find
U ∈ N(x) and V ∈ N(u) such that U ∩ V = 0. This means that u ̸∈ U.

(b)⇒ (c): Let u ̸= x. By hypothesis we can find U ∈ N(x) such that u ̸∈ U. Therefore
we conclude that {x} = ⋂{U : U ∈ N(x)}.

(c) ⇒ (a): Let x ̸= u. We can find U ∈ N(x) such that u ̸∈ U and V ∈ N(u) such
that x ̸∈ V. We set U = U ∩ (X \ V) ∈ N(x) and V = V ∩ (X \ U) ∈ N(u). Evidently
U ∩ V = 0 and this shows that X is Hausdorff.

Now we strengthen the separation property.

Definition 1.2.7. A Hausdorff topological space X is said to be regular (or T3-space)
if for each closed set C ⊆ X and each x ̸∈ C we can find open sets U and V such that
x ∈ U, C ⊆ V and U ∩ V = 0.

Proposition 1.2.8. A Hausdorff topological space X is regular if and only if for every
point x ∈ X and every U ∈ N(x) we can findW ∈ N(x) such thatW ⊆ U.

Proof. ⇒: Let x ∈ X and U ∈ N(x). Then X \ U is a closed set not containing x. Since
by hypothesis X is regular, we can find open setsW, V such that

x ∈ W , X \ U ⊆ V and W ∩ V = 0 . (1.2.1)

We haveW ⊆ X \ V and soW ⊆ X \ V since X \ V is closed. Then, because of (1.2.1),

W ⊆ X \ V ⊆ X \ (X \ U) = U .

This means thatW ∈ N(x) is the desired neighborhood of x.
⇐: Let x ∈ X and let C ⊆ X be closed such that x ̸∈ C. Then X \ C ∈ N(x) and so by

hypothesis we can findW ∈ N(x) such thatW ⊆ X \ C. ThenW and X \W are open sets
such that x ∈ W, C ⊆ X \W andW ∩ (X \W) = 0 which by Definition 1.2.7 means that X
is regular.

Proposition 1.2.9. A Hausdorff topological space X is regular if and only if for every
point x ∈ X and every closed set C ⊆ X such that x ̸∈ C we can find open sets U, V for
which we have U ∩ V = 0.

Proof. ⇒: Let x ∈ X and let C ⊆ X be a closed set such that x ̸∈ C. Since by hypothesis,
X is regular, invoking Proposition 1.2.8, we can findW ∈ N(x) such thatW ⊆ X \ C. A
new application of Proposition 1.2.8 produces U ∈ N(x) such that U ⊆ W. Let V = X \W,
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which is open. Then we obtain U ⊆ W ⊆ W ⊆ X \ C, which gives C ⊆ X \ W = V.
Therefore, U and V is the desired pair of open sets.
⇐: This is obvious from Definition 1.2.7.

Proposition 1.2.10. The regularity property is hereditary and topological.

Proof. Let A ⊆ X and let D ⊆ A be relatively closed and let x ∈ A \ D. From Proposi-
tion 1.1.27 we have D = C ∩ A with closed C ⊆ X. Since x ̸∈ C and X is regular, we can
find open subsets U, V of X such that x ∈ U, C ⊆ V and U ∩ V = 0. Then U ∩ A, V ∩ A
are relatively open in A, x ∈ U ∩ A and D ⊆ V ∩ A. This shows that A with the relative
(subspace) topology is regular.

Let f : X → Y be a homeomorphism and y ∈ Y, C ⊆ Y closed with y ̸∈ C. Let
x = f−1(y) and Ĉ = f−1(C). Evidently Ĉ ⊆ X is closed and x ̸∈ Ĉ. Since X is regular we
can find open subsets Û, V̂ of X such that x ∈ Û, Ĉ ⊆ V̂ and Û ∩ V̂ = 0. This gives
y ∈ f(Û) = U, f(Ĉ) = C ⊆ f(V̂) = V and f(Û) ∩ f(V̂) = 0 since f is a homeomorphism. But
from Proposition 1.1.42 we have that U, V are open subsets of Y. Hence we conclude
that Y is regular.

We further strengthen the separation property.

Definition 1.2.11. A Hausdorff topological space X is said to be normal (or T4-space)
if for each pair A, C of disjoint closed sets in X, we can find open sets U, V such that
A ⊆ U, C ⊆ V and U ∩ V = 0.

Remark 1.2.12. The definition above can be equivalently stated as follows: “If U1, U2
are open sets in X such that X = U1 ∪ U2, then we can find closed subsets C1, C2 of X
such that C1 ⊆ U1, C2 ⊆ U2 and X = C1 ∪ C2.”

The next two propositions characterize normality and are proven with arguments
similar to the ones used in Propositions 1.2.8 and 1.2.9.

Proposition 1.2.13. A Hausdorff topological space X is normal if and only if for each
closed set C ⊆ X and each open set U ⊆ X such that C ⊆ U we can find an open set V ⊆ X
for which we have C ⊆ V ⊆ V ⊆ U.

Proposition 1.2.14. A Hausdorff topological space X is normal if and only if for each pair
A, C of disjoint closed sets in X we can find open sets U, V in X such that A ⊆ U, C ⊆ V
and U ∩ V = 0.

Proposition 1.2.15. (a) A closed subset of a normal space is normal.
(b) Normality is preserved under continuous, closed surjections.

Proof. (a) Let X be a normal topological space and A ⊆ X a closed set. Suppose that
C ⊆ A is relatively closed. Then C ⊆ X is closed by Proposition 1.1.27. This observation
leads immediately to the normality of A.

(b) Let X be a normal topological space, Y a topological space, and f : X → Y a
continuous, closed surjection. Suppose that U1, U2 are open subsets of Y such that
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Y = U1 ∪ U2. Then Û1 = f−1(U1), Û2 = f−1(U2) are open in X and X = Û1 ∪ Û2.
The normality of X implies that we can find closed subsets Ĉ1, Ĉ2 of X such that
Ĉ1 ⊆ Û1, Ĉ2 ⊆ Û2 and X = Ĉ1 ∪ Ĉ2; see Remark 1.2.12.

Since f is closed we have that C1 = f(Ĉ1), C2 = f(Ĉ2) are closed subsets of Y and
C1 ⊆ U1, C2 ⊆ U2 as well as Y = C1 ∪ C2. According to Remark 1.2.12, this means that Y
is normal as well.

Remark 1.2.16. Part (a) of Proposition 1.2.15 fails if the subset is not closed. For a
counterexample we refer to Dugundji [91, p. 145].

As we already mentioned in the beginning of this section, richness in open sets implies
richness in continuous functions. This is illustrated in the theorem that follows. The
result is known as “Urysohn’s Lemma.”

Theorem 1.2.17 (Urysohn’s Lemma). A Hausdorff topological space X is normal if and
only if for each pair A, C of disjoint closed subsets of X we can find a continuous function
f : X → [0, 1] such that f A = 0 and f

C = 1.

Proof. ⇒: Let D be the set of all rationals r of the form r = k/2n with 0 ≤ k/2n ≤ 1,
that is, k = 0, 1, . . . , 2n dyadic fractions. We show that for every r ∈ D we can assign
an open set U(r) such that
(a) A ⊆ U(0) ⊆ U(0) ⊆ X \ C, U(1) = X \ C.
(b) r < r implies U(r) ⊆ U(r).

We proceed by induction on the exponent n ∈ ℕ. So, let

En = {U (
k
2n ) : k = 0, 1, . . . , 2

n} , n ∈ ℕ .

Then E0 = {U(0), U(1) = X \ C} and (a) is satisfied by Proposition 1.2.13. Suppose that
En−1 have been constructed. Clearly we need to define U(k/2n) for k = odd. For k = odd,
from the induction hypothesis, we have

U ( k − 12n ) ⊆ U (
k + 1
2n ) ,

see (b). So we define U(k/2n) = U with U being an open set such that, due to Proposi-
tion 1.2.13,

U ( k − 12n ) ⊆ U ⊆ U ⊆ U (
k + 1
2n ) .

This completes the induction and we have defined the collection

{U ( k2n ) : k = 0, 1, . . . , 2
n , n ∈ ℕ} .

We define the desired function f by setting

f(x) =
{
{
{

0 if x ∈ U(r) for every r = dyadic fraction as above ,
sup{r : x ̸∈ U(r)} otherwise .
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Then f has values in [0, 1] and f A = 0, f C = 1. So it remains to show that f is
continuous. Note that the intervals {[0, a), (a, 1] : 0 < a < 1}} form a subbasis for [0, 1]
with the Euclidean topology. So, according to Remark 1.1.33 it suffices to show that
f−1([0, a)) and f−1((a, 1]) are open. Note that f(x) < a if and only if x ∈ U(r) for some
r < a. It follows that f−1([0, a)) = ⋃r<a U(r), which is open. Similarly, f(x) > a if and
only if x ̸∈ U(r) for some r > a. Therefore f−1((a, 1]) = ⋃r>a(X \ U(r)), which is open.
This proves the continuity of f .
⇐: Let A, C ⊆ X be disjoint closed sets. By hypothesis we can find a continuous

function f : X → [0, 1] such that

f A = 0 and f C = 1 . (1.2.2)

Let U = {x ∈ X : f(x) < 1/2} and V = {x ∈ X : f(x) > 1/2}. Then U, V ⊆ X are open,
U ∩ V = 0, A ⊆ U, C ⊆ V, see (1.2.2), which implies that X is normal.

Remark 1.2.18. We can have a form of this result that is a little more flexible. To be
more precise, we can replace [0, 1] by [a, b] with a, b ∈ ℝ, a ≤ b and f A = a, f

C = b.
Indeed, let f0 be the continuous separating function postulated by Theorem 1.2.17. Then
set f = (b − a)f0 + a. Evidently this function has the desired properties.

There is another such functional characterization of normality, namely the so-called
“Tietze Extension Theorem.” We state this result at the end of this section and for its
proof, which is rather technical, we refer to Dugundji [91].

Evidently we have

Normal ⇒ Regular ⇒ Hausdorff .

None of these implications is in general reversible. Between regular and normal spaces
we can fit another class given in the next definition.

Definition 1.2.19. A Hausdorff topological space X is said to be completely regular if
for each x ∈ X and each closed set C ⊆ X with x ̸∈ C, we can find a continuous function
f : X → [0, 1] such that f(x) = 0 and f C = 1.

Now we pass to the countability properties of a topological space.

Definition 1.2.20. (a) A topological space X is said to be first countable if it has a
countable local basis at each point of X.

(b) A topological space X is said to be second countable if it has a countable basis.

Remark 1.2.21. Evidently a second countable space is also first countable. The converse
is not true. Every metric space (X, d) is first countable. Indeed for every x ∈ X,B(x) =
{Br(x) : r ∈ ℚ} with Br(x) = {u ∈ X : d(u, x) < r} is a countable local basis at +x and
so X is first countable.

Proposition 1.2.22. Every second countable space is separable.
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Proof. Let X be a second countable space and letB be the countable basis of X. Let D
be the countable set formed by choosing an element from each nonempty basic open
set. Then Corollary 1.1.6 implies that D = X.

Remark 1.2.23. The converse of the proposition above is not true. Consider the space
X = ℝ topologized with the topology that has as its basis intervals of the form (a, b]
with a, b ∈ ℝ. This topology is known as the upper limit topology and is denoted by
τu. We can easily check that the Euclidean topology on X = ℝ is weaker than τu. The
space (ℝ, τu) is first countable. To see this, consider B(x) = {(r, x] : r ∈ ℚ} for each
x ∈ ℝ.

In addition, (ℝ, τu) is separable. Indeed, the rationals are a countable dense subset.
However, (ℝ, τu) is not second countable. To see this, note that if {(an , bn]}n∈ℕ is a count-
able collection in τu, then by choosing a, b ̸= bn for all n ∈ ℕ, the open set (a, b] cannot
be expressed as a union of sets in the countable collection. The proposition above also
says that every nonseparable metric space is first countable but not second countable.

Proposition 1.2.24. (a) Second countability is preserved by continuous open surjections.
(b) Second countability is hereditary.
(c) Separability is preserved by continuous surjections.

Proof. (a) Let X be a second countable topological space, Y another topological space,
and f : X → Y a continuous open surjection. Consider a basis {Un}n∈ℕ for the topology
of X, and using Corollary 1.1.6, we see that {f(Un)}n∈ℕ is a countable basis for Y.

(b) This is obvious.
(c) Let X be a separable topological space, Y another topological space and

f : X → Y a continuous surjection. Consider D ⊆ X as being a countable dense subset.
From Proposition 1.1.35(b) we have Y = f(X) = f(D) ⊆ f(D). Hence, Y = f(D) and f(D) is
countable.

Remark 1.2.25. Clearly, an open subset of a separable topological space is separable
for the subspace topology. If X is a second countable topological space, then every
subset of X endowed with the subspace topology is separable.

Definition 1.2.26. Let (X, τ) be a topological space.
(a) An open cover of X is a collectionD ⊆ τ such that X = ⋃{U : U ∈ D}. A subcover

of an open coverD is a subfamilyD ofD such that X = ⋃{U : U ∈ D}.
(b) We say that X is a Lindelöf space if every open cover contains a countable subcover.

The next result relates the Lindelöf property with second countability. It is known as
“Lindelöf’s Theorem.”

Theorem 1.2.27 (Lindelöf’s Theorem). Every second countable space is Lindelöf.

Proof. Let X be a second countable topological space and {Un}n≥1 a countable basis
of X. Consider an open cover D = {Vi}i∈I of X. For each x ∈ X, let Vi(x) ∈ {Vi}i∈I be
such that x ∈ Vi(x). Let Un(x) ∈ {Un}n≥1 be such that x ∈ Un(x) ⊆ Vi(x). Then the family
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{Un(x)}x∈X is a countable open cover of X. For each Un(x) let Vi(x) ∈ D be such that
Un(x) ⊆ Vi(x). Then the collection {Vi(x)}x∈X is a countable subcover ofD. Therefore, X
is Lindelöf.

Remark 1.2.28. The converse of the Theorem above is not true. Consider the space
(ℝ, τu); see Remark 1.2.23. Then we can show that it is Lindelöf (see Dugundji [91]), but
it is not second countable; see again Remark 1.2.23.

Proposition 1.2.29. (a) The Lindelöf property is preserved by continuous surjections.
(b) A closed subset of a Lindelöf space is Lindelöf for the subspace topology.

Proof. (a) Let X be a Lindelöf space, Y another topological space, and f : X → Y a
continuous surjection. Consider an open cover {Ui}i∈I of Y. Then {Vi}i∈I = {f−1(Ui)}i∈I
is an open cover of X. Since X is Lindelöf, we can find a countable subcover {Vn}n∈ℕ =
{f−1(Un)}n∈ℕ. Then {Un}n∈ℕ is a countable subcover of {Ui}i∈I and so we conclude that
Y is Lindelöf.

(b) Let X be a Lindelöf space and C ⊆ X a closed subset. Consider an open cover
{Vi}i∈I of C with the subspace topology. Then Vi = Ui ∩ C with Ui ⊆ X open. Then
{Ui , X \ C}i∈I is an open cover of X. Since X is Lindelöf we can find a countable subcover
{Un}n∈ℕ. Then {Un ∩ C}n∈ℕ is a countable subcover of {Vi}i∈I . So, we conclude that C
with the subspace topology is Lindelöf.

We know that a sequence is a map fromℕ into X but it is more convenient to think of a
sequence as a subset of X indexed byℕ. We generalize this notion by replacingℕ with
a more general index set.

Definition 1.2.30. Let X be a set.
(a) A relation is any subset R ⊆ X × X. Given a relation, it is more suggestive to write

xRy instead of (x, y) ∈ R. We say that R is reflexive if xRx for all x ∈ X. We say
that R is symmetric if xRy implies yRx. We say that R is antisymmetric if xRy
and yRx imply x = y. We say that R is transitive if xRy and yRz imply xRz.

(b) A relation R is called an equivalence relation if it is reflexive, symmetric, and
transitive.

(c) A relation R is called a partial order if it is antisymmetric and transitive. In this
case we write x ≤ y if and only if xRy or x = y (a reflexive partial order) and x < y if
and only if xRy and x ̸= y (a strict partial order). A linear order R is a partial order
such that for all x, u ∈ X, either xRu or uRx. A chain is a linearly ordered subset of
a partially ordered set.

(d) A directed set is a partially ordered set (I, ≤) such that for any α, β ∈ I we can find
k ∈ I such that α ≤ k and β ≤ k.

Remark 1.2.31. Many authors require that a partial order is also reflexive. Defini-
tion 1.2.30(c) is more flexible and allows both “≤” and “<” as partial orders. For any set
V let X = 2V be the collection of all subsets of V. We write A ≤ C if and only if C ⊆ A for
C, A ∈ 2V . This is a partial order, the reverse ordering of the sets.
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Definition 1.2.32. Let X be a set. A net in X is a map x : D → X with a directed set D.
The directed set D is known as the index set of the net.

Remark 1.2.33. As for sequences, we denote the map x : D → X simply by {xα}α∈D.

Definition 1.2.34. Let (X, τ) be a topological space. We say that a net {xα}α∈I converges
to some x ∈ X if for every U ∈ N(x) there exists α0 = α0(U) such that xα ∈ U for all
α ≥ α0, that is, {xα} is eventually in every neighborhood of x. We say that x is the
limit of the net {xα}α∈I and we write xα → x or xα

τ
→ x if we want to emphasize the

topology τ.

Proposition 1.2.35. A topological space X is Hausdorff if and only if every convergent
net has a unique limit.

Proof. ⇒: Arguing by contradiction, suppose that for a net {xα}α∈I ⊆ X we have

xα → x and xα → x̂ with x ̸= x̂ .

Due to the Hausdorff property we can find U ∈ N(x) and Û ∈ N(x̂) such that U ∩ Û = 0.
Furthermore we can find α0, α̂0 ∈ I such that xα ∈ U for all α ≥ α0 and xα ∈ Û for all
α ≥ α̂0. Since I is a directed set we can find α∗ ∈ I such that α∗ ≥ α0, α∗ ≥ α̂0. Then,
xα ∈ U and xα ∈ Û for all α ≥ α∗, a contradiction since U ∩ Û = 0. This proves the
uniqueness of the limit.
⇐: We argue again indirectly. To this end, suppose that X is not Hausdorff. Then

we can find x, u ∈ X with x ̸= u such that for every U ∈ N(x) and every V ∈ N(u) there
holds U ∩ V ̸= 0. For each (U, V) ∈ N(x) ×N(u), let xUV ∈ U ∩ V and note that the net
{xUV } converges to both x and u, contradicting our hypothesis.

Proposition 1.2.36. If X is a topological space and A ⊆ X, then x ∈ A if and only if we
can find a net {xα}α∈I ⊆ A such that xα → x.

Proof. ⇒: If U ∈ N(x), then U ∩ A ̸= 0. Let xU ∈ U ∩ A. Then {xU}U∈N(x) is a net in A
with N(x) ordered by reverse inclusion, that is, U1 ≤ U2 if and only if U2 ⊆ U1, and
xU → x.
⇐: This is obvious.

Proposition 1.2.37. If X and Y are topological spaces, x ∈ X and f : X → Y, then f is
continuous at x if and only if for every net xα → x we have f(xα)→ f(x).

Proof. ⇒: According to Definition 1.1.30, given U ∈ N(f(x)), we can find V ∈ N(x)
such that f(V) ⊆ U. If xα → x, then we can find α0 ∈ I such that xα ∈ V for all α ≥ α0.
Then f(xα) ∈ f(V) ⊆ U for all α ≥ α0. Since U ∈ N(f(x)) is arbitrary, we conclude that
f(xα)→ f(x).
⇐: Arguing by contradiction, suppose that f is not continuous at x. Then there is

V ∈ N(f(x)) such that f−1(V) ̸∈ N(x). Then x ∈ X \ f−1(V) and so by Proposition 1.2.36
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we can find a net {xα}α∈I ⊆ X \ f−1(V) such that xα → x. By hypothesis we have
f(xα) → f(x). Since Y \ V is closed and f(xα) ∈ Y \ V for all α ∈ I, it follows that
f(x) ∈ Y \ V, a contradiction. This proves the continuity of f at x.

The next notion generalizes that of a subsequence.

Definition 1.2.38. Let X be a topological space. A net {uβ}β∈J ⊆ X is a subnet of a net
{xα}α∈I if there exists a map ϑ : J → I such that
(a) uβ = xϑ(β) for every β ∈ J;
(b) for each α0 ∈ I, there exists β0 ∈ J such that β ≥ β0 implies ϑ(β) ≥ α0.

Remark 1.2.39. A subsequence of a sequence is a subnet. But we can have subnets
of a sequence that are not subsequences. Indeed, let {xn}n∈ℕ = {n2 + 1}n∈ℕ and
{ym,n}(m×n)∈ℕ×ℕ = {m2 + 2mn + n2 + 1}(m×n)∈ℕ×ℕ. Then {ym,n}(m×n)∈ℕ×ℕ is a subnet of
{xn}n∈ℕ. To see this, let ϑ : ℕ ×ℕ→ ℕ be defined by ϑ(m, n) = m + n. However, note
that {ym,n}(m×n)∈ℕ×ℕ is not a subsequence of {xn}n∈ℕ.

For the next result, the limits need not be unique.

Proposition 1.2.40. If X is a topological space, then a net in X converges to a point if
and only if every subnet converges in X to the same point.

Proof. ⇒: This is obvious.
⇐: Suppose that {xα}α∈I is a net in X and assume that every subnet of {xα}α∈I

converges to the same limit x. Arguing by contradiction, suppose that the net {xα}α∈I
does not converge to x. Then we can find U ∈ N(x) such that for any α ∈ I we can find
ϑ(α) ≥ α such that xϑ(α) ̸∈ V. If we set uα = xϑ(α), then {uα}α∈I is a subnet of {xα}α∈I,
which does not converge to x. This contradicts our hypothesis. So, xα → x.

Remark 1.2.41. For a bounded real net {xα}α∈I we can define the limit superior and
the limit inferior by setting

lim inf
α

xα = sup
α∈I

inf
ϑ≥α

xϑ and lim sup
α

xα = inf
α∈I

sup
ϑ≥α

xϑ .

Evidently, xα → x if and only if x = lim infα xα = lim supα xα.

Nets were introduced because in general, sequences are not enough to describe a given
topology τ.

Definition 1.2.42. Let (X, τ) be a topological space. We denote by τseq the topology on
X whose closed sets are the sequentially τ-closed sets in X.

Remark 1.2.43. From the definition above, it follows directly that τseq is the strongest,
that is, the largest topology on X for which the converging sequences are the τ-converg-
ing sequences. Hence, τ ⊆ τseq and τ = τseq if and only if (X, τ) is first countable.

In Theorem 1.2.17 we produced a characterization of normal spaces. We conclude this
section by providing an alternative characterization of normality. The result is known
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as the “Tietze Extension Theorem.” We do not prove it, since later we will prove a more
general result known as the “Dugundji Extension Theorem”; see Theorem 1.7.29.

Theorem 1.2.44 (Tietze Extension Theorem). A Hausdorff topological space X is normal
if and only if for every closed C ⊆ X and for every continuous f : C → ℝ there exists a
continuous function ̂f : X → ℝ such that ̂f C = f . Moreover, if |f(x)| ≤ M for some M > 0
and for all x ∈ A, then ̂f can be chosen so that | ̂f (x)| ≤ M for all x ∈ X.

1.3 Weak, Product, and Quotient Topologies

Let X and {Yi}i∈I be topological spaces and fi : X → Yi be continuous functions. From
Proposition 1.1.32 we see that if we strengthen (enrich) the topology on X, we preserve
the continuity of the fi’s. Thus it is natural to inquire what the smallest topology on X
is, which preserves the continuity of the fi’s. This leads to the notions of weak and
product topologies, which occur in a prominent position in many areas of analysis such
as functional analysis.

Definition 1.3.1. Let X be a nonempty set, let {(Yi , τi)}i∈I be a family of Hausdorff
topological spaces and let fi : X → Yi with i ∈ I be a family of functions. The weak
topology or initial topology on X generated by the family of functions {fi}i∈I is the
weakest topology on X that makes all fi’s continuous. The weak topology is denoted by
w(X, {fi}) or simply by w if X and {fi} are clearly understood.

