

Neuron Data Elements Environment
Intelligent Rules Element

V e r s i o n 4 . 0

Language Reference

Part Number: IR-5500-0796-00

© Copyright 1986 - 1996, Neuron Data, Inc. All Rights Reserved.

This software and documentation is subject to and made available only pursuant to
the terms of the Neuron Data License Agreement and may be used or copied only in
accordance with the terms of that agreement. It is against the law to copy the
software except as specifically allowed in the agreement. This document may not, in
whole or in part, be copied photocopied, reproduced, translated, or reduced to any
electronic medium or machine readable form without prior consent, in writing, from
Neuron Data, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set
forth in the Neuron Data License Agreement and in subparagraph (c)(1) of the
Commercial Computer Software-Restricted Rights Clause at FAR 52.227-19;
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013, subparagraph (d) of the Commercial Computer
Software--Licensing clause at NASA FAR supplement 16-52.227-86; or their
equivalent.

Information in this document is subject to change without notice and does not
represent a commitment on the part of Neuron Data. THE SOFTWARE AND
DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER,
NEURON DATA DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF
THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Open Interface Element™, Data Access Element™, Intelligent Rules Element™, and
Web Element™ are trademarks of and are developed and licensed by NEURON
DATA, INC., Mountain View, California. NEXPERT OBJECT® and NEXPERT® are
registered trademarks of and are developed and licensed by NEURON DATA, INC.,
Mountain View, California.

Other brand or product names are the trademarks or registered trademarks of their
respective holders.

Contents

. Preface
Purpose of this Manual . i
Description. i
Audience . i
How to Use this Manual. ii
Organization . iv
Related Manuals . iv

1. Application Development Features
ABS Function . 1-1
ACOS Function . 1-2
Actions . 1-3
Agenda . 1-6
ASIN Function . 1-8
AskQuestion Operator . 1-9
Assign Operator . 1-10
ATAN Function . 1-12
AVERAGE Function . 1-13
Backward Chaining . 1-14
Backward Operator . 1-16
BOOL2STR Function . 1-18
Boolean Constants . 1-19
Boolean Expressions . 1-20
Boolean Formats . 1-22
CEIL Function . 1-24
CHARFIND Function . 1-25
Classes . 1-27
Comment Attribute . 1-29
COMPARE Function . 1-30
Comparison Operators . 1-32
Conditions . 1-35
Context Links . 1-37
COS Function . 1-38
COSH Function . 1-39
CreateObject Operator . 1-40
Language Reference i

Sticky Note

Data Types . 1-42
Data Validation Attribute . 1-43
Date Formats . 1-46
DATE Function . 1-50
DATE2FLOAT Function . 1-52
DATE2STR Function . 1-53
DAY Function . 1-54
DeleteObject Operator . 1-55
Dynamic Data Exchange . 1-57
Dynamic Objects . 1-62
Execute Operator . 1-63
Execute Routines . 1-66
EXP Function . 1-69
Expressions . 1-70
FLOAT2DATE Function . 1-73
FLOAT2INT Function . 1-74
FLOAT2STR Function . 1-75
FLOAT2TIME Function . 1-76
Floating Point Constants . 1-77
Floating Point Formats . 1-78
FLOOR Function . 1-82
Format Attribute . 1-83
Formats . 1-84
Forward Chaining . 1-87
HOUR Function . 1-89
Hypotheses . 1-90
Identifiers . 1-91
If Change Method . 1-92
Inference . 1-95
Inference Priority Attribute . 1-96
Inference Slot Attribute . 1-98
Inference Strategy . 1-99
Inheritability Strategy . 1-102
Inheritance . 1-105
Inheritance Priority Attribute . 1-107
Inheritance Slot Attribute . 1-108
Inheritance Strategy . 1-110
InhMethod Operator . 1-113
ii Language Reference

Sticky Note

Sticky Note

Sticky Note

Sticky Note

InhValueDown Operator . 1-115
InhValueUp Operator . 1-116
Init Value Attribute . 1-117
INT2STR Function . 1-119
Integer Constants . 1-120
Integer Formats . 1-121
Interpretations . 1-124
Interrupt Operator . 1-126
LENGTH Function . 1-127
LN Function . 1-128
LoadKB Operator . 1-129
LOG Function . 1-131
MAX Function . 1-132
Member Operator . 1-134
Meta-Slots . 1-135
Methods . 1-137
MIN Function . 1-141
MINUTE Function . 1-143
MOD Function . 1-144
MONTH Function . 1-145
Multi-Values . 1-146
No Operator . 1-147
NoInherit Operator . 1-148
NotMember Operator . 1-149
NOW Function . 1-150
Objects . 1-151
Order of Sources Method . 1-153
Patterns . 1-157
POW Function . 1-161
PROD Function . 1-162
Prompt Line Attribute . 1-163
Properties . 1-165
Question Window Attribute . 1-167
RAND Function . 1-169
RANDOM Function . 1-170
RANDOMMAX Function . 1-171
RANDOMSEED Function . 1-172
Reserved Words . 1-173
Language Reference iii

Reset Operator . 1-174
Retrieve Operator . 1-175
ROUND Function . 1-177
Rules . 1-178
RunTimeValue Operator . 1-180
SECOND Function . 1-181
SELF . 1-182
Semantic Gates . 1-184
SendMessage Operator . 1-186
Show Operator . 1-191
SIGN Function . 1-194
SIN Function . 1-195
SINH Function . 1-196
Slots . 1-197
SQRT Function . 1-200
STDEV Function . 1-201
Strategy . 1-202
Strategy Operator . 1-203
STRCAT Function . 1-206
STRFIND Function . 1-207
String Constants . 1-208
String Formats . 1-209
STRLEN Function . 1-211
STRLOWER Function . 1-212
STRUPPER Function . 1-213
STR2BOOL Function . 1-214
STR2DATE Function . 1-215
STR2FLOAT Function . 1-216
STR2INT Function . 1-218
STR2TIME Function . 1-220
SUBSTRING Function . 1-221
SUM Function . 1-223
TAN Function . 1-225
TANH Function . 1-226
Time Formats . 1-227
TIME Function . 1-229
TIME2FLOAT Function . 1-231
TIME2STR Function . 1-232
iv Language Reference

Sticky Note

Sticky Note

Sticky Note

Sticky Note

UnloadKB Operator . 1-233
Value Property . 1-236
VAR Function . 1-237
WEEKDAY Function . 1-238
Why Attribute . 1-239
Write Operator . 1-241
YEAR Function . 1-243
YEARDAY Function . 1-244
Yes Operator . 1-245

