Non-Comparison Based Sorting

¥ We will examine three algorithms which under
certain conditions can run in O(n) time.
= Counting sort
= Bucket sort
= Radix sort

¢ Stable sort

= A sorting algorithm where the order of elements having the
same key is not changed in the final sequence.

Counting Sort

¢ Depends on assumption about the numbers
being sorted
@ Assume numbers are in the range 1.. k
¢ The algorithm:
= Input: A[1..n], where A[j] € {1, 2, 3, ..., k}
= Qutput: B[1..n], sorted (not sorted in place)
= Also: Array C[1..k] for auxiliary storage

Counting Sort

CountingSort (A, B, k)

for i=1 to k
Cl[i]= O;

for j=1 to n
CIA[]]] += 1;

for i=2 to k
C[i] = C[i] + C[i-1];

for j=n downto 1
BIC[A[]]]] =
CIA[]]] —= 1;

This is called
a histogram.

W 0 Jd oo 1 d» W N PR

Aljl;

=
o

Counting Sort Example

3 4 5 6 7 8 Il 2 3 4 5 6 7 8
01 2 3 4 5 Cl2]2]4|7[7]|8 01 2 3 45
C 0123 1 Ci21214(6|7|8
(a) (b) (c)
4 5 6 7 8
0 2 4 0 1 2 3 4 5§ 300223335
C 20416718 Cl1|121415({7}8
(d) (e) (f)

Figure 8.2 The operation of COUNTING-SORT on an input array A[l..8], where each element
of A is a nonnegative integer no larger than k = 5. (a) The array A and the auxiliary array C after
line 4. (b) The array C after line 7. (¢)~(e) The output array B and the auxiliary array C after one,
two, and three iterations of the loop in lines 9-11, respectively. Only the lightly shaded elements of
array B have been filled in. (f) The final sorted output array B.

Counting Sort

@ Total time: O(n + k)
2 Works well if k = O(n) or k = O(1)

& Why don't we always use counting sort?
= Depends on range k of elements.

¢ Could we use counting sort to sort 32 bit
integers? Why or why not?

Bucket Sort

& Bucket sort

=2 Assumption: the keys are in [0, N)

2 Basic idea:
1. Create N linked lists (buckets) to divide

interval [0,N) into subintervals of size O (1)

2. Add each input element to appropriate bucket
3. (Sort and) concatenate the buckets

= Expected total time is O(n + N), withn =

size of original sequence

e if Nis O(n) - sorting algorithm in O(n) !

Bucket Sort

Each element of the array is put in one of the N “buckets”

20 1] |5 BBy

1 ll T B
2 y 1] |3 B B

3w

2 D -) Now each element is

m the proper bucket:

Bucket Sort

Now, pull the elements from 1
the buckets into the array 9
3 [=3
1
1
2
3

At last, the sorted array

(sorted 1n a stable way):

Does it Work for Real Numbers?

¢ What if keys are not integers?
@ Assumption: input is n reals from [0, 1)

@ Basic idea:
e Create N linked lists (buckets) to divide interval [0,1) into
subintervals of size 1/N
« Add each input element to appropriate bucket and sort
buckets with insertion sort
= Uniform input distribution - O(1) bucket size

« Therefore the expected total time is O(n)

Radix Sort

& Used to sort punched card readers for census
tabulation in early 1900’s by IBM.

= In particular, a card sorter that could sort cards
into different bins
« Each column can be punched in 12 places
 (Decimal digits use only 10 places!)

= Problem: only one column can be sorted on at a
time

Radix Sort

¢ Intuitively, you might sort on the most
significant digit, then the second most
significant, etc.

% Problem: lots of intermediate piles of cards to
keep track of

¢ Key idea: sort the least significant digit first
RadixSort (A, d)
for 1i=1 to d
StableSort (A) on digit I

- Example: 216 579 626 571 023 189 169 573

Radix Sort

& Can we prove it will work?

% Inductive argument:
= Assume lower-order digits {j: j<i}are sorted

= Show that sorting next digit i leaves array correctly
sorted

- If two digits at position i are different, ordering numbers
by that digit is correct (lower-order digits irrelevant)

« Ifthey are the same, numbers are already sorted on the
lower-order digits. Since we use a stable sort, the
numbers stay in the right order

Radix Sort

& What sort will we use to sort on digits?
% Bucket sort is a good choice:
= Sort n numbers on digits that range from o0..k
@ Time: O(n + k)
¢ Each pass over n numbers with d digits takes
time O(n+k), so total time O(dn+dk)
= When d is constant and k=0(n), takes O(n) time

Radix Sort Example

& Problem: sort 1 million 64-bit numbers
= Treat as four-digit radix 2'® numbers
= Can sort in just four passes with radix sort!
@ Running time: 4(1 million + 2'¢) ~4 million
operations
% Compare with typical O(n Ig n) comparison
sort

@2 Requires approx lg n = 20 operations per number
being sorted

= Total running time ~ 20 million operations

Radix Sort

¢ In general, radix sort based on bucket sort is
@ Asymptotically fast (i.e., O(n))
@ Simple to code
= A good choice
& Can radix sort be used on floating-point
numbers?

Summary: Radix Sort

¢ Radix sort:
@ Assumption: input has d digits ranging from o to k
@ Basic idea:
« Sort elements by digit starting with least significant
« Use a stable sort (like bucket sort) for each stage

= Each pass over n numbers with 1 digit takes time
O(n+k), so total time O(dn+dk)
« When d is constant and k=0(n), takes O(n) time

s Fast, Stable, Simple
2 Doesn'’t sort in place