Remark 1.3.2. Simple set theory reveals that the weak topology is generated, that is, it
has as subbasis, the sets of the form

{f−1i (V) : V ∈ τi , i ∈ I} . (1.3.1)

Recalling that to check continuity it suffices to consider the inverse image of subbasic
sets, another more economical subbasis is given by

{f−1i (V) : V ∈ Li , i ∈ I} (1.3.2)

with a subbasisLi for the topology τi. Then a basis for the weak topology is produced by
taking finite intersections of the sets above; see (1.3.1) and (1.3.2). An important special
case is when Yi = ℝ for all i ∈ I. This is the case of the weak topology in functional
analysis. Then the subbasic elements are of the form

U(x; f, ε) = {u ∈ X : |f(u) − f(x)| < ε}

with x ∈ X, f ∈ {fi} and ε > 0.

Proposition 1.3.3. A net {xα}α∈J converges to x for the weak topology, which is denoted
by xα

w
→ x, if and only if fi(xα)→ fi(x) for all i ∈ I.
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Proof. ⇒: This follows from Proposition 1.2.37, since each fi is w-continuous.
⇐: Let V = ⋂nk=1 f−1ik (Vik ) be a basic neighborhood of X where Vik ∈ τik . Since by

hypothesis fik (xα)→ fik (x), we can find αik ∈ J such that

xα ∈ f−1ik (Vik ) for all α ≥ αik . (1.3.3)

Since J is directed we can find α0 ≥ αik for all k ∈ {1, . . . , n}. Then xα ∈ V for all α ≥ α0
because of (1.3.3). This implies xα

w
→ x in X.

Proposition 1.3.4. If Z is another topological space and g : Z → X is a map, then g is
continuous for the weak topology on X if and only if fi ∘ g is continuous for all i ∈ I.

Proof. ⇒: From Proposition 1.1.36(a) we know that fi ∘ g is continuous for all i ∈ I.
⇐: Let U ⊆ X be weakly open. Then

U = ⋃
arbitrary

⋂
finite

f−1i (Vi) with Vi ∈ τi .

This gives

g−1(U) = ⋃
arbitrary

⋂
finite

g−1(f−1i (Vi)) = ⋃
arbitrary

⋂
finite
(fi ∘ g)−1(Vi) ,

which is open in Z, and thus g is continuous.

Consider X endowed with the weak topology w(X, {fi}). Suppose that A ⊆ X. Then we
can consider on A the subspace topology induced by w(X, {fi}). However, we can also
consider the weak topology w(A, {fiA}); see Proposition 1.1.36(b). It is natural to ask
what the relation is between these two topologies on A. It is easy to see that the two
topologies have the same convergent nets. This leads to the next result.

Proposition 1.3.5. If X is endowed with the weak topology w(X, {fi}) and A ⊆ X, then
w(X, {fi})A = w(A, {fi

A}).

As we already mentioned, an analyst requires that a topological space is at least
Hausdorff. So we need to know the conditions that guarantee that the weak topology is
Hausdorff.

Definition 1.3.6. Let X and {Yi}i∈I be sets and let fi : X → Yi be a family of functions.
We say that the family {fi}i∈I is separating (or total) if for every pair (x, u) ∈ X × X with
x ̸= u we can find i0 ∈ I such that fi0 (x) ̸= fi0 (u).

Proposition 1.3.7. If w(X, {fi}) is the weak topology on X, then w(X, {fi}) is Hausdorff if
and only if {fi}i∈I is separating.

Proof. ⇒: Arguing by contradiction, suppose that the family {fi}i∈I is not separating.
So, we can find a pair (x, u) ∈ X × X with x ̸= u such that fi(x) = fi(u) for all i ∈ I. Let
U ∈ Nw(x)whereNw(x) is the family of weak neighborhoods of x. Then we can find
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{fik }nk=1 ⊆ {fi}i∈I and Vik ∈ τik with k ∈ {1, . . . , n} such that

x ∈
n
⋂
k=1

f−1ik (Vik ) ⊆ U . (1.3.4)

Since fi(x) = fi(u) for all i ∈ I, we have

u ∈
n
⋂
k=1

f−1ik (Vik ) .

Due to (1.3.4) it follows u ∈ U. We infer that (X,w) is not Hausdorff, a contradiction.
⇐: As before, we proceed indirectly. Suppose that (X,w) is not Hausdorff. Then

according to Proposition 1.2.35 we can find a net {xα}α∈I ⊆ X such that

xα
w
→ x and xα

w
→ x̂ , x ̸= x̂ .

For every i ∈ I we have fi(xα) → fi(x) and fi(xα) → fi(x̂) in Yi, which is Hausdorff.
Hence, fi(x) = fi(x̂) for all i ∈ I, see Proposition 1.2.35. This means that the family {fi}i∈I
is not separating, a contradiction.

Next we derive some useful results concerning the weak topology. Let (X, τ) be a
Hausdorff topological space. We will use the following notations:
– C(X,ℝ) = {f : X → ℝ : f is continuous};
– Cb(X,ℝ) = {f : X → ℝ : f is bounded and continuous}.

Proposition 1.3.8. If (X, τ) is a Hausdorff topological space, then w(X, C(X,ℝ)) =
w(X, Cb(X,ℝ)).

Proof. Since Cb(X,ℝ) ⊆ C(X,ℝ) we infer that w(X, Cb(X,ℝ)) ⊆ w(X, C(X,ℝ)). So we
need to show that the opposite inclusion also holds. Let U be a subbasic open set in
w(X, C(X,ℝ)). Then we have

U(x; f, ε) = {u ∈ X : |f(u) − f(x)| < ε}

with x ∈ X, f ∈ C(X,ℝ) and ε > 0. Let

g(u) = min{f(x) + ε,max{f(x) − ε, f(u)}} .

Evidently we have g ∈ Cb(X,ℝ) and U(x; g, ε) = U(x; f, ε), which implies that
w(X, C(X,ℝ)) ⊆ w(X, Cb(X,ℝ)). This proves the assertion.

The next theorem characterizes completely regular spaces (see Definition 1.2.19) via the
weak topologies of the previous proposition.

Theorem 1.3.9. A Hausdorff topological space (X, τ) is completely regular if and only if
τ = w(X, C(X,ℝ)) = w(X, Cb(X,ℝ)).

Proof. ⇒: Let U ∈ τ and x ∈ U. Since X is completely regular, we can find f ∈ C(X,ℝ)
such that f(x) = 0 and f X\U = 1. Let V = {u ∈ X : f(u) < 1}. Then V is w(X, C(X,ℝ))-
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open, V ⊆ U, and x ∈ V. Therefore, U is w(X, C(X,ℝ))-open and so we infer that

τ ⊆ w(X, C(X,ℝ)) . (1.3.5)

From Definition 1.3.1 it is clear that we always have w(X, C(X,ℝ)) ⊆ τ. This along with
(1.3.5) and Proposition 1.3.8 yields τ = w(X, C(X,ℝ)) = w(X, Cb(X,ℝ)).
⇐: Let C ⊆ X be closed and x ̸∈ C. Then U = X \ C ∈ Nw(x) where Nw(x) is the

family of weak neighborhoods of x. So we can find V = ⋂ni=1{u ∈ X : |fi(u) − fi(x)| <
1}, fi ∈ C(X,ℝ) for all i ∈ {1, . . . , n}, such that x ∈ V ⊆ U. For each i ∈ {1, . . . , n}we
define gi(u) = min{1, |fi(u)− fi(x)|} and set g = max1≤i≤n gi. Obviously g : X → [0, 1] is
continuous and g(x) = 0 as well as gC = 1. This proves that X is completely regular.

A weak topology of special interest is the product topology. So, let {(Xi , τi)}i∈I be a
family of Hausdorff topological spaces. Let X = ∏i∈I Xi. The generic element x ∈ X is
denoted by x = (xi). For every i ∈ I let pi : X → Xi be defined by pi(x) = xi where pi is
the projection map in the i th=-component of the Cartesian product.

Definition 1.3.10. The product topology on X is the weak topology w(X, {pi}).

Remark 1.3.11. A basic element for the product topology has the form V = ∏i∈I Vi with
Vi ∈ τi for all i ∈ I and Vi = Xi for all but a finite number of i’s. In addition, note that
xα = (xαi ) → x = (xi) in X = ∏i∈I Xi if and only if xαi → xi for all i ∈ I. Note that if
Ai ⊆ Xi then∏i∈I Ai = ∏i∈I Ai and each projection map pi is open.

Proposition 1.3.12. X = ∏i∈I Xi with the product topology is Hausdorff.

Proof. Recall that each Xi is Hausdorff. Let x = (xi) ∈ X and u = (ui) ∈ X with x ̸= u.
Then we can find at least one i0 ∈ I such that xi0 ̸= ui0 . We can find Ui0 , Vi0 ∈ τi0 such
that xi0 ∈ Ui0 , ui0 ∈ Vi0 and Ui0 ∩ Vi0 = 0. Let U = p−1i0 (Ui0 ) and V = p

−1
i0 (Vi0 ). Then

both are open in the product topology and x ∈ U, u ∈ V and U ∩ V = 0. This implies
that X is Hausdorff with the product topology.

Proposition 1.3.13. If {(Xi , τi)}i∈I is a family of Hausdorff topological spaces, then X =
∏i∈I Xi endowed with the product topology is regular if and only if (Xi , τi) is regular for
each i ∈ I.

Proof. ⇒: Each Xi is homeomorphic to a slice of X = ∏i∈I Xi. Hence, the implication
follows from Proposition 1.2.10.
⇐: Let x = (xi) ∈ X = ∏i∈I Xi and let U be any subbasic neighborhood of x. Then

U = ∏i∈I Vi with Vi = Xi for all i ∈ I \ {i0}, Vi0 ∈ τi0 . Exploiting the regularity of Xi0 we
can findWi0 ∈ τi0 such that

xi0 ∈ Wi0 ⊆ W i0 ⊆ Vi0 , (1.3.6)

see Proposition 1.2.8. LetW = ∏i∈I Wi withWi = Xi for all i ∈ I \ {i0} andWi0 as above.
ThenW is open in the product topology and because of Remark 1.3.11 as well as (1.3.6),
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it follows that
x ∈ W ⊆ W =∏

i∈I
W i ⊆∏

i∈I
Vi = V .

This proves that X = ∏i∈I Xi is regular with the product topology; see Proposition 1.2.8.

The Cartesian product of normal spaces need not be normal. For a counterexample, see
Dugundji [91, p. 145]. However, we have the following result.

Proposition 1.3.14. If {(Xi , τi)}i∈I is a family of Hausdorff topological spaces and X =
∏i∈I Xi endowed with the product topology is normal, then (Xi , τi) is normal for each
i ∈ I.

Proof. Note that for each i ∈ I, Xi is homeomorphic to a slice of X = ∏i∈I Xi, which is
closed, and hence normal due to Proposition 1.2.15(a). Then the result follows from
Proposition 1.2.15(b).

Next we will consider the complementary situation to the one that led to the weak
topology. So, let X, Y be topological spaces and f : X → Y be a continuous map. If we
weaken the topology on Y we preserve the continuity of f . Hence, we want to identify
the largest topology on Y for which f remains continuous.

Definition 1.3.15. Let (X, τ) be a topological space, Y a set, and f : X → Y a surjection.
The quotient topology on Y induced by f is τq = {U ⊆ Y : f−1(U) ∈ τ}. When Y is
endowed with the quotient topology, then we say that f is a quotient map.

Remark 1.3.16. The quotient topology on Y makes f continuous and it is clearly the
largest topology on Y that does this.

Proposition 1.3.17. If (X, τX), (Y, τY ) are topological spaces and f : X → Y is supposed
to be a continuous, open surjection, then f is a quotient map, that is τY = τq.

Proof. By definition τY ⊆ τq. On the other hand, if U ∈ τq, then f−1(U) ∈ τX and since
f is open, we have U = f(f−1(U)) ∈ τY and so τq ⊆ τY . Therefore τY = τq.

Corollary 1.3.18. If {(Xi , τi)}i∈I are Hausdorff topological spaces and X = ∏i∈I Xi is
endowed with the product topology, then τi = τq for each i ∈ I.

Proof. Just recall that each projection map pi : X = ∏i∈I Xi → Xi is a continuous open
surjection.

Proposition 1.3.19. If (X, τX), (Y, τY ) are topological spaces and f : X → Y is supposed
to be a continuous, closed surjection, then f is a quotient map, that is τY = τq.

Proof. Recall that τY ⊆ τq. Let U ∈ τq. Then f−1(U) ∈ τX and so X \ f−1(U) =: C ⊆ X is
closed. Since f is closed, we have that f(C) ⊆ Y is τY -closed. Note that U = Y \ f(C) ∈ τY .
Hence τq ⊆ τY and we conclude that τY = τq.
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The next proposition gives a criterion to recognize when a function defined on a quotient
space is continuous.

Proposition 1.3.20. If (X, τX), (Y, τY ), and (Z, τZ) are topological spaces, f : X → Y is
a quotient map and g : Y → Z, then g is continuous if and only if g ∘ f is continuous.

Proof. ⇒: This follows from Proposition 1.1.36(a).
⇐: Let U ∈ τZ . Then (g ∘ f)−1(U) = f−1(g−1(U)) ∈ τX . Hence g−1(U) ∈ τY since f is

a quotient map, see Definition 1.3.15. This proves the continuity of g.

Now we will show that the whole topic of the quotient topology can be covered by
considering Y to be X/R with R being an equivalence relation; see Definition 1.2.30(b).
Suppose f : X → Y is a surjection and define the relation R ⊆ X × X by setting xRx if
and only if f(x) = f(x).

Let e(x) be the equivalence class for x. Evidently f e(x) is constant. Then the map
̂f : X/R → Y defined by ̂f (e(x)) = f(x) is actually well-defined and a bijection. Note
that if e(x) = e(x), then f(x) = f(x). In order to topologize X/R consider the standard
quotient map e : X → X/R and consider the quotient topology induced by e. Then we
have the following result.

Proposition 1.3.21. If X is a topological space, Y is a set, f : X → Y is a surjection and R
is the equivalence relation defined above, then X/R and Y are homeomorphic when both
are endowed with the quotient topology.

Remark 1.3.22. Instead of using the equivalence relation we may assume that X is
partitioned by a collection C of disjoint subsets. Then we define an equivalence relation
by setting xRu if and only if x, u are in the same element of C. Then we can consider
X/R. The simplest kind of quotient space can be obtained by the equivalence relation
R in which only one equivalence class has more than one element e(x0) = A and for
all other equivalence classes we have e(x) = {x}with x ∈ X \ A. Then X/R is denoted
by X/A and we obtain the quotient (identification) space by collapsing A to a single
element {x0}.

Example 1.3.23. (a) The quotient space of [0, 1] obtained by identifying 0 and 1 is
homeomorphic to a circle.

(b) The quotient space of I2 = [0, 1] × [0, 1] by identifying the boundary with a single
point is homeomorphic to a sphere inℝ3.

(c) The quotient space of I2 = [0, 1] × [0, 1] by identifying the points (0, x2) and
(1, 1 − x2) with 0 ≤ x2 ≤ 1 is homeomorphic to theMöbius strip.

(d) Let X = I2 = [0, 1] × [0, 1] and consider an equivalence relation R ⊆ X × X defined
as follows:

(x1, 0)R(x1, 1) for every 0 ≤ x1 ≤ 1 , (1.3.7)
(0, x2)R(1, x2) for every 0 ≤ x2 ≤ 1 . (1.3.8)
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Then the quotient space is realized in two steps and gives a space homeomorphic
to the torus. The first step is determined by (1.3.7), which produces a cylinder and
then in the second step determined by (1.3.8), where we identify the two bases of
the cylinder to generate the torus.

(e) If we replace (1.3.8) in the example above by

(0, x2)R(1, 1 − x2) for every 0 ≤ x2 ≤ 1 ,

then the resulting quotient space X/R is the Klein bottle .
(f) Let D ⊆ ℝ2 be the unit disc, that is, D = {(x1, x2) ∈ ℝ2 : x21 + x22 ≤ 1} and consider

the equivalence relation

xR(−x) for all ∂D = {(x1, x2) ∈ ℝ2 : x21 + x22 = 1} .

That means, diametrically opposite points are identified. Then the quotient space
D/R is called the projective plane and is denoted by P2. One can proceed similarly
to define Pn for any n ∈ ℕ0 as the space obtained from Sn = {x ∈ ℝn+1 : |x| = 1}
by identifying each point x with its antipode −x. The space Pn is known as the
projective n-space.

1.4 Connectedness and Compactness

The property of connectedness says that the space has only one piece. It is a very
important topological invariant with important applications in many other branches of
mathematics. It is not difficult to come up with a definition of this very intuitive notion.

Definition 1.4.1. Let X be a topological space. A separation of X is a pair (U, V) of
disjoint, nonempty, open sets of X such that X = U ∪ V. If such a separation exists, we
say that the space is disconnected. If there is no such separation for X, then we say
that the space is connected. A set A ⊆ X is connected, if it is a connected space when
endowed with the subspace topology. Note that in a separation the two sets are both
open and closed. We say that they are clopen.

Example 1.4.2. (a) The space (ℝ, τu), see Remark 1.2.23, is disconnected and the sets

{x ∈ ℝ : x > λ} and {x ∈ ℝ : x ≤ λ}

with λ ∈ ℝ form a separation ofℝ.
(b) The rationalsℚwith the relative Euclidean topology form a disconnected space.

The sets
{x ∈ ℝ : x > π} ∩ℚ and {x ∈ ℝ : x < π} ∩ℚ

form a separation ofℚ.
(c) A discrete space that is not a singleton is disconnected and the empty set is

disconnected since there are no open sets to form a separation of it.
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(d) ℝ \ {0} is disconnected since (−∞, 0) and (0, +∞) form a separation. Similarly,
ℝ2 \ℝ is disconnected and we can have a separation using the sets

U = {(x1, x2) ∈ ℝ : x2 > 0} and V = {(x1, x2) ∈ ℝ : x2 < 0} .

Here, U is called the upper half plane and V is said to be the lower half plane.
(e) ℝ, endowed with the Euclidean topology, is connected. To show this we argue

by contradiction. So, suppose thatℝ is disconnected and (U, V) is a separation
ofℝ. Let x ∈ U and y ∈ V and assume without loss of generality that x < y. Then
Û = U ∩ [x, y] is closed and bounded in ℝ. Hence, û = sup Û ∈ Û. Furthermore,
û ̸∈ V since U and V are disjoint. Therefore û < y and (û, y] ⊆ V. Thus, û ∈ V and so
û ∈ V. It follows that û ∈ U∩V, a contradiction. This proves the connectedness ofℝ.

Remark 1.4.3. From the examples 1.4.2(b) and (e) we see that connectedness is not a
hereditary property.

Proposition 1.4.4. The connected subsets ofℝ are singletons and intervals (open, closed,
or half-open).

Proof. Clearly singletons are connected. In addition, the argument in Example 1.4.2(e)
shows that intervals are connected. It remains to show if A ⊆ ℝ is connected, then A
is an interval. If A is not an interval, then we can find x, y ∈ A and u ̸∈ A such that
x < u < y. Then U = A ∩ {v ∈ ℝ : v < c} and V = A ∩ {v ∈ ℝ : v > c} are a separation of
A, a contradiction.

Proposition 1.4.5. Let X be a topological space. The following statements are equivalent:
(a) X is disconnected.
(b) There is a nonempty, proper subset of X, which is both open and closed.
(c) There is a continuous function from X into the two-point space {a, b}.
(d) X has a nonempty, proper subset A such that A ∩ (X \ A) = 0.

Proof. (a) ⇒ (b): Since X is disconnected, it admits a separation (U, V). Then U as
well as V are nonempty clopen.

(b)⇒ (a): Suppose A is a proper, nonempty subset of X that is clopen. Let C = X\A.
Then (A, C) is a separation of X and so X is disconnected.

(a) ⇒ (c): Let (U, V) be a separation of X. Then the function f : X → {a, b} defined
by

f(x) =
{
{
{

a if x ∈ U ,
b if x ∈ V

is continuous.
(c) ⇒ (a): Since f : X → {a, b} is continuous, then U = f−1(a) and V = f−1(b) are

disjoint, open sets in X such that X = U ∪ V. So, (U, V) is a separation of X and we
conclude that X is disconnected.

(a)⇒ (d): Let (U, V) be a separation of X. ThenU∩V = U∩V = 0. SoU∩(X \ U) = 0.
(d) ⇒ (a): We have that A and (X \ A) are disjoint, closed sets whose union is X.

Hence A and (X \ A) are also open and form a separation of X.
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Corollary 1.4.6. Let X be a topological space. The following statements are equivalent:
(a) X is connected.
(b) The only subsets of X that are open and closed are 0 and X.
(c) There is no continuous function from X onto the two-point space {a, b}.
(d) X has no nonempty, proper subset A such that A ∩ (X \ A) = 0.

Proposition 1.4.7. If X, Y are topological spaces, X is connected and f : X → Y is
continuous, then f(X) is connected.

Proof. Since f : X → f(X) is continuouswemay assume that f is a continuous surjection.
Arguing by contradiction, suppose that Y = f(X) is disconnected and let (U, V) be a
separation of Y. Then f−1(U) and f−1(V) are disjoint, open sets in X such that X =
f−1(U) ∪ f−1(V). Hence X is disconnected, a contradiction.

Remark 1.4.8. The last proposition gives at once that all open intervals inℝ are con-
nected. Indeed recall that every open interval is homeomorphic to ℝ and that ℝ is
connected; see Example 1.4.2(e).

If on a connected set A we adjoin some of its limit points we preserve connectedness.

Proposition 1.4.9. If X is a topological space, A ⊆ X is connected and A ⊆ C ⊆ A, then C
is connected.

Proof. Arguing by contradiction, suppose that C is disconnected. Hence by Propo-
sition 1.4.5, there exists a continuous surjection f : C → {0, 1}. Since A is connected
from Corollary 1.4.6 we have that f(A) = {0} or f(A) = {1}. To fix things assume that
f(A) = {0}. From Proposition 1.1.35 we have f(A) ⊆ f(A) = {0}. Hence, f(C) = {0}, a
contradiction.

Corollary 1.4.10. If X is a topological space and A ⊆ X is connected, then A is connected
as well.

Another useful result in determining whether or not a given subset is connected, is the
following one.

Proposition 1.4.11. If (X, τ) is a topological space and A ⊆ X, then A is disconnected if
and only if there exist open sets U, V ∈ τ such that

U ∩ A ̸= 0 , V ∩ A ̸= 0 , U ∩ V ∩ A = 0 , and A ⊆ U ∪ V .

Proof. ⇒: We have A = Û ∪ V̂ with Û, V̂ ∈ τ(A) with the subspace topology τ(A) and

Û = U ∩ A as well as V̂ = V ∩ A with U, v ∈ τ .

Then we can easily check that U and V have the desired properties.
⇐: Let Û = U ∩ A ̸= 0 and V̂ = V ∩ A ̸= 0. We have that Û, V̂ ∈ τ(A) and they are

disjoint with A = Û ∪ V̂. Therefore, A is disconnected.
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It is obvious that connectedness is not preserved by arbitrary unions. Additional
restrictions are needed.

Proposition 1.4.12. If X is a topological space and {Ai}i∈I is any family of connected
subsets of X such that⋂i∈I Ai ̸= 0, then⋃i∈I Ai is connected.

Proof. Let C = ⋃i∈I Ai. Suppose that C is disconnected. Then by Proposition 1.4.5 we can
find a continuous map f : C → {0, 1}. Since each Ai is connected, f Ai is not surjective
for all i ∈ I. Let x0 ∈ ⋂i∈I Ai. Then f(x) = f(x0) for all x ∈ Ai and for all i ∈ I. So, f is not
surjective, a contradiction.

Connectedness is preserved by arbitrary Cartesian products.

Proposition 1.4.13. If {Xi}i∈I is an arbitrary family of nonempty, connected topological
spaces, then X = ∏i∈I Xi, endowed with the product topology, is connected as well.