2. Execute Library Routines
Execute Library Overview . 2-1
Using The Execute Library . 2-6
AtomExist Routine . 2-15
AtomNameValue Routine . 2-17
ComputeMultiValue Routine . 2-20
ControlSession Routine . 2-23
CopyFrame Routine . 2-25
CreateObjects Routine . 2-27
CreateReport Routine . 2-29

Formatting Commands . 2-31
Conditional Statements . 2-34
Include Command . 2-34

FileExist Routine . 2-36
FindListElem Routine . 2-38
GetListElem Routine . 2-40
GetMultiValue Routine . 2-43
GetRelatives Routine . 2-45
Journal Routine . 2-48
LinkMultiValue Routine . 2-50
Message Routine . 2-52
Parse Routine . 2-54
PatternMatcher Routine . 2-58
PropagateValue Routine . 2-61
RankList Routine . 2-64
ResetFrame Routine . 2-66
SetMultiValue Routine . 2-68
SetValue Routine . 2-71
TestMultiValue Routine . 2-73
Language Reference v

Unify Routine . 2-81
WriteTo Routine . 2-85

3. Database Integration Topics
Access String . 3-2
Access String Specification . 3-3
Arguments Overview . 3-6
Atomic Retrieve . 3-10
Atomic Write . 3-12
Begin - (@BEGIN) . 3-15
Beginning Database Operations . 3-16
Create New Record - (@FILL) . 3-18
Create Object - (@FILL) . 3-19
Cursor Slot Specification . 3-20
Cursor - (@CURSOR) . 3-22
Database Interface Concepts . 3-23
Database Editor Windows . 3-28
Database Type - (@TYPE) . 3-31
Databases . 3-33
DBF3 . 3-35
Debugging Operations . 3-37
Dynamic Values . 3-41
End - (@END) . 3-42
Ending Database Operations . 3-43
Existence Filtering Operations . 3-45
Field Name Specification . 3-48
Fields List - (@FIELDS) . 3-49
File Retrieves - @F(...) . 3-50
Formats . 3-51
Forwarding Strategy - (@FWRD) . 3-53
Grouped Retrieve . 3-54
Grouped Write . 3-57
If Change Retrieves . 3-59
If Change Writes . 3-60
In List - (@ATOMS) . 3-61
INFORMIX . 3-64
INGRES . 3-72
Insert Only - (@FILL) . 3-79
vi Language Reference

Interpretations - @V(...) . 3-80
Left-Hand Side Retrieves . 3-82
Left-Hand Side Writes . 3-83
Link To - (@CREATE) . 3-84
Name - (@NAME) . 3-85
New File - (@FILL) . 3-87
NEXPERT Flat-File Formats . 3-88
Object Names In Retrieve Operations . 3-92
ORACLE . 3-95
Order of Sources Retrieves . 3-102
Order of Sources Writes . 3-104
Properties List - (@PROPS) . 3-105
Query (@QUERY) . 3-106
Query Language . 3-107
Query Field in Retrieve Operations . 3-114
Query Field in Write Operations . 3-117
Record Specification for Writes . 3-121
Records Filtering . 3-127
Retrieve Operator . 3-128
Retrieve Unknown - (@UNKNOWN) . 3-130
Retrieving from Databases . 3-131
Return Errors . 3-134
Right-Hand Side Retrieves . 3-136
Right-Hand Side Writes . 3-137
Sequential Retrieve . 3-138
Sequential Write . 3-141
Slot Specification for Retrieves . 3-143
Slot Specification for Writes . 3-147
Slots List - (@SLOTS) . 3-150
Spreadsheets . 3-151
SqlError - (@ERROR) . 3-152
String to Numeric Conversion {x} . 3-153
SYBASE . 3-155
SYLK . 3-162
WKS . 3-164
Write Operator . 3-165
Write Unknown - (@UNKNOWN) . 3-167
Writing to Databases . 3-168
Language Reference vii

A. Database Integration Examples
Example 1 - Grouped Write. A-1
Example 2 - Grouped Write with a Complex Name. A-5
Example 3 - Atomic Write . A-9
Example 4 - Grouped Retrieve . A-13
Example 5 - Grouped Retrieve with a Complex Name . A-16
Example 6 - Grouped Retrieve with Existence Filtering . A-20
Example 7 - Grouped Retrieve with Content Filtering . A-24
Example 8 - Atomic Retrieve. A-28
Example 9 - Sequential Retrieve. A-32
Example 10 - Sequential Retrieve with a Parameterized Query . A-37
Example 11 - Grouped Retrieve with a SQL Join . A-42

. Index
viii Language Reference

Preface

Purpose of this Manual

This manual describes the application representation features available for
use in your application development effort. Specifically, it addresses the
implementation of these features in the Intelligent Rules Element shell,
including their correct usage and syntax, where appropriate.

It also describes the Intelligent Rules Element Database Bridge. The
database bridge is a link between your database and the Rules Element.
Through this link, you can do two things: retrieve and write. You can
retrieve data from your database and create objects in the Rules Element,
and you can write Rules Element objects to your database.

Description

A wide variety of application representation features exist for use in the
application development effort. These features include specific operators,
functions, and execute routines, as well as conceptual features such as
inference control, pattern matching, and dynamic objects. The application
development environment of the Rules Element shell gives the developer
easy access to these representation features through its use of popup menus
and template-based editors.

Additionally, the Intelligent Rules Element database bridge lets you transfer
data between external data sources and Rules Element’s object
representation. In many knowledge-based applications, the data is stored in
an external file or database, where its format is very different from Rules
Element’s object representation. The object representation that includes
classes, objects, properties, and slots provides a structure for data which the
Rules Element reasons over. The database bridge transforms and translates
the data between its external format (a file or database) and the Rules
Element object representation.

Audience

This manual is the application developer’s reference to locate specific topics
during the application development effort. For example, developers can
Language Reference i

Preface

look-up the purpose of specific topics before implementing a feature in the
application development environment of the Rules Element shell. Then
during the implementation phase of the application, developers can locate
examples in this manual to learn about syntax options.

Developers who want to embed Rules Element functionality directly into the
code of another application should also refer to the API Reference. This
alternative approach to applications design completely bypasses the
graphical user interface and is therefore not addressed in the Language
Reference.

How to Use this Manual

Developers can use this manual for reference purposes since the features
appear in alphabetical order. Each feature has standard subtopics that give
detailed information in the following categories: definition, syntax,
arguments (if any), results, and examples. Additionally, each feature
includes a listing of “related topics” that identify relevant information. The
developer should always look-up the related topics in this manual before
implementing the feature. The organization of this manual leaves the
reading order up to the developer, but the related topics lists help to keep
the topic investigation focused.

