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Abstract
Real-time online data processing is quickly becoming an essential tool in the analysis of social media for political trends,

advertising, public health awareness programs and policy making. Traditionally, processes associated with offline analysis

are productive and efficient only when the data collection is a one-time process. Currently, cutting edge research requires

real-time data analysis that comes with a set of challenges, particularly the efficiency of continuous data fetching within the

context of present NoSQL and relational databases. In this paper, we demonstrate a solution to effectively adsress the

challenges of real-time analysis using a configurable Elasticsearch search engine. We are using a distributed database

architecture, pre-build indexing and standardizing the Elasticsearch framework for large scale text mining. The results from

the query engine are visulized in almost real-time.
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1 Introduction

The exponential growth of online data poses a significant

challenge in the process of fetching a representative data

set that can be translated into tangible results [1, 2]. Pre-

processing in real-time adds another layer of complexity,

especially when the data is textual and unstructured [3] or

crowd sourced [4]. Solutions to processing big data sets in

the fields of cloud computing and storage are growing at

rapid speed, but when we consider big data on a scale of

petabytes [5], cloud based analytics are limited by network

inefficiencies for transporting the data; and recurring costs

for the computational resources required to perform anal-

ysis in real-time [6]. Access and privacy also pose a

challenge in cloud based storage as server administrators

maintain the rights to view both the data and its flow.

Security solutions such as encrypted searching are not

feasible to implement specific to real-time analysis because

of computational limitations [7]. Currently, the top three

tools used for analyzing large databases are Elasticsearch,

Hadoop and Spark [8]. Elasticsearch is a distributed search

and analytical engine which allows for real-time data

transformations, search queries, document stream pro-

cessing and indexing at a relatively high speed. Addition-

ally, Elasticsearch can index numbers, geographical

coordinates, dates and almost any datatype while support-

ing multiple languages (i.e., Python, Java, Ruby). The

speed of the Elasticsearch engine is founded on its ability

to perform aggregation, searching and processing the index

of the data [9]. Hadoop is a distributed batch computing

platform, using the MapReduce algorithm, that includes

data extraction and transformation capabilities. While the

platform is based on NoSQL technology that makes

uploading unstructured data easy, its query processing

HBASE does not have advanced analytical search capa-

bilities like Elasticsearch. Elasticsearch is a text search and

analytics tool with a visualization plugin for real-time

analysis with an open source license. Finally, Elasticsearch

hosts plugins for Hadoop and Spark to reduce the distance

between the two different technologies and allows for a

hybrid system to be implemented [10].
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Tools that support the management of large data sets

and real-time data fetching include relational (MySQL,

Oracle Database, SQLite), Graph (Neo4j, Oracle Spatial)

and NoSQL (MongoDB, IBM Domino, Apache CouchDB).

Limiting factors related to all types of databases include

lack of support for full-text searches in real-time. While

NoSQL is functional for full text searching it lacks relia-

bility when compared to relational database models [3].

Traditional databases require that the data is first uploaded

and then the administrator must actively decide which data

should be indexed which adds one more layer of processing

making it infeasible for real-time analysis. Elasticsearch

provides a solution to these limiting factors [3] by pro-

viding a highly efficient data fetching and real-time anal-

ysis system that:

• Performs pre-indexing before storing the data to avoid

the need to fetch and query specific data in real-time;

• Requires limited resources and computing power in

relation to traditional solutions; and

• Provides a system that is distributed and easy to scale.

The capacity for Elasticsearch to contribute to high effi-

ciency, real-time data analysis is enhanced through a

standardized configuration process, shard size management

and standardizing the data before upload into Elasticsearch

and demonstrated through a discussion of both the working

architecture as well as a real-time visualization of social

media data collected during December 2017 and May

2018, a repository of over 1 billion twitter data points.