Proof. Arguing by contradiction, suppose that X is disconnected. So there is a con-
tinuous map f : X → {0, 1}. Fix u = (ui)i∈I ∈ X and let i1 ∈ I. We define fi1 : Xi1 → X
by setting fi1 (xi) = y = (yi)i∈I with yi = ui for i ̸= i1 and yi1 = xi1 . Evidently fi1 is
continuous, which implies the continuity of f ∘ fi1 : Xi1 → {0, 1}. By hypothesis, Xi1
is connected. So, f ∘ fi1 is constant and (f ∘ fi1 )(xi1 ) = f(u) for every xi1 ∈ Xi1 . Hence
f(x) = f(u) for all x ∈ X, which are equal to u except for the i1-component. We repeat
this process with another index i2 ∈ I. Continuing this way we see that f(x) = f(u) for
all x ∈ X, which are equal to u except on a finite number of coordinates. This set is
dense in X and so by Proposition 1.1.35(b), f is constant, a contradiction. This proves
that X is connected.

Corollary 1.4.14. The spaceℝn with n ∈ ℕ is connected.

Example 1.4.15. Let A = {(0, y) ∈ ℝ2 : 0 ≤ y ≤ 1} and C = {(x, y) ∈ ℝ2 : 0 < x ≤ 1, y =
sin π/x}. Evidently C is connected because of Propositions 1.4.7 and 1.4.13. Furthermore,
S = C = A ∪ C is connected; see Corollary 1.4.10. The set S is known as the topologist’s
sine curve.

Remark 1.4.16. It is clear that intersection of even two connected spaces need not be
connected. Furthermore, suppose that {An}n∈ℕ is a decreasing sequence of connected
spaces. Then⋂n≥1 An need not be connected. To see this, let X = I2 \ {(x, 0) : 1/2 ≤ x ≤
2/3} with I = [0, 1] and An = {(x, y) ∈ X : y ≤ 1/n} with n ∈ ℕ.

A disconnected space can be decomposed in a unique way into connected components
and the number of components can be viewed as an indication of how disconnected
the space is.

Definition 1.4.17. A component of a topological space X is a maximal connected
subset C of X. That is, C is connected and it is not properly contained in a connected
subset of X.
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Remark 1.4.18. A component is necessarily closed. Indeed, from Corollary 1.4.10 we
know that C is connected. The maximality of C implies that C = C. Hence, C is closed.
The family of distinct components of X form a partition of X. To see this, note if C, C are
two distinct components of X and C ∩ C ̸= 0, then from Proposition 1.4.12 we have that
C ∪ C is connected, contradicting the maximality of the components. Moreover, for the
same reason, each x ∈ X belongs in a unique component. Given x ∈ X let C(x) denote
the component of X containing x. Then, for points x, u ∈ X, C(x) and C(u) are either
identical or disjoint. Every connected subset of X is contained in one component and X
is connected if and only if it has only one component. Finally if {U, V} is a separation of
X and C is a component of X, then C ⊆ U or C ⊆ V.

Taking into account the remarks above and Proposition 1.4.19, we infer the following
result.

Proposition 1.4.19. If X, Y are topological spaces and f : X → Y is continuous, then the
image of each component of X lies in a component of Y .

Remark 1.4.20. In particular, a homeomorphism f induces a 1-1 correspondence
between the components of X and Y with C(x) being homeomorphic to C(f(x)) for all
x ∈ X.

Definition 1.4.21. (a) A topological space X is totally disconnected provided that
each component of X is a singleton.

(b) A point x ∈ X is a cut point of a connected topological space X provided that
X \ {x} is disconnected. We say that x ∈ X is an n-cut point provided that X \ {x}
has n-components.

From Proposition 1.4.19 it follows the following result.

Proposition 1.4.22. Homeomorphic spaces have the same number of cut points of each
type.

From an analytical point of view, the notion of path-connectedness is more natural.
Path-connectedness is a topological property stronger than connectedness and it is
useful in many applications. It is a very intuitive notion that in a path-connected space
any two distinct points can be joined by a continuous path in the space.

Definition 1.4.23. (a) A path in a topological space X is a continuousmap σ : [0, 1]→
X. We say that σ(0) is the initial point of the path and σ(1) is the final point of
the path. The set σ([0, 1]) ⊆ X is called a curve in X. If σ is a path in X, then
σ(t) = σ(1 − t) for all t ∈ [0, 1] is the reverse path.

(b) A topological space X is said to be path-connected provided that for each pair of
points x, u ∈ X there is a path in X with initial point x and final point u. A subset C
of X is path-connected if C has this property for the subspace topology.

The next proposition compares connectedness and path-connectedness.
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Proposition 1.4.24. Every path-connected topological space is connected.

Proof. Suppose that X is path-connected and let u ∈ X. For each x ∈ X, let σx be the
path in X with initial point u and final point x. Let Cx = σx([0, 1]) be the corresponding
curve. From Proposition 1.4.7 we know that Cx ⊆ X is connected. Note that u ∈ ⋂x∈X Cx.
So, from Proposition 1.4.12, it follows that⋃x∈X Cx = X is connected.

Remark 1.4.25. The converse of the above is not true in general. As a counterexample,
consider the topologist’s sine curve S = A ∪ C introduced in Example 1.4.15. Then
S is connected but not path-connected. To prove that S is not path-connected, we
show that it is not possible to join a point in A to a point in C by a path in S. To this
end, let a ∈ A and let σ : [0, 1] → X be a path with initial point a. Note that A is
closed in S (see Proposition 1.1.27), and so σ−1(A) ⊆ [0, 1] is closed and nonempty,
since 0 ∈ σ−1(A). Let t ∈ σ−1(A) and choose a small ε > 0 such that σ((t − ε, t + ε)) ⊆
B1/2(σ(t)) = {u ∈ ℝ2 : |u − σ(t)| ≤ 1/2}, which is possible since σ is continuous. Note
that S ∩ B1/2(σ(t)) consists of a closed interval on the y-axis ofℝ2 together with parts of
the curve y = sin(π/x), each of which is homeomorphic to a closed interval. Moreover,
any two of these parts are disjoint in S ∩ B1/2(σ(t)). So A ∩ B1/2(σ(t)) is a component
of S ∩ B1/2(σ(t)). Since σ(t) ∈ A ∩ B1/2(σ(t)) and (t − ε, t + ε) is connected, we must
have σ((t − ε, t + ε)) ⊆ A ∩ B1/2(σ(t)). This shows that σ−1(A) ⊆ [0, 1] is open. Hence
σ−1(A) = [0, 1] being both closed and open. So, σ([0, 1]) ⊆ A and this proves that S
cannot be path-connected.

Proposition 1.4.26. If X is a topological space and u ∈ X, then X is path-connected if
and only if each x ∈ X can be joined to u by a path.

Proof. ⇒: This is obvious.
⇐: Let x, x ∈ X and consider the paths σ, σ : [0, 1]→ X such that σ has initial

point x and final point u as well as σ having initial point u and final point x. We define
σ̂ : [0, 1]→ X by

σ̂(t) =
{
{
{

σ(2t) if t ∈ [0, 12 ] ,
σ(2t − 1) if t ∈ [12 , 1] .

This is a continuous path since σ(1) = σ(0) = u; see Proposition 1.1.37. Moreover,
σ̂(0) = x and σ̂(1) = x. Therefore, X is path-connected.

Definition 1.4.27. Let σ1, σ2 be two paths in X such that σ1(t) = σ2(0). The path
composition of σ1 and σ2 denoted by σ1 ∗ σ2 is the path in X defined by

(σ1 ∗ σ2)(t) =
{
{
{

σ1(2t) if t ∈ [0, 12 ] ,
σ2(2t − 1) if t ∈ [12 , 1] .

The next result is a straightforward consequence of Definition 1.4.23(b) and of Proposi-
tion 1.1.36(a).
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Proposition 1.4.28. If X, Y are topological spaces, X is path-connected, and f : X → Y
is continuous, then f(X) is path-connected.

Remark 1.4.29. It follows that path-connectedness is a topological invariant. In contrast
to connectedness, see Corollary 1.4.10, the closure of a path-connected set need not be
path-connected. We consider the topologist’s sine curve from Example 1.4.15. We have
S = C and C is path-connected; see Proposition 1.4.28. However, we proved that S is not
path-connected; see Remark 1.4.25.

Many results about connectedness have analogues for path connectedness.

Proposition 1.4.30. If X is a topological space and {Ai}i∈I is any family of path-connected
subsets of X such that⋂i∈I Ai ̸= 0, then⋃i∈I Ai is path-connected.

Proof. Let x ∈ ⋃i∈I Ai and pick u ∈ ⋂i∈I Ai. Since x ∈ Ai0 for some i0 ∈ I, we can join x
and u by a path in X since Ai0 is path-connected. Proposition 1.4.26 implies that⋃i∈I Ai
is path-connected.

Proposition 1.4.31. If {Xi}i∈I is an arbitrary family of nonempty, path-connected topo-
logical spaces, then X = ∏i∈I Xi endowed with the product topology is path-connected as
well.

Proof. Let x = (xi), u = (ui) ∈ X. For each i ∈ I, Xi is path-connected so we can find a
path σi with initial point xi and final point ui. Then σ = (σi) is a path in X joining x and
u; see Proposition 1.3.4. Hence, X is path-connected as well.

Definition 1.4.32. A path component of a topological space is a maximal path-
connected subset C of X. That is, C is path-connected and it is not properly contained
in a path-connected subset of X.

Remark 1.4.33. Path components have almost the same properties as components.
So every x ∈ X belongs to exactly one path component denoted by P(x). If x ̸= x, then
P(x) ∩ P(x) = 0 or P(x) = P(x). Every path-connected set C ⊆ X is contained in a path
component and X is path-connected if and only if X has only one path component. Note
that we said almost the same properties. The reason for this, in contrast to components,
is that path components need not be closed. Consider the topologist’s sine curve
S = A ∪ C, see Example 1.4.15. Then A and C are the path components of S but C is
not closed; recall that C = S. A path component of X is a subset of some component
of X.

Connectedness and path-connectedness are global topological properties since they
concern the whole topological space. Local topological properties concern the structure
of the space near a particular point, if we recall the notion of first countability; see
Definition 1.2.20(a). In the next definition we provide local versions of the notions of
connectedness and of path-connectedness.
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Definition 1.4.34. A topological space X is said to be locally connected (resp. locally
path-connected) if for every x ∈ X and every U ∈ N(x) we can find a connected
(resp. path-connected) V ∈ N(x) such that V ⊆ U.

Remark 1.4.35. Equivalently X is locally connected (resp. locally path-connected) if
and only if every x ∈ X has a local basis consisting of connected (resp. path-connected)
sets. A space can be connected (resp. path-connected) without being locally connected
(resp. locally path-connected). Consider the topologist’s sine curve (see Example 1.4.15),
which is connected but not locally connected. Of course local connectedness (resp. local
path-connectedness) does not imply connectedness (resp. path-connectedness). Con-
sider the union of two disjoint, closed balls inℝN .

Proposition 1.4.36. A topological space X is connected if and only if for each open set
U ⊆ X each component of U is open.

Proof. ⇒: Let C be a component of the open set U ⊆ X. Given x ∈ C we can find a
connected open set Vx ⊆ U with x ∈ Vx. We have Vx ⊆ C and since x ∈ C was arbitrary,
we conclude that C is open.
⇐: Let x ∈ X and let U ∈ N(x). Then by hypothesis the component C of U

containing x is open and so X is locally connected.

Corollary 1.4.37. If a topological space X is locally connected then every component of
X is open (and closed).

Proposition 1.4.38. If X is a topological space, then the following statements are equiva-
lent:
(a) Every path component of X is open, hence closed as well.
(b) Every point of X has a path-connected neighborhood.

Proof. (a) ⇒ (b): Let x ∈ X and let C(x) be the path component containing x. By
hypothesis C(x) is open and so X is locally path-connected.

(b) ⇒ (a): Let C be a path component and x ∈ C. By hypothesis we can find a
path-connected U ∈ N(x). Hence, U ⊆ C and since x ∈ C is arbitrary we conclude that
C is open. Note that X \ C is the union of the remaining open path components, as we
just proved, and it is open, so C is closed.

We saw that path-connectedness is stronger than connectedness; see Proposition 1.4.24.
The next proposition provides conditions for the two notions to be equivalent.

Proposition 1.4.39. A topological space X is path-connected if and only if X is connected
and every x ∈ X has a path-connected neighborhood.

Proof. ⇒: This follows from Proposition 1.4.24 and the fact that X is a neighborhood
of every x ∈ X, and by hypothesis it is path-connected.
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⇒: According to Proposition 1.4.38 every path component of X is open and closed
in X. Since X is connected, it follows that it has only one path component, and hence X
is path-connected.

Corollary 1.4.40. An open subset ofℝn is connected if and only if it is path-connected.

Remark 1.4.41. The corollary above fails for nonopen sets in ℝn. To see this, consider
the topologist’s sine curve.

Now we pass to another fundamental topological notion, namely the notion of com-
pactness. This concept is an abstraction to general topological spaces of a property of
closed and bounded intervals, cf. the Heine–Borel Theorem. Compactness does not
mean only small in size. It is more than that. For example the intervals [0, 1] and (0, 1)
have the same size but [0, 1] is compact while (0, 1) is not. Compactness is important
in analysis since it combines well with continuity.

Definition 1.4.42. Let X be a Hausdorff topological space. We say that X is compact
if every open cover admits a finite subcover; see Definition 1.2.26. A subset A ⊆ X is
compact provided A, endowed with the relative subspace topology, is compact.

Remark 1.4.43. Since compact subsets of a non-Hausdorff space need not be closed (a
rather awkward situation), we have included in the definition of compactness that X is
Hausdorff. Since relatively open sets in A are of the form U ∩ A with U ⊆ X open, the
definition of compactness of A ⊆ X takes the following form: “A ⊆ X is compact if and
only if every open cover of A by open sets in X admits a finite subcover.”

Definition 1.4.44. Let X be a set and L ⊆ 2X \ {0}. We say that L has the finite inter-
section property if every finite subcollection of L has a nonempty intersection.

Proposition 1.4.45. Let X be a Hausdorff topological space. The following statements
are equivalent:
(a) X is compact.
(b) Every family of nonempty, closed subsets of X with the finite intersection property

has a nonempty intersection.
(c) Every net in X has a convergent subnet in X.

Proof. (a) ⇒ (b): Let L be a family of nonempty, closed subsets of X with the finite
intersection property. If⋂C∈L C = 0, then X = ⋃C∈L(X \ C) and so {X \ C}C∈L is an open
cover of X. The compactness of X implies that we can find a finite subcover such that
X = ⋃nk1 (X \ Ck) with n ∈ ℕ. Then⋂

n
k=1 Ck = 0, contradicting the fact that L has the

finite intersection property.
(b) ⇒ (a): LetD be an open cover of X. Then X = ⋃U∈D U and so ⋂U∈D(X \ U)

= 0. This means that the finite intersection property does not hold for the collection
{X \ U}U∈D and so we can find {Uk}nk=1 ⊆ D such that ⋂nk=1(X \ Uk) = 0. Hence, X =
⋃nk=1 Uk and so we conclude that X is compact.
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(b) ⇒ (c): Let {xi}i∈I be a net in X. Let Aα = {xi}i≥α with α ∈ I. Then {Aα}α∈I
is a family of nonempty, closed subsets of X with the finite intersection prop-
erty. So, by hypothesis we can find x ∈ ⋂α∈I Aα. Evidently, x is a cluster point of
{xi}i∈I . So, using Proposition 1.2.36 we can find a subnet of {xi}i∈I converging to
x ∈ X.

(c) ⇒ (b): Let L be a family of nonempty, closed subsets of X with the finite
intersection property. Let F be the family of all finite intersections of members of L.
Then F has the finite intersection property and since L ⊆ F it suffices to show that
⋂D∈F D ̸= 0. Since the intersection of two elements in F is again an element of F,
we see that F is directed. Let xD ∈ D with D ∈ F. Then {xD}D∈F ⊆ X is a net and so
by hypothesis it has a cluster point x. Then x ∈ D for all D ∈ F and so ⋂D∈F D ̸= 0.

Proposition 1.4.46. If X is a compact topological space and C ⊆ X is closed, then C is
compact.

Proof. Let L be a cover of C by sets open in X. Then L0 = L ∪ (X \ C) is an open cover
of X. Since X is compact, L0 has a finite subcover {Uk , X \ A}nk=1 with Uk ∈ L. Then
C ⊆ ⋃nk=1 Uk and so C is closed; see Remark 1.4.43.

Proposition 1.4.47. If X is a Hausdorff topological space and C ⊆ X is compact, then C
is closed.

Proof. Let {xi}i∈I ⊆ C be a net such that xi → x. Since X is compact, we can find a
subnet {uα}α∈I such that uα → x ∈ C; see Propositions 1.4.45 and 1.2.40. Therefore, we
conclude that C ⊆ X is compact.

Corollary 1.4.48. If X is a compact topological space and A ⊆ X, then A is compact if
and only if A is closed.

Proposition 1.4.49. If X is Hausdorff topological space and K1, K2 are compact, disjoint
subsets of X, then we can find open U, V ⊆ X such that K1 ⊆ U, K2 ⊆ V and U ∩ V = 0.

Proof. First assume that K1 = {u} is a singleton. Then for each x ∈ K2 we can find open
sets Ux , Vx ⊆ X such that u ∈ Ux , x ∈ Vx and Ux ∩ Vx = 0 because X is Hausdorff. Then
{Vx}x∈K2 is an open cover of K2. The compactness of K2 implies that we can find a finite
subcover {Vxk }nk=1. Let

U =
n
⋂
k=1

Uxk and V =
n
⋃
k=1

Vxk .

Both are open sets in X, u ∈ U and K2 ⊆ V. So, we have proven the proposition when
K1 is a singleton.

Now consider the case of a general compact set K1 ⊆ X. From the previous part
of the proof we know that for every u ∈ K1 we can find open Uu , Vu ⊆ X such that
u ∈ Uu , K1 ⊆ Vu and Uu ∩ Vu = 0. Note that {Uu}u∈K1 is an open cover of K1 and so by
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the compactness we can find a finite subcover {Uuk }nk=1. Set

U =
n
⋃
k=1

Uxk and V =
n
⋂
k=1

Vxk .

Then both are open sets in X, K1 ⊆ U, K2 ⊆ V and U ∩ V = 0.

Corollary 1.4.50. A compact topological space is normal.

The next result is one of the main theorems on compactness.

Theorem 1.4.51. If X, Y are Hausdorff topological spaces, K ⊆ X is compact, and f : X →
Y is continuous, then f(K) ⊆ Y is compact.

Proof. Let {Vi}i∈I be an open cover of f(K). Then {f−1(Vi)}i∈I is an open cover of K.
The compactness of K implies the existence of a finite subcover {f−1(Vik )}nk=1, that is
K ⊆ ⋃nk=1 f−1(Vik ). Hence

f(K) ⊆ f (
n
⋃
k=1

f−1(Vik )) =
n
⋃
k=1

f(f−1(Vik )) ⊆
n
⋃
k=1

Vik .

Therefore, f(K) is compact.

In ℝ the compact sets are closed and bounded; see the Heine–Borel Theorem. So,
Theorem 1.4.51 yields the following result known as the “Weierstraß-Theorem.”

Theorem 1.4.52 (Weierstraß Theorem). If X is a compact topological space and f : X →
ℝ is continuous, then there exist x0, x̂ ∈ X such that

f(x0) = inf[f(x) : x ∈ X] and f(x̂) = sup[f(x) : x ∈ X] .

Remark 1.4.53. In addition, Theorem 1.4.51 implies that compactness is a topological
property.

Theorem 1.4.54. If X, Y are Hausdorff topological spaces, X is compact and f : X → Y
is a continuous bijection, then f is a homeomorphism.

Proof. Let C ⊆ X be closed. Then C is compact because of Corollary 1.4.48. Taking into
account Theorem 1.4.51, we conclude that f(C) ⊆ Y is compact, hence closed as well;
see Proposition 1.4.47. Therefore, f is a closed function and then by Proposition 1.1.42, f
is a homeomorphism.

Compactness is preserved by Cartesian products. This is the celebrated “Tychonoff’s
Product Theorem.” To prove this result, we need some preliminary material. First we
present three statements of set theory that are equivalent.

Axiom of Choice: Let K be any set-valued map on a set X such that K(x) ̸= 0 for all
x ∈ X. Then there is a function k on X such that k(x) ∈ K(x) for all x ∈ X.
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Zorn’s Lemma: Let (X, ≤) be a partially ordered set such that for every chain C ⊆ X
there is an upper bound û ∈ X, that is, x ≤ û for all x ∈ C. Then X has a maximal
element, that is, there exists x0 ∈ X such that there is no v ∈ X with x0 < v; see
Definition 1.2.30(c).

Hausdorff Maximal Principle: For every partially ordered set (X, ≤) there is a maxi-
mal chain C ⊆ X.

Lemma 1.4.55. If (X, τ) is a Hausdorff topological space andL0 is a collection of subsets
of X with the finite intersection property, then there exists a maximal collection L of
subsets of X with the finite intersection property and containing L0. Moreover, finite
intersections of elements in L are again in L and every subset of X intersecting every set
in L is in L.

Proof. The family of all collections of sets in X with the finite intersection property
and containing L0 is partially ordered by inclusion. Therefore, the Hausdorff Maximal
Principle implies the existence of a maximal chain C. Let L = ⋃a∈C a.

Let {Ak}nk=1 ⊆ L. It belongs to at most n-collections ak and {ak}nk=1 is linearly
ordered. So, there is a collection an that contains the others. Hence, Ak ∈ an for all
k = 1, . . . , n and⋂nk=1 Ak ̸= 0 because of the finite intersection property. Thus, L has
the finite intersection property. Note again that L is maximal.

Let L be the collection of all finite intersections of sets in L. Then L0 ⊆ L and it
has the finite intersection property. Hence, by maximality L = L.

Finally, let A ⊆ X be such that A ∩ D ̸= 0 for all D ∈ L. Then the collection
L = L ∪ {A} has the finite intersection property and contains L0. Therefore, by the
maximality, A ∈ L.

We will use this lemma to prove “Tychonoff’s Product Theorem.”

Theorem 1.4.56 (Tychonoff’s Product Theorem). If {(Xi , τi)}i∈I are compact topological
spaces, then X = ∏i∈I Xi endowed with the product topology is compact.

Proof. Let L0 be a collection of closed sets in X with the finite intersection property
and let L be the maximal collection postulated by Lemma 1.4.55. Note that while the
elements of L0 are closed, those of L need not be closed. We will show that

⋂
D∈L

D ̸= 0 . (1.4.1)

For each i ∈ I, let Li be the i-projection of L, that is, Li = {pi(D) : D ∈ L}. The
elements of this collection need not be open nor closed. However, since L has the
finite intersection property, it follows that so does Li. Then Li = {pi(D) : D ∈ L}
has a nonempty intersection; see Proposition 1.4.45. Let xi ∈ ⋂D∈L pi(D) ⊆ Xi and
x = (xi) ∈ X. We claim that x ∈ D for all D ∈ L.
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Let U ∈ N(x). Then from the definition of the product topology we know that we
can find i1, . . . , in ∈ I, and Uik ∈ τik with k = 1, . . . , n such that

x ∈
n
⋂
k=1

p−1ik (Uik ) ⊆ U .

Note that xik ∈ Uik ∩ Lik , hence Uik ∩ Lik ̸= 0. Therefore, p−1ik (Uik ) ∩ L ̸= 0. Thus,
Lemma 1.4.55 implies that p−1ik (Uik ) ∈ L. Hence⋂

n
k=1 p
−1
ik (Uik ) ∈ L. We conclude that

(1.4.1) holds and this implies that X is compact; see Proposition 1.4.45.

Let us now introduce some generalizations of the notion of compactness.

Definition 1.4.57. Let (X, τ) be a Hausdorff topological space.
(a) We say that X is countably compact if every countable open cover has a finite

subcover.
(b) We say that X is limit point compact (or that is has the Bolzano–Weierstraß

property) if every sequence {xn}n≥1 ⊆ X has at least one cluster point.
(c) We say that X is sequentially compact if every sequence has a τ-convergent

subsequence.

Remark 1.4.58. Clearly, “Compactness” implies “Countable Compactness” and “Se-
quential Compactness” implies “Limit Point Compactness.” In general both implications
are not reversible.

Combining Definition 1.4.57 and Proposition 1.4.45 gives the following result.

