
Non-Comparison Based Sorting

We will examine three algorithms which under 
certain conditions can run in O(n) time.

Counting sort

Bucket sort

Radix sort

Stable sort 

A sorting algorithm where the order of elements having the 
same key is not changed in the final sequence. 



Counting Sort

Depends on assumption about the numbers 
being sorted

Assume numbers are in the range 1.. k

The algorithm:

Input: A[1..n], where A[j]  {1, 2, 3, …, k}

Output: B[1..n], sorted (not sorted in place)

Also: Array C[1..k] for auxiliary storage



Counting Sort

1 CountingSort(A, B, k)

2 for i=1 to k

3 C[i]= 0;

4 for j=1 to n

5 C[A[j]] += 1;

6 for i=2 to k

7 C[i] = C[i] + C[i-1];

8 for j=n downto 1

9 B[C[A[j]]] = A[j];

10 C[A[j]] -= 1;

This is called 

a histogram.



Counting Sort Example



Counting Sort

Total time: O(n + k)

Works well if k = O(n) or k = O(1)

Why don’t we always use counting sort?

Depends on range k of elements.

Could we use counting sort to sort 32 bit 
integers?  Why or why not?



Bucket Sort

Bucket sort
Assumption: the keys are in [0, N)

Basic idea: 
1. Create N linked lists (buckets) to divide 

interval [0,N) into subintervals of size Θ(1)

2. Add each input element to appropriate bucket

3. (Sort and) concatenate the buckets

Expected total time is O(n + N), with n = 
size of original sequence

• if N is O(n)  sorting algorithm in O(n) !



Bucket Sort

Each element of the array is put in one of the N “buckets”



Bucket Sort

Now, pull the elements from 

the buckets into the array

At last, the sorted array 

(sorted in a stable way):



Does it Work for Real Numbers?

What if keys are not integers?

Assumption: input is n reals from [0, 1)

Basic idea: 

• Create N linked lists (buckets) to divide interval [0,1) into 
subintervals of size 1/N

• Add each input element to appropriate bucket and sort 
buckets with insertion sort

Uniform input distribution  O(1) bucket size

• Therefore the expected total time is O(n)



Radix Sort

Used to sort punched card readers for census 
tabulation in early 1900’s by IBM.

In particular, a card sorter that could sort cards 
into different bins

• Each column can be punched in 12 places

• (Decimal digits use only 10 places!)

Problem: only one column can be sorted on at a 
time



Radix Sort

Intuitively, you might sort on the most 
significant digit, then the second most 
significant, etc.

Problem: lots of intermediate piles of cards to 
keep track of

Key idea: sort the least significant digit first
RadixSort(A, d)

for i=1 to d

StableSort(A) on digit I

• Example: 216 579 626 571 023 189 169 573



Radix Sort

Can we prove it will work?

Inductive argument:

Assume lower-order digits {j: j<i}are sorted

Show that sorting next digit i leaves array correctly 
sorted 

• If two digits at position i are different, ordering numbers 
by that digit is correct (lower-order digits irrelevant)

• If they are the same, numbers are already sorted on the 
lower-order digits.  Since we use a stable sort, the 
numbers stay in the right order



Radix Sort

What sort will we use to sort on digits?

Bucket sort is a good choice: 

Sort n numbers on digits that range from 0..k

Time: O(n + k)

Each pass over n numbers with d digits takes 
time O(n+k), so total time O(dn+dk)

When d is constant and k=O(n), takes O(n) time



Radix Sort Example

Problem: sort 1 million 64-bit numbers

Treat as four-digit radix 216 numbers

Can sort in just four passes with radix sort!

Running time: 4( 1 million + 216 ) 4 million 
operations

Compare with typical O(n lg n) comparison 
sort 

Requires approx lg n = 20 operations per number 
being sorted

Total running time   20 million operations



Radix Sort

In general, radix sort based on bucket sort is

Asymptotically fast (i.e., O(n))

Simple to code

A good choice

Can radix sort be used on floating-point 
numbers?



Summary: Radix Sort

Radix sort:

Assumption: input has d digits ranging from 0 to k

Basic idea: 

• Sort elements by digit starting with least significant

• Use a stable sort (like bucket sort) for each stage

Each pass over n numbers with 1 digit takes time 
O(n+k), so total time O(dn+dk)

• When d is constant and k=O(n), takes O(n) time

Fast,  Stable, Simple

Doesn’t sort in place


