Renewable Energy & Hydroelectric Works

Exercise instructions: Design of Small Hydroelectric Power Plants

Nikos Mamassis, Andreas Efstratiadis, Demetris Koutsoyiannis and Sandra Baki Department of Water Resources & Environmental Engineering, School of Civil Engineering, NTUA, Academic year 2018-19

Exercise

The construction of a small hydropower plant with a net head of 260 m is considered in a specific river location. Daily flow data are available at the location of the intake for a period of 10 hydrologic years (Excel file), whereas Table 1 contains the corresponding values of the mean monthly flows.

Table 1 Mean Monthly Flows (m³/s)

Month	10	11	12	1	2	3	4	5	6	7	8	9	Annua
Mean value	0.48	1.37	1.46	0.99	1.40	1.53	1.66	1.03	0.42	0.23	0.15	0.12	0.90

Requested:

- 1. The estimation of the environmental flow and the timeseries of the daily volume of water exploitable for hydropower production
- 2. The initial estimation of the mean annual potential electrical energy, assuming a total efficiency of 0.85
- 3. The development of the exploitable daily flow duration curve
- 4. The development of a spreadsheet for the simulation of the hydropower plant's daily operation and the calculation of the electricity produced. Assume that the turbine starts operating with a flow higher than 10% of the maximum flow and has a **constant total efficiency** of 0.85. Considering that one turbine is going to be installed, estimate its nominal flow, so that the production of electrical energy is maximised.
- 5. The development of a spreadsheet for the simulation of the hydropower plant's daily operation and the calculation of the electricity produced. Assume that the turbine has a **variable efficiency** (that can be estimated via the curves supplied), whereas the efficiency of the electromechanical equipment is 0.96. Considering that one turbine is going to be installed, estimate its nominal flow, so that the production of electrical energy is maximised. Use the performance curves of the three turbine types (Francis, Pelton, Kaplan), which are supplied in the Excel file. Assume that the following conditions will need to apply: a) the volume of water utilised, after the deduction of the environmental flow, needs to be at least 75% of the total, and b) the exploitation index of the plant needs to be at least 30%
- 6. Investigate the installation of two turbines. Calculate the electrical energy produced from different turbine combinations and identify the most efficient ones in terms of electricity production
- 7. The final selection of **two** turbines, after taking into account other factors besides the maximisation of electrical energy production