Chapter One “Application Development Features” describes the features
that the developer uses to implement rule and object structures. A
cross-section of the general representation features includes the following.

Test Operators Determine the value of data or the logical state of
subgoal hypotheses. Tests are used in the left-hand
side (LHS) of rules.

Assignment Operators
Let you manipulate the value of slots in the
application. Assignments can be made in the
left-hand side or right-hand side of rules and
methods.

Dynamic Objects Ops.
Let you manipulate objects and their links created
during application processing (dynamically).

Interface Operators Let you specify interactions with the outside world,
including human operators, databases, user-written
routines, or programs.

Inheritance Operators
Let you control both the strategy and the triggering of
inheritance mechanisms.

Patterns Let you perform queries on the object base. You can
ii Language Reference

How to Use this Manual

extract the list of objects that verify one or several
conditions and then perform actions on the objects.

Formats Let you specify how values should be output to the
display, database, or data files. Also specifies how
incoming text strings from the session control
window, databases, data files, or the application
programming interface (API) should be converted
into the internal data types of the Rules Element.

Functions Let you control both the strategy and the triggering of
inheritance mechanisms.

Execute Routines This category includes a full-range of pre-defined
procedures for performing common or useful tasks.
These routines are built into the system for use with
the Execute operator.

Chapter Two, “Execute Library Routines” describes the functions in the
execute library. They can be used like any user-defined execute routine in
either conditions or actions of rules and methods. They can be divided up
into several functional groups:

Frame Operations This set of routines performs “crunching” operations
on frames such as setting values, copying values, etc.

Multi-Value Operations
This set of routines performs operations on
multi-values.

Sorting and Comparison
This set of routines performs operations on pattern
matching lists.

Session Control This set of routines controls the session and perform
I/O.

Utility Operations This set of routines performs useful tasks that extend
application development.

Chapter Three, “Database Integration Topics” describes the key concepts,
fundamental procedures, and general principles of the Intelligent Rules
Element Database Bridge. This chapter includes topics from the following
categories:

Core Database Topics
New users should read these first for more detailed
information about the different ways the database
bridge can be used and for detailed information
about specific database types.

Database Bridge Features
Identifies features of the Rules Element Database
Bridge that you can use to extend the database
retrieve and write capabilities of your
knowledge-base application.
Language Reference iii

Preface

Rule Editor / Meta-Slot Editor Windows
Lists topics specific to setting up database retrieve
and write operations in a rule or method.

Database Editor Windows
Lets you find descriptions of the database editor
windows’ various fields.

Database Bridge Operations
The topics in this list identify optional as well as
required tasks of the retrieve and write operations.
This information supplements the Database Editor
Windows topics list.

This manual is a member of the document set. See “Related Manuals” for a
complete list of prerequisite and corequisite manuals.

Organization

To locate specific features, look-up the features from one of the two chapters.
All features appear in alphabetical order. The general table of contents
identifies the complete features list and the index identifies more specific
topics. This manual contains the following three chapters and one appendix:

Chapter One, “Application Development Features” describes the features
that the developer uses to implement rule and object structures in the
Intelligent Rules Element environment. All features appear in alphabetical
order.

Chapter Two, “Execute Library Routines” explains how to use the special
library of built-in routines the developer can invoke through the Execute
operator. All routines appear in alphabetical order.

Chapter Three, “Database Integration Topics” gives information for key
concepts, fundamental procedures, and general principles specific to
building retrieve and write operations for a wide range of database types.

Appendix A, “Database Integration Examples” demonstrates the
principles and operations of the Rules Element Database Bridge through
specific examples.

Related Manuals

The following manuals contain information related to this Language
Reference. Read prerequisite manuals before using this manual. Read
corequisite manuals for background information as explained.
iv Language Reference

Related Manuals

Prerequisite Manuals:

Getting Started

This manual gives an overview of the entire Rules Element shell, including
the graphical user interface, the inference engine, and application
representation features. Many of the design features described in the
Reference Manual are first introduced in this manual.

User’s Guide

This manual gives general procedures for using the graphical user interface.
Chapter Eight, “Application Data” of the User’s Guide shows how to
perform Retrieve and Write operations. Additionally, Chapter Two,
“Application Structure Implementation” of the User’s Guide gives useful
information about rules and objects.

Corequisite Manuals:

Language Programmer’s Reference

This manual is required reading for developers who need an overview of the
types of knowledge representation features available. The chapters describe
the rule and object structures and control mechanisms that form the basis of
all Rules Element application development efforts. It also addresses the
behavior of the inference engine.

The Bibliography, located in the Getting Started Manual, gives a complete
list of manuals.

Users who received the Intelligent Rules Element packaged with other
Neuron Data Elements, including the Open Interface Element and the Data
Access Element, will have other documents in addition to the Intelligent
Rules Element documents described above.
Language Reference v

Preface

vi Language Reference

Chapter

1 Application Development
Features 1

This chapter describes the various application features of the Intelligent Rules Element.

ABS Function

Definition
The ABS function is used in expressions to find the absolute value of a floating point
number. The expression can appear on the left-hand side or right-hand side of rules
and methods.

Syntax
The function consists of the word ABS followed by a single argument in parentheses:

ABS(x)

Argument
The argument may be any expression yielding a numerical result. The expression may
include patterns or interpretations.

Result
The function returns a floating point or integer result equal to the absolute value of the
argument.

If the argument expression does not produce a numerical value, an error message is
posted and the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the ABS function:

ABS(98.6) = 98.6
ABS(-273.18) = 273.18
ABS(28) = 28.0
ABS(0.0) = 0.0

Related Topics
Expressions Patterns
Floating Point Constants Interpretations
Integer Constants
Language Reference 1 - 1

Chapter

Application Development Features

1

ACOS Function

Definition
The ACOS function is used in expressions to find the arc-cosine of a floating point
number. The expression can appear on the left-hand side or right-hand side of rules
and methods.

Syntax
The function consists of the word ACOS followed by a single argument in parentheses:

ACOS(x)

Argument
The argument may be any expression yielding a numerical result between -1.0 and
1.0. The expression may include patterns or interpretations.

If the value of the argument expression is an integer, it will be converted to an
equivalent floating point value.

Result
The function returns a floating point result equal to the arc-cosine of the argument.
The result is expressed in radians.

