## MSC IN ANALYSIS AND DESIGN OF EARTHQUAKE RESISTANT STRUCTURES (ADERS)

## Course: Geotechnical Engineering in the Design of Structures

## PROJECT: SETTLEMENT CALCULATIONS FOR THE LEANING TOWER OF PISA

The leaning Tower of Pisa was designed as a circular bell tower of 19.06 m in diameter. The tilt of the Tower (before the period of strengthening 1990-2001) is shown in Fig. 1.
The first stage of construction took place in the period 1173-1178 and the load applied by three floors to the foundation was 92904 kN . Settlement was introduced during this stage.
The second stage of construction took place in the period 1272-1278 and the total load applied to the foundation was 134534 kN .
The third stage of construction in the period 1360-1370 resulted in total load of 141640 kN .
Calculate the settlement of the Tower until 1990 when a multinational task force of engineers started work on its stabilization. The soil profile and the parameters required for settlement calculations are given in Figs 2,3 and 4.

Fig. 2 Soil profile and compression parameters


$$
E_{u}=\frac{\Delta \sigma}{\varepsilon_{z}} \quad \text { Immediate settlement, } \rho_{\mathrm{i}}
$$



Consolidation settlement, $\rho_{c}$
$\delta_{\mathrm{s}}=\mathrm{h}_{\mathrm{s}} \mathrm{C}_{\alpha \varepsilon} \log _{10}\left(\mathrm{t} / \mathrm{t}_{\mathrm{s}}\right)$ where $\mathrm{t}_{\mathrm{s}}=$ time of completion of primary
consolidation, $\mathrm{h}_{\mathrm{s}}=$ depth of layer at the beginning of secondary consolidation

Secondary settlement, $\rho_{\mathrm{s}}$

## Consolidation settlement $\rho_{c}$




$$
\rho=H \frac{c_{r}}{1+e_{0}} \log \left(\frac{\sigma_{v 0}{ }^{\prime}+\Delta \sigma_{v}^{\prime}}{\sigma_{v 0}{ }^{\prime}}\right)
$$

$\sigma_{p}{ }^{\prime}=$ pre-consolidation stress

$$
\rho=H \frac{c_{r}}{1+e_{0}} \log \left(\frac{\sigma_{v 0}{ }^{\prime}+\Delta \sigma_{v 1}{ }^{\prime}}{\sigma_{v 0}{ }^{\prime}}\right)
$$

$$
+H \frac{c_{c}}{1+e_{0}} \log \left(\frac{\sigma_{p}^{\prime}+\Delta \sigma_{v 2}^{\prime}}{\sigma_{p}^{\prime}}\right)
$$

$$
\sigma_{\mathrm{v} 0}{ }^{\prime}<\sigma_{\mathrm{p}}^{\prime} \quad O C R=\frac{\sigma_{p}^{\prime}}{\sigma_{\mathrm{v} 0}^{\prime}}
$$




Vertical stress distribution with depth under circular foundation


Poulos \& Davis 1974 used Boussinesq's equations to calculate stresses on the centre line under a circular footing ( $\alpha=2.6, B=$ width of footing)


Stresses under the centre line of rigid footing (Butterfield \& Banerjee 1971)

D $\widehat{\downarrow}$ $\sigma_{z 0}{ }^{\prime}=$ normal effective stress at depth $D$