1.1 Key contributions

• Optimizing and standardizing twitter data for

Elasticsearch

• Creating a configuration file and choosing the optimal

shard size

• Demonstrating the real-time visualization of a very

large scale social media data set

2 Architecture for real-time analysis
and storage

2.1 Elasticsearch

Elasticsearch was started in the year 2004 as an open

source project called compass, which was based on Apache

Lucene [11]. Elasticsearch is a distributed and scalable

full-text search engine written in Java that is stable and

platform independent. These features combined with

requirement specific flexibility and easy expansion options

are helpful for real-time big data analysis [12]. We will

discuss some of the general functions of Elasticsearch to

provide context for the Elasticsearch configurization and

data standardization and shard management procedure

resulting from this research.

2.2 Abstract view

Figure 1 illustrates the framework for real-time analysis of

very large scale data based on Elasticsearch and Kibana

[13]. In the first step, the Twitter API is used for scraping

twitter data (approximately 1400 tweets per minute) that is

stored in a MongoDB database, which is installed on a

Network Attached Storage (NAS) with a capacity of 16TB.

The twitter data is transfered to preprocssing units which

handle the data and transfer it to High Performance Com-

puting (HPC) infrastructure in almost real-time. As tradi-

tional databases, including MongoDB, are not efficient

enough to handle real-time query, we transfer the pro-

cessing and analsis of data to Elasticsearch, which is

implemented via HPC lab resources. Before uploading the

data, we standardize the twitter object for Elasticsearch and

use multithreading to upload the data for better real-time

performance and to shorten the gap between receiving and

processing data. When a user needs any data, a query will

be sent to Elasticsearch using the Kibana front-end. Elas-

ticsearch processes that query and sends the query result

object (JSON format) to Kibana, where Kibana shows the

query object to the user.

Within the general functioning of the search engine,

Elasticsearch uses a running instance called a node which

can take on one or more roles including a master or a data

node (see Sect. 2.1, Fig. 2). Dataset clusters within Elas-

ticsearch require at least one master and one data node,

however it is possible that a cluster can consist of a single

node since a node may take on multiple roles. The only

data storage format compatible with Elasticsearch is JSON

and therefore requires data mapping for producing func-

tional analysis and visualizations due to the unstructured

format of the twitter data. We observed that reliance on the

JSON format makes the system more flexible than MySQL

and other RDBMS, but less than MongoDB. While a tra-

ditional database such as RDBMS use tables to store the

data, MongoDB uses BSON (like JSON) format, and

Elasticsearch uses an inverted index via the Apache Lucene

architecture to store the data [11]. A typical index in

Elasticsearch is a collection of documents with different

properties that have been organized through user defined

mapping that outlines document types and fields for dif-

ferent data sources; similar to a table in an SQL database.

The index is then split into shards housed in multiple nodes

where a shard is part of an index distributed on different

nodes. Within the Elasticsearch framework, the inverted

index allows a more categorical storage of big data sets
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within nodes and shards so that real-time search queries are

more efficient. Elasticsearch uses RESTful API to com-

municate with users, see Table 1 for a basic architecture

comparison. Additionally, there are different libraries such

as Elasticsearch in Python [14] and Java [15] for better

integration.

2.2.1 Backbone

While Elasticsearch is a powerful tool, a model is required

to optimize functionality for the purpose of real-time big

data analysis specific to social media. The purpose of this

research is to provide (1) a specific configuration file to

optimize the organization of the data set, (2) an optimized

shard size for maximum efficiency in storage and pro-

cessing, and (3) a standardized structure for data fields

present within Twitter to eliminate over-processing of

irrelevant information When the data is stored in Elastic-

search, it stores the data in an index first, and then the index

data is stored as an inverted-index using an automatic

tokenizer. When we search in Elasticsearch, we get a

‘snapshot’ of the data, which means that Elasticsearch does

not require the hosting of actual content but instead links to

documents stored within a node to provide a result through

Fig. 1 Framework for real-time analysis using Elasticsearch

Fig. 2 Elasticsearch cluster architecture hosted on the HPC at Lakehead University

Table 1 Comparison between

Elasticsearch and RDBMS basic

architecture

Elasticsearch RDBMS

Index Database

Mapping Table

Document Tuple
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the inverted index. These results are not real data but a

representation of the query’s linkages to all associated

documents stored in each node. As a component of this

project, the following configuration file was developed and

can be replicated in Elasticsearch on any HPC by editing

the config files as per number of nodes and capacity of

server. Table 2 describes the basic configuration file for

Elasticsearch.