If the argument expression does not produce a numerical value, an error message is
posted and the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the ACOS function:

ACOS(1.0) = 0.0
ACOS(0.5) = 1.04 (= 3.14 / 3)
ACOS(0.0) = 1.57 (= 3.14 / 2)
ACOS(-1.0) = 3.14

Related Topics
Expressions Interpretations
Floating Point Constants COS Function
Integer Constants ASIN Function
Patterns ATAN Function
1 - 2 Language Reference

Actions

Actions

Definition
An action expresses a unique operation to be performed by the system in a rule or
method. Actions are normally considered consequences of a list of test conditions and
would therefore appear on the right-hand side. However, actions can also appear in
the conditions list on the left-hand side. Actions that appear on the right-hand side can
be divided into two sets: actions to be performed when the conditions on the left-hand
side are satisfied or actions to be performed when any single condition on the left-hand
side fails to be satisfied.

Syntax
An action consists of an operator followed by one or two operands. The following
operators can occur in both rules and methods:

Assign Reset
CreateObject Strategy
DeleteObject Show
Retrieve Execute
Write LoadKB
SendMessage UnloadKB

The following operators are valid in methods only:

InhMethod
Interrupt
NoInherit

The following operators are valid only in the right-hand side actions of Order of
Sources methods:

AskQuestion InhValueUp
Backward RunTimeValue
InhValueDown

The exact number and form of the operands varies from one operator to another; see
the sections on individual operators for details.

Execution
Actions can appear on either the left-hand side (the “IF” section) or the right-hand side
(the “ACTIONS” section) of rules and methods. On the right-hand side, actions can
belong to one of two lists (the “Then” or “Else” lists). Which of these two actions list
the system executes depends on the evaluation outcome of the rule or method. The
execution of actions in rules and methods is as follows:

IF actions Actions that appear in the left-hand side conditions list
are executed sequentially in the order they appear. The
“evaluation” result of an action is always set to TRUE.

Then actions Actions that appear in the “Then” list are executed
Language Reference 1 - 3

Chapter

Application Development Features

1

sequentially in the order they appear, but the system
must first determine that each left-hand side condition
is TRUE. This is known as a positive rule or method
evaluation.
Note: The system automatically executes the Then
actions defined for the method lacking a list of
left-hand side conditions.

Else actions Actions that appear in the “Else” list are executed
sequentially in the order they appear, but the system
must first determine that one of the left-hand side
conditions is FALSE. This is known as a negative rule
or method evaluation.

The two part structure of the right-hand side allows actions to be executed whether or
not the rule or method conditions succeed. This is equivalent to using two rules each
with a different actions list to contend with the two possible evaluation outcomes. The
following two rules demonstrate how Else actions would be represented using only
Then actions:

Rule1 IF Yes A => Hypo1
THEN: Perform “true” actions list

Rule2 IF No Hypo1 = Hypo2
THEN: Perform “false” actions list

Let’s assume the system evaluates Rule1 first. After the evaluation of Rule1, the system
forward chains to Rule2 due to the hypothesis test condition “No Hypo1” (called
Hypothesis Forward). If Rule1’s condition fails, then Hypo1 will be FALSE and
Rule2’s condition will evaluate to TRUE. Therefore, the failure of Rule1 ensures that
the only actions list of Rule2 will be triggered. Or if Rule1 succeeds and its actions
triggered, Rule2 will always fail. Thus only one set of actions can be triggered between
these two rules. What took two rules can be accomplished more easily by including
the Else actions list in a single rule as follows:

Rule1 IF Yes A => Hypo1
Then Do: Perform “true” actions list
Else Do: Perform “false” actions list

Forward Chaining
Depending on the inference strategy options currently in effect, the results of
right-hand side actions may be forward-chained to the conditions of other rules that
share the same data. If another rule shares the same data, its hypothesis is
automatically placed on the agenda for consideration. This form of forward chaining
is known as Forward Action-Effects. Methods are not affected by the results of actions
because they do not have hypotheses to be considered for evaluation. However,
actions in a method may forward-chain data to relevant rules. Action operators that
will produce forward chaining include: Assign, Retrieve (from a database), and
Execute (using an external routine).
1 - 4 Language Reference

Actions
Data that belongs to a private slot can not trigger action-effects since private slot data
cannot appear in the conditions or actions of rules. Only data that belongs to public
slots can trigger action-effects.

Depending on the inference strategy options currently in effect, only the results of the
Retrieve and Execute actions triggered from rule or method conditions may be
forward-chained. The Assign operator has no effect on forward chaining from the
left-hand side. See the Retrieve Operator and Execute Operator topics for details.

Examples
The following example depicts the IF, THEN, ELSE construction that can be used in
rules and methods.

IF Retrieve “data.nxp”
THEN Get information
ELSE Execute “Message” @TEXT=“Error”

Related Topics
Rules Agenda
Methods Inference Strategy
Hypotheses Inference Priority Attribute
Conditions Forward Chaining
Slots

Also see the sections on individual operators by name, as listed above.
Language Reference 1 - 5

Chapter Application Development Features1
Agenda

Definition
The agenda is the Rules Element’s central control mechanism, which directs the course
of its inference processing.

Form
The agenda is an ordered list of hypotheses pending investigation via inference
processing. Notice that it is the hypotheses themselves that are placed on the agenda,
not the rules that lead to them.

Operation
When the Knowcess command is issued to begin inference processing, the first
hypothesis with the highest inference priority from the highest list on the agenda
becomes the focus of attention, the object of active investigation by the Rules Element
system. All rules leading to this hypothesis are investigated until its value is
determined to be either TRUE, FALSE, or NOTKNOWN. Other hypotheses may be added
to the agenda in the course of this inference process, as described under “Insertion,”
below.

As the value of each hypothesis is determined, it is removed from the agenda and the
next hypothesis following it becomes the focus of attention. This process continues
until all hypotheses have been processed and the agenda is empty, at which point the
message End of Session is displayed in the session control panel of the Rules Element’s
main window.

Insertion
Although the user can explicitly place hypotheses on the agenda by selecting Suggest
or related commands, the contents of the agenda are maintained automatically by the
Rules Element and are not under the user’s direct control. Hypotheses can be added
to the agenda in any of the following ways:

1. Via an explicit suggestion by the user.

2. By backward chaining from the conditions of a rule already under investigation.

3. By forward chaining:

a. from the value of a hypothesis determined in the course of
 inference processing.
b. from a data value set in a rule by an action of some other rule.
c. from a data value set in a rule by an action of some method.
d. from a data value explicitly volunteered by the user.

4. Via a semantic gate from a rule previously investigated.
1 - 6 Language Reference

Agenda
5. Via a context link from a hypothesis previously investigated.

Precedence
New hypotheses may be inserted in the agenda at any point, not just at the beginning
or end. The list above shows the order of precedence: for example, hypotheses added
to the agenda via semantic gates are placed after those reached via backward or
forward chaining, but before those reached via context links. Hypotheses added in the
same way (for example, via semantic gates) are ordered according to their respective
inference priorities or those of the rules leading to them.