1. Environmental flow estimation

	А	В	С	D	E	F	G	Н	I.	J	K	L	М	N	0	
1																
2	Έκταση	42.8	km2													
3	Απορροή	28.4	hm3													
4	Απορροή	663.3	mm													
5																
6																
7		10	11	12	1	2	3	4	5	6	7	8	9	Έτος		
8	1971-72	0.18	0.77	1.32	1.02	1.73	1.78	1.55	1.00	0.31	0.21	0.13	0.08	0.84		
9	1972-73	1.20	1.17	0.59	1.43	2.61	2.14	1.74	0.91	0.28	0.11	0.05	0.09	1.03		
10	1973-74	0.32	0.81	1.13	0.20	1.89	1.71	2.17	1.57	0.42	0.11	0.07	0.17	0.88		
11	1974-75	0.90	2.81	1.57	0.76	1.54	1.92	1.06	0.67	0.43	0.15	0.15	0.09	1.00		
12	1975-76	0.77	3.45	2.22	1.11	0.44	2.45	3.62	2.18	0.76	0.22	0.12	0.12	1.45		
13	1976-77	0.22	0.94	1.99	1.05	0.87	1.45	0.99	0.42	0.49	0.32	0.11	0.08	0.74		
14	1977-78	0.18	1.19	0.89	1.80	1.95	1.40	0.98	0.72	0.39	0.40	0.14	0.11	0.85		
15	1978-79	0.57	0.63	0.82	0.39	0.53	0.31	1.28	0.26	0.16	0.09	0.26	0.10	0.45		
16	1979-80	0.15	0.80	3.67	1.88	2.13	1.49	1.37	1.32	0.42	0.48	0.41	0.30	1.20		
17	1980-81	0.28	1.16	0.40	0.28	0.34	0.61	1.80	1.28	0.57	0.18	0.10	0.05	0.59		
18	Μέση τιμή	0.48	1.37	1.46	0.99	1.40	1.53	1.66	1.03	0.42	0.23	0.15	0.12	0.90		
19																
20	ОІКОЛОГІКН 1	L	0.08		Estir	nation	of envi	ronme	ntal fl	ow as	the ma	ximu	m of:			
21	ОІКОЛОГІКН 2	2	0.06	K	1 20	0/afti		dial		C		. + le ~ ()		.1. 1.	~~~~	
22	ОІКОЛОГІКН З	3	0.03		1.30	70 0J ll	ie mean	aische	irge of	summ	ier mor	uns (J	une, Ji	игу, Ай	gusi)	Or
23					2.50	% of the	he mean	dische	arge of	f Sente	mber o	r				
24	ΟΙΚΟΛΟΓΙΚΗ		0.08		2 20	1.1.			0- J	I I I						
25	V hm3		25.9		3.30	lt/sec	ın any c	ase.								
26	75%*V		19.4													
27										F1	ow due	ation	0111110			
28		0.90	0.08	0.82			ΚΑΜΠΥΛΗ ΔΙ	ΑΡΚΕΙΑΣ		1'1	ow aur	unon	curve	SB1		
29			оікологі	EKMETAA	ΛΕΥΣΗ		ΣΥΧΝΟΤΗΤΑ	ΕΚΜΕΤΑΛ	ΛΕΥΣΗ	-1.	Rankin	g dail	y disci	larges	in de	escendin
30	1/10/1971	0.17	0.08	0.09		1	0.03	12.10	-		order	J		U		•
31	2/10/1971	0.17	0.08	0.09		2	0.05	10.36			order					
32	3/10/1971	0.17	0.08	0.09		3	0.08	10.32		-2.0	Calcula	ation o	of emp	irical r	orobal	bility of
33	4/10/1971	0.15	0.08	0.07		4	0.11	9.31					1	1		2
34	5/10/1971	0.12	0.08	0.04		5	0.14	7.81			exceed	ance				

SB1 "Flow duration curve" instead of "duration curve" or "Flow duration curve for hydropower production" Sandra Baki, 28/3/2019

2.Initial estimations

Mean discharge available for hydropower exploitation: 0.82 m/s (the envrinomental flow has been abstracted)

Mean annual water volume available for hydropower exploitation: 25.9 hm³

Assuming:

- $\rho = 1000 \text{ kg/m}^3$
- $g 9.81 \text{ m/s}^2$
- *H* 260 m
- n 0.85

Potential values assuming complete exploitation:

Mean annual energy produced: **15 624 MWh** Installed power for continuous operation: **1.8 MW** Installed power for operation of 3000 h: **5.2 MW**

2. Initial estimations

Mean discharge available for exploitation: **0.82 m/s** Mean annual water volume available for exploitation: **25.9 hm³**

