Non-Comparison Based Sorting

会 We will examine three algorithms which under certain conditions can run in $\mathrm{O}(n)$ time.
\& Counting sort
© Bucket sort
a Radix sort

순 Stable sort
A sorting algorithm where the order of elements having the same key is not changed in the final sequence.

Counting Sort

* Depends on assumption about the numbers being sorted
si Assume numbers are in the range $1 . . k$
* The algorithm:
* Input: $\mathrm{A}[1 . . n]$, where $\mathrm{A}[\mathrm{j}] \in\{1,2,3, \ldots, k\}$
, Output: B[1..n], sorted (not sorted in place)
: Also: Array C [1..k] for auxiliary storage

Counting Sort

CountingSort (A, B, k)
for $i=1$ to k
C[i]= 0;
for $j=1$ to n
$C[A[j]]+=1 ;$
for $i=2$ to k
C[i] $=C[i]+C[i-1] ;$
for $j=n$ downto 1
$B[C[A[j]]]=A[j] ;$
$C[A[j]]-=1 ;$

Counting Sort Example

(a)

| | 1 | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |\quad| 1 | 2 | 4 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- |

(d)

(b)

(e)

(c)

(f)

Figure 8.2 The operation of Counting-Sort on an input array $A[1 . .8]$, where each element of A is a nonnegative integer no larger than $k=5$. (a) The array A and the auxiliary array C after line 4. (b) The array C after line 7. (c)-(e) The output array B and the auxiliary array C after one, two, and three iterations of the loop in lines 9-11, respectively. Only the lightly shaded elements of array B have been filled in. (f) The final sorted output array B.

Counting Sort

6 Total time: $\mathrm{O}(n+k)$
a Works well if $k=\mathrm{O}(n)$ or $k=\mathrm{O}(1)$

* Why don't we always use counting sort?
a Depends on range k of elements.
- Could we use counting sort to sort 32 bit integers? Why or why not?

Bucket Sort

- Bucket sort

: Assumption: the keys are in [O, N)
Basic idea:

1. Create N linked lists (buckets) to divide interval $[\mathrm{O}, \mathrm{N})$ into subintervals of size $\Theta(1)$
2. Add each input element to appropriate bucket
3. (Sort and) concatenate the buckets
ta Expected total time is $\mathrm{O}(\mathrm{n}+\mathrm{N})$, with $\mathrm{n}=$ size of original sequence

- if N is $\mathrm{O}(\mathrm{n}) \rightarrow$ sorting algorithm in $\mathrm{O}(\mathrm{n})$!

Bucket Sort

Each element of the array is put in one of the N "buckets"

Bucket Sort

Now, pull the elements from the buckets into the array

At last, the sorted array (sorted in a stable way):

Does it Work for Real Numbers?

* What if keys are not integers?

${ }^{2}$ Assumption: input is n reals from $[0,1)$
a Basic idea:

- Create N linked lists (buckets) to divide interval $[0,1$) into subintervals of size $1 / N$
- Add each input element to appropriate bucket and sort buckets with insertion sort
6 Uniform input distribution $\rightarrow \mathrm{O}$ (1) bucket size
- Therefore the expected total time is $\mathrm{O}(\mathrm{n})$

Radix Sort

* Used to sort punched card readers for census

 tabulation in early 1900's by IBM.sa In particular, a card sorter that could sort cards into different bins

- Each column can be punched in 12 places
- (Decimal digits use only 10 places!)
a Problem: only one column can be sorted on at a time

Radix Sort

- Intuitively, you might sort on the most significant digit, then the second most significant, etc.
Problem: lots of intermediate piles of cards to keep track of
* Key idea: sort the least significant digit first RadixSort (A, d)
for $i=1$ to d
StableSort (A) on digit I
- Example: 216579626571023189169573

Radix Sort

* Can we prove it will work?
* Inductive argument:
s Assume lower-order digits $\{\mathrm{j}: \mathrm{j}<\mathrm{i}\}$ are sorted
as Show that sorting next digit i leaves array correctly sorted
- If two digits at position i are different, ordering numbers by that digit is correct (lower-order digits irrelevant)
- If they are the same, numbers are already sorted on the lower-order digits. Since we use a stable sort, the numbers stay in the right order

Radix Sort

* What sort will we use to sort on digits?
* Bucket sort is a good choice:
a Sort n numbers on digits that range from o.. k
© Time: $\mathrm{O}(n+k)$
* Each pass over n numbers with d digits takes time $\mathrm{O}(n+k)$, so total time $\mathrm{O}(d n+d k)$
a. When d is constant and $k=O(n)$, takes $\mathrm{O}(n)$ time

Radix Sort Example

* Problem: sort 1 million 64-bit numbers
${ }^{2}$ Treat as four-digit radix 2^{16} numbers
${ }^{6}$ Can sort in just four passes with radix sort!
* Running time: $4\left(1\right.$ million $\left.+2^{16}\right) \approx 4$ million operations
- Compare with typical $\mathrm{O}(n \lg n)$ comparison sort
z. Requires approx $\lg n=20$ operations per number being sorted
a Total running time ≈ 20 million operations

Radix Sort

- In general, radix sort based on bucket sort is
${ }^{2}$ Asymptotically fast (i.e., $\mathrm{O}(n)$)
* Simple to code

A good choice

* Can radix sort be used on floating-point numbers?

Summary: Radix Sort

* Radix sort:

${ }^{2}$ assumption: input has d digits ranging from o to k
a Basic idea:

- Sort elements by digit starting with least significant
- Use a stable sort (like bucket sort) for each stage

E Each pass over n numbers with 1 digit takes time $\mathrm{O}(n+k)$, so total time $\mathrm{O}(d n+d k)$

- When d is constant and $k=O(n)$, takes $\mathrm{O}(n)$ time
${ }^{2}$ Fast, Stable, Simple
s Doesn't sort in place