Strategy
The ways in which hypotheses can be placed on the agenda are subject to the inference
strategy currently in effect. The following strategy options apply:
■ Forward confirmed hypotheses
■ Forward rejected hypotheses
■ Forward notknown hypotheses
■ Forward Action-Effects (rules and methods)
■ Forward through gates (rules only)

All of these options are normally enabled by default, but can be disabled if necessary.
See the section “Inference Strategy” for more information.

Related Topics
Actions Inference Slot Attribute
Conditions Inference Strategy
Context Links Rules
Hypotheses Forward Chaining
Methods Backward Chaining
Inference Semantic Gates
Inference Priority Attribute

For a thorough understanding of the Rules Element agenda mechanism, please refer to
the Functional Description manual.
Language Reference 1 - 7

Chapter Application Development Features1
ASIN Function

Definition
The ASIN function is used in expressions to find the arc-sine of a floating point number.
The expression can appear on the left-hand side or right-hand side of rules and
methods.

Syntax
The function consists of the word ASIN followed by a single argument in parentheses:

ASIN(x)

Argument
The argument may be anyeexpression yielding a numerical result between--1.0 and
1.0. The expression may include patterns or interpretations.

If the value of the argument expression is an integer, it will be converted to an
equivalent floating point value.

Result
The function returns a floating point result equal to the arc-sine of the argument. The
result is expressed in radians.

If the argument expression does not produce a numerical value, an error message is
posted and the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the ASIN function:

ASIN(0.0) = 0.0
ASIN(0.5) = 0.52 (= 3.14 / 6)
ASIN(1.0) = 1.57 (= 3.14 / 2)
ASIN(-1.0) = -1.57 (= -3.14 / 2)

Related Topics
Expressions Interpretations
Floating Point Constants SIN Function
Integer Constants ACOS Function
Patterns ATAN Function
1 - 8 Language Reference

AskQuestion Operator
AskQuestion Operator

Definition
The AskQuestion operator is used in the right-hand side actions of an Order of
Sources method to prompt the user interactively for the value of a desired slot and test
the answer.

Operand
The AskQuestion operator takes two operands:
■ The first operand is a slot, commonly (but not necessarily) the one in whose Order

of Sources method the AskQuestion operator appears (named in the Attach To
field of the Method editor).

■ The second operand is either a constant of the right type for the slot named as the
first operand, or the special value NOTKNOWN.

Effect
The user is prompted, via the session control panel of the Rules Element main window,
to supply a value for the slot to which this Order of Sources method belongs. If a
prompt line attribute is defined for the slot, it is displayed in the window in place of
the standard text.

After the value has been supplied, the slot named as the operator’s first operand is
tested for the value given by the second. If the two are unequal, the value supplied by
the user is accepted and the method terminates; if they are equal, the value is rejected
and execution continues with the next action in the Order of Sources method.

Example
The following actions, appearing in the Order of Sources method for an object’s cost
property, prompt the user to supply a value for that slot. Any known value is
accepted; if the response is NOTKNOWN, the slot’s value is instead inherited downward
from a class or parent object:

AskQuestion SELF.cost NOTKNOWN
InhValueDown DEFAULT

Related Topics
Objects Methods
Properties Order of Sources Method
Actions Prompt Line Attribute
Language Reference 1 - 9

Chapter Application Development Features1
Assign Operator

Definition
The Assign operator is used in the conditions and actions of rules and methods to
assign a value to a variable.

Operands
The Assign operator takes two operands:
■ TThe first operand can be a numeric constant, an arbitrary expression, a string, the

special values NOTKNOWN or UNKNOWN, or a boolean constant (TRUE or FALSE) in
the case where the second operand is a boolean variable.

■ The second operand can be a slot, a list of slots specified by a pattern, or a boolean
variable.

The operands may be of any type, but must both be of the same or compatible type.
Any type of slot may be set to NOTKNOWN or UNKNOWN. Both operands may include
patterns nnd interpretations. Note that a private slot used in the second operand is
ignored unless the Assign operator appearsiin a method specifically triggeredffor the
slot. See the description of Slots for more information about using private slots.

Effect
The value of the first operand is assigned to the slot named as the second. If both
operands are identical, the effect is simply to force evaluation of the specified slot. For
example, the following condition initiates backward chaining on the hypothesis
“assigned” to itself.

Assign Hypo Hypo

If either or both operands include a pattern on the same class or object, the assignment
is performed once for each object in the corresponding list. For example, the following
condition assigns the product of the first operand to each object in the Rect class.

Assign <Rect>.length * <Rect>.width <Rect>.area

The condition with a pattern shown above, is equivalent to the following two
conditions, assuming the Rect class contains two objects, Rect1 and Rect2.

Assign Rect1.length * Rect1.width Rect1.area
Assign Rect2.length * Rect2.width Rect2.area

Depending on the strategy options currently in effect, the new value of the slot
assigned in an action of a rule or method may be forward-chained to other rules in
which the slot appears in a condition (causing the hypotheses of those rules to be
placed on the agenda for consideration). See the Forward Chaining section below for
details. Also, the new value assignment may trigger the execution of the slot’s If
Change method, if one has been defined at the slot or parent slot level.
1 - 10 Language Reference

Assign Operator
Forward Chaining
Right-hand side actions in rules and methods involving the Assign operator can
forward chain the new value of the slot to other rules in which the slot appears in a
condition (causing the hypotheses of those rules to be placed on the agenda for
consideration). This form of forward chaining, known as Forward Action-Effects, is
controlled first by a local strategy specific to the right-hand side Then and Else
components of rules and methods. By default the local strategy is set to ON. If the local
strategy is set to GLOBAL, the Rules Element defaults to the Rule Global forward
action effects strategy in the Strategy Monitor window (from the Expert menu) until a
Strategy operator overrides the global strategy at the local level.

Conditions of rules and methods involving the Assign operator are not able to initiate
forward chaining. Values assigned by such a condition are never propagated forward
to other rules, nor can such a condition be triggered by forward chaining from another
rule or method.

Data that belongs to a private slot cannot trigger action-effects since private slot data
cannot appear in the conditions or actions of rules. Only data that belongs to public
slots can trigger action-effects.

Result
The result produced by the Assign operator is always TRUE unless the operands
include a pattern with no matching values, in which case the result is NOTKNOWN.