Here, the name of a cluster is dslab and a cluster name is

necessary, even if only a single node is present. As the

Elasticsearch is a scattered database, where one or many

nodes work as heads and others as data, this parameter is

used to interconnect all the nodes in the cluster. We can

create numerous clusters with the same hardware using

different instances of Elasticsearch and different configu-

ration files.

Table 3 is an example of a configuration file features for

any Elasticsearch node. In every node for the distributed

Elasticsearch we have to configure the same file in each

and every instance. When the data is stored we use the

index to store a specific type of data similar to a dataset in

MySQL. The performance of Elasticsearch is based on the

mapping of the index and how we size the shards of the

data set. The formula to decide the size of the shards is

given in Eq. 1.

Number of shards ¼ ðSize of index in GBÞ=50 ð1Þ

The reason behind the consideration of using 50 GB as a

shard size is due to the architecture in Elasticsearch. The

architecture supports 32 GB index size and 32 GB cache

memory so ideally the shard’s memory should be less than

64 GB and through experimentation we observed that the

best results are achieved at shard size of 50 GB.

2.3 Kibana: visualization

In addition to Elasticsearch being efficient for real-time

analysis, extended plugins such as kibana [13] and

Logstash [16] make it convenient for functional represen-

tations of big data in real-time. It is part of the elastic stack

and is freely available under open source license. Kibana

has multiple standard visualizations available by default

and simplifies the process of developing visualizations for

end users with a drag and drop feature. As Kibana is

backed by the Elasticsearch architecture, it functions

quickly and is efficient enough for real-time analysis.

Finally it provides the opportunity for graphical interaction

in the process of building and handling queries with an

accessible visualization of the cluster health and properties

within the database.

3 Social media data analysis

3.1 Configuration of the Elasticsearch

Live social media streaming data is stored in elastic clus-

ters. Each elastic cluster contains 6 nodes, with each node

having 2 threads and 12 GB of memory. Within these 6

nodes one node works as a master and the remaining 5

work as data nodes. Architecture of the elastic cluster is

shown in Fig. 2.

3.2 Social media dataset

We used Elasticsearch to analyze 250? million out of 1

billion tweets scraped between December 2017 and May

2018 using the Twitter API. Since the Twitter API response

is in JSON format and contains unstructured and incon-

sistent data the sequential collection of all data fields

within the tweet JSON object is not guaranteed. Stan-

dardization of the data and conversion into a structured

format is therefore necessary for Elasticsearch mapping so

that each field of data is present when loaded into the

index. To optimize the Elasticsearch we changed the

storage format of the tweet so that all the data is required to

Table 2 Master and data node

configuration file
Master node config file Data node config file

cluster.name: dsla cluster.name: dslab

node.name: m1 node.name: d1

node.master: true node.master: false

node.data: true node.data: true

path.data: /data/nshah5/dataset path.data: /data/nshah5/dataset

path.logs: /data/nshah5/log path.logs: /data/nshah5/log

network.host: x.x.x.x network.host: x.x.x.x

network.bind_host: 0 network.bind_host: 0

network.publish_host: x.x.x.x network.publish_host: x.x.x.x

discovery.zen.ping.unicast.hosts: [‘‘x.x.x.x’’] discovery.zen.ping.unicast.hosts: [‘‘x.x.x.x’’]

bootstrap.system_call_filter: false bootstrap.system_call_filter: false
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be at depth level one in JSON format. Table 4 depicts the

basic example of restructured data in Elasticsearch.