- ρ 1000 kg/m³ g 9.81 m/s²
- H 260 m
- *n* 0.85

3. Daily flow duration curve

4. Examples with 1 turbine (n=0.85, Qmin=0.2*Qmax)

4. Calculations for 1 turbine

		А	В	С	D	E	F	G	Н	1
	1									
	2			Da	aily timeseries	statistics (a) d	ischarge, (b) w	ater volume, ((c) potential	
	3					energy and	d (d) required p	ower		
	4	н	260		For 10 years	m³/s	m³/day	kWh	kW	
Data-	5	ρ	1000		Maximum	12.1	1045256.9	629479.8	26228.3	
Constants	6	g	9.81		Minimum	0	0	0	0	
	7	n	0.85		Mean	0.822	71029.3	42775.6	1782.3	
	8									
	9						hm³	GWh		
	10				Total		259.5	156.3		
	11				Total days	3653				
	12				Mean annual		25.9	15.6		
	13		Daily e	lectrical ene	ergy E(kWh)=g	*n*H(m)*V(1	m ³)/ 3600			
			Γ	=\$R\$6*\$F	2\$7*\$B\$4*C?	5/3600				
	14			ψυψυψι		.575000				
	15		•• •	•						
	16	Max-Min expl	oitation di	scharge (m [.]	'/s)		Qmax (m3/s)	10	5	2
	17						Qmin (m3/s)	1	0.5	0.2
	18	Power at max	exploitatio	on discharge	e (MW)		Imax (MW)	21.7	10.8	4.3
	19	Percentage of	operation	al time per y	year (%)		PT (%)	29.9	44.7	61.7
	20	Percentage of	water volu	ıme used (%	ó) í		PV (%)	76.9	88.6	80.6
	21	Total electrical	l energy (GWh)			E (GWh)	120.2	138.4	126.0
	22						E (GWh/y)	12.0	13.8	12.6
	23				l		ΣΔ	0.06	0.15	0.33
Data-	24		m3/s	m3/day	kWh	kW		kWh/d	kWh/d	kWh/d
daily	25	1/10/1971	0.094	8153.6	4910.3	204.6		0	0	0
discharge	26	2/10/1971	0.094	7 8153.6	4910.3	204.6		0	0	0
timeseries	27	3/10/1971	0.094	8153.6	4910.3	204.6		0	0	0
	28	4/10/1971	0.069	5941.2	3577.9	149.1	<u>``</u>	0	0	0
	Da	aily volume (m ³) = <u>B</u>	25*86400			=D25/24	Daily powe	r I(kW)=E(kV	Wh)/24h

