Non-Comparison Based Sorting

- We will examine three algorithms which under certain conditions can run in O(n) time.
 - Counting sort
 - Bucket sort
 - Radix sort

Stable sort

A sorting algorithm where the order of elements having the same key is not changed in the final sequence.

- Depends on assumption about the numbers being sorted
 - Assume numbers are in the range 1.. *k*
- The algorithm:
 - Input: A[1..*n*], where A[j] \in {1, 2, 3, ..., *k*}
 - Output: B[1..*n*], sorted (not sorted in place)
 - Also: Array C[1..*k*] for auxiliary storage

Counting Sort

1	CountingSort(A, B, k)
2	for i=1 to k
3	C[i] = 0;
4	for j=1 to n
5	C[A[j]] += 1;
6	for i=2 to k
7	C[i] = C[i] + C[i-1];
8	for j=n downto 1
9	B[C[A[j]]] = A[j];
10	C[A[j]] -= 1;

Counting Sort Example

Figure 8.2 The operation of COUNTING-SORT on an input array A[1..8], where each element of A is a nonnegative integer no larger than k = 5. (a) The array A and the auxiliary array C after line 4. (b) The array C after line 7. (c)–(e) The output array B and the auxiliary array C after one, two, and three iterations of the loop in lines 9–11, respectively. Only the lightly shaded elements of array B have been filled in. (f) The final sorted output array B.

Counting Sort

Total time: O(n + k) Works well if k = O(n) or k = O(1)

- Why don't we always use counting sort?
 Depends on range k of elements.
- Could we use counting sort to sort 32 bit integers? Why or why not?

Bucket Sort

Bucket sort

Assumption: the keys are in [0, N)Basic idea:

1. Create *N* linked lists (*buckets*) to divide interval [0,N) into subintervals of size $\Theta(1)$

2. Add each input element to appropriate bucket

3. (Sort and) concatenate the buckets

- Expected total time is O(n + N), with n = size of original sequence
 - if N is $O(n) \rightarrow$ sorting algorithm in O(n) !

Each element of the array is put in one of the N "buckets"

Now, pull the elements from the buckets into the array

At last, the sorted array (sorted in a stable way):

Does it Work for Real Numbers?

- What if keys are not integers?
 - Assumption: input is *n* reals from [0, 1]
 - Basic idea:
 - Create N linked lists (*buckets*) to divide interval [0,1) into subintervals of size 1/N
 - Add each input element to appropriate bucket <u>and sort</u>
 <u>buckets with insertion sort</u>
 - Uniform input distribution \rightarrow O(1) bucket size
 - Therefore the expected total time is O(n)

Used to sort punched card readers for census tabulation in early 1900's by IBM.

- In particular, a *card sorter* that could sort cards into different bins
 - Each column can be punched in 12 places
 - (Decimal digits use only 10 places!)
- Problem: only one column can be sorted on at a time

- Intuitively, you might sort on the most significant digit, then the second most significant, etc.
- Problem: lots of intermediate piles of cards to keep track of
- Key idea: sort the *least* significant digit first

```
RadixSort (A, d)
```

```
for i=1 to d
```

StableSort(A) on digit I

• Example: 216 579 626 571 023 189 169 573

Can we prove it will work?

- Inductive argument:
 - Assume lower-order digits {j: j<i}are sorted
 - Show that sorting next digit i leaves array correctly sorted
 - If two digits at position i are different, ordering numbers by that digit is correct (lower-order digits irrelevant)
 - If they are the same, numbers are already sorted on the lower-order digits. Since we use a stable sort, the numbers stay in the right order

- What sort will we use to sort on digits?
- Bucket sort is a good choice:
 - Sort *n* numbers on digits that range from 0..*k*
 - Solution Time: O(n + k)
- Each pass over n numbers with d digits takes time O(n+k), so total time O(dn+dk)
 - When *d* is constant and k=O(n), takes O(n) time

Radix Sort Example

- Problem: sort 1 million 64-bit numbers
 - Treat as four-digit radix 2¹⁶ numbers
 - Can sort in just four passes with radix sort!
 - Running time: 4(1 million + 2¹⁶) ~4 million operations
- Compare with typical O(n lg n) comparison sort
 - Requires approx lg n = 20 operations per number being sorted
 - **Total running time** \approx 20 million operations

In general, radix sort based on bucket sort is

- Asymptotically fast (i.e., O(*n*))
- Simple to code
- A good choice
- Can radix sort be used on floating-point numbers?

Summary: Radix Sort

Radix sort:

- Assumption: input has *d* digits ranging from 0 to *k*
- Basic idea:
 - Sort elements by digit starting with *least* significant
 - Use a stable sort (like bucket sort) for each stage
- Each pass over *n* numbers with *1* digit takes time O(n+k), so total time O(dn+dk)
 - When *d* is constant and k=O(n), takes O(n) time
- Fast, Stable, Simple
- Doesn't sort in place