Proposition 1.4.59. A Hausdorff topological space (X, τ) is countably compact if and
only if every countable family of closed sets with the finite intersection property has a
nonempty intersection.

Proposition 1.4.60. A Hausdorff topological space (X, τ) is countably compact if and
only if it is limit point compact.

Proof. ⇒: Let {xn}n≥1 ⊆ X and define Am = {xn}n≥m with m ∈ ℕ. Then {Am}m≥1 are
closed sets with the finite intersection property. So,⋂m≥1 Am ̸= 0 by Proposition 1.4.59.
Any x ∈ ⋂m≥1 Am ̸= 0 is a cluster point of the sequence. Therefore, X is limit point
compact.
⇐: Let {Cn}n≥1 be closed sets in X with the finite intersection property. Let xn ∈

⋂nk=1 Ck with n ∈ ℕ. The limit point compactness of X implies that {xn}n≥1 has at least
one cluster point x. Then x ∈ {xn}n≥1 ⊆ ⋂n≥1 Cn = ⋂n≥1 Cn ̸= 0. Using Proposition 1.4.59,
this implies that X is countably compact.

Corollary 1.4.61. “Sequential Compactness” implies “Countable Compactness.”

The reverse assertion is true under some additional assumptions.

Proposition 1.4.62. If (X, τ) is a Hausdorff topological space that is first countable and
countably compact, then X is sequentially compact.
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Proof. Let {xn}n≥1 ⊆ X and x ∈ {xn}n≥1. Let {Uk}k∈ℕ ⊆ N(x) such that Uk+1 ⊆ Uk for all
k ∈ ℕ. Recall that X is first countable. Choose xm ∈ Um ∩ {xn}n≥1 with m ∈ ℕ. Then
{xm}m≥1 is a subsequence of {xn}n≥1 τ-converging to x. Therefore, X is sequentially
compact.

This proposition together with Lindelöf’s Theorem (see Theorem 1.2.27), gives the
following result.

Theorem 1.4.63. If (X, τ) is a Hausdorff topological space that is second countable, then
the following statements are equivalent:
(a) X is compact.
(b) X is countably compact.
(c) X is limit point compact.
(d) X is sequentially compact.

Next we introduce a modification of compactness to a local property.

Definition 1.4.64. A Hausdorff topological space (X, τ) is said to be locally compact
if for every x ∈ X there exists U ∈ N(x) such that U is compact.

Remark 1.4.65. A set A ⊆ X such that A is compact is said to be relatively compact
(or precompact). The space ℝN with the Euclidean topology is locally compact but
not compact. Recall the Heine–Borel Theorem, which says that A ⊆ ℝN is compact if
and only if A is closed and bounded. Bounded means that there exists r > 0 such that
A ⊆ Br = {u ∈ ℝN : |u| ≤ r}.

Proposition 1.4.66. Let (X, τ) be a Hausdorff topological space. The following state-
ments are equivalent:
(a) X is locally compact.
(b) For every x ∈ X and every U ∈ N(x) there is a relatively compact V ∈ N(x) such that

x ∈ V ⊆ V ⊆ U.
(c) For every compact K and U ∈ τ such that U ⊇ K, there exists a relatively compact

V ∈ τ such that K ⊆ V ⊆ V ⊆ U.
(d) X has a basis consisting of relatively compact open sets.

Proof. (a) ⇒ (b): Let x ∈ X and U ∈ N(x). Taking into account the local compactness
of X we find W ∈ N(x) such that W is compact. Corollary 1.4.50 implies that W en-
dowed with the relative topology is regular. ThenW ∩ U is a neighborhood of x inW.
Proposition 1.2.8 implies the existence of an open set D ⊆ W such that

x ∈ D ⊆ DW ⊆ W ∩ U ,

where DW denotes the closure of D in the relative topology ofW. We have D = S ∩W
with S ∈ τ. Let V = S ∩W ∈ N(x). This is the desired neighborhood of x.

(b) ⇒ (c): Let K ⊆ X be compact and U ∈ τ such that U ⊇ K. For every x ∈ K we
can find Vx ∈ N(x) relatively compact such that x ∈ Vx ⊆ Vx ⊆ U. Evidently {Vx}x∈K is
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an open cover of K and so using compactness we can find a finite subcover {Vx}nk=1.
Then V = ⋃nk=1 Vxk ∈ τ, V is compact and K ⊆ V ⊆ V ⊆ U.

(c) ⇒ (d): LetB = {U ∈ τ : U is compact}. Then since {x} is compact, assertion (c)
implies thatB is a basis; see Corollary 1.1.6.

(d) ⇒ (a): This is obvious.

Proposition 1.4.67. If (X, τ) is a Hausdorff, second countable, locally compact topologi-
cal space, then X has a countable basis consisting of relatively compact open sets.

Proof. Let {Un}n≥1 be a basis of X. Fix n ∈ ℕ and let {Vx}x∈Un be an open cover of Un
such that Vx is compact and Vx ⊆ Un for all x ∈ Un; see Proposition 1.4.66. From
Proposition 1.2.24(b) we know that Un is second countable. So, Lindelöf’s Theorem (see
Theorem 1.2.27) implies that we can find a countable subcover {Vnk }k≥1 of Un. Then the
family B = {Vnk : n, k ∈ ℕ} is a countable basis of X consisting of relatively compact
open sets.

The next proposition places more precisely locally compact spaces in the chart of
topological spaces.

Proposition 1.4.68. Every locally compact topological space is completely regular; see
Definition 1.2.19.

Proof. Let x ∈ X and C ⊆ X be a closed set such that x ̸∈ C. Applying Proposition 1.4.66(c)
yields the existence of relatively compact sets V1, V2 ∈ τ such that

x ∈ V1 ⊆ V1 ⊆ V2 ⊆ V2 ⊆ U = X \ C .

The set V2 is compact, and hence normal; see Corollary 1.4.50. Then, Urysohn’s Lemma
on normality (see Theorem 1.2.17) implies the existence of a continuous function
f : V2 → [0, 1] such that f V2\V1 = 0 and f(x) = 1. Let

̂f (x) =
{
{
{

f(x) if x ∈ V2 ,
0 if x ∈ X \ V2 .

According to Proposition 1.1.37, ̂f is continuous and ̂f A = 0 and ̂f (x) = 1. Hence, X is
completely regular.

Proposition 1.4.69. Local compactness is preserved by continuous open surjections.

Proof. Let X, Y be Hausdorff topological spaces with X locally compact and f : X → Y
being a continuous, open surjection. Let y ∈ Y and choose x ∈ X such that f(x) = y.
Then there exists U ∈ N(x) being relatively compact. Since f is open, f(U) ∈ N(y) and
f(U) ⊆ Y is compact; see Theorem 1.4.51. Finally we have y ∈ f(U) ⊆ f(U) = f(U)with
f(U) being compact. Therefore, Y is locally compact as well.

Of course every compact space is locally compact. In fact the following proposition is
easy to prove.
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Proposition 1.4.70. If (X, τ) is a locally compact topological space, U ∈ τ and C ⊆ X is
closed, then U ∩ C endowed with the relative topology is locally compact.

Proof. Let x ∈ U ∩ C. Choose V ∈ N(x) relatively compact such that x ∈ V ⊆ V ⊆ U.
Then V ∩ (U ∩ C) is a neighborhood of x in the relative topology of U ∩ C. It holds

V ∩ (U ∩ C)τ(U∩C) = V ∩ (U ∩ C) = V ∩ C

and the latter is closed in V, hence compact. Therefore, U ∩ C is locally compact.

Corollary 1.4.71. Every open subset and every closed subset of a locally compact space
is locally compact for the relative topology.

We ask the natural question of when we can consider a Hausdorff topological space as
a subspace of a compact topological space. Local compactness is the right concept for
answering this question.

Definition 1.4.72. Let X be a Hausdorff topological space. A compactification of X is
a compact topological space Y such that X is homeomorphic to a dense subset of Y. So
we may think that X is an actual dense subset of Y.

Proposition 1.4.73. If (X, τ) is a Hausdorff topological space and (X̂, τ̂) a compactifica-
tion of X, then X is locally compact if and only if X ∈ τ̂.

Proof. ⇒: Let x ∈ X and choose U ∈ NX(x) relatively compact. We can find V ∈ NX(x)
such that x ∈ V ⊆ U. We have V = W ∩ X withW ∈ NX̂(x) and

W = W ∩ X̂ = W ∩ X ⊆ W ∩ X = V ⊆ U = U ⊆ X .

This implies that x is τ̂-interior in X, hence X ∈ τ̂.
⇐: We know that (X̂, τ̂) is compact, hence locally compact. Since X ∈ τ̂ we

conclude from Corollary 1.4.71 that X must be locally compact.

The simplest compactification of noncompact, locally compact topological spaces is
the so-called “Alexandrov one-point compactification.”

Definition 1.4.74. Let X be a Hausdorff topological space and∞ an object not in X,
called the point at infinity. Let X̂ = X ∪ {∞} and define a topology τ̂ on X̂ specifying
the following open sets:
(a) τ ⊆ τ̂;
(b) X̂ \ K with K ⊆ X compact;
(c) X̂.
Then we say that (X̂, τ̂) is the one-point compactification of X.

Theorem 1.4.75. If X̂ = X∪ {∞} is as in Definition 1.4.74 and is endowed with the topology
τ̂ and (X, τ) is not compact, then (X̂, τ̂) is a compactification of X and X̂ is Hausdorff if
and only if X is locally compact.
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Proof. First we show that (X̂, τ̂) is compact. So, let L be an open cover of X̂. Then L

must have a member U such that∞ ∈ U. Then by Definition 1.4.74, X̂ \U is compact and
so it has a finite subcover {Uk}nk=1 ⊆ L. Evidently {Uk , U}

n
k=1 ⊆ L is a finite open cover

of X̂ and so we conclude that (X̂, τ̂) is compact. It is easy to see from Definition 1.4.74
that τ̂X = τ, that is, the subspace topology of X ⊆ X̂ is τ. Since X is not compact, each
τ̂-neighborhood of∞, X̂ \ K with K compact must intersect X. Hence∞ is a limit point
of X and so X̂ = X. This proves that (X̂, τ̂) is a compactification of X.

Suppose now that X̂ is Hausdorff and let x ∈ X. We can find U, V ∈ τ̂ such that
∞ ∈ U, x ∈ V and U ∩ V = 0. This implies V ⊆ X̂ \ U = K with K compact; see
Definition 1.4.74. Therefore, X is locally compact.

Conversely, suppose that X is locally compact. Let x ∈ X and choose V ∈ τ such
that x ∈ V ⊆ V with V compact. Let U = X̂ \ V. Then∞ ∈ U, x ∈ V and U ∩ V = 0.
Hence, X̂ is Hausdorff.

Example 1.4.76. The Alexandrov compactification of ℝn is the n-sphere Sn = {u ∈
ℝn+1 : |u| = 1}. To see this, let N = (0, 0, . . . , 0, 1) ∈ ℝn+1 be thenorth pole. We define
the stereographic projection h : Sn \ {N}→ ℝn by

h ((uk)n+1k=1) =
(uk)n+1k=1
1 − un+1

.

This map sends a point u ∈ Sn \ {N} to a point x ∈ ℝn where the line from N to x
intersectsℝn. It is a homeomorphism with inverse map

h−1 ((xk)nk=1) =
((2xk)nk=1, |x|2 − 1)
|x|2 + 1 .

Therefore, Sn \ {N} is homeomorphic to ℝn. Then h extends to a homeomorphism
of Sn with the Alexandrov compactification ℝ̂n of ℝn. We can easily visualize the
stereographic projection when n = 1 (Fig. 1.1).

N =∞

0

Fig. 1.1: Alexandrov one-point compactification ofℝn.

This map was known to map makers long ago. From the discussion above we see that
by removing a single point from Sn we obtain a space homeomorphic to ℝn. Which
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point we remove is irrelevant because we can rotate any point of Sn into any other. For
convenience we remove the north pole N.

Definition 1.4.77. A Hausdorff topological space X is said to be σ-compact if it can be
expressed as the union of at most countably many compact spaces.

Proposition 1.4.78. Let (X, τ)be aHausdorff topological space. The following statements
are equivalent:
(a) X is locally compact and σ-compact.
(b) X = ⋃k≥1 Uk with Uk open, relatively compact such that Uk ⊆ Uk+1 with k ∈ ℕ.
(c) X is locally compact and Lindelöf.

Proof. (a) ⇒ (b): By hypothesis we have X = ⋃k≥1 Kk with Kk ⊆ X compact. Proposi-
tion 1.4.66(c) says that we can find U1 ⊇ K1 open and relatively compact. By induction
we can find Uk open, relatively compact such that Uk ⊇ Uk−1 ∪ Kk. Then {Uk}k≥1 is the
desired sequence of open sets.

(b) ⇒ (c): Let L = {Ui}i∈I be an open cover of X. For each m ∈ ℕ we can find
a finite subfamily {Ukm}

n(m)
k=1 ⊆ L that covers U i = compact. The family {Ukm : 0 ≤ k ≤

n(m),m ∈ ℕ} ⊆ L is a countable subcover; thus X is Lindelöf.
(c) ⇒ (a): Let L = {Ux}x∈X be a cover by relatively compact open sets; see Proposi-

tion 1.4.66(c). The Lindelöf property implies that we can extract a countable subcover.
Therefore, X is σ-compact.

We introduce a generalization of σ-compactness that is determined by some requirement
on the behavior of their coverings.

Definition 1.4.79. Let X be a Hausdorff topological space.
(a) Given two covers L = {Ui}i∈I and L = {Vj}j∈J of X. We say that L is a refinement

of L if for each i ∈ I there is a j ∈ J such that Ui ⊆ Vj. We write L ≺ L.
(b) We say that a cover L = {Ui}i∈I of X is locally finite if for every x ∈ X there exists

V ∈ N(x) that intersects a finite number of Ui’s.
(c) We say that the cover L = {Ui}i∈I of X is point finite if for every x ∈ X there are at

most finitely many indices i ∈ I such that x ∈ Ui.

Remark 1.4.80. Given two covers L = {Ui}i∈I and L = {Vj}j∈J of X we can define
L0 = {Ui ∩Vj : (i, j) ∈ I × J}, which is also a cover of X refining bothL andL. Moreover,
if bothL andL are locally finite (resp. point finite), then so isL0. A common refinement
of both L and L is also a refinement of L0.

A refinement of a cover may contain more elements than the given cover.

Definition 1.4.81. A refinementL = {Ui}i∈I of the coverL = {Vj}j∈J is said to beprecise
if I = J and Ui ⊆ Vi for all i ∈ I.

Proposition 1.4.82. If X is a Hausdorff topological space and the cover L = {Vj}j∈J of X
has a locally finite (resp. point finite) refinement L = {Ui}i∈I , then it has a precise locally
finite (resp. point finite) refinement L̂ = {Ûj}j∈J . Moreover, if L is open, then so is L̂.
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Proof. Let ξ : I → J be the map that assigns to each i ∈ I a j ∈ J such that Ui ⊆ Vj; see
Definition 1.4.79(a). For every j ∈ J let Ûj = ⋃{Ui : ξ(i) = j} (some Ûj may be empty).
Then Ûj ⊆ Vj for every j ∈ J and L̂ = {Ûj}j∈J is a cover of X. Clearly, L̂ is locally finite
(resp. point finite) if L is and it is open if L is open.

Definition 1.4.83. A Hausdorff topological space X is said to be paracompact if each
open cover of X admits a locally finite refinement.

An immediate consequence of this definition is the following result.

Proposition 1.4.84. Every compact topological space is paracompact.

Closely related to paracompactness is the notion of partition of unity, which is essen-
tially a variable convex combination.

Definition 1.4.85. Let X be a Hausdorff topological space and f : X → ℝ a function.
(a) The support of f is the closed set supp f := {x ∈ X : f(x) ̸= 0}.
(b) A partition of unity on X is a family {fi}i∈I of continuous functions fi : X → [0, 1]

such that
(i) {supp fi}i∈I form a locally finite closed cover of X;
(ii) ∑i∈I fi(x) = 1 (the sum is well-defined because of (i)).
If L = {Vj}j∈J is an open cover of X, then we say that a partition of unity {fj}j∈J is
subordinated to L if supp fj ⊆ Vj for each j ∈ J.

There is a close relation between paracompactness and partition of unity. The proof of
the following theorem is very technical and so it is omitted. We refer to Dugundji [91,
Theorem 4.2, p. 170].

Theorem 1.4.86. A Hausdorff topological space is paracompact if and only if every open
cover on X admits a locally finite partition of unity subordinated to the open cover.

This theorem allows us to fix the place of paracompactness in the chart of topological
spaces.

Proposition 1.4.87. Every paracompact space is normal.

Proof. Let C1 and C2 be two disjoint, closed subspaces of X. We consider the open
cover L = {X \ C1, X \ C2}. Then Theorem 1.4.86 implies that there is a partition of unity
{f1, f2} subordinated to L. Then f1C2 = 1 and f1

C1 = 0 and so by Urysohn’s Normality
Lemma (see Theorem 1.2.17) we conclude that X is normal.

Closing this section, we mention that there is a “locally compact” version of the Tietze
Extension Theorem; see Theorem 1.2.44. This version of the Tietze result reads as
follows; see Hewitt–Stromberg [145, Theorem 7.40, p. 99].

Theorem 1.4.88. If X is locally compact, K ⊆ X is a nonempty, compact set and U ⊆ K
is open and K ⊆ U, then for every f ∈ C(K,ℝ) there exists ̂f ∈ C(X,ℝ) with compact
support such that ̂f K = f and f vanishes on X \ U.
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1.5 Metric Spaces – Baire Category

Metric spaces are a very important class of topological spaces. In fact the development
of metric spaces led to the more general notion of topological space. In metric spaces
the metric leads to an analysis that is primarily based in the properties of the real line.

Definition 1.5.1. Let X be a set. Ametric on X is a map d : X × X → ℝ such that the
following hold:
(a) d(x, u) = 0 if and only if x = u;
(b) d(x, u) = d(u, x) for all x, u ∈ X (symmetry);
(c) d(x, u) ≤ d(x, v) + d(v, u) for all x, u, v ∈ X (triangle inequality).
The pair (X, d) of a set X and of ametric d on X is said to be ametric space. If d does not
satisfy (a), then d is called a semimetric (in French “ecart”) and (X, d) is a semimetric
space.

Remark 1.5.2. If d is a metric, then, based on (a)–(c), it is clear that d(x, y) ≥ 0 for all
x, y ∈ X. If d is a semimetric and ∼ is the equivalence relation defined by x ∼ u if and
only if d(x, u) = 0, then X/ ∼ is a metric space with metric d̂([x], [u]) = d(x, u). Here,
for x ∈ X, [x] is the corresponding equivalence class.

Definition 1.5.3. (a) Let (X, d) be a metric space and A ⊆ X. The diameter of A is
defined by

diam A = sup[d(x, u) : x, u ∈ A] .

If diam A <∞, then we say that A is bounded. Otherwise A is unbounded. When
diam X <∞, then we say that d is a boundedmetric. In addition, for x ∈ X and
r > 0, the open ball with center x and radius r is defined by

Br(x) = {u ∈ X : d(u, x) < r} .

The corresponding closed ball with center x and radius r is defined by

Br(x) = {u ∈ X : d(u, x) ≤ r} .

(b) Let (X, d) be a metric space. A set A ⊆ X is said to be d-open (or simply open) if
for every x ∈ A we can find r = r(x) > 0 such that Br(x) ⊆ A. The collection

τd = {A ⊆ X : A is d-open}

is a topology on X called themetric topology on (X, d).
(c) A topological space (X, τ) is said to bemetrizable if τ = τd for some metric d on

X. This metric is then said to be compatiblewith the topology. If for two metrics
d1 and d2 on X, we have τd1 = τd2 , then we say that d1 and d2 are equivalent.

Remark 1.5.4. The distinction between metric and metrizable spaces is a subtle one.
In the case of a metric space we already have a fixed metric. For a metrizable space
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we have not yet decided from the multitude of equivalent metrics. Note that if d is
compatible, then so is kd with k ∈ ℕ or d̂(x, u) = (d(x, u))(1 + d(x, u)) and d̂0(x, u) =
min{1, d(x, u)}. The last two metrics are bounded even if d is not. From the triangle
inequality we have

|d(x, u) − d(y, v)| ≤ d(x, y) + d(u, v) for all x, u, y, v ∈ X . (1.5.1)

It follows that d is jointly continuous. Of course τd is Hausdorff and first countable and
un

τd→ u if and only if d(un , u)→ 0.

In Proposition 1.2.22 we saw that second countability implies separability. Formetrizable
spaces the two notions are equivalent.

Proposition 1.5.5. A metrizable space is second countable if and only if it is separable.

Proof. ⇒: This follows from Proposition 1.2.22.
⇐: Let (X, τ) be a separable metrizable space and d a compatible metric, that is,

τd = τ. Let D ⊆ X be a countable dense set and consider the collectionL = {B1/n(x) : x ∈
D, n ∈ ℕ}. Clearly, L is a countable basis for the topology τ; see Corollary 1.1.6.

Combining this proposition with Proposition 1.2.24(b) we have the following result.

Corollary 1.5.6. If X is a separable metrizable space and A ⊆ X, then A is separable.

Definition 1.5.7. Let (X, τ) be a topological space. A set A is said to be an Fσ-set if it is
the union of at most countably many closed sets. A set C is said to be a Gδ-set if it is the
intersection of at most countably many open sets.

Proposition 1.5.8. If X is a metrizable space, then every closed set is Gδ and every open
set is Fσ.

Proof. Let C ⊆ X be closed. Then Un = {x ∈ X : d(x, C) < 1/n} is open because of
the continuity of d. Furthermore C = ⋂n≥1 Un. So C is Gδ. Next let U ⊆ X be open.
Since X \ U is closed, the first part yields that X \ U = ⋂n≥1 Un with Un open. Hence,
U = ⋃n≥1(X \ Un) and so U is Fσ.

Definition 1.5.9. (a) Let (X, d) be a metric space. A sequence {xn}n≥1 ⊆ X is said to be
a Cauchy sequence if for any given ε > 0 there exists n0 = n0(ε) ≥ 1 such that
d(xn , xm) ≤ ε for all n,m ≥ n0, that is, d(xn , xm)→ 0 as n,m → +∞. We say that
(X, d) is complete if every Cauchy sequence in X converges in X.

(b) Let (X, τ) be a topological space. We say that X is topologically complete if there
is a compatible complete metric d, that is, τd = τ.

Remark 1.5.10. The property of completeness is metric dependent. So it can happen
that two metrics are equivalent, that is, they generate the same topology, but one is
complete and the other not. On the other hand, topological completeness is a topological
property.
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Example 1.5.11. The interval (−1, 1) with the usual metric is not a complete metric
space but it is topologically complete since it is homeomorphic toℝ, which is complete.
The function h : (−1, 1) → ℝ defined by h(x) = x/(1 − x2) for all x ∈ (−1, 1) is a
homeomorphism between the two spaces.

Definition 1.5.12. Let (X, d) and (Y, ρ) be two metric spaces. A map f : X → Y is said
to be an isometry if d(x, u) = ρ(f(x), f(u)) for all x, u ∈ X. If f is a surjective isometry,
then we say that X and Y are isometric spaces. Otherwise we say that f is an isometric
embedding.

Remark 1.5.13. Thus an isometric surjection is a distance preserving homeomorphism.
In the case of an isometric embedding f : X → Y we may think of X as a subspace of Y.

Every metric space can be isometrically and densely embedded in a complete metric
space.

Theorem 1.5.14. If (X, d) is any metric space, then there is a complete metric space (Y, ρ)
and an isometry f : X → Y such that f(X) is dense in Y . We say that Y is the completion
of X.

Proof. Let fx(u) = d(x, u) for all x, u ∈ X. Choose a point v ∈ X and let

S(X, d) = {fv + h : h ∈ Cb(X,ℝ)} .

On S(X, d) we consider the supremummetric d∞ defined by

d∞(fv + h, fv + ĥ) = sup [
h(x) − ĥ(x)

 : x ∈ X] .