4. Calculations for 1 turbine

-	A	В	С	D	E	F	G	Н	1					
1			• I+	f the daily disc	horgo is wit	hin the onerg	tional range	(minimum	movimum					
2				ine daily disc	the delive		ulated using	(IIIIIIIIIIIIIIIIIIII- the fermals						
3				ischarge), ther		energy is calc	unated using $(1)^* O(3)$		1					
4	н	260	Ľ	λ(kWh) =g*n*]	H(m) [*] V (m ³))/3600=g*n*f	$A(m)^{*}Q(m^{3}/s)$	5)*86400/3	600=					
5	ρ	1000	g	*n*H(m)*Q(i	m ³ /s)*24									
6	g	9.81	• It	f the daily disc	harge is gre	ater than the	nominal (ma	ximum) on	e, then the					
7	8 n	0.85	d	aily energy is	calculated	with a dischar	ge equal to t	he nominal	one.					
8		0.05	• 11	f the daily disc	harge is low	ver than the m	inimum one	rational th	en the					
9	daily energy is equal to zero													
10) any energy is equal to zero													
11														
12	=IF(AND)(\$B25>C	G\$17,\$B25	<g\$16),\$b\$4< td=""><td>*\$B\$6*\$B\$</td><td>57*\$B25*24,I</td><td>F(\$B25>G\$</td><td>16,\$B\$4*\$]</td><td>B\$6*\$B\$7</td></g\$16),\$b\$4<>	*\$B\$6*\$B\$	57*\$B25*24,I	F(\$B25>G\$	16,\$B\$4*\$]	B\$6*\$B\$7					
13														
14						Min and ma	x operational	discharge a	ire					
15				N.		d	efined by the	user						
15 16	Max-Min expl	oitation di	ischarge (m	³ /s)		Qmax (m3/s)	efined by the	user 5	2					
14 15 16 17	Max-Min expl	oitation di	ischarge (m	³ /s)		d Qmax (m3/s) Qmin (m3/s)	efined by the 1	user 5 0.5	2 0.2					
15 16 17 18	Max-Min expl Power at max	oitation di exploitatio	ischarge (m on discharg	³ /s) e (MW)		Qmax (m3/s) Qmin (m3/s) Imax (MW)	10 1 21.7	5 0.5 10.8	2 0.2 4.3					
15 16 17 18 19	Max-Min expl Power at max Percentage of	oitation di exploitation operation	ischarge (m on discharg al time per	³ /s) e (MW) year (%)		Qmax (m3/s) Qmin (m3/s) Imax (MW) PT (%)	10 1 21.7 29.9	5 0.5 10.8 44.7	2 0.2 4.3 61.7					
15 16 17 18 19 20	Max-Min expl Power at max Percentage of Percentage of	oitation di exploitatio operation water volu	ischarge (m on discharg al time per ıme used (%	³ /s) e (MW) year (%)		0 Qmax (m3/s) Qmin (m3/s) Imax (MW) PT (%) PV (%)	10 1 21.7 29.9 76.9	5 0.5 10.8 44.7 88.6	2 0.2 4.3 61.7 80.6					
15 16 17 18 19 20 21	Max-Min expl Power at max Percentage of Percentage of Total electrica	oitation di exploitatio operation water volu l energy ((ischarge (m on discharg al time per 1me used (% GWh)	³ /s) e (MW) year (%)		d Qmax (m3/s) Qmin (m3/s) Imax (MW) PT (%) PV (%) E (GWh)	10 1 21.7 29.9 76.9 120.2	5 0.5 10.8 44.7 88.6 138.4	2 0.2 4.3 61.7 80.6 126.0					
15 16 17 18 19 20 21 22	Max-Min expl Power at max Percentage of Percentage of Total electrica	oitation di exploitatio operation water volu l energy ((ischarge (m on discharg al time per ume used (% GWh)	³ /s) e (MW) year (%) %)		Cmax (m3/s) Qmin (m3/s) Imax (MW) PT (%) PV (%) E (GWh) E (GWh/y)	10 1 21.7 29.9 76.9 120.2 12.0	5 0.5 10.8 44.7 88.6 138.4 13.8	2 0.2 4.3 61.7 80.6 126.0 12.6					
15 16 17 18 19 20 21 22 23	Max-Min expl Power at max Percentage of Percentage of Total electrica	oitation di exploitatio operation water volu l energy ((ischarge (m on discharg al time per 1me used (% GWh)	³ /s) e (MW) year (%) %)		d Qmax (m3/s) Qmin (m3/s) Imax (MW) PT (%) PV (%) E (GWh) E (GWh) ΣΔ	10 1 21.7 29.9 76.9 120.2 12.0 0.06	5 0.5 10.8 44.7 88.6 138.4 13.8 0.15	2 0.2 4.3 61.7 80.6 126.0 12.6 0.33					
15 16 17 18 19 20 21 22 23 24	Max-Min expl Power at max Percentage of Percentage of Total electrica	oitation di exploitatio operation water volu I energy (m3/s	ischarge (m on discharg al time per ume used (% GWh) m3/day	³ /s) e (MW) year (%) %)	kw	d Qmax (m3/s) Qmin (m3/s) Imax (MW) PT (%) PV (%) E (GWh) E (GWh) ΣΔ	10 1 21.7 29.9 76.9 120.2 12.0 0.06 kWh/d	5 0.5 10.8 44.7 88.6 138.4 13.8 0.15 kWh/d	2 0.2 4.3 61.7 80.6 126.0 12.6 0.33 kWh/d					
15 16 17 18 19 20 21 22 23 24 25	Max-Min expl Power at max Percentage of Percentage of Total electrica 1/10/1971	oitation di exploitatio operation water volu l energy ((m3/s 0.094	ischarge (m on discharg al time per ume used (% GWh) m3/day 8153.6	³ /s) e (MW) year (%) %) kWh 4910.3	kW 204.6	d Qmax (m3/s) Qmin (m3/s) Imax (MW) PT (%) PV (%) E (GWh) E (GWh) ΣΔ	10 1 21.7 29.9 76.9 120.2 12.0 0.06 kWh/d 0	5 0.5 10.8 44.7 88.6 138.4 13.8 0.15 kWh/d 0	2 0.2 4.3 61.7 80.6 126.0 12.6 0.33 kWh/d 0					
14 15 16 17 18 19 20 21 22 23 24 25 26	Max-Min expl Power at max Percentage of Percentage of Total electrica 1/10/1971 2/10/1971	oitation di exploitatio operation water volu l energy (0 m3/s 0.094 0.094	ischarge (m on discharg al time per ime used (% GWh) m3/day 8153.6 8153.6	³ /s) e (MW) year (%) %) kWh 4910.3 4910.3	kW 204.6 204.6	d Qmax (m3/s) Qmin (m3/s) Imax (MW) PT (%) PV (%) E (GWh) E (GWh) ΣΔ	10 1 21.7 29.9 76.9 120.2 12.0 0.06 kWh/d 0 0	ser 5 0.5 10.8 44.7 88.6 138.4 13.8 0.15 kWh/d 0 0	2 0.2 4.3 61.7 80.6 126.0 12.6 0.33 kWh/d 0 0					
14 15 16 17 18 19 20 21 22 23 24 25 26 27	Max-Min expl Power at max Percentage of Percentage of Total electrica 1/10/1971 2/10/1971 3/10/1971	oitation di exploitatio operation water volu l energy (m3/s 0.094 0.094	ischarge (m on discharg al time per ume used (% GWh) m3/day 8153.6 8153.6	³ /s) e (MW) year (%) %) kWh 4910.3 4910.3	kW 204.6 204.6 204.6	d Qmax (m3/s) Qmin (m3/s) Imax (MW) PT (%) PV (%) E (GWh) E (GWh) ΣΔ	10 1 21.7 29.9 76.9 120.2 12.0 0.06 kWh/d 0 0 0	5 0.5 10.8 44.7 88.6 138.4 13.8 0.15 kWh/d 0 0 0	2 0.2 4.3 61.7 80.6 126.0 12.6 0.33 kWh/d 0 0 0					