Examples
The following are examples of conditions using the Assign operator:

Assign 3.14159 pi
Assign "Grumpy" dwarf.name
Assign TRUE Credit_approved
Assign FALSE Credit_approved
Assign UNKNOWN item.cost
Assign NOTKNOWN switch_number
Assign DATE(1904,6,16) bloomsday
Assign item.count + 1 item.count
Assign rect_1.length * rect_1.width rect_1.area

Related Topics
Objects String Constants
Rules Boolean Constants
Methods Patterns
If Change Method Forward Chaining
Conditions Inference Strategy
Actions Strategy Operator
Data Types Agenda
Expressions Reserved Words
Slots
Language Reference 1 - 11

Chapter Application Development Features1
ATAN Function

Definition
The ATAN function is used in expressions to find the arc-tangent of a floating point
number. The expression can appear on the left-hand side or right-hand side of rules
and metoods.

Syntax
The function consists of the word ATAN followed by a single argument in parentheses:

ATAN(x)

Argument
The argument may be any expression yielding a numerical result. The expression may
include patterns or interpretations.

If the value of the argument expression is an integer, it will be converted to an
equivalent floating point value.

Result
The function returns a floating point result equal to the arc-tangent of the argument.
The result is expressed in radians.

If the argument expression does not produce a numerical value, an error message is
posted and the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the ATAN function:

ATAN(0.0) = 0.0
ATAN(1.0) = 0.78 (= 3.14 / 4)
ATAN(999999) = 1.57 (= 3.14 / 2)
ATAN(-1.0) = -0.78 (= -3.14 / 4)

Related Topics
Expressions Interpretations
Floating Point Constants TAN Function
Integer Constants ASIN Function
Patterns ACOS Function
1 - 12 Language Reference

AVERAGE Function
AVERAGE Function

Definition
The AVERAGE function is used in expressions to find the average of a set of numerical
values. The expression can appear on the left-hand side or right-hand side of rules and
methods.

Syntax
The function consists of the word AVERAGE followed by any number of arguments in
parentheses:

AVERAGE(x1,x2,...,xn)

Arguments
Each argument may be any expression yielding a numerical or time-valued result.
There may be either a list of arguments or a pattern matching list.

If some of the argument values are integers and some floating point, the integers will
be converted to equivalent floating point values before computation.

Result
The function averages all the argument values and returns their arithmetic mean. For
arguments that include patterns, it averages all values in the corresponding list.

Integer and floating point values may be mixed in the same average, but time values
can be averaged only with each other. If numeric and time arguments are mixed, or if
any argument is of another type, an error message is posted and the function result is
NOTKNOWN.

Examples
The following examples illustrate the results of the AVERAGE function:

AVERAGE(365,240,577) = 394
AVERAGE(98.6,37.0,-273.18) = -29.85
AVERAGE(obj1.p,obj2.p,obj3.p) = 11.85
AVERAGE(TIME(8,4,23),TIME(3,6,11)) = TIME(5,35,17)
AVERAGE(123,"456") = NOTKNOWN

If class Tank has four instances with capacity values of 6.3, 14.5, 12.9, and 9.0,
then

AVERAGE(<Tank>.capacity) = 10.67

Related Topics
Expressions Patterns DATE Function
Data Types Interpretations VAR Function
TIME Function STDEV Function
Language Reference 1 - 13

Chapter Application Development Features1
Backward Chaining

Definition
Backward chaining is the process of determining the truth or falsity of a hypothesis by
evaluating the rules that lead to it.

Invocation
Backward chaining is initiated by suggesting a hypothesis via any of the following
commands:
■ The Suggest command on the Expert menu.
■ The Suggest/Volunteer... command on the Expert menu.
■ The Suggest... command on the windows pop-up menu.
■ The Suggest Hypothesis command on the Rule editor or List of Rules pop-up

menu.
■ The Suggest command on the Rule Network, Object Network, or List of

Hypotheses pop-up menu.
■ The Suggest command from the Agenda Monitor.

Backward chaining can also be initiated during runtime from the knowledge base
itself:
■ The Assign Hypo Hypo construct from a rule or method forces the evaluation of

the hypothesis “assigned” to itself.
■ The Backward operator may appear in an Order of Sources method as an action

that backward chains to evaluate a hypothesis.

Each of these approaches places a hypothesis on the agenda for consideration. When
the Knowcess command is issued to begin inference processing, the Rules Element
will look for any inference rules leading to the designated hypothesis and begin
evaluating them to determine whether the hypothesis is TRUE or FALSE.

Operation
Rules are considered one at a time in order of priority, as defined by their inference
priorities. The results determine the value of the hypothesis, as follows:
■ If any rule is found whose conditions are all TRUE, the hypothesis is set to TRUE

and all of the rule’s actions are executed.
■ Otherwise, if at least one rule has a condition that is NOTKNOWN, the hypothesis is

set to NOTKNOWN.
■ Otherwise, the hypothesis is set to FALSE.

The process terminates as soon as the value of the suggested hypothesis is determined,
unless the strategy option Exhaustive evaluation is in effect; this option forces all
1 - 14 Language Reference

Backward Chaining
rules leading to the suggested hypothesis to be evaluated, even after the value of the
hypothesis has already been found.

In the course of evaluating a rule, hypotheses occurring in its conditions may in turn
be placed on the agenda as subgoals, invoking the same reasoning process recursively
to investigate all rules leading to those hypotheses. Such backward chaining can
continue recursively to any required depth.

Propagation
Depending on the global strategy options currently in effect, the results of the inference
process described above may be propagated forward to other parts of the knowledge
base, causing additional hypotheses to be placed on the agenda and additional rules to
be evaluated. Strategy options relevant to this process include the following:
■ Forward confirmed hypotheses
■ Forward rejected hypotheses
■ Forward notknown hypotheses
■ Forward Action-Effects (rules and methods)
■ Forward through gates (rules only)

See the section “Inference Strategy” for further details.

Related Topics
Agenda Inference Priority Attribute
Boolean Constants Inference Slot Attribute
Hypotheses Inference Strategy
Rules Forward Chaining
Inference Exhaustive Evaluation
Backward operator Assign operator
Language Reference 1 - 15

Chapter Application Development Features1
Backward Operator

Definition
The Backward operator is used in the actions list of an Order of Sources method to
seek the value of a boolean slot by backward chaining to the inference rules in which
it appears as a hypothesis.

Operand
The Backward operator is valid only in the THEN actions list on the right-hand side
of an Order of Sources. The Backward operator takes one operand, which must be the
boolean constant TRUE. The following is the only valid form for an action using the
Backward operator:

Backward TRUE

The Attach To field of the Method editor specifies the hypothesis to which the
Backward operator applies.