For any x, u, y ∈ X we have

|d(x, y) − d(u, y)| ≤ d(x, u)

(see (1.5.1)) and equality holds if y = x or y = u. Therefore, for any u ∈ X, taking x = v,
we have

fu − fx ∈ Cb(X,ℝ) , d∞(fx , fu) = d(x, u) .
In addition we have fu ∈ S(X, d) and S(X, d) does not depend on the choice of v ∈ X.
Hence, the map x → fx from X into S(X, d) is an isometry for d and d∞. Let Y be the
d∞-closure of the range of this map into S(X, d). But (Cb(X,ℝ), d∞) is complete; recall
that the uniform limit of continuous functions is continuous. Hence (Y, d∞) is complete
and this is the completion of (X, d).

Now we can provide a necessary and sufficient condition for the completeness of
a metric space. The necessary part of the result is known as “Cantor’s Intersection
Theorem.”

Theorem 1.5.15. Ametric space (X, d) is complete if and only if every decreasing sequence
{Cn}n≥1 of nonempty, closed subsets of X such that diam Cn → 0 as n → ∞, has a
singleton intersection.
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Proof. ⇒: Let C = ⋂n≥1 Cn. Then diam C ≤ diam Cn for all n ∈ ℕ. Hence, diam C = 0.
This means that C is empty or a singleton. We show that C ̸= 0. For each n ∈ ℕ we pick
un ∈ Cn. Then for n ≥ m we have d(un , um) ≤ diam Cm → 0 as m →∞. So {un}n≥1 ⊆ X
is a Cauchy sequence and the completeness of X implies that there exists u ∈ X such
that un → u. Evidently u ∈ C and so C = ⋂n≥1 Cn = {u}.
⇐: Let {un}n≥1 ⊆ X be a Cauchy sequence. Set Cn = {uk : k ≥ n}. Since {un}n≥1 is a

Cauchy sequence, we have diam Cn → 0. By hypothesis⋂n≥1 Cn = {u} and so we have
un → u in X, which means that X is complete.

Now we consider the Cartesian product of metric spaces. To this end, let {Xn}n≥1 be a
sequence of nonempty Hausdorff topological spaces and let X = ∏n≥1 Xn be furnished
with the product topology.

Proposition 1.5.16. The product topology on X = ∏n≥1 Xn is metrizable if and only if the
space Xn is metrizable for each n ∈ ℕ.

Proof. ⇒: Let d be a compatible metric for X. For each n ∈ ℕwe fix a yn ∈ Xn. Then
for u ∈ Xm we define û = (uk)k≥1 ∈ X by setting uk = yk for k ̸= m and um = u. Now
we define a metric dm on Xm by setting dm(u, v) = d(û, v̂). It is easy to see that dm
is indeed a metric on Xm. Note that d-convergence in X is equivalent to componen-
twise convergence. From this it follows easily that τdm coincides with the topology
of Xm.
⇐: Assume that each Xn is metrizable and let dn be a compatible metric. We

define a metric d on the product X by setting

d((un), (vn)) = ∑
n≥1

1
2n

dn(un , vn)
1 + dn(un , vn)

.

It is straightforward that d is a metric. Let {ûα}α∈J = {(uαn)}α∈J ⊆ X be a net. We
have

d(ûα , û)→ 0 with û = (un) if and only if lim
α∈J

dn(uαn , un) = 0 , (1.5.2)

for all n ∈ ℕ. From (1.5.2) we infer that the product topology and the τd-topology on
X coincide.

In a similar fashion we can also have the following result.

Proposition 1.5.17. The product topology on X is topologically complete if and only if the
space Xn is topologically complete for each n ∈ ℕ.

Proposition 1.5.18. If {Xn}n≥1 is a sequence of metrizable spaces and X = ∏n≥1 Xn, then
X is separable if and only if Xn is separable for each n ∈ ℕ.

Proof. ⇒: This is a consequence of the fact that the continuous image of a separable
space is separable as well; see Proposition 1.2.24(c). In our case the continuous map is
the projection to the nth factor.
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⇐: From the proof of Proposition 1.5.16 we know that the product topology on X is
generated by the metric

d(û, v̂) = ∑
n≥1

1
2n

dn(un , vn)
1 + dn(un , vn)

for all û = (un), v̂ = (vn) ∈ X .

For each n ∈ ℕ let Dn be a countable, dense subset of Xn. Fix un ∈ Dn for each n ∈ ℕ
and consider the set D ⊆ X defined by

D = {(yn) ∈ X : yn ∈ Dn for each n ∈ ℕ and yn = un eventually} .

Evidently D ⊆ X is countable and dense. Therefore X is separable.

Definition 1.5.19. The Hilbert cube is the spaceℍ = [0, 1]ℕ, that is, the space of all
real sequences with values in [0, 1].

Remark 1.5.20. Evidentlyℍ is topologically complete, separable, and compact, which
follows from the Propositions 1.5.17 and 1.5.18 as well as Theorem 1.4.56.

The next theorem, known as “Urysohn’s Theorem,” says that in a sense ℍ is the
canonical separable metrizable space.

Theorem 1.5.21 (Urysohn’s Theorem). Every separable metrizable space is homeomor-
phic to a subset ofℍ.

Proof. Let (X, d) be a separable metric space and D = {yn}n≥1 a countable dense subset.
We define ξn(u) = min{1, d(u, yn)} for all n ∈ ℕ and consider ξ : X → ℍ defined by
ξ(u) = (ξn(u))n≥1 for all u ∈ X. Each ξn is continuous, hence so is ξ . Suppose that
ξ(u) = ξ(v) and let {ynk }k≥1 ⊆ {yn}n≥1 such that ynk → u. We have limk→∞ d(v, ynk ) = 0,
hence d(v, u) = 0, which means that u = v and so ξ is 1 − 1. Finally we need to show
that ξ−1 is continuous. To this end, let ξ(vn) → ξ(v). Pick ε > 0 and um such that
d(v, um) < ε. Note that

d(vn , um)→ d(v, um) as n →∞ ,

which means d(vn , um) < ε for all n ≥ n0. Hence, by the triangle inequality we derive
d(vn , v) < 2ε for all n ≥ n0. Therefore, vn → v and so ξ−1 is continuous.

Some features of metrizable spaces are not topological and depend on the particular
compatible metric. Such are Cauchy sequences (see Definition 1.5.9(a)) and uniform
continuity, which we are about to introduce.

Definition 1.5.22. Let (X, d) and (Y, ρ) be two metric spaces and f : X → Y a map.
(a) We say that f is uniformly continuous if for every given ε > 0 there exists δ =

δ(ε) > 0 such that

d(x, u) < δ implies ρ(f(x), f(u)) < ε for all x, u ∈ X .



1.5 Metric Spaces – Baire Category | 49

(b) We say that f is k-Lipschitz if

ρ(f(x), f(u)) ≤ kd(x, u) for all x, u ∈ X with k > 0 .

Remark 1.5.23. A continuous function need not be uniformly continuous. For example,
the function f(x) = x2 for x ∈ ℝ is continuous but not uniformly continuous. Indeed,
note that for ε > 0 the δ > 0 gets smaller as |x| increases. A k-Lipschitz map is uniformly
continuous. A 1-Lipschitz map is called nonexpansive and if k ∈ (0, 1)we say that f
is a contraction.

Proposition 1.5.24. If (X, d) is a metric space and φ : ℝ+ → ℝ+ is continuous satisfying
(a) φ is nondecreasing, that is, x ≤ u implies φ(x) ≤ φ(u) for all x, u ≥ 0;
(b) φ is subadditive, that is, φ(x + u) ≤ φ(x) + φ(u) for all x, u ≥ 0;
(c) φ(x) = 0 if and only if x = 0,
then φ ∘ d is a metric on X and the identity maps

i1 : (X, d)→ (X, φ ∘ d) and i2 : (X, φ ∘ d)→ (X, d)

are both uniformly continuous.

Proof. Applying (a)–(c) it is straightforward to check that φ ∘ d is a metric on X. More-
over, for given ε > 0 there exists δ > 0 such that 0 ≤ t < δ implies 0 ≤ φ(t) < ε as
well as 0 ≤ φ(t) < η = φ(ε) implies 0 ≤ t < δ. Here we have used the continuity and
monotonicity of φ. Thus we have uniform continuity for both i1 and i2.

Proposition 1.5.25. If (X, d) and (Y, ρ) are two metric spaces and f : X → Y is uniformly
continuous, then f maps Cauchy sequences in X to Cauchy sequences in Y .

Proof. Let {un}n≥1 be a Cauchy sequence in X, and for ε > 0 choose δ = δ(ε) > 0 such
that d(x, v) < δ implies ρ(f(x), f(v)) < ε for all x, v ∈ X.

Let B ⊆ X be a ball of radius less than δ/2, which contains {un}n≥n0 for some n0 ∈ ℕ.
Then f(B) contains {f(un)}n≥n0 . Note that diam B < δ. Hence diam f(B) < ε. Thus f(B) is
included in a ball D ⊆ Y of radius ε > 0 and so D ⊇ {f(un)}n≥n̂ for some n̂ ∈ ℕ. Since
ε > 0 is arbitrary, we conclude that {f(un)}n∈ℕ ⊆ Y is a ρ-Cauchy sequence.

Remark 1.5.26. The result above fails if f is only continuous. To see this consider the
function f(x) = 1/x for all x ∈ (0, 1), which is continuous but not uniformly continuous.
Let un = 1/n with n ∈ ℕ. This is a Cauchy sequence in (0, 1) but f(un) = n, which is not
a Cauchy sequence.

Theorem 1.5.27. If (X, d) is a metric space, D ⊆ X a set, (Y, ρ) is a complete metric space
and f : D → Y is uniformly continuous, then there exists a unique uniformly continuous
map ̂f : D → Y such that ̂f D = f . In particular, if Y = ℝ then supD |f| = supD |f|.

Proof. Let ũ ∈ D. Then we find a sequence {un}n≥1 ⊆ D such that un → ũ in (X, d).
The sequence {un}n≥1 is a d-Cauchy sequence and then {f(un)}n≥1 ⊆ Y is a ρ-Cauchy
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sequence because of Proposition 1.5.25. The completeness of Y implies that f(un)→ y ∈
Y. This y is independent of the particular sequence in D approaching ũ ∈ D. Indeed, let
{xn}n≥1 ⊆ D be another sequence such that xn → ũ in (X, d). We define

hn =
{
{
{

xn if n = odd
un if n = even

with n ∈ ℕ .

We see that hn → ũ and then f(hn) → y. Note that {f(hn)}n≥1 is a Cauchy sequence
and for the subsequence {f(un)}n≥1 we have that it converges to y in (Y, ρ). Hence, we
have shown that y is independent of the sequence un → ũ ∈ D. Therefore, we can set
̂f (ũ) = y.

Now we show that ̂f is uniformly continuous. From the uniform continuity of f we
know that for given ε > 0 there exists δ > 0 such that

d(x, u) < δ implies ρ(f(x), f(u)) < ε for all x, u ∈ D . (1.5.3)

Suppose x, v ∈ D with d(x, v) < δ. Then there exist {xn}n≥1, {un}n≥1 ⊆ D such that
xn → x and vn → v in (X, d). Hence, d(xn , vn) → d(x, v) and so d(xn , vn) < δ for all
n ≥ n0. Taking (1.5.3) into account we conclude that ρ(f(xn), f(vn)) < ε for all n ≥ n0.
Hence, ρ(f(x), f(v)) ≤ ε. This proves the uniform continuity of the extension ̂f . Clearly
this extension is unique and we have supD |f| = supD | ̂f |.

Definition 1.5.28. Let (X, d) be a metric space. Recall that

Cb(X,ℝ) = {f : X → ℝ | f is bounded and continuous} .

We also introduce the subspace

Ub(X,ℝ) = {f : X → ℝ | f is bounded and uniformly continuous}

of Cb(X,ℝ). On them we consider the supremummetric defined by

d∞(f, g) = sup
x∈X
|f(x) − g(x)| .

Remark 1.5.29. If X is a metrizable space and d, e are two compatible metrics, then in
general we have Ud(X,ℝ) ̸= Ue(X,ℝ). For example, the function x → 1/x on (0, 1) is
not uniformly continuous for the usual metric on (0, 1), but it is uniformly continuous
for the metric ρ(x, u) = |1/x − 1/u| for all x, u ∈ (0, 1).

Proposition 1.5.30. If (X, d) is a metric space, then X is isometrically embedded into
Ud(X,ℝ).

Proof. We fix u0 ∈ X and then for each x ∈ X, let ηx : X → ℝ be the function defined by
ηx(u) = d(x, u) − d(u0, u) for all u ∈ X. We have

|ηx(u) − ηx(v)| ≤ |d(x, u) − d(x, v)| + |d(u0, u) − d(u0, v)| ≤ 2d(u, v) ,
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which shows that ηx is 2-Lipschitz. In addition we have ηx(u) ≤ d(x, u0) for all u ∈ X.
Thus, ηx is bounded. Consequently we have ηx ∈ Ud(X,ℝ). Note that

|ηx(u) − ηv(u)| ≤ d(x, v) for all u ∈ X ,

implying d∞(ηx , ηv) ≤ d(x, v). Moreover, we have |ηx(v) − ηv(v)| = d(x, v). Therefore,
d∞(ηx , ηv) = d(x, v), which means that x → ηx is an isometry. This proves that X is
isometrically embedded into Ud(X,ℝ).

Now we turn our attention to compact metric spaces.

Definition 1.5.31. Let (X, d) be a metric space and ε > 0. An ε-net in X is a finite set
A in X such that X = ⋃a∈A Bε(a). That is, for every x ∈ X there exists a ∈ A such that
d(x, a) < ε. We say that (X, d) is totally bounded if for every ε > 0 it has an ε-net.

Remark 1.5.32. Clearly a compact metric space is totally bounded.

Proposition 1.5.33. If the metric space (X, d) is totally bounded, then it is separable.

Proof. For each n ∈ ℕ, let An ⊆ X be a finite set such that X = ⋃x∈An B1/n(x). Let
D = ⋃n≥1 An. Then D is countable and dense in X.

Proposition 1.5.34. If (X, d) is a sequentially compact metric space and letL be an open
cover of X, then there is a δ > 0 such that every A ⊆ X with diam A < δ is contained in
some U ∈ L.

Proof. Arguing by contradiction, suppose that we cannot find such a δ > 0. Then
for every n ∈ ℕ choose An ⊆ X with diam An < 1/n and An is not contained in any
U ∈ L. Choose xn ∈ An. Since X is sequentially compact, by passing to a subsequence
if necessary, we may assume that xn → x. Let U ∈ L ∩N(x) and choose ϱ > 0 such that
Bϱ(x) ⊆ U. Then xn ∈ Bϱ/2(x) for all n ≥ n0 with 1/n0 < ϱ/2. Since diam An0 < 1/n0 <
ϱ/2, we have An0 ⊆ Bϱ(x) ⊆ U, a contradiction. This proves the proposition.

Remark 1.5.35. A δ > 0 satisfying the property above is called the Lebesgue number
of the cover L.

The next theorem provides a complete characterization of compact metric spaces.

Theorem 1.5.36. If (X, d) is a metric space, then the following statements are equivalent:
(a) X is compact;
(b) X is complete and totally bounded;
(c) X is sequentially compact.

Proof. (a) ⇒ (b): Since (X, d) is compact, every Cauchy sequence {xn}n≥1 has a cluster
point x ∈ X, see Remark 1.4.58. We claim that xn → x in X. Since {xn}n≥1 is a Cauchy
sequence, there exists n0 ∈ ℕ for every given ε > 0 such that

d(xn , xm) < ε for all n,m ≥ n0 . (1.5.4)
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Since x is a cluster point of the Cauchy sequence, we can find k ≥ n0 such that

d(xk , x) < ε . (1.5.5)

Then, combining (1.5.4) and (1.5.5), we have for n ≥ n0
d(xn , x) ≤ d(xn , xk) + d(xk , x) < 2ε ,

which means that xn → x in X and so X is complete.
For every ε > 0 we have X = ⋃x∈X Bε(x). The compactness of X implies that we can

find x1, . . . , xm such that X = ⋃mn=1 Bε(xn). Thus, X is totally bounded.
(b)⇒ (c): Let {xn}n≥1 be a sequence in X. Since X is totally bounded, a subsequence

S1 of {xn}n≥1 must be in a set B1 = {u ∈ X : d(y1, u) < 1}. Evidently, B1 is totally
bounded. Hence, there exists a subsequence S2 of S1, which will be in B2 = {u ∈
B1 : d(y2, u) < 1/2}. By induction for each n ∈ ℕwe can have a subsequence Sn+1 of
Sn, which is in Bn+1 = {u ∈ X : d(yn+1, u) < 1/(n + 1)}. Let i1 < i1 < . . . < in < . . . be
such that xin ∈ Sn. Then {xn}n∈ℕ is Cauchy sequence and thus converges. This proves
that X is sequentially compact.

(c) ⇒ (a): Let L be an open cover of X and let δ > 0 be the Lebesgue number of L;
see Proposition 1.5.34 and Remark 1.5.35. First we show that X is totally bounded. If
this is not the case, then we can find ε > 0 such that no finite family of balls of radius
ε > 0 cover X. Inductively we can generate a sequence {xn}n≥1 ⊆ X such that for all
n ∈ ℕ, xn ̸∈ ⋃k<n Bε(xk). For n ̸= m, we have d(xn , xm) ≥ ε. This sequence cannot have
a convergent subsequence and this contradicts the hypothesis that X is sequentially
compact. Therefore X is totally bounded. We choose a δ/3-net {xn}mn=1. For each n ≤ m
let Un ∈ L such that Bδ/3(xn) ⊆ Un. Then {Un}mn=1 is a finite subcover of L and this
proves the compactness of X.

Corollary 1.5.37. Ametric space is totally bounded if and only if its completion is compact.

Since bounded sets inℝN are totally boundedwe can state the following characterization
of compact sets inℝN . The result is known as the “Heine–Borel Theorem.”

Theorem 1.5.38 (Heine–Borel Theorem). A set C ⊆ ℝN is compact if and only if C is
closed and bounded.

Proposition 1.5.39. If (X, d) and (Y, ρ) are metric spaces with X being sequentially
compact and if f : X → Y is continuous, then f is uniformly continuous.

Proof. Given ε > 0 and x ∈ X, let Vx = f−1(Bε/2(f(x))) ∈ N(x). Then, for u, v ∈ Vx we
have

ρ(f(u), f(v)) < ε . (1.5.6)

We know that X is sequentially compact because of Theorem 1.5.36. By Proposition 1.5.34
there exists δ > 0 such that for every v ∈ X

Bδ(v) ⊆ Vx for some x ∈ X . (1.5.7)
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Recall that this δ is called the Lebesgue number of the cover L = {Vx}x∈X; see Propo-
sition 1.5.34 and Remark 1.5.35. Then, because of (1.5.6) and (1.5.7), u ∈ Bδ(v) implies
ρ(f(u), f(v)) < ε. Hence, f is uniformly continuous.

The next proposition is an easy consequence of the relevant definitions.

Proposition 1.5.40. (a) Every metric space X is first countable.
(b) For a metric space X the notions of separability, second countability, and Lindelöf

are all equivalent.

Proof. (a) For every x ∈ X, letB(x) = {Br(x) : r ∈ ℚ}. ThenB is a countable local basis
at x ∈ X. Therefore X is first countable.

(b) First we show that “separability” implies “second countability.” Let {un}n≥1 be
dense in X. ThenB = {Br(un) : r ∈ ℚ, n ∈ ℕ} is a countable basis of X, hence X is second
countable. Theorem 1.2.27 says that “second countable” implies “Lindelöf.” Finally we
show that “Lindelöf” implies “separable.” Consider the open cover {Bε(x)}x∈X with
ε > 0 of X. By the Lindelöf property there exists a countable subcover {Bε(xk)}k∈ℕ. Let
A(ε) = {xk}k∈ℕ. Then D = ⋃n≥1 A(1/n) is a countable dense subset of X. Therefore X is
separable.

Remark 1.5.41. In contrast to general topological spaces (see Proposition 1.2.22), for
metric spaces, separability and second countability are equivalent notions.

Combining Proposition 1.5.40 with Theorem 1.4.63 we have the following result.

Theorem 1.5.42. Let (X, d) be a metric space. Then the following assertions are equiva-
lent:
(a) X is compact.
(b) X is countably compact.
(c) X is limit point compact.
(c) X is sequentially compact.

Definition 1.5.43. A Hausdorff topological space (X, τ) is said to be Polish if it is sep-
arable and there exists a compatible metric d, that is τ = τd, for which X is com-
plete.

Remark 1.5.44. In a Polish space the compatible metric is not a priori fixed. We know
that it exists and generates the topology of X and that the space furnished with this
metric is complete. There are many topological spaces that are Polish, but the cor-
responding complete metric is not particularly simple or natural. However, many
constructions and facts depend only on the existence of a complete metric and not
on the exact choice.

Proposition 1.5.45. If X is a Polish space and A ⊆ X is open or closed, then A is Polish.

Proof. From Corollary 1.5.6 we know that A is separable. First suppose that A is open.
We assume that A ̸= X and let d be the compatible metric on X for which X is complete.
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Let

d̂(x, u) = d(x, u) +


1
d(x, Ac) −

1
d(u, Ac)


for all x, u ∈ A . (1.5.8)

It is easy to see that d̂ is a metric on A. We show that d̂ metrizes the subspace topology
on A. From the triangle inequality we have

d(x, Ac) − d(u, Ac)
 ≤ d(x, u) ,

which implies that x → d(x, Ac) is 1-Lipschitz, equivalently nonexpansive. Therefore,
un

d̂
→ u if and only if un

d
→ u. Hence, d̂ metrizes the subspace topology on A.

Suppose that {un}n≥1 ⊆ A is a d̂-Cauchy sequence. Then, from (1.5.8) it is clear that
{un}n≥1 is also a d-Cauchy sequence. Therefore, un

d
→ u ∈ X. If u ∈ Ac, then d(un , Ac)→

0 and so from (1.5.8) we have d̂(un , um)→ +∞ as n,m → +∞, a contradiction. Thus,
u ∈ A and so un

d
→ u, which proves the completeness of (A, d̂).

Now suppose that A is closed. Then dA = dA×A is complete and so A is Polish.

Proposition 1.5.46. Countable products and countable intersections of Polish spaces
are Polish spaces.

Proof. For the products the result follows from Propositions 1.5.16, 1.5.17 and 1.5.18. For
the intersections let

∆ = {(un) ∈∏
n≥1

Xn : uj = uk for all j, k} .

Then ∆ is closed, hence Polish; see Proposition 1.5.45. But ∆ is homeomorphic to
⋂n≥1 Xn.

The next result is known as “Alexandrov’s Theorem” and gives a characterization of
Polish spaces.

Theorem 1.5.47 (Alexandrov’s Theorem). If (X, τ) is a Polish space, then A ⊆ X is Polish
if and only if A is a Gδ-subset of X.

Proof. ⇒: Let d be a compatible metric for X and d0 a compatible complete metric for
A. For each n ∈ ℕ, let Vn be the union of the open subsets U of X for which U ∩ A ̸= 0
and d0-diam(U ∩ A) < 1/n, where d0-diam denotes the diameter for the metric d0.
Since d and d0 induce the same topology on A we have

A ⊆ Aτ ∩ (⋂
n≥1

Vn) . (1.5.9)

Let u ∈ Aτ ∩ (⋂n≥1 Vn). Since u ∈ ⋂n≥1 Vn we can find a sequence {Un}n≥1 of neighbor-
hoods of x such that

Un ∩ A ̸= 0 and d0-diam(Un ∩ A) <
1
n
.
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Evidently, by replacing Un with a small neighborhood of u, wemay assume that {Un}n≥1
is decreasing and d-diamUn ≤ 1/n. Since (A, d0) is complete, from Theorem 1.5.15, we
have that

{u0} = ⋂
n≥1

Un ∩ A
τ(A) . (1.5.10)

For every n ∈ ℕwe have d-diamUn
τ
≤ 1/n and u, u0 ∈ Un

τ. Hence, because of (1.5.10),
u = u0. Therefore, A

τ
∩(⋂n≥1 Vn) ⊆ A and due to (1.5.9) it holds that A = Aτ∩(⋂n≥1 Vn).

Invoking Proposition 1.5.8 for the closed Aτ, we conclude that A is a Gδ-subset of X.
⇐: By hypothesis A = ⋂n≥1 Un with Un ⊆ X open for all n ∈ ℕ. From Propo-

sition 1.5.45 we know that each Un is Polish and so Proposition 1.5.46 implies that
⋂n≥1 Un = A is Polish.