4. Calculations for 1 turbine

1	А	В	С	D	E	F	G	Н	
1			Ca	lculation of tl	he water vo	lume percent	tage exploit	ed	
2					duced is an	here a d			
3			•]	The energy pro	bauced is su	mmed			
4	ц	260	•]	The daily wate	er volume is	calculated (an	nd summed	for the entir	e time peri
-		200	υ	using the form	ula: $V(m^3)$ =	=Q (m ³ /s)*t (ł	r)*3600=E(kWh)/[g*n ³	*H(m)]=>
5	ρ	1000		V(m ³)=E(kWl	h)/[g*n*H(n	n)*3600]			
6	g	9.81	• 1	This is divided	by the total	water volum	e and the ne	rcentage is	calculated
7	n	0.85							
8			=(\$	SUM(G25:G3)	677)*3600/(\$B\$4*\$B\$6*	\$B\$7))/(\$F\$	510*100000)0)*100
9						hm³	GWh		
10				ΑΘΡΟΙΣΜΑ		259.5	r A Calculatio	on of the o	nerational
11			То	tal number of days	3653		l carculation		
12				Mean annual		25.9	The days	in which en	ergy was p
13							icounted an	nd the perce	entage is ca
							considerin	g the total	number of
14									·C2(77 115 /
15								JN 11F(G25	:030//,">(
16	Max-Min expl	oitation d	ischarge (m	1 ³ /s)		Qmax (m3/s)	10	/ 5	2
17						Qmin (m3/s)	1	0.5	0.2
18	Power at max	exploitati	on discharg	e (MW)		Imax (MW)	21.7	10.8	4.3
19	Percentage of	operation	al time per	year (%)		PT (%)	29.9	44.7	61.7
20	Percentage of	- water volu	1me used (%	%)		PV (%)	¥76.9	88.6	80.6
21	Total electrica	l energy (GWh)	,		E (GWh)	120.2	138.4	126.0
22		BJ (,			E (GWh/y)	12.0	13.8	12.6
23						ΣΔ	0.06	0.15	0.33
24		m3/s	m3/day	kWh	kW		kWh/d	kWh/d	kWh/d
25	1/10/1971	0.094	8153.6	4910.3	204.6		0	0	0
26	2/10/1971	0.094	8153.6	4910.3	204.6		0	0	0
27	3/10/1971	0.094	8153.6	4910.3	204.6		0	0	0
28	4/10/1971	0.069	5941.2	3577.9	149.1		0	0	0