The Backward operator cannot be used as an Order of Sources action for a private slot
since private slot data cannot be a hypothesis. Only public slots can be hypotheses.

Effect
The Backward operator is meaningful only as an Order of Sources action foraa
boolean slot. If the slot appears as the hypothesis of one or more inference rules, it is
placed on the agenda as a subgoal, causing its value to be sought by backward chaining
on those rules. If there are two or more rules with the same hypothesis, they will be
evaluated in the order specified by their inference priorities or inference slots.

Example
In the case of the boolean slot that is a hypothesis, the system triggers an available
user-defined Order of Sources before it initiates backward chaining to obtain the value
of the slot. To reincorporate the default behavior as part of a user-defined Order of
Sources method, include the equivalent sequence of operators explicitly within the
method:

InhMethod DEFAULT
Backward TRUE
InhValueDown DEFAULT
InhValueUp DEFAULT
AskQuestion SELF TRUE

Related Topics
Actions Order of Sources Method
Agenda Slot
Backward Chaining Rules
Boolean Constants Methods
1 - 16 Language Reference

Backward Operator
Inference Priority Attribute
Inference Slot Attribute
Hypotheses
Language Reference 1 - 17

Chapter Application Development Features1
BOOL2STR Function

Definition
The BOOL2STR function is used in expressions to convert a boolean value to an
equivalent character string. The expression can appear on the left-hand side or
right-hand side of rules and methods.

Syntax
The function consists of the word BOOL2STR followed by one or two arguments in
parentheses:

BOOL2STR(b)
BOOL2STR(b,f)

Argument
Each argument may be any expression yielding a result of the appropriate type:
■ The first argument (b) is the boolean value to be converted.
■ The optional second argument (f) is a string specifying the format under which the

first argument is to be converted. See “Boolean Formats” for the syntax and
meaning of this string.

The argument expressions may include patterns or interpretations.

Result
The function returns a string result representing the boolean value of argument b,
converted according to format f. If no format argument is given, the default system
format for booleans (defined in the ckbres.format module in the file nxrun.dat)
is used.

Examples
The following examples illustrate the results of the BOOL2STR function:

BOOL2STR(FALSE) = "FALSE"
BOOL2STR(obj.p) = "FALSE"
BOOL2STR(FALSE,"Yup;Nope") = "Nope"

Related Topics
Expressions Patterns
String Constants Interpretations
Boolean Constants STR2BOOL Function
Boolean Formats
1 - 18 Language Reference

Boolean Constants
Boolean Constants

Definition
A boolean constant is a sequence of characters that stand directly for a boolean (logical)
value, representing the truth value of a condition or hypothesis or other boolean
variables.

Values
There are two states that describe hypotheses and conditions: evaluated or
unevaluated. Once the evaluation of a hypothesis or condition is complete, it resolves
to one of the following boolean values.

TRUE
FALSE
NOTKNOWN

If a value has not yet been determined, the condition or hypothesis has the following
boolean value.

UNKNOWN

An UNKNOWN value for a condition or hypothesis can be resolved to TRUE, FALSE, or
NOTKNOWN as a result of further inference. A NOTKNOWN value can never be so
resolved; its indeterminacy is an intrinsic condition of the problem itself and is usually
volunteered by the user through the application interface. Both UNKNOWN and
NOTKNOWN may be modified with the Assign operator.

Data Types
Although NOTKNOWN and UNKNOWN are applicable to boolean variables, slots of any
data type may take these values. The values TRUE and FALSE are reserved for slots
defined as type boolean. A fifth constant KNOWN is the counterpart of NOTKNOWN, but
does not apply to boolean variables, only data defined as one of the other data types.

All boolean constants are built into the Rules Element as reserved words

Related Topics
Data Types Boolean Expressions
Identifiers Reserved Words
Boolean Formats Assign Operator
Language Reference 1 - 19

Chapter Application Development Features1
Boolean Expressions

Definition
A boolean expression represents a statement that when resolved returns a boolean
result. It can make use of AND, OR, NOT, and embedded comparison operators.

Usage
The boolean expression is always used as an operand in a condition that returns a
boolean result, such as a comparison or value test condition. There are two value test
operators that return a boolean result:

Yes
No

There are six comparison operators that return a boolean result:

= Equal
<> Not equal
< Less than
<= Less than or equal
> Greater than
>= Greater than or equal

Note: Comparison operators can also be embedded in the boolean expression itself.

Boolean Operators
Numeric or string values can be combined using the standard boolean operators when
the result of the expression is a boolean value.

AND OR NOT

The Rules Element permits you to use these operators to combine values that
individually evaluate to TRUE, FALSE, or NOTKNOWN. The result produced by the
boolean expression depends on the evaluation of these values as described below.

Result
The result produced by a boolean expression is either TRUE, FALSE, or NOTKNOWN. The
boolean operators provide the following results:

OR TRUE FALSE NOTKNOWN

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE NOTKNOWN

NOTKNOWN TRUE NOTKNOWN NOTKNOWN
1 - 20 Language Reference

Boolean Expressions
Boolean operator And provides the following results:

NOT:

NOT T == FALSE

NOT F == TRUE

NOT N == NOTKNOWN

Examples
The following is an example of a condition which tests a boolean expression:

Yes (a AND b) OR (NOT (c=1))

Related Topics
Conditions Comparison Operators
Boolean Constants No Operator
Expressions Yes Operator

AND TRUE FALSE NOTKNOWN

TRUE TRUE FALSE NOTKNOWN

FALSE FALSE FALSE NOTKNOWN

NOTKNOWN NOTKNOWN NOTKNOWN NOTKNOWN
Language Reference 1 - 21

Chapter Application Development Features1
Boolean Formats

Definition
A boolean format specifies the representation of a boolean value in text form for input
and output purposes.

Syntax
This section defines the syntax of format elements for boolean-valued properties only.
See the section titled “Formats” for the syntax of formats in general.

Like all formats, those for booleans may include strings of literal characters enclosed
in double quotation marks (" . . . "), and may also include the wild-card
character (*). Format elements beginning with an exclamation point (!) are ignored in
database transactions; they are meaningful only for direct interaction with the user via
the screen and keyboard.

Input
On input, each element in the format list is tried in order until one of them matches the
input text. If no match is found, the input is rejected and an error message is displayed
on the screen. The following conventions apply:
■ Odd-numbered elements in the format list (the first, third, and so on) produce a

TRUE result, even-numbered elements (the second, fourth, and so on) produce a
FALSE result.

■ Strings of literal characters enclosed in double quotation marks must match
exactly, except that no distinction is made between upper- and lowercase letters.

■ The wild-card character (*) matches any sequence of zero or more characters.