Remark 1.5.48. From the last theorem we recover the part of Proposition 1.5.45 con-
cerning open sets.

Corollary 1.5.49. The set of irrational numbers with the topology induced byℝ is Polish.

Remark 1.5.50. Wemention some more Polish spaces:
– Every locally compact, σ-compact metrizable space is Polish.
– Every locally compact and second countable Hausdorff space is Polish. This is a

consequence of the so-called “Urysohn Metrization Theorem,” which says that
every regular, second countable space is metrizable.

– ℕ∞ is Polish (see Proposition 1.5.46) and in fact every Polish space is a continuous
image ofℕ∞. More precisely every Polish space is a one-to-one continuous image
of a closed subset ofℕ∞. Onℕ∞ we consider the tree metric defined by

t (p̂, q̂) =
{
{
{

0 if p̂ = q̂
1
k if p̂ ̸= q̂ and k = min{n ∈ ℕ : pn ̸= qn}

for all p̂ = (pn), q̂ = (qn) ∈ ℕ∞. This is a complete metric onℕ∞ compatible with
the product topology.

– Every Polish space is a Gδ in some metrizable compactification.

Definition 1.5.51. A Hausdorff space X is said to be a Souslin space if there exist a
Polish space Y and a continuous surjection f : Y → X.

Remark 1.5.52. Equivalently we can say that the Hausdorff topological space (X, τ) is
Souslin if and only if there is a topology τ0 ⊇ τ on X such that (X, τ0) is homeomorphic
to a quotient of a Polish space. A Souslin space is always separable but need not be
metrizable. Anticipating some basic material from Chapter 3, we mention that an
infinite dimensional separable Banach space with the weak topology is Souslin, but
not metrizable. Similarly for the dual X∗ of an infinite dimensional separable Banach
space endowed with the w∗-topology.
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Definition 1.5.53. The Souslin subspaces of a Polish space are called analytic sets.

Souslin spaces have nice stability properties.

Proposition 1.5.54. (a) Closed and open subsets of Souslin spaces are Souslin spaces.
(b) Countable products of Souslin spaces are Souslin.
(c) Countable intersections and countable unions of Souslin subspaces of a Hausdorff

topological space V are Souslin.

Proof. (a): Let X be a Souslin space. Then according to Definition 1.5.51 there exists a
Polish space Y and a continuous surjection f : Y → X. Let E ⊆ X be a closed (resp. open)
set. Then f−1(E) ⊆ Y is closed (resp. open) and so by Proposition 1.5.45 f−1(E) is Polish.
Also f f−1(E) is continuous and surjective onto f(f−1(E)) = E since f is a surjection.
Therefore, by Definition 1.5.51, E is Souslin.

(b): Let {Xn}n≥1 be a family of Souslin spaces. For every n ∈ ℕ there exists a
Polish space Yn and a continuous surjection fn : Yn → Xn. Set Y = ∏n≥1 Yn , X =
∏n≥1 Xn and ̂f = (fn)n≥1 : X → Y defined by ̂f ({yn}) = (fn(yn))n≥1. Then Y is Polish by
Proposition 1.5.46 and ̂f is a continuous surjection. So, X is a Souslin space.

(c): Let {Xn}n≥1 be a family of Souslin subspaces of V and let X = ∏n≥1 Xn. We
introduce V̂ = Vℕ and ∆̂ the diagonal of V̂, that is, ∆̂ = {û = (un)n≥1 : un = u for all n ∈
ℕ}. From Proposition 1.3.12 we know that V̂ is Hausdorff and so Problem 1.1 implies
that ∆̂ ⊆ V̂ is closed. Let ̂f : V → ∆̂ be the canonical map of V onto ∆̂ defined by
̂f (u) = (u, u, . . . , u, . . .). Then ̂f (X) = ∆̂ ∩ (∏n≥1 Xn) and ̂f is a homeomorphism of X
onto a closed subspaces of∏n≥1 Xn. But by part (b)∏n≥1 Xn is Souslin, hence by part
(a) ̂f (X) is Souslin. Therefore X is Souslin.

Now we consider the union⋃n≥1 Xn. For every n ∈ ℕwe can find a Polish space
Yn and a continuous surjection fn : Yn → Xn. Let X̃n = {n} × Xn and Ỹn = {n} × Yn.
Note that both are Polish spaces. Now we consider the map ̃fn : Ỹn → X̃n defined
by ̃fn(n, y) = (n, fn(y)) for all n ∈ ℕ and for all y ∈ Yn. Evidently ̃fn is a continuous
surjection. Let Ỹ = ⋃n≥1 Ỹn (this set is known as the free or disjoint union of the Yns
and sometimes it is denoted by∑n≥1 Ỹn) and similarly we set X̃ = ⋃n≥1 X̃n. The function
̃f : Ỹ → X̃ defined by ̃f Ỹn =

̃fn for all n ∈ ℕ is a continuous surjection. The space Ỹ is
Polish; see Proposition 1.5.46. Let h : X̃ → ⋃n≥1 Xn be the canonical projection, that is,
h(n, u) = u for all n ∈ ℕ and for all u ∈ Xn. This is a homeomorphism onto⋃n≥1 Xn.
Then g = h ∘ ̃f : Ỹ → ⋃n≥1 Xn is a continuous surjection, hence⋃n≥1 Xn is Souslin.

Directly fromDefinition 1.5.51, we have the following useful property of Souslin spaces. It
shows that although Souslin spaces are not necessarily metrizable, they are sequentially
determined.

Proposition 1.5.55. If X is a Souslin space and A ⊆ X, then there exists a countable set
D ⊆ A such that D is sequentially dense in A.

Proof. Let Y be a Polish space and f : Y → X a continuous surjection. Let B = f−1(A) ⊆
Y. Then B is separable and so there exists a countable dense subset D0 ⊆ B, that is,
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DY0 ⊇ B. Since f is surjective we know that D = f(D0) ⊆ A is countable and sequentially
dense in A.

Definition 1.5.56. A Hausdorff topological space X is said to be strongly Lindelöf if
every open subset of X with the subspace topology is Lindelöf; see Definition 1.2.26(b).

Proposition 1.5.57. Every Souslin space X is strongly Lindelöf.

Proof. Let Y be a Polish space and f : Y → X a continuous surjection. Evidently Y is
strongly Lindelöf; see Propositions 1.5.40(b) and 1.5.45. We can easily check that the
continuous image of a strongly Lindelöf space is strongly Lindelöf. Hence X must be
strongly Lindelöf.

Definition 1.5.58. Let X, {Yα}α∈I be sets and fα : X → Yα a family of functions. We say
that the family {fα}α∈I is separating (or total) if for every pair (x, u) ∈ X × X with x ̸= u
we have fα(x) ̸= fα(u) for some α ∈ I.

Lemma 1.5.59. If X is a Souslin space, {Yα}α∈I is a family of Hausdorff topological spaces
and fα : X → Yα with α ∈ I is a separating family of continuous maps, then we can find a
countable subset D ⊆ I such that {fα}α∈D remains separating.

Proof. Replacing the Yαs by their free union (see the proof of Proposition 1.5.54(c)),
we see that without any loss of generality we may assume that Yα = Y for all α ∈ I.
Let ∆X ⊆ X × X and ∆Y ⊆ Y × Y be the diagonals. If (x, u) ∈ ∆cX, then we can find α ∈ I
such that (fα(x), fα(u)) ∈ ∆cY . So, the open sets (fα , fα)−1(∆cY )with α ∈ I form an open
cover of ∆cX. The space X × X is strongly Lindelöf; see Propositions 1.5.54(b) and 1.5.57.
Therefore we can find a countable D ⊆ I such that {(fα , fα)−1(∆Y )}α∈D is a countable
open cover of ∆cX. This means that {fα}α∈D remains separating.

Combining this lemma with Problem 1.41 we can state the following result concerning
compact Souslin spaces.

Theorem 1.5.60. Every compact Souslin space is metrizable, hence Polish.

Remark 1.5.61. An improvement of this theorem can be found in Problem 1.42.

The Baire category notion gives a topological meaning to the notion of the size of a set.
It is based on density. So, according to Baire, a subset A of a Hausdorff topological
space X is considered to be very small (sparse) if there is no nonempty open set U ⊆ X
such that A ∩ U is dense in U, that is, A has an empty interior. Then large sets are those
that are not countable unions of sparse sets.

Definition 1.5.62. Let X be a Hausdorff topological space and A ⊆ X.
(a) We say that A is nowhere dense if int A = 0.
(b) We say that A is of first category if it is the countable union of nowhere dense sets.
(c) We say that A is of second category if it is not of first category.
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Remark 1.5.63. Note thatℚ is of first category and at the same time dense in ℝ. The
set A ⊆ X is nowhere dense if and only if int(X \ A) is dense in X.

Definition 1.5.64. A Hausdorff topological space X is said to be a Baire space if the
intersection of each countable family of dense, open sets in X is dense.

Proposition 1.5.65. A Hausdorff topological space X is of second category in itself if and
only if every countable family of dense open sets in X has nonempty intersection.

Proof. ⇒: Let {Un}n≥1 be dense, open sets. Then {Ucn}n≥1 = {X \ Un}n≥1 are nowhere
dense, closed sets and so⋃n≥1 Ucn is of first category. Since by hypothesis X is of second
category we have

X \ (⋃
n≥1

Ucn) = ⋂
n≥1

Un ̸= 0 .

⇐: Arguing by contradiction, suppose that X is of first category. Then X = ⋃n≥1 Cn
with Cn being nowhere dense and closed for each n ∈ ℕ. We have

X \ (⋃
n≥1

Cn) = ⋂
n≥1
(X \ Cn) ̸= 0

since each X \ Cn = Un with n ∈ ℕ is dense and open, a contradiction. This shows that
X must be of second category.

Proposition 1.5.66. If X is a compact Hausdorff topological space and A ⊆ X is a Gδ-set,
then A is a Baire space.

Proof. First we show that X is a Baire space. Let {Un}n≥1 be dense, open sets in X and
let V ⊆ X be a nonempty, open set. We have U1 ∩ V ̸= 0 and U1 ∩ V is open. From
Corollary 1.4.50 we know that X is normal, hence regular as well. So, we can find an
openW1 ⊆ X such thatW1 ⊆ U1 ∩ V; see Proposition 1.2.8. Similarly, for n ∈ {2, 3, . . .}
there exists openWn ⊆ X such thatWn ⊆ Un ∩Wn−1. Evidently {Wn}n≥1 is a decreasing
sequence of compact sets, hence⋂n≥1Wn ̸= 0. But⋂n≥1Wn ⊆ (⋂n≥1 Un)∩V. So, every
open set V ⊆ X has a nonempty intersection with⋂n≥1 Un and this shows that⋂n≥1 Un
is dense in X. Hence, X is a Baire space.

Without loss of generality we may assume that A is dense in X since we can always
replace X by A. Let {Un}n≥1 be dense, open subsets of A. Then Un = Vn ∩A with a dense
and open Vn ⊆ X for every n ∈ ℕ. Then

⋂
n≥1
(Vn ∩ A) = (⋂

n≥1
Vn) ∩ A .

From the first part of the proof we know that⋂n≥1 Vn ⊆ X is dense. Therefore⋂n≥1 Un =
⋂n≥1(Vn ∩ A) is dense in A. This proves that A is a Baire space.

Corollary 1.5.67. If X is a complete metric space and X = ⋃n≥1 Cn with closed Cn ⊆ X
for all n ∈ ℕ, then there exists a number n0 ∈ ℕ such that int C0 ̸= 0.
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Now Theorems 1.4.75 and 1.5.47 lead to the so-called “Baire Theorem.”

Theorem 1.5.68 (Baire Theorem). (a) Every locally compact Hausdorff topological
space is a Baire space.

(b) Every topologically complete Hausdorff space is a Baire space.

We conclude this section with an important result known as “Stone’s Theorem.” For the
proof we refer to Dugundji [91, p. 186].

Theorem 1.5.69 (Stone’s Theorem). Every metrizable space is paracompact.

1.6 Function Spaces

Let (X, τX) and (Y, τY ) be two Hausdorff topological spaces. By C(X, Y) we denote the
space of continuous functions f : X → Y. In this section we topologize this space and
study its properties.

Definition 1.6.1. Let K ⊆ X be compact and U ⊆ Y be open. We set

W(K, U) = {f ∈ C(X, Y) : f(K) ⊆ U} .

The compact-open topology (or c-topology) on C(X, Y) is the topology τζ on C(X, Y)
having as subbasis the family

{W(K, U) : K ⊆ X is compact and U ⊆ Y is open} .

Remark 1.6.2. A basic element for the τζ -topology is given by
m
⋂
n=1

W(Kn , Un)

with compact Kn ⊆ X and open Un ⊆ Y for all n ∈ {1, . . . ,m}. Note that C(X, Y) ⊆ YX.
So, we can consider on C(X, Y) the relative product topology that is the topology of
pointwise convergence and is denoted by τp. SinceW({x}, U) ∈ τζ for all x ∈ X and all
open U ⊆ Y, it follows that

τp ⊆ τζ . (1.6.1)

Note that we have
m
⋂
n=1

W(Kn , U) = W (
m
⋃
n=1

Kn , U) ,
m
⋂
n=1

W(K, Un) = W (K,
m
⋂
n=1

Un) ,

m
⋂
n=1

W(Kn , Un) ⊆ W (
m
⋃
n=1

Kn ,
m
⋃
n=1

Un) , W(K, U)τζ ⊆ W(K, UτY ) .

Proposition 1.6.3. If (X, τX) and (Y, τY ) are Hausdorff topological spaces and the func-
tion space C(X, Y) is endowed with the τζ -topology, then the following hold:
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(a) C(X, Y) is Hausdorff;
(b) C(X, Y) is regular if and only if Y is regular.

Proof. (a) Let f, g ∈ C(X, Y) such that f ̸= g. We can find x ∈ X such that f(x) ̸= g(x).
Because Y is Hausdorff, we can find U ∈ N(f(x)) and V ∈ N(g(x)) such that U ∩ V = 0.
Then

W({x}, U) ∈ τζ contains f ,
W({x}, V) ∈ τζ contains g ,
W({x}, U) ∩W({x}, V) = 0 .

This proves that (C(X, Y), τζ ) is Hausdorff.
(b)⇒: Evidently, Y ⊆ C(X, Y) (the subspace of constant functions) and τζ (Y) = τY .

Then the regularity of Y follows from the fact that the property is hereditary; see
Proposition 1.2.10.
⇐: Let f ∈ W(K, U). The set f(K) ⊆ Y is compact. So, by Problem 1.52 we can find

V ∈ τY such that f(K) ⊆ V ⊆ V ⊆ U. Then f ∈ W(K, U) ⊆ W(K, U)
τζ ⊆ W(K, UτY ); see

Remark 1.6.2. This proves that (C(X, Y), τζ ) is regular.

Remark 1.6.4. If Y is normal or first countable or second countable, then (C(X, Y), τζ )
need not have the same properties.

Let (X, τX), (Y, τY ) and (Z, τZ) be three Hausdorff topological spaces. We can define
the map η : C(X, Y) × C(Y, Z)→ C(X, Z) given by

η(f, g) = g ∘ f . (1.6.2)

On C(X, Y), C(Y, Z) and C(X, Z) we consider the corresponding ζ -topologies.

Proposition 1.6.5. The maps f → η(f, g) and g → η(f, g) are both continuous.

Proof. We fix f1 ∈ C(X, Y) and prove the continuity of g → η(f1, g) on C(Y, Z). Let
W(K, U) be a subbasic neighborhood of g ∘ f1. Note that g ∘ f1 ∈ W(K, U) if and
only if g ∈ W(f1(K), U). But the set f1(K) ⊆ Y is compact. Hence, W(f1(K), U) is a
subbasic neighborhood of g. Therefore, η(f1,W(f1(K), U)) = W(K, U) and this proves
the continuity of g → η(f1, g).

Next we fix g1 ∈ C(Y, Z) and consider the map f → η(f, g1) from C(X, Y) into
C(X, Z). The proof of the continuity of this map is similar to the previous part. Note that
in this case g1 ∘ f ∈ W(K, U) if and only if f ∈ W(K, g−11 (U)) and g−1(U) ∈ τY .

To have joint continuity of the map η we need to strengthen the conditions on the
space Y.

Proposition 1.6.6. If (Y, τY ) is locally compact, then the map η is jointly continuous.

Proof. Let (f1, g1) ∈ C(X, Y) × C(Y, Z) and letW(K, U) be a subbasic neighborhood of
(f1, g1). Note that f1(K) ⊆ g−11 (U), f1(K) ⊆ Y is compact and g−11 (U) ⊆ Y is open. Since
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by hypothesis Y is locally compact, we can find relatively compact V ∈ τY such that

f1(K) ⊆ V ⊆ V ⊆ g−11 (U) ;

see Proposition 1.4.66(c). Then we have

W(K, V) ⊆ N(f1) , W(V , U) ∈ N(g1) ,
η(W(K, V),W(V , U)) ⊆ W(K, U) .

Hence, η is jointly continuous.

Definition 1.6.7. The map e : X × C(X, Y) → Y defined by e(x, f) = f(x) is called the
evaluation map. If we fix x ∈ X, the map ex : C(X, Y) → Y defined by ex(f) = f(x) is
called the evaluation at xmap.

The next proposition establishes the continuity properties of these maps.

Proposition 1.6.8. (a) If Y is locally compact, then e : X × C(X, Y)→ Y is continuous.
(b) For every x ∈ X, the map ex : C(X, Y)→ Y is continuous.

Proof. Note that when Z is a singleton and η : C(Z, X) × C(X, Y) → C(Z, Y) is the
composition map (see (1.6.2)) then η = e. So, (a) follows from Proposition 1.6.6 while
(b) follows from Proposition 1.6.5.

We want to characterize the τζ -compact subsets of C(X, Y). The next definition intro-
duces notions that are crucial in this direction.

Definition 1.6.9. Let (X, τX) be a Hausdorff topological space and (Y, d) be a metric
space.
(a) A set F ⊆ C(X, Y) is said to be equicontinuous at x if for a given ε > 0 there exists

U ∈ N(x) such that d(f(u), f(x)) < ε for all u ∈ U and for all f ∈ F. We say that F is
equicontinuous if it is equicontinuous at every x ∈ X.

(b) Given f ∈ C(X, Y) with compact K ⊆ X and ε > 0, we define

BK,ε(f) = {g ∈ C(X, Y) : sup[d(g(x), f(x)) : x ∈ K] < ε} .

The sets BK,ε(f) form a basis for a topology τu on C(X, Y) known as the topology
of uniform convergence on compacta.

Remark 1.6.10. The τζ -topology (see Definition 1.6.1) and the τp-topology (see Re-
mark 1.6.2) on C(X, Y) are defined without requiring that Y is a metric space. In contrast,
the τu-topology (see Definition 1.6.9) explicitly requires that Y must be a metric space.
Nevertheless, we can prove the following remarkable result.

Theorem 1.6.11. If (X, τX) is a Hausdorff topological space and (Y, d) is a metric space,
then τζ = τu.

Proof. First we show that τζ ⊆ τu. To this end let f ∈ W(K, U). Then f(K) ⊆ Y is compact
and f(K) ⊆ U.
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Claim: There exists ε > 0 such that

f(K)ε = {y ∈ Y : d(y, f(K)) < ε} ⊆ U .

Arguing by contradiction, suppose that the claim is not true. Then we can find
{yn}n≥1 ⊆ Y \ U such that d(yn , f(K)) < 1/n. Recall that f(K) ⊆ Y is compact. So, for
every n ∈ ℕ there exists vn ∈ f(K) such that d(yn , vn) = d(yn , f(K)) < 1/n for all
n ∈ ℕ. The compactness o f(K) implies that by passing to a subsequence if necessary,
we have vn

d
→ v ∈ f(K) in Y. Since d(yn , vn) < 1/n for all n ∈ ℕ, it follows that

yn
d
→ v ∈ (X \ U) ∩ f(K), a contradiction, since f(K) ⊆ U. This proves that the claim is

true.
The claim implies that BK,ε(f) ⊆ W(K, U), that is

τζ ⊆ τu . (1.6.3)

Next we show that the opposite inclusion holds as well. Let f ∈ C(X, Y) and let
BK,ε(f) ⊆ W(K, U), see (1.6.3). For every x ∈ X there exists Vx ∈ N(x) such that f(Vx) ⊆
Ux with Ux ⊆ Y open and diamUx < ε. Since K is compact we find x1, . . . , xn ∈ K such
that K ⊆ ⋃nk=1 Vxk . Let Kxk = Vxk ∩ K for k ∈ {1, . . . , n}. Then f ∈ ⋂nk=1W(Kxk , Uxk ) ⊆
BK,ε(f) and so

τu ⊆ τζ . (1.6.4)

From (1.6.3) and (1.6.4) it follows that τζ = τu.

We know that τp ⊆ τζ (= τu if Y is a metric space); see (1.6.1) and Theorem 1.6.11.
However, on equicontinuous sets, the two topologies coincide.

Proposition 1.6.12. If (X, τX) is a Hausdorff topological space, (Y, d) is a metric space
and F ⊆ C(X, Y) is equicontinuous, then τp(F) = τζ (F), that is, the two topologies
restricted on F coincide.

Proof. Evidently τp(F) ⊆ τζ (F). Moreover, Theorem 1.6.11 yields that τζ = τu. Therefore,
it suffices to find a basic element B for the τp-topology such that

f ∈ B ∩ F ⊆ BK,ε(f) ∩ F .

Let ε1, ε2 > 0 be such that 2ε1+ε2 ≤ ε. SinceF is equicontinuous and K ⊆ X is compact,
we find open sets {Uk}nk=1 in X such that K ⊆ ⋃nk=1 Uk and for each k ∈ {1, . . . , n}, each
x, u ∈ Uk and f ∈ F, d(f(x), f(u)) < ε1.

We choose xk ∈ Uk with k ∈ {1, . . . , n} and let

B = {g ∈ C(X, Y) : d(g(xk), f(xk)) < ε2 for all k ∈ {1, . . . n}} .

Let g ∈ B ∩ F. Given x ∈ K, we find k ∈ {1, . . . , n} such that x ∈ Uk. Then we have

d(g(x), g(xk)) ≤ ε1 , d(g(xk), f(xk)) < ε2 , d(f(xk), f(x)) ≤ ε1 ,

which implies, by the triangle inequality and the choice of ε1, ε2 > 0, that d(g(x), f(x)) <
ε. Hence g ∈ BK,ε(f), thus B ∩ F ⊆ BK,ε ∩ F. This proves that τp(F) = τζ (F).
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Proposition 1.6.13. If (X, τX) is a Hausdorff topological space, (Y, d) is a metric space,
and F ⊆ C(X, Y) is equicontinuous, then Fτp is equicontinuous as well.

Proof. Let x ∈ X and ε > 0. Since F is equicontinuous, there exists U ∈ N(x) such that
d(f(u), f(x)) < ε for all u ∈ U and for all f ∈ F.

Let g ∈ Fτp . For v ∈ U we introduce

Vv = {h ∈ C(X, Y) : d(h(v), g(v)) <
ε
3 , d(h(x), g(x)) <

ε
3} ∈ τp .

We have Vv ∩ F ̸= 0. Let f ∈ Vv ∩ F. We have

d(g(v), g(x)) ≤ d(g(v), f(v)) + d(f(v), f(x)) + d(f(x), g(x)) ≤ 3 ε3 = ε .

Hence, Fτp is equicontinuous.

The next theorem is the main result of this section and characterizes the τζ -compact
sets in C(X, Y). The result is known as the “Arzela–Ascoli Theorem.”

Theorem 1.6.14 (Arzela–Ascoli Theorem). If (X, τX) is a locally compact space, (Y, d) is
a metric space, and F ⊆ C(X, Y), then Fτζ is τζ -compact if and only if F is equicontinuous
and for every x ∈ X, F(x) = {f(x) : f ∈ F} ⊆ Y is relatively compact.