4. Examples with 1 turbine (n=0.85, Qmin=0.1*Qmax)

5. Turbine efficiency curves

- Assuming an efficiency for the electromechanical equipment of **0.96**,
- the total efficiency of **0.8** corresponds to:
- a turbine efficiency of 0.85/0.96=0.885

anical	Q/Qmax	Francis ns=100	Pelton ns=21	Kaplan ns=650
amear	10	0,3	0,78	0,08
	20	0,6	0,86	0,78
of 0.85	30	0,77	0,88	0,87
	40	0,82	0,89	0,91
of	50	0,85	0,89	0,93
01	60	0,88	0,89	0,94
	70	0,91	0,89	0,94
	80	0,93	0,89	0,94
	90	0,94	0,89	0,94
	100	0,93	0,89	0,93

5. Example with 1 turbine (with efficiency curve)

- 4	A B C D		D	E	E F		G H		J	
1	н	260		I (kW) = 9.81	t * Q (m ³ /s) * H (n	n) * n			Furbine effic	iency curve
2	ρ	1000							Francis ns=100	v
З	g	9,81					3. Acc	cording to the	Q/Qmax	n
4	n	0,96	Efficiency	of the elec	ctromechanical	l equipment	percent	age of the daily	0	
5							disc	harge to the	1	
6	1. The end	ergy is ca	lculated by	y taking int	to 2 . The j	percentage	nom	inal one the	2	
7	account the e	efficiency	of the ele	ctromechai	nical of the	ne daily	nom	mar one, the	3	
8	equipment.	It will lat	ter be corr	ected with	the dischar	rge to the		responding	4	
9	efficiency o	of the turb	oines that c	orrespond	s to nomin	al one, is	efficien	cy is located in	5	
10	the daily dis	charge b	v taking in	to account	the calc	culated	the eff	ficiency curve	6	
11	ti	Irbine effi	iciency cu	rves		T(100*D00/E	\$17).1)		7	
12						1(100° Б99/Г	\$17),1)		8	
13	=IF(AND(\$	B99>F\$1	8;\$B99 <f< td=""><td>5\$17);\$B</td><td></td><td></td><td></td><td></td><td>9</td><td></td></f<>	5\$17);\$B					9	
14	\$1*\$B\$3*\$I	B\$4*\$B9	9*24;IF(\$]	B99>F\$1		=L	OOKUP(F	99;\$I\$5:\$J\$104) 10	0,3
15	7;\$B\$1*\$	\$B\$3*\$B	\$4*F\$17*	24:0))			1		11	0,33
16		• • •		(2())	0 ()()	Francis ns=100	1		12	0,36
17	Max-Min exp	ploitation	i discharg	e (m ³ /s)	Qmax (m3/s)	3,00		a daily anoray	13 ia 14	0,39
18					Qmin (m3/s)	0,30	4.11		IS 14	0,42
19	Power at ma	x exploit	ation disc	harge	Imax (MW)	7,3	correct	ted according to	the 15	0,45
20	Percentage o	of operati	onal time	per year	PT (%)	53,4	tu	bine efficiency	16	0,48
21	Percentage o	f water v	olume us	ed	PV (%)	87,3	i		17	0,51
22	Total electric	al energ	y (GWh)		E (GWh)	128,5		CONTROL	18	0,54
23					E (GWh/y)	12,9		=G99*E99	19	0,57
24					ΣΔ	0,20			20	0,6
25							1		21	0,617
26		m3/s	m3/day		kWh/d	Q/Qmx	Efficiency	/ kWh/d	22	0,634
99	12/12/1971	0,620	53561,1		¥ 36430,1	V 20	V0,60	21858,1	95	0,935
100	13/12/1971	0,708	61146,6		41589,5	23	0,65	27074,7	96	0,934
101	14/12/1971	0,794	68626,7		46677,1	26	0,70 32767.4		97	0,933
102	15/12/1971	0,860	74315.8		50546.6	28	0.74	37202.3	98	0.932