Output
On output, only the first two elements in the format list are used:
■ The first format element is used for TRUE values, the second for FALSE values; any

further elements in the list are ignored.
■ Srings of literal characters enclosed in double quotation marks are reproduced

exactly in the output.
■ The wild-card character (*) is ignored on output.

Default
The default system format for booleans is defined in the ckbres.format module in
the file nxrun.dat. The standard default format is

True;False
1 - 22 Language Reference

Boolean Formats
Example
The following example illustrates the use of boolean formats:

Format: Yes;No;Y*;N*;@N=Maybe

Related Topics
Formats
Format Attribute
Boolean Constants

Value Output Comments
TRUE Yes Uses first element
FALSE No Uses second element
NOTKNOWN Maybe Uses last (@N=) element

Input Value Comments
Yes TRUE Matches first element
no FALSE Case is irrelevant
Yup TRUE Matches third element
Nope FALSE Matches fourth element
NotKnown NOTKNOWN Reserved word
Maybe NOTKNOWN Matches last (@N=) element
Tru NOTKNOWN No match
Language Reference 1 - 23

Chapter Application Development Features1
CEIL Function

Definition
The CEIL function is used in expressions to find the smallest whole number greater
than a given floating point number. The expression can appear on the left-hand side
or right-hand side of rules and methods.

Syntax
The function consists of the word CEIL followed by a single argument in parentheses:

CEIL(x)

Argument
The argument may be any expression yielding a floating point result. The expression
may include patterns or interpretations.

Result
The function returns a floating point result equal to the smallest whole number greater
than the argument. Notice that although the result is always a whole number, it is of
type FLOAT rather than INTEGER. For negative arguments, the rounding is toward
zero, rather than toward minusiinfinity.

If the argument expression does not produce a numerical value, an error message is
oosted and the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the CEIL function:

CEIL(3.1416) = 4.0
CEIL(98.6) = 99.0
CEIL(-273.18) = -273.0
CEIL(-9.9) = -9.0

Related Topics
Expressions Interpretations
Floating Point Constants FLOOR Function
Integer Constants ROUND Function
Patterns
1 - 24 Language Reference

CHARFIND Function
CHARFIND Function

Definition
The CHARFIND function is used in expressions to search a character string for a
specified character or characters. The expression can appear on the left-hand side or
right-hand side of rules and methods.

Syntax
The function consists of the word CHARFIND followed by two arguments in
parentheses:

CHARFIND(s1,s2)

Arguments
Each argument may be any expression yielding a string result:
■ The first argument (s1) is the string to be searched.
■ The second argument (s2) specifies the characters to search for.

The argument expressions may include patterns or interpretations.

Result
The function returns an integer result equal to the offset from the beginning of the first
argument string (s1) to the first occurrence of any character from the second string
(s2). The search is case sensitive, thus corresponding upper- and lowercase letters
(such as A and a) are considered different for purposes of the search.

A result of 0 denotes the first character in string s1 (no offset at all from the start of the
string). If s1 does not contain any of the characters in s2, the function result is equal
to the length of string s1.

If either argument expression does not produce a string value, an error message is
posted and the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the CHARFIND function:

CHARFIND("SHAZAM!","AEIOU") = 2
CHARFIND("SHAZAM!","WXYZ") = 3
CHARFIND("SHAZAM!","SPQR") = 0
CHARFIND("SHAZAM!","LMNOP") = 5
CHARFIND("SHAZAM!","aeiou") = 7
CHARFIND("SHAZAM!","") = 7
CHARFIND("","SHAZAM!") = 0
Language Reference 1 - 25

Chapter Application Development Features1
Related Topics
Expressions SUBSTRING Function STRUPPER Function
String Constants STRLEN Function STRLOWER Function
Patterns STRCAT Function STRFIND Function
Interpretations
1 - 26 Language Reference

Classes
Classes

Definition
A class defines the common characteristics shared by a family of related objects.

Structure
Every class has a name, which must comply with the Rules Element’s standard rules
for a well-formed identifier. The class definition may include any number of properties
to be inherited by the objects belonging to the class (called its instances). The class may
also have any number of subclasses, which will likewise inherit its properties and pass
them on in turn to their own instances. A given class may be a subclass of more than
one other class (called its superclasses), just as a given object may be an instance of more
than one class (called itsiincluding classes).

The class itself may associate a value with each property, independent of the
property’s value for any individual instance. Depending on the global and local
inheritability settings currently in effect, the specific value of the property at the class
level may or may not be inherited by instances or subclasses along with the property
definition itself.

Inheritance
The default inheritability strategy allows both property definitions themselves and the
specific values associated with them to be inherited downward from a class to its
instances or subclasses. If necessary, these standard strategy settings can be changed
from the Strategy Monitor window (from the Expert menu), the Strategy operator in
a condition or action, or the Rules Elements application programming interface call
NXP_Strategy to disable the inheritance of properties or their values or to permit
upward as well as downward inheritance, from child to parent or parent to child. In
addition, a class can override the global strategy settings by using the Meta-Slot editor
to specify local inheritability attributes for individual slots associated with the class.

Creation
Classes can be created by several means:
■ Interactively, via the New or Copy command in the Class editor.
■ Implicitly, by using a previously undefined class name in a condition or action of

a rule or method, or as a subclass of another class.
■ Dynamically, through the Rules Element application programming interface

(API).

Note: The system might display the class name enclosed between
vertical bars (| . . . |) to distinguish it from an object name.
Language Reference 1 - 27

Chapter Application Development Features1
Deletion
Classes can be destroyed in either of two ways, depending on how they were originally
created:
■ Classes created interactively by the application developer, via the Delete

command in the Class editor.
■ Dynamically, through the Rules Element application programming interface.

Methods
Although a method is by definition triggered through a message sent directly to the
object to which the method is attached, methods can be attached at the level of the class
to govern the behavior of class instances. In the case where the object has no method
attached, the system will try to use downward inheritance to obtain one. In a situation
where the object belongs to multiple classes, each with its own method defined, then
an InhMethod operator can be used to resolve the conflict by explicitly naming the
parent class.

Related Topics
Objects Methods
Properties Dynamic Objects
Identifiers Inheritability Strategy
Rules Strategy Operator
Meta-Slots InhMethod Operator
Inheritance Retrieve Operator
Slots
1 - 28 Language Reference

Comment Attribute
Comment Attribute

Definition
The comment attribute is an arbitrary piece of text associated with a rule, method, or slot
(a property of a class or object) to document its meaning or usage for the benefit of the
application developer.

Syntax
The comment attribute may consist of any sequence of text characters, without
restriction.

Effect
Comment attributes have