Proof. ⇒: For every x ∈ X, there holds F(x) ⊆ F
τζ (x) = ex (F

τζ ) and Proposi-
tion 1.6.8(b) gives that ex (F

τζ ) is compact in Y. We need to show that Fτζ is equicon-
tinuous. Let x ∈ X and choose a compact set K such that K ⊇ V ∈ N(x). This is possible
since X is supposed to be locally compact. LetLζ = { ̂f = f K : f ∈ F

τζ }. It suffices to show
that Lζ is equicontinuous. Let r : C(X, Y)→ C(K, Y) be defined by r(f) = f K . Evidently
Lζ = r (F

τζ ) and r is continuous when both C(X, Y) and C(K, Y) are endowed with
their respective τζ -topologies. Note that on C(X, Y) the τζ -topology coincides with the
metric topology generated by the uniform metric d̂K(f, g) = max{d(f(x), g(x)) : x ∈ K}.
Hence Lζ is d̂K-totally bounded.

Let ε > 0 be given and choose ε1, ε2 > 0 such that 2ε1 + ε2 ≤ ε. We can find
x1, . . . , xn ∈ K such that Lζ ⊆ ⋃nk=1 Bε( ̂fk). Since each ̂fK is continuous, we can find
U ∈ N(x) such that

d ( ̂fk(u), ̂fk(x)) < ε2 for all u ∈ U and for all k ∈ {1, . . . , n} . (1.6.5)

Let ̂f ∈ Lζ . Then ̂f ∈ Bε1 ( ̂fk) for some k ∈ {1, . . . , n}. For every u ∈ U we have

d ( ̂f (u), ̂fk(u)) < ε1 , d ( ̂fk(u), ̂fk(x)) < ε2 , d ( ̂fk(x), ̂f (x)) < ε1 ;

see (1.6.5). This gives d ( ̂f (u), ̂f (x)) < ε for all u ∈ U, which implies that Lζ is equicon-
tinuous, and hence, so is F.
⇐: From Proposition 1.6.13 we know that Fτp is equicontinuous. Then Proposi-

tion 1.6.12 implies that Fτp = Fτζ . Recall that τp is the relative product topology on
C(X, Y) ⊆ YX. Using Tychonoff’s Product Theorem (see Theorem 1.4.56), we have that
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∏x∈X F(x) is compact in the product topology and so Fτp is compact. Therefore, Fτζ is
compact.

A careful inspection of the second part of the proof above reveals that for that part of
the result, the local compactness of X is not needed. So, we can state the following
version of the Arzela–Ascoli Theorem.

Theorem 1.6.15. If (X, τX) is a Hausdorff topological space, (Y, d) is a metric space, and
F ⊆ C(X, Y) is a set with the following two properties:
(a) F is equicontinuous;
(b) for every x ∈ X, F(x) = {f(x) : f ∈ F} ⊆ Y is relatively compact,
then Fτζ is τζ -compact and equicontinuous on X.

When Y = ℝN , exploiting the Heine–Borel Theorem, we can have the following particu-
lar version of the Arzela–Ascoli Theorem; see Theorem 1.6.14.

Theorem 1.6.16. If (X, τX) is a compact topological space and F ⊆ C(X,ℝN), then F is
compact for the supremummetric topology τd̂ if and only if F is equicontinuous, d̂-closed,
and bounded, that is, |f(u)| ≤ M for all u ∈ X and for some M > 0.

Remark 1.6.17. If X is a compact space and (Y, d) is a metric space, then recall that the
supremummetric d̂ or d∞ is defined by

d̂(f, g) = d∞(f, g) = max{d(f(x), g(x)) : x ∈ X} .

Evidently, fn
d̂
→
d∞

if and only if fn → f uniformly on X, that is, for given ε > 0, we can
find n0 = n0(ε) ∈ ℕ such that d(fn(u), f(u)) ≤ ε for all u ∈ X and for all n ≥ n0.

It is easy to see that uniform limits of continuous maps are again continuous maps.
According to Theorem 1.6.11, the d̂-metric topology depends only on the topology of Y
and on the particular metric d. So, if d1, d2 are two compatible metrics on Y, then the
corresponding sup-metrics d̂1, d̂2 are compatible as well. Hence we can view C(X, Y)
as a topological space without specifying the particular sup-metric and refer to the
topology of uniform convergence on C(X, Y).

Proposition 1.6.18. If X is a compact metrizable space and Y is a separable metrizable
space, then the space C(X, Y) with the τζ = τu-topology is separable and metrizable.

Proof. On account of Proposition 1.5.40(b) and Remark 1.6.17, it suffices to show that
C(X, Y) is second countable.

Let D = {xn}n≥1 ⊆ X be a dense set and {Un}n≥1 a countable basis for X. Let {Bn}n≥1
be an enumeration of the countable set of all closed balls with center D and a rational
radius. For n,m ∈ ℕ letWn,m = W(Bn , Um).

We claim that {Wn,m}n,m≥1 is a countable subbasis for C(X, Y). To this end, let
V ⊆ C(X, Y) be open and let f ∈ V. We choose δ > 0 such that

B2δ(f) = {g ∈ C(X, Y) : d̂(g, f) < 2δ} ⊆ V .
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Let dY be a compatible metric on Y and let Y = ⋃k≥1 Vk with Vk ∈ {Un}n≥1 and
diam Vk < δ. Moreover, let dX be a compatible metric on X and write the open set
f−1(Vk) as a union of dX-balls with center uk ∈ X, a rational radius, and closure
in f−1(Vk). We have X = ⋃k≥1 f−1(Vk) and the compactness of X implies that there
exists a finite number of the balls Bn with n ∈ ℕ such that ⋃ki=1 Bni = X. For each
i, choose mi such that Bni ⊆ f−1(Umi ). Let g ∈ ⋂ki=1W(Bni , Umi ). If x ∈ X, we choose
i such that x ∈ Bni and note that f(x), g(x) ∈ Umi . Since diamUmi < δ, we have
dY (g(x), f(x)) < δ, which gives d̂(g, f) < δ < 2δ. Hence g ∈ B2δ(f) ⊆ V. Therefore,
f ∈ ⋂ki=1W(Bni ,Wni ) ⊆ V and this proves the second countability of C(X, Y).

Remark 1.6.19. Combining Proposition 1.6.18 with Problem 1.21, we conclude that if Y
is a Polish space, then so is C(X, Y) equipped with the τζ = τu-topology.

1.7 Semicontinuous Functions – Miscellaneous Notions

In this section we examine semicontinuous extended real-valued functions and at the
end we introduce some topological notions that arise in various parts of nonlinear
analysis.

Semicontinuous ℝ∗-valued functions, where ℝ∗ = ℝ ∪ {±∞}, provide a natural
framework to study minimization or maximization problems with constraints. Here we
will focus on lower semicontinuous ℝ = ℝ ∪ {+∞}-valued functions. Of course with a
minus sign all results can be reformulated for upper semicontinuous ℝ̃ = ℝ ∪ {−∞}-
valued functions.

So, let X be a set and let φ : X → ℝ = ℝ ∪ {+∞} be a function. We introduce the
following sets:

epiφ = {(u, λ) ∈ X ×ℝ : φ(u) ≤ λ} is the epigraph of φ ,
φλ = {u ∈ X : φ(u) ≤ λ} with λ ∈ ℝ is the λ-sublevel set of φ ,

domφ = {u ∈ X : φ(u) < +∞} is the effective domain of φ .

To avoid trivial situations, we will always consider functions with domφ ̸= 0. In
the optimization literature such functions are called proper. However, in nonlinear
analysis, this name is reserved for maps that have the property where the inverse image
of a compact set is compact.

Note that if {φα}α∈I is a family of R-valued functions then

epi(sup
α∈I

φα) = ⋂
α∈I

epiφα , (1.7.1)

epi(inf
α∈I
φα) = ⋃

α∈I
epiφα . (1.7.2)

Definition 1.7.1. Let (X, τ) be a Hausdorff topological space and φ : X → ℝ = ℝ∪ {+∞}.
We say that φ is τ-lower semicontinuous at x ∈ X if for every λ < φ(x) there exists
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Uλ ∈ N(x) such that λ < f(u) for all u ∈ Uλ. We say that φ is τ-lower semicontinuous
if it is τ-lower semicontinuous at every x ∈ X.

Proposition 1.7.2. If (X, τ) is a Hausdorff topological space and φ : X → ℝ a function,
then the following statements are equivalent:
(a) φ is τ-lower semicontinuous;
(b) epiφ ⊆ X ×ℝ is closed (we consider the product topology on X ×ℝ);
(c) for every λ ∈ ℝ, φλ ⊆ X is closed;
(d) φ(x) ≤ lim infu→x φ(u) = supU∈N(x) infu∈U φ(u) for all x ∈ X.

Proof. (a) ⇒ (b): Let (u, μ) ̸∈ epiφ. Then μ < φ(u). Let η ∈ (μ, φ(u)). Then by
Definition 1.7.1, there exists Uη ∈ N(u) such that μ < η < φ(v) for all v ∈ Uη. Then

(Uη × (−∞, η)) ∩ epiφ = 0 .

Since Uη × (−∞, η) is a neighborhood of (u, λ) in X×ℝ, we conclude that (X×ℝ) \epiφ
is open, hence epiφ is closed in X ×ℝ with the product topology.

(b) ⇒ (c): Note that φλ × {λ} = epiφ ∩ (X × {λ}). Therefore φλ × {λ} is closed in
X ×ℝ. But the map u → (u, λ) is a homeomorphism from X onto X × {λ}. Therefore φλ
is closed.

(c) ⇒ (d): Let λ < φ(x). Since by hypothesis X \ φλ is open, we can find
U ∈ N(x) such that U ⊆ (X \ φλ). So, we have λ ≤ infU φ, which implies λ ≤
supU∈N(x) infu∈U φ(u) = lim infu→x φ(u). Since λ < φ(x) is arbitrary we let λ ↗ φ(x) to
conclude that φ(x) ≤ lim infu→x φ(u).

(d) ⇒ (a): Let λ < φ(x). By hypothesis λ < supU∈N(x) infu∈U φ(u) and thus λ <
infu∈U0 φ(u) for some U0 ∈ N(x). Hence, φ is τ-lower semicontinuous at any x ∈ X.

Remark 1.7.3. If φ : X → ℝ̃ = ℝ ∪ {−∞}, then instead we use the hypograph hypφ =
{(u, λ) ∈ X ×ℝ : λ ≤ φ(u)} and the λ-superlevel set φλ = {u ∈ X : φ(u) ≥ λ}. We have
that φ is upper semicontinuous if and only if hypφ is closed if and only if for λ ∈ ℝ, φλ
is closed if and only if φ(x) ≥ lim supu→x φ(u) = infU∈N(x) supu∈U φ(u) for all x ∈ X.

Proposition 1.7.2 leads to some useful stability properties for lower semicontinuous
functions.

Proposition 1.7.4. If (X, τ) is a Hausdorff topological space and φα : X → ℝ with α ∈ I,
is a family of τ-lower semicontinuous functions, then the following hold:
(a) supα∈I φα is τ-lower semicontinuous;
(b) if I is finite, then infα∈I φα is τ-lower semicontinuous.

Proof. (a) This follows from (1.7.1) and Proposition 1.7.2.
(b) Since I is finite and the finite union of closed sets is closed, the result follows

from (1.7.2) and Proposition 1.7.2.

Similarly, using Proposition 1.7.2, we have the following result.
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Proposition 1.7.5. If (X, τ) is a Hausdorff topological space and φ, ψ : X → ℝ are τ-
lower semicontinuous functions, then φ + ψ is τ-lower semicontinuous.

On metric spaces semicontinuous functions can be realized as monotone limits of
Lipschitz functions.

Proposition 1.7.6. If (X, d) is a metric space and φ : X → ℝ is bounded from below, then
φ is lower semicontinuous if and only if there exists an increasing sequence of Lipschitz
continuous bounded functions φ̂n : X → ℝ such that φ̂n(u) ↗ φ(u) for all u ∈ X.

Proof. ⇒: For every n ∈ ℕ let φn : X → ℝ be defined by

φn(u) = inf[φ(x) + nd(x, u) : x ∈ X] . (1.7.3)

Clearly {φn}n≥1 is increasing and φn ≤ φ for every n ∈ ℕ. Moreover, for every v ∈ X we
have

φn(u) ≤ φ(x) + nd(x, u) ≤ φ(x) + nd(x, v) + nd(v, u) for all x ∈ X .

This gives φn(u) ≤ φn(v) + nd(v, u), hence |φn(u) − φn(v)| ≤ nd(v, u). Thus each φn is
Lipschitz.

We have φn(u) ↗ φ̃(u) ≤ φ(u) for all u ∈ X. Given ε > 0, from (1.7.3), we see that
there exists xn ∈ X such that

φ(xn) + nd(xn , u) ≤ φn(u) + ε . (1.7.4)

Let η ≤ φ(x) for all x ∈ X. So, from (1.7.4), we have

d(xn , u) ≤
1
n
[φn(u) + ε − η] . (1.7.5)

Hence, if u ∈ domφ, then d(xn , u) ≤ 1/n[φ(u) + ε − η], which shows that

xn
d
→ u . (1.7.6)

Hence if we pass to the limit as n →∞ in (1.7.4) and use (1.7.6), then φ(u) ≤ φ̃(u) + ε.
Since ε > 0 is arbitrary, we let ε ↘ 0 and obtain φ(u) ≤ φ̃(u), which implies φ(u) = φ̃(u)
for all u ∈ domφ.

If u ̸∈ domφ, then we claim that φ̃(u) = +∞. Indeed if φ̃(u) ∈ ℝ, then from (1.7.5)
we have

d(xn , u) ≤
1
n [
φ̃(u) + ε − η] .

Hence, xn
d
→ u. So, as above we obtain +∞ = φ(u) ≤ φ̃(u) < +∞, a contradiction. Thus

φn(u) ↗ +∞ for all u ̸∈ domφ. Finally let φ̂n = min{φn , n}. Then φ̂n is bounded as
well.

Remark 1.7.7. If φ : X → ℝ̃ = ℝ ∪ {−∞} is upper semicontinuous and bounded above,
then we can find a decreasing sequence of Lipschitz continuous bounded functions
φ̂n : X → ℝ such that φ̂n(u)→ φ(u) for all u ∈ X as n →∞.
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From Proposition 1.7.6 and Remark 1.7.7, we infer the following useful result.

Corollary 1.7.8. If (X, d) is a metric space and φ ∈ Cb(X,ℝ), then there exist two se-
quences of Lipschitz continuous bounded functions ξn , ηn : X → ℝ such that
(a) {ξn}n≥1 is increasing and ξn(u) ↗ φ(u) for all u ∈ X;
(b) {ηn}n≥1 is decreasing and ηn(u) ↘ φ(u) for all u ∈ X.

In general pointwise convergence of functions does not imply uniform convergence.
However, with additional hypotheses we can have this. The result is known as “Dini’s
Theorem.”

Theorem 1.7.9 (Dini’s Theorem). If (X, τ) is a countably compact Hausdorff topological
space, φn : X → ℝ with n ∈ ℕ is an increasing (resp. decreasing) sequence of lower
(resp. upper) semicontinuous functions and φn(u)→ φ(u) for all u ∈ X with φ : X → ℝ
upper (resp. lower) semicontinuous, then φ is continuous and φn → φ uniformly, that is
d̂(φn , φ) = supx∈X |φn(x) − φ(x)|→ 0 as n →∞.

Proof. Wedo the case of a lower semicontinuous sequence. The other case is obtained by
multiplying with −1. From Proposition 1.7.4(a), we have that φ is lower semicontinuous
aswell, hence continuous. Then, for all n ∈ ℕ,φn−φ ≤ 0 and it is lower semicontinuous.
Given ε > 0, let Un = {u ∈ X : (φn − φ)(u) > −ε}. Then {Un}n≥1 is an open cover of X
and so by countable compactness we can find a finite subcover; see Definition 1.4.57(a).
Since {Un}n≥1 are increasing, then for some n ∈ ℕ, Un = X. Hence −ε < (φm −φ)(u) ≤ 0
for all m ≥ n. Therefore, φn → φ uniformly on X.

Remark 1.7.10. The hypotheses in Theorem 1.7.9 can not be relaxed. Let φn(x) = xn for
all x ∈ [0, 1). Then φn ↘ 0 but the convergence is not uniform. The domain [0, 1) is not
compact. Moreover, if X = [0, 1], then φn(x) = xn → χ{1}(x) and again the convergence
is not uniform since χ{1} is not lower semicontinuous. Note that the characteristic
function

χC(x) =
{
{
{

1 if x ∈ C ,
0 if x ̸∈ C

of a closed set C is only upper semicontinuous.

Next we introduce some topological notions that are used often in problems of nonlinear
analysis.

Definition 1.7.11. Let (X, τ) be a Hausdorff topological space and A ⊆ X. We say that A
is a retract of X if there is a continuous map r : X → A such that rA = id

A. The map
r : X → A is called a retraction.

Remark 1.7.12. Equivalently we can say that A ⊆ X is a retract of X if id A is con-
tinuously extendable to X. The concept of retracts is a topological notion, that is, if
h : X → Y is a homeomorphism and A ⊆ X is a retract of X, then h(A) is a retract of Y.

Example 1.7.13. (a) X and for u ∈ X, the singletons {u} are retracts of X.
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(b) If Bn1 = {u ∈ ℝn : |u| ≤ 1} and Sn−1 = {u ∈ ℝn : |u| = 1}, then B
n
1 is a retract of ℝn

with a retraction given by

r(u) =
{
{
{

u
|u| if |u| ≥ 1 ,
u if |u| < 1 ,

while Sn−1 is a retract of ℝn \ {0} with a retraction given by r(u) = u/|u| for all
u ∈ ℝn \ {0}.

(c) Every nonempty closed subset of the Polish spaceℕ∞ is a retract ofℕ∞.

Proposition 1.7.14. If (X, τ) is a Hausdorff topological space and A is a retract of X, then
A is closed.

Proof. Arguing by contradiction, suppose that A is not closed and let x ∈ A \ A. Then,
for a retraction r, we have r(x) ̸= x and so we can find U ∈ N(x), V ∈ N(r(x)) such that
U ∩ V = 0 since X is assumed to be Hausdorff. Because of the continuity of r, there
holds r(U) ⊆ V. Let u ∈ A ∩ U, recall x ∈ A, then r(u) = u ∈ V, a contradiction.

Proposition 1.7.15. If X is a Hausdorff topological space and A ⊆ X, then A is a retract of
X if and only if for every Hausdorff topological space Y every continuous map f : A → Y
is continuously extendable on all of X.

Proof. ⇒: Let r : X → A be a retraction. Then f ∘ r : X → Y is a continuous extension
of f .
⇐: Let Y = A. Then, according to Remark 1.7.12, A is a retract of X.

Definition 1.7.16. Let X, Y be two Hausdorff topological spaces and f, g : X → Y two
continuous maps. A homotopy from f to g is a continuous map h : [0, 1]× X → Y such
that h(0, ⋅) = f(⋅) and h(1, ⋅) = g(⋅). Then we say that f and g are homotopic and write
f ≃ g (or f ≃ g (h) if we need to emphasize the homotopy).

Remark 1.7.17. We can think of the homotopy as a time dependent deformation, with
the parameter t ∈ [0, 1] being the time, of f into g as time moves from 0 to 1. This
deformation is continuous. So there are no breaks or jumps.

Proposition 1.7.18. ≃ is an equivalence relation on C(X, Y).

Proof. First, we see that f ≃ f via the constant homotopy h(t, ⋅) = f(⋅) for all t ∈ [0, 1].
Now let f, g ∈ C(X, Y) and suppose that f ≃ g. Denote by h : [0, 1] × X → Y the
corresponding homotopy. Then h̃(t, x) = h(1 − t, x) for all t ∈ [0, 1] and for all x ∈ X is
a homotopy from g to f . Therefore g ≃ f . Finally if f ≃ g (h1) and g ≃ k(h2), then

h(t, x) =
{
{
{

h1(2t, x) if x ∈ [0, 12 ] ,
h2(2t − 1, x) if x ∈ [12 , 1]

for all t ∈ [0, 1] and for all x ∈ X is a homotopy from f to k; see Proposition 1.1.37.
Hence, f ≃ k.
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Definition 1.7.19. Let X, Y be two Hausdorff topological spaces.
(a) If f ∈ C(X, Y) is homotopic to a constant map, then we say that f is nullhomotopic

and we write that f ≃ 0.
(b) We say that the space X is contractible if idX is nullhomotopic.
(c) If φ ∈ C(X, Y) and ψ ∈ C(Y, X), then we say that ψ is a homotopy inverse of φ

if ψ ∘ φ ≃ idX and φ ∘ ψ ≃ idY . If φ has a homotopy inverse, then φ is said to
be a homotopy equivalence. In this case we say that X and Y are homotopy
equivalent (or of the same homotopy type).

Remark 1.7.20. It is easy to check by applying Proposition 1.7.18 that homotopy equiva-
lence is an equivalence relation. Note that every convex set inℝN is contractible and,
more generally, every star-shaped set inℝN is contractible. Recall that a set A ⊆ ℝN
is star-shaped, if there exists u0 ∈ A such that for every u ∈ A, the line segment
[u0, u] = {(1− t)u0 + tu : 0 ≤ t ≤ 1} is contained in A. In general, a contractible space is
one that can be continuously shrunk to a point. Indeed, according to Definition 1.7.19(b),
there exists a continuous map h : [0, 1] × X → X such that h(0, x) = x for all x ∈ X and
h(1, x) = x0 for all x ∈ X with x0 ∈ X.

Definition 1.7.21. Let X be a Hausdorff topological space.
(a) A continuous map h : [0, 1] × X → X is a deformation of X if h(0, ⋅) = idX. More-

over, if h(1, X) ⊆ A ⊆ X, then we say that h is a deformation of X onto A.
(b) A closed set A ⊆ X is a (resp. strong) deformation retract of X if there exists a

deformation h : [0, 1] × X → X of X onto A such that h(1, ⋅)A = idA (resp. such
that h(t, ⋅)A = idA for all t ∈ [0, 1]). The deformation h is called a (resp. strong)
deformation retraction.

Remark 1.7.22. Note that A ⊆ X is a deformation retract if and only if there exists a
retraction r : X → A (see Definition 1.7.11), such that iA ∘ r ≃ idX; see Definition 1.7.16.
Then, since r ∘ iA = idA, we infer that the inclusion map iA : A → X is a homotopy
equivalence.

Example 1.7.23. From Example 1.7.13(b), we know that Sn is a retract ofℝn+1 \ {0}. In
fact it is a strong deformation retract. Indeed, consider the deformation h : [0, 1] ×
(ℝn+1 \ {0})→ ℝn+1 defined by

h(t, x) = (1 − t)x + t x
|x|

for all t ∈ [0, 1] and for all x ∈ ℝn+1 \ {0} .

Directly from the previous definitions we have the following result.

Proposition 1.7.24. If X is a Hausdorff topological space, then the following statements
are equivalent:
(a) X is contractible.
(b) X is homotopy equivalent to a singleton.
(c) Any point of X is a deformation retract of X.
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Proposition 1.7.25. If Y is a Hausdorff topological space, then f ∈ C(Sn , Y) is nullhomo-
topic if and only if there exists a ̂f ∈ C(Bn1 , Y) such that ̂f

Sn = f , that is, ̂f is a continuous
extension of f on Bn1.

Proof. ⇒: Since0 ≃ f , there exists a homotopy h : [0, 1]×Sn → Y such that h(0, ⋅) = u0
and h(1, ⋅) = f . Let

̂f (x) =
{
{
{

u0 if 0 ≤ |x| ≤ 1
2 ,

h (2|x| − 1, x
|x|) if 1

2 ≤ |x| ≤ 1 .

Then ̂f ∈ C(Bn1 , Y) and ̂f
Sn = f .

⇐: Let h(t, x) = ̂f (tx) for all t ∈ [0, 1] and for all x ∈ Bn1. Then, using this homotopy,
we see that 0 ≃ f .

The next notion is related to the Tietze Extension Theorem; see Theorem 1.2.44.

Definition 1.7.26. A Hausdorff topological space X is said to be an absolute retract
(AR for short) if the following are true:
(a) X is metrizable;
(b) for any metrizable space Y and any closed set A ⊆ Y each f ∈ C(A, X) can be

extended to a ̂f ∈ C(Y, X), that is, ̂f A = f .

Remark 1.7.27. So an AR can replace ℝ in the Tietze Extension Theorem, see Theo-
rem 1.2.44, for metric spaces.

Proposition 1.7.28. If X is an AR and C is a retract of X, then C is an AR.

Proof. Let Y be a metrizable space, A ⊆ Y a closed set, and f ∈ C(A, C). Let r : X → C
be a retraction. Since X is an AR, there exists ̂f ∈ C(Y, X) such that ̂f A = f . Then
̂f0 = r ∘ ̂f ∈ C(Y, C) is the desired extension of f .

Now we will identify some useful spaces that are AR. The first result is known as
“Dugundji’s Extension Theorem.”

Theorem 1.7.29 (Dugundji’s Extension Theorem). If X is a metrizable space, A ⊆ X is
closed, Y is a locally convex space, and f ∈ C(A, Y), then there exists ̂f ∈ C(X, Y) such
that ̂f A = f and ̂f (X) ⊆ conv f(A).

Proof. Let d be a compatible metric on X. For x ∈ X and r > 0, let B(x, r) = {u ∈
X : d(u, x) < r}. We consider the family {B(x, 1/2d(x, A) : x ∈ X \ A}. This is an open
cover of X \ A. Since X \ A is paracompact (see Theorem 1.5.69), there exists a locally
finite refinement {Uα}α∈I . For Uα choose B(xα , 1/2d(xα , A)) such that

Uα ⊆ B (xα ,
1
2d(xα , A)) ; (1.7.7)

see Definition 1.4.79(a). We choose uα ∈ A such that

d(xα , uα) ≤ 2d(xα , A) . (1.7.8)
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We have

d(xα , A) ≤ 2d(x, A) for all x ∈ Uα . (1.7.9)

To see (1.7.9) note that for all x ∈ Uα

d(xα , A) ≤ d(xα , x) + d(x, A) ≤
1
2d(xα , A) + d(x, A) ;

see (1.7.7). Hence, (1.7.9) holds.
Moreover we have

d(u, uα) ≤ 6d(u, x) for all u ∈ A and all x ∈ Uα . (1.7.10)

Again, to see (1.7.10), note that, because of (1.7.7) and (1.7.8), for all u ∈ A and for all
x ∈ Uα,

d(u, uα) ≤ d(u, x) + d(x, xα) + d(xα , uα)

≤ d(u, x) + 12d(xα , A) + 2d(xα , A)

≤ d(u, x) + d(x, A) + 4d(x, A)
≤ 6d(u, x) .

Thus, (1.7.10) holds.
Invoking Theorem 1.4.86, there exists a partition of unity {ξα}α∈I subordinated to

the cover {Uα}α∈I . We define

̂f (u) =
{
{
{

f(u) if u ∈ A ,
∑α∈I ξα(u)f(uα) if u ∈ X \ A .

(1.7.11)

Clearly, ̂f A = f and ̂f is continuous on the open set X\A. We need to show the continuity
of f at the points of A.

Let u ∈ A and V ∈ N(f(u)). Since Y is locally convex and f is continuous at u, we
can find a convex set C and a δ > 0 such that

f (A ∩ B δ
6
(u)) ⊆ C ⊆ V . (1.7.12)

Let x be any point of Bδ/6(u) \ A. Since the cover {Uα}α∈I is locally finite, it belongs
to finitely many sets Uα1 , . . . , Uαn . Then d(x, u) < δ/6 and since x ∈ Uα we have
d(u, uαi ) < δ for all i ∈ {1, . . . , n}; see (1.7.10). This implies that uαi ∈ A ∩ Bδ(u) for
all i ∈ {1, . . . , n}. Because of (1.7.11) and since C is convex it follows that ̂f (u) ∈ C.
Therefore, due to (1.7.12), ̂f (Bδ/6(u)) ⊆ V. Hence ̂f A is continuous.

Corollary 1.7.30. If C is a convex subset of a locally convex space X and C is metrizable,
then C is an AR.

Next we show that in an infinite dimensional normed space X, the unit sphere ∂B1 =
{u ∈ X : ‖u‖ = 1} is an AR. To do this we will need the following remarkable result due
to Klee [176].
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Theorem 1.7.31. If X is an infinite dimensional normed space and K ⊆ X is compact, then
X \ C and X are homeomorphic.

Using this theorem, we can prove the following important result.

Theorem 1.7.32. If X is an infinite dimensional normed space, then ∂B1 = {u ∈ X : ‖u‖ =
1} is an AR and a retract.

Proof. By Theorem 1.7.31 X and X \ {0} are homeomorphic. Due to Corollary 1.7.30, X is
an AR. Hence X \ {0} is an AR as well. Applying the radial retraction r : X \ {0}→ ∂B1
defined by r(u) = u/‖u‖ for all u ∈ X \ {0}, we see that ∂B1 is a retract of X \ {0}, hence
an AR; see Proposition 1.7.25. Therefore we conclude that ∂B1 is an AR and a retract
of X.

Remark 1.7.33. The result fails if X is finite dimensional.Wewill show this in Section 6.4
by using fixed point theory.

1.8 Remarks

(1.1) Point set topology emerged as a coherent field ofmathematics with Hausdorff’s 1914
book [140]. Hausdorff found the right set of axioms to introduce the notion of topology in
a general setting. He provided a unified framework for all previous topological research.
Abstract spaces were first introduced by Fréchet [117] and Riesz [240]. The notion of
a subbasis (see Definition 1.1.3) is due to Bourbaki [42]. The books of Choquet [65],
Dugundji [91], Kelley [172], Kuratowski [183, 184], Munkres [226], Nagata [228], and
Willard [309] are excellent references for all topics of point-set topology discussed
here.

(1.2) The Hausdorff property (see Definition 1.2.1) was among the axioms for a
topology used by Hausdorff. Before Hausdorff spaces, there was a more general class,
the T1-spaces introduced by Fréchet and Riesz.

Definition 1.8.1. A topological space X is a T1-space if and only if for every distinct
x, u ∈ X, there is a neighborhood of each not containing the other.

Remark 1.8.2. In such spaces singletons are closed sets.

Regular spaces (see Definition 1.2.7) were introduced by Vietoris [294] and the nor-
mality property is due to Tietze [285]. Many authors define regularity and normal-
ity of T1-spaces (see Definition 1.8.1): for example, Kelley [172] and Munkres [226].
Here we follow Dugundji [91]. Urysohn’s Lemma (see Theorem 1.2.17) was proven
by Urysohn [289]. The companion Theorem 1.2.17 (Tietze Extension Theorem) was
proven by Tietze [284]. The notion of complete regularity (see Definition 1.2.19) is due
to Urysohn [289].

The notions of first and second countability (see Definition 1.2.20) were defined by
Hausdorff [140] while the notion of separability is due to Fréchet [117]. The Lindelöf
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property (see Definition 1.2.26(b)) goes back to Lindelöf [200] for Euclidean spaces. The
general study of Lindelöf spaces started with the paper of Kuratowski–Sierpinski [182].

E. H.Moore [219] and E.H.Moore–Smith [220] developed the general theory of
convergence using nets, although the term is due to Kelley [171]. Subnets (see Defini-
tion 1.2.38) were introduced by E.H.Moore [221] and studied in detail by Kelley [171].
There is an alternative approach using filters instead of nets. This approach is used by
Bourbaki [45].

(1.3) Weak topologies are discussed in Bourbaki [45] under the name “initial
topologies.” Moreover, quotient topologies were first studied by Alexandrov [4] and
R. L.Moore [223]. Weak topologies are important in Banach space theory.

(1.4) The notion of connectedness (see Definition 1.4.23(b)) is even older and
appears in the work of Weierstraß. Locally connected spaces (see Definition 1.4.34)
were introduced by Hahn [135] and are discussed in detail in the books of Dugundji [91]
and Kuratowski [184].

Here is another notion of “connectedness” for metric spaces that can traced back to
the work of Cantor.

Definition 1.8.3. Ametric space (X, d) is said to bewell-chained (orwell-linked) if
for every pair (x, u) ∈ X × X and every ε > 0 there exists a finite sequence v1, . . . , vn of
points in X such that v1 = x, vn = u and d(vk , vk+1) ≤ ε for all k ∈ {1, . . . , n − 1}. That
means x and u can be joined by a chain of steps at most equal to ε.

Proposition 1.8.4. Every connected metric space is well-chained. For compact metric
spaces we have “connected⇐⇒ well-chained.”

The term “compact space” is due to Fréchet [117] who used it to describe sequential
compactness of metric spaces. Hausdorff [140] observed that the sequential definition
of compactness is equivalent to the general definition (see Definition 1.4.42) for metric
spaces. Alexandrov–Urysohn [5] used Definition 1.4.42 to describe compact spaces and
called them “bicompact spaces.” The Product Theoremof Tychonoff (see Theorem 1.4.56)
was proven by Tychonoff [288] and showed that Definition 1.4.42 is the right one, that
is, more general for compactness since it passes to arbitrary products.

Local compactness was introduced by Alexandrov [3] and Tietze [285]. For a topo-
logical vector space, local compactness is equivalent to finite dimensionality.

Local compactness is important in integration theory and in the theory of topological
groups.

The problem of compactification was initiated by Alexandrov [3] who introduced
the one-point compactification; see Definition 1.4.74. Paracompactness was defined by
Dieudonne [81] with important contributions of Michael [213, 215], [216].

(1.5) The extension of topological considerations beyond the realm of Euclidean
spaces was achieved by Fréchet [117] who introduced metric spaces and allowed the
“points” under consideration to be abstract objects and not real numbers or real vectors.
The idea of completion of metric spaces can be traced back to Cauchy who tried to define
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irrational numbers as the limits of Cauchy sequences of rational numbers. The notion
of complete metric space can be found in Fréchet [117] and the general completion
construction is due to Hausdorff [140]. The supremummetric (see Definition 1.5.28)
although attributed to Fréchet, was first used byWeierstraß back in 1885. The systematic
study of continuous maps and homeomorphisms started with Fréchet [117] although
the idea of homeomorphism (but in a less general context) was used by Poincaré back
in 1895.

Next we present an important theorem that gives us conditions under which a
Hausdorff topological space is metrizable. The result is due to Urysohn [290] and is
known as the “Urysohn Metrization Theorem.”

Theorem 1.8.5 (Urysohn Metrization Theorem). Every second countable regular topo-
logical space is metrizable.

Polish spaces are discussed in Bourbaki [45] and Souslin spaces in L. Schwartz [268].
More about them in the Remarks of Chapter 2.

The notions of first and second category spaces (see Definition 1.5.62(b),(c)) were
introduced by Baire [20] who also proved Theorem 1.5.68(b). Theorem 1.5.68(a) is due to
R. L.Moore [222] and Theorem 1.5.69 is due to A.H. Stone [278].

(1.6) The compact-open topology (see Definition 1.6.1) was defined and studied
in detail by Arens [10] and Fox [116]. The Arzela–Ascoli Theorem (see Theorem 1.6.14)
was first proven for C[0, 1] by Arzela [11] (the necessary part) and by Ascoli [12] (the
sufficient part).

Definition 1.8.6. A Hausdorff topological space X is a k-space (or a compactly gen-
erated space) if the following condition hold:

“C ⊆ X is closed if and only if C ∩ K is closed for every K ⊆ X compact.”

Theorem 1.8.7. (a) Every locally compact space is a k-space.
(b) Every first countable space is a k-space.

Remark 1.8.8. In particular a metric space is a k-space.

This leads us to the following generalization of Theorem 1.6.14.

Theorem 1.8.9. Theorem 1.6.14 remains true if Y is only a k-space (not necessarily metric
space).

In this general form the result is due to Kelley [172, pp. 233-234].
(1.7) For further results on semicontinuous functions we refer to Dal Maso [70].
The next notion is important in variational problems.

Definition 1.8.10. A function φ : X → ℝ = ℝ ∪ {+∞} is said to be coercive (sequen-
tially coercive) if for every λ ∈ ℝ the sublevel set φλ = {x ∈ X : φ(x) ≤ λ} is relatively
compact (relatively sequentially compact).
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Remark 1.8.11. Sequentially coercivity implies coercivity. Another name for coercivity
is inf-compactness (sequential inf-compactness). Note that lower semicontinuity
and coercivity are antagonistic notions. More precisely, let τ1, τ2 be two Hausdorff
topologies on X and assume that τ2 ⊆ τ1. Then for a function φ : X → ℝ = ℝ ∪ {+∞}
we have that “φ is τ2-lower semicontinuous” implies “φ is τ1-lower semicontinuous”
as well as “φ is τ1-coercive” implies “φ is τ2-coercive.”

A balance between these two properties leads to the choice of a good topology
for variational analysis. For additional information on retracts, absolute retracts,
homotopies, etc. we refer to Borsuk [40], Hu [159] and Granas–Dugundji [133].

Problems

Problem 1.1. Suppose that X, Y are Hausdorff topological spaces and f : X → Y is a
continuous map. Show that the set C = {(x, u) ∈ X × X : f(x) = f(u)} is closed in X × X
with the product topology.

Problem 1.2. Suppose that X, Y are Hausdorff topological spaces and f, g : X → Y are
continuous maps. Show that {x ∈ X : f(x) = g(x)} is closed in X.

Problem 1.3. Show that every subspace of a completely regular space is completely
regular. Moreover show that X = ∏α∈I Xα with the product topology is completely
regular if and only if each factor space Xα is completely regular.

Problem 1.4. Show that X is completely regular if and only if it is homeomorphic to a
subspace of some cube.

Problem 1.5. Show that a topological space X is Hausdorff if and only if the diagonal
D = {(u, u) ∈ X × X : u ∈ X} is closed in X × X with the product topology.

Problem 1.6. Suppose that X is a Hausdorff topological space and let {un}n≥1 ⊆ X be a
sequence such that un → u ∈ X. Show that the set K = {un}n≥1 ∪ {u} is compact. Is the
result true for nets? Justify your answer.

Problem 1.7. Show that a regular Lindelöf space is normal.

Problem 1.8. Suppose that X, Y are Hausdorff topological spaces, Y is compact and
f : X → Y. Show that f is continuous if and only if Gr f = {(u, y) ∈ X × Y : y = f(u)} is
closed in X × Y with the product topology.

Problem 1.9. Suppose that {Xα}α∈I are Hausdorff topological spaces and Kα ⊆ Xα with
α ∈ I are compact sets. Let U ⊆ X = ∏α∈I Xα be an open set for the product topology
such that ∏α∈I Kα ⊆ U. Show that there exists a basic open set V (for the product
topology) such that∏α∈I Kα ⊆ V ⊆ U.
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Problem 1.10. Let X, Y be Hausdorff topological spaces and let f : X → Y be amapwith
Gr f = {(u, y) ∈ X × Y : y = f(u)}, which is closed in X × Y with the product topology.
Show that for every compact K ⊆ Y, f−1(K) ⊆ X is closed.

Problem 1.11. Let X be a locally compact topological space. Show that X is second
countable if and only if it is separable and metrizable.

Problem 1.12. Let X, Y be Hausdorff topological spaces and A ⊆ X, B ⊆ Y are nonempty
sets. Show that A × B is closed (resp. open, dense) in X × Y with the product topology if
and only if A and B are closed (resp. open, dense) in X and Y, respectively.

Problem 1.13. Suppose that X is a normal topological space and A ⊆ X closed. Show
that the following statements are equivalent:
(a) A is a Gδ-set.
(b) There exists a continuous map f : X → Y such that A = f−1(0).
(c) For every closed C ⊆ X with A ∩ C = 0, there exists a continuous function f : X →
[0, 1] such that f−1(0) = A and f(B) = 1.

Problem 1.14. Let (X, τ) be a Hausdorff topological space and L ⊆ τ be a subbasis of
the topology. Assume that every L-cover of X admits a finite subcover. Show that (X, τ)
is compact. Remark: this result is known as “Alexandrov’s Subbasis Theorem.”

Problem 1.15. Let (X, d) be a metric space. Show that there exists a normed space V
and an isometry ξ : X → V such that ξ(X) ⊆ V is closed. Remark: this result is known
as the “Arens–Eells Embedding Theorem.”

Problem 1.16. Let A ⊆ ℝN be connected and let Aε = {u ∈ ℝN : d(u, A) < ε}. Show that
Aε is connected and path-connected.

Problem 1.17. Let X be a Hausdorff topological space that is connected and A is a
proper nonempty subset of X. Show that bd A ̸= 0.

Problem 1.18. Let X be a Hausdorff topological space that is connected and A ⊆ X.
Assume that bd A is connected. Show that A is connected as well.

Problem 1.19. Let X be a Hausdorff topological space and A ⊆ X a connected set.
Consider a set D ⊆ X such that A ∩ D ̸= 0 and A ∩ (X \ D) ̸= 0. Show that A ∩ bdD ̸= 0.

Problem 1.20. Let X be a Hausdorff topological space, {Kα}α∈I is a family of compact
subsets of X and U ⊆ X is an open set such that ∩α∈IKα ⊆ U. Show that there exists a
finite F ⊆ I such that⋂α∈F Kα ⊆ U.

Problem 1.21. Let X be a compact topological space and (Y, d) a metric space. On
C(X, Y) we consider the supremummetric d∞; see Definition 1.5.28. Show that C(X, Y)
is d∞-complete if and only if Y is d-complete.

Problem 1.22. Show that a compact metric space cannot be isometric to a proper subset
of itself.
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Problem 1.23. Let (X, d) be a compact metric space. Show that:
(a) Every nonexpansive map f : X → X (see Remark 1.5.23) is an isometry.
(b) If f : X → X satisfies d(x, u) ≤ d(f(x), f(u)) for all x, u ∈ X, then f is an isometry.

Problem 1.24. Let X be a noncompact, locally compact Hausdorff topological space
and X̂ is its one-point Alexandrov compactification; see Theorem 1.4.75. Show that X̂ is
metrizable if and only if X is second countable.

Problem 1.25. Let (X, d) and (Y, ρ) be two metric spaces. Show the following two
statements:
(a) If f : X → Y is continuous, then there exists an equivalent metric d̂ on X such that

f : (X, d̂)→ (Y, ρ) is Lipschitz continuous.
(b) If L is a countable family of continuous functions from X into Y, then there exists

an equivalent metric d̂ on X and an equivalent metric ρ̂ on Y such that each f ∈ L
with f : (X, d̂)→ (Y, ρ̂) is Lipschitz continuous.

Problem 1.26. Let X be a Hausdorff topological space, (Y, d) ametric space, f : X → Y a
continuous map, and Df = {x ∈ X : f is not continuous at x}. Show that Df is an Fσ-set.

Problem 1.27. Is there a function f : [0, 1]→ ℝ with Df being the irrational numbers
in [0, 1] (see Problem 1.26)? Justify your answer.

Problem 1.28. Let X be a Hausdorff topological space and φ : X → ℝ = ℝ ∪ {+∞}
a coercive and lower semicontinuous (resp. sequentially coercive and sequentially
lower semicontinuous) function. Show that there exists u0 ∈ X such that φ(u0) =
inf[φ(u) : u ∈ X].

Problem 1.29. Let φ : ℝN → ℝ be a function such that lim|u|→∞ φ(u)/|u| > 0. Show
that φ is coercive in the sense of Definition 1.8.10.

Problem 1.30. Let X, Y be metrizable spaces with Y compact and φ : X × Y → ℝ =
ℝ ∪ {+∞} lower semicontinuous. Letm(u) = inf[φ(u, y) : y ∈ Y]. Show thatm : X → ℝ
is lower semicontinuous and for every u ∈ X there exists y0 ∈ Y such that m(u) =
φ(u, y0).

Problem 1.31. Suppose that X is a k-space (see Definition 1.8.6) and Y is a Hausdorff
topological space. Show that f : X → Y is continuous if and only if f K is continuous for
every compact K ⊆ X.

Problem 1.32. Let X be a metric space, A ⊆ X closed, and V ⊆ [0, 1] × X an open set
such that [0, 1] × A ⊆ V. Show that there exists an open set U ⊆ X such that A ⊆ U and
[0, 1] × U ⊆ V.

Problem 1.33. Let X be a Hausdorff topological space and A ⊆ X closed. Show that A is
a deformation retract of X if and only if A is a retract of X and X is deformable into A.

Problem 1.34. Let X be an AR. Show that any open set U ⊆ X is also an AR.
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Problem 1.35. Show thatℚ is not topologically complete.

Problem 1.36. Let

χℚ(x) =
{
{
{

1 if x ∈ ℚ ,
0 if x ̸∈ ℚ

being the characteristic function of the rationals. Show that χℚ is not the pointwise
limit of a sequence of continuous functions.

Problem 1.37. Let (X, d) be a compact metric space and f : X → X an isometry. Show
that f is surjective.

Problem 1.38. Is the pointwise limit of lower semicontinuous functions a lower semi-
continuous function? How about the uniform limit? Justify your answer.

Problem 1.39. Show that the set of irrational numbersℝ \ℚ is topologically complete.

Problem 1.40. Let X, Y be Hausdorff topological spaces and f : X → Y. Show that
Gr f = {(u, y) ∈ X × Y : y = f(u)} is a retract of X × Y.

Problem 1.41. Let (X, τ) be a compact topological space and suppose that there exists
a countable, separating family F of continuous functions f : X → Y with (Y, d) a metric
space. Show that τ is metrizable.

Problem 1.42. Show that every locally compact Souslin space is Polish.

Problem 1.43. Let (X, d) be a metric space and C1, C2 ⊆ X nonempty, disjoint, closed
sets with C2 compact. Show that d(C1, C2) = inf[d(u, v) : u ∈ C1, v ∈ C2] > 0.

Problem 1.44. Let X be a locally compact and σ-compact topological space. Show that
every open cover L of X has a locally finite open refinement {Vn}n≥1 such that Vn is
compact for all n ∈ ℕ.

Problem 1.45. Let X be a metrizable, locally compact, σ-compact topological space.
Show the following:
(a) Every open set U ⊆ X can be written as U = ⋃n≥1 Kn with compact Kn and Kn ⊆

int Kn+1 for all n ∈ ℕ.
(b) Every compact set K ⊆ X can be written as K = ⋂n≥1 Un with Un open, Un compact

and Un ⊇ Un+1 for all n ∈ ℕ.

Problem 1.46. Let X be a locally compact space and X̂ its one-point Alexandrov
compactification. Set V = { ̂f ∈ C(X̂,ℝ) : f(∞) = 0}. For every ̂f ∈ V, let ̃f = ̂f X.
Show that ̂f → ̃f is an isometry of V onto C0(X,ℝ) = {f ∈ C(X,ℝ) : for every ε >
0 there exists compact K ⊆ X such that |f(x)| < ε for all x ∈ X \ K} being the space of
continuous functions on X vanishing at infinity.
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Problem 1.47. Let X, Y be Hausdorff topological spaces, {Vα}α∈I an open cover of
Y, and f : X → Y a continuous map such that fα = f f−1(Vα) : f

−1(Vα) → Vα is a
homeomorphism for every α ∈ I. Show that f is a homeomorphism.

Problem 1.48. Let X, Y be Hausdorff topological space, f : X → Y a map, and G =
Gr f = {(u, y) ∈ X × Y : y = f(u)}. Let g : X → G be defined by g(u) = (u, f(u)). Show
that f is continuous if and only if g is a homeomorphism.

Problem 1.49. Let X be a Baire space, Y a separable metric space and f : X → Y a map
such that the inverse image of any open set is a Fσ-set. Show that f is continuous at
every point of a dense Gδ-set.

Problem 1.50. Let X be a second countable regular topological space and U ⊆ X an
open set. Show that there exists a continuous function f : X → [0, 1] such that f(u) > 0
for all u ∈ U and f(u) = 0 for all u ∈ X \ U.

Problem 1.51. Let X, Y be Hausdorff topological spaces, f : X → Y a continuous map,
Cn ⊆ X closed for all n ∈ ℕ, Cn ↘ C being nonempty compact, and for every U ⊇ C
open, there is n ∈ ℕ such that Cn ⊆ U. Show that f(C) = ⋂n≥1 f(Cn) = ⋂n≥1 f(Cn).

Problem 1.52. Let X be a regular topological space, K ⊆ X compact and U ⊆ X open
such that K ⊆ U. Show that there exists an open set V ⊆ X such that K ⊆ V ⊆ V ⊆ U.

Figure 1.2 shows the relations between various spaces introduced in this chapter.
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Fig. 1.2: Topological spaces: From Compact Metric to Hausdorff.