water volume changes. Initially, the efficiency of the turbines is calculated as the quotient of the final energy to the initial energy that was calculated by taking into account the efficiency of the electromechanical equipment. SUM(H27:H3679)/ SUM(E27:E3679)

The new formula incorporates the efficiency of the turbines

=(SUM(H27:H3679)*3600/(\$B\$1*\$B\$3*\$B\$4***SUM(H27:** H3679)/SUM(E27:E3679))/(\$C\$12*1000000)*100)

5. Example with 1 turbine (with efficiency

6. Examples with 2 turbines (n=0.85, Qmin=0.2*Qmax)

6. Examples with 2 turbines (n=0.85, Qmin=0.2*Qmax)

6. Optimization with 2 turbines (n=0.85 for Qmin=0.1*Qmax)

	Optimization with 1- turbine	Optimization with 2 same turbines	Optimization with 2 sequential turbines	
	Q1min=0.1*Q1max	Q1min=0.1*(Q2max/2)	Q1min=0.1*0.1*Q2max	
Qmax (m3/s)	4,49	5,08	8,71 =Q	1max+Q2max
Qmin (m3/s)	0,45	0,25	0,09 =Q	1min
Imax (MW)	9,7	11,0	18,9 (16.9 and 2	2 MW)
PT (%)	46,6	56,4	75,8	
PV (%)	89,0	93,8	99,0	
E (GWh)	139,1	146,6	154,7	
E (GWh/y)	13,9	14,7	15,5	
ΣΔ	0,16	0,15	0,09	

Theoretical power for
various discharges

DATA	Q (m ³ /s)	I (MW)	
	0.5	1.1	
H=260 m	1	2.2	
$p=1000 \text{ kg/m}^3$	1.5	3.3	
g=9.81 m/s ²	2	4.3	
n=0.85	2.5	5.4	
	3	6.5	
	4	8.7	
	5	10.8	
	10	21.7	

6. Optimization with 2 turbines (considering efficiency curves)

We make the assumption, that initially the first turbine starts operating and in the case that the discharge is out of its operational range, then the flow is routed to the second turbine