As we mentioned previously, the data is stored as an

inverted index that is optimized for text searches and

therefore very efficient. For example, if we search for the

keyword ‘‘pizza’’ within the context of all tweets (250?

millions) in Elasticsearch, the time taken is 4060 ms

(4.06 s) to find a total of 192,118 tweets where the ‘‘pizza’’

keyword is present in tweet text. Table 5 shows the

example of the keyword ‘‘pizza’’ text search query

response from Elasticsearch. Figure 3a shows a pie chart of

tweets mapping the geographical distribution by nation of

‘‘pizza’’ tweets where the United States alone is responsi-

ble for 47% of total tweets and other countries excluding

the top five are 30%, which is 77% of total tweets. Addi-

tionally, the visualization shows the time taken to perform

the query is 13 ms (0.013 s). Figure 3b shows five most

used languages in the tweet text related to ‘‘pizza’’ where

the English language is used in more than 77% tweets

while Spanish is used 12%, Portuguese at third spot with

6%, French at 3% and Japanese at 2% tweets. In this

instance Elasticsearch took 17 ms for query processing.

Figure 3c shows the devices used to tweet with 38% of

tweets coming from the iPhone twitter app, the Android

twitter app was used for 29%, twitter web clients were used

for only 11% and Twitter lite and Tweetdeck combined

were used for around 7%. Other sources were indicated for

the remaining 15% tweets. This query took 11 ms to exe-

cute, which is quite reasonable given the structure and

amount of data.

The above results demonstrate the efficiency of this data

analysis system in that all three tasks (fetching the data,

performing descriptive analysis and creating graphs), were

accomplished in less than 15 s from a database size of

250? million tweets. Clearly, this framework has proven

Table 3 Elasticsearch node configuration file features

Config file properties Explanation

cluster.name It is the name of cluster where present node will join.

node.name It gives the name of your current node

node.master The role of master-eligible is decided based on true or false function (Boolean function). The master node manages the

overall state of the cluster including node monitoring, index creation and deletion, and shard to node assignments.

node.data The role of data is decided based on true or false function (Boolean function). It stores the physical data shards, performs

reads, writes, searches and aggregations. Any node can be master and data, both or individual.

path.data The location of the actual data in present node is represented.

path.logs Location where the logs of the present nodes are stored. Logs are important to diagnose problems and monitor working

status.

network.host It’s an address of the present node which is unique for the individual node in the cluster.

network.publish_host It’s a public address where other nodes communicate with the present node.

Table 4 Difference between normal and updated structure

Original tweet structure Updated structure

{ {

‘‘??Tweet’’:{ ‘‘Id’’:

‘‘User’’??:{ ‘‘Name’’:

‘‘Id’’??: ...

‘‘Name’’??: }

}

},

...

}

Table 5 Search query result of ‘‘pizza’’ keyword

Result of keyword ‘‘pizza’’ from all tweets from database

{

‘‘took’’: 4060,

‘‘timed out’’: false,

‘‘shards’’: {

‘‘total’’: 106,

‘‘successful’’: 106,

‘‘skipped’’: 0,

‘‘failed’’: 0

}

‘‘hits’’: {

‘‘total’’: 192118,

‘‘max_score’’: 15.110959,

’’hits’’: [???]

}
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suitable for the analysis of large text data in real-time

without losing accuracy. It also shows that the restructuring

and standardization procedures used on the data assisted in

optimizing the accuracy of the results and efficiency of the

processes in a context with limited resources.

3.3 Visualization dashboard

At present, the monitoring framework described in this

paper is used to display data coming from Twitter stream.