	A	В	С	D	E	F	G	Н	1	J	K L	M	N	0	P	Q	R
1	н	260															
2	ρ	1000					Καμπύλη 1		Καμπύλη 2								
з	g	9,81					Q/Qmax	n	Q/Qmax	n							
4	n	0,96	ΣΑ Ηλεκτρομι	ηχανολογικού ε	ξοπλισμού		0		0								
5							1		1								
6	Για 10 έτη	m3/s					2		2								
7	ΜΕΓΙΣΤΟ	12,1					3		3								
8	ΕΛΑΧΙΣΤΟ	0					4		4								
9	ΜΕΣΟ	0,822					5		5								
10							6		6		Σύνολο						
11			hm3				7		7		Qmax (m3/s)		3,80				
12	ΑΘΡΟΙΣΜΑ	259,5		229,2	30,3	19,9	8		8		Qmin (m3/s)		0,04				
13	Σύνολο ημερών	3653					9		9		E (GWh/y)		13,9				
14							10	0,3	10	0,3							
15	Μέσο ετήσιο	25,9					11	0,33	11	0,33							
16				Στρόβιλος 1		Στρόβιλος 2	12	0,36	12	0,36		Στρόβιλος 1				Στρόβιλος 2	
17			Qmax (m3/s)	3,40		0,40	13	0,39	13	0,39	Qmax (m3/s)	3,40				0,40	
18			Qmin (m3/s)	0,34		0,04	14	0,42	14	0,42	Qmin (m3/s)	0,34				0,04	
19							15	0,45	15	0,45	E (GWh)	12,8				1,1	
20							16	0,48	16	0,48							
21				_D27	D27		17	0,51	17	0,51	¢D¢1	1*0002*	ቀኩ ቀ 4 * ቀነ	007*04			
22				-D2/·	-D27		18	0,54	18	0,54	=282	I*9B92*	\$B\$4*\$1	J27*24			
23				<u> </u>			19	0,57	19	0,57		· ·					
24					Ϋ́.		20	0,6	20	0,6							
25				Παροχές Σ1	Υπόλοιπο	Παροχές Σ2	21	0,617	21	0,617							
26		m3/s		m3/s		m3/s	22	0,634	22	0,634	kWh/d	Q/Qmx	ΣΑ	kWh/d		kWh/d	Q/Qmx
27	1/10/1971	0,094		0,000	0,094	0,094	23	0,651	23	0,651	0,0	1	0,00	0,0		5545,8	23
28	2/10/1971	0,094		0,000	0,094	0,094	24	0,668	24	0,668	0,0	1	0,00	0,0		5545,8	23
29	3/10/1971	0,094		0,000	0,094	0,094	25	0,685	25	0,685	0,0	1	0,00	0,0		5545,8	23
																ł	
		, j			i.		Ň,									į	
	4 11	. v	0		· · · ·									<u>`</u>		ł	
	Alloc	catio	n of			·-> =IF(AND(\$E2	27>F\$18;	\$E27<	F\$17)	;\$E27;IF(\$E2	27>F\$17	;F\$17;0))			
	disch	aroe	to 2		```	``										:	
	GIDUI								AD05							1	
	turbi	nes				·-≯ =IF(AND(\$B2	/>D\$18;	\$B27<	D\$17);\$B27;IF(\$E	327>D\$1	7;D\$17;	0))		i i	
	10101					L										i	
																ł	

=\$B\$1*\$B\$3*\$B\$4*\$F27*24

7. Optimization with 2 turbines (considering efficiency curves)

We make the assumption, that initially the first turbine starts operating and in the case that the discharge is out of its operational range, then the flow is routed to the second turbine

2 Pelton turbines

2 Francis turbines

Qmax (m ³ /s)	4,2	4	1,2	4,	2	4,	4,2		Qmax (m ³ /s)	3,0	3,0 3,0		3,0		3,0	
E (GWh/y)	13,8	1	4,6	14	,9	15	15,1		E (GWh/y)	12,9	9 14,2		14,0		13,9	
		Σ1	Σ2	Σ1	Σ2	Σ1	Σ1 Σ2				Σ1	Σ2	Σ1	Σ2	Σ1	Σ2
Q _{1,2} max (m ³ /s)		2,1	2,1	3,0	1,2	3,8	0,4		Q _{1,2} max (m ³ /s)		1,5	1,5	2,0	1,0	2,7	0,3
E _{1,2} (GWh/y)		12,7	1,8	13,6	1,3	13,8	3,8 1,3		E _{1,2} (GWh/y)		11,2	3,0	12,3	1,7	12,8	1,0

Pelton-Francis Combination

Qmax (m ³ /s)	3,0		3,0		3,0		3,0		3,0		3,0	
E (GWh/y)	14,3		14,1		14,2		14,1		14,4		14,0	
	Pelton	Francis	Francis	Pelton	Pelton	Francis	Francis	Pelton	Pelton	Francis	Francis	Pelton
Q _{1,2} max (m ³ /s)	1,5	1,5	1,5	1,5	2,0	1,0	2,0	1,0	2,5	0,5	2,5	0,5
E _{1,2} (GWh/y)	11,4	3,0	11,2	2,9	12,6	1,7	12,3	1,7	13,2	1,1	12,7	1,2