For example, in Fig. 4 we show a snapshot of the Kibana

dashboard. The top-most plot is a pie chart of tweet source,

which displays the results from which device they use to

tweet, such as iPhone, web browser etc. The second top-

most plot is pie chart of the languages used to tweet. In the

middle, first histogram shows the the time and amount of

twitter data flow. And, the second shows the word cloud

and the bottom left shows the top ten users who are actively

twitting. Similar dynamic dashboard creation is possible in

minutes without knowledge of any programming knowl-

edge and back-end system understanding.

3.4 Limitation

As Elasticsearch is designed to be used for real-time

analysis, there are databases which provide functions that

perform better in offline mass data analysis such as NoSQL

databases (e.g., MongoDB) that support MapReduce [3].

Elasticsearch does not support MapReduce as it instead

relies on the inverted index [17]. Additionally, Elastic-

search can be slow when new data is added to the index and

it currently lacks support for more popular data formats

(e.g., XML, CSV) and only supports JSON format which

can be challenging for users unfamiliar with JSON [18].

4 Related work

Marcos [6] suggests that cloud computing is elastic in

nature as the user can adjust it as per his/her data needs

from processing power to storage. While it does seem ideal

in theory, cloud computing comes with several challenges

including both network inefficiency in data transport as

well as issues related to data privacy and access control.

Additionally, Hashem refers to ‘data stabbing’, which are

problems associated with storing and analyzing the

heterogenous and complex structure of big datasets [19].

As a solution, other authors such as Oleksii [3] support and

highlight the benefits of Elasticsearch as a tool for real-time

analysis in modern data mining repositories. In this

research we attempted to address and resolve problems

associated with data preprocessing and efficiency while

also discussing the elastic cluster framework in more depth.
Fig. 3 Real-time analysis of Twitter data for the term ‘‘pizza’’
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Currently there are very few research studies on frame-

works for big data analysis in real-time although several

discuss the application of practices in manufacturing [20]

and gene coding [21]. Some researchers have used Elas-

ticsearch cluster via a logstash plugin and MySQL data-

bases for heterogenous accounting information system

[22]. The data is monitored using MySQL server before

inserting it into Elasticsearch. The researchers observed

that there might be an issue of duplication of data and

storage space, but the architecture ensures flexibility and

modularity for the monitoring the system. They choose

Elasticsearch as text search engine in real-time which

allows them to search historical data. Mayo Clinic

healthcare system developed a big data hybrid system

using Hadoop and Elasticsearch technology. In healthcare,

real-time result is essential for effective decision making.

Before that, they used traditional RDBMS database to store

and process data. But, it lacks integration between different

platforms and inability to querying/ingest of healthcare

data in a real-time or near real-time. In Mayo Clinic system

Hadoop is used as a distributed file system and on top of it

Elasticsearch works as a real-time text search engine.

When there is a need for raw data Hadoop is used, and for

real-time analysis Elasticsearch is used. Their experimen-

tation showed very promising results, like searching 25.2

million HL7 records took just 0.21 s [23].

Designsafe web portal by Natural Hazards Engineering

Research(NHER) analyze and share experimental data in

real-time with researchers across the world. The user of

their system sends the large amount of data which is stored

in distributed NFS. During the preprocessing of the data,

which includes analysis of string and basic cleaning, they

index the data and make it compatible for Elasticsearch.

This model allows users in a different location to query the

same experimental data which is computed in different part

of the world in real-time. All these present environments

needs to be correctly configured as per the data and the

requirements [24].

5 Conclusion

Elasticsearch provides a functional system to store, pre-

index, search and query very large scale data in real-time.

In particular, the capability of expanding the cluster size

without stopping service as per user’s requirement makes it

suitable for this application. This research provides insights

on how to standardize and configure the processes of

Elasticsearch which result in increased analysis efficiency.

To demonstrate the functionality and interactivity for users,

the Kibana plugin was used as an interface. In conclusion, a

proper configuration of Elasticsearch and Kibana makes

real-time analysis of large scale data efficient and can help

policy makers see the results instantaneously and in an

accessible format that allows for decision making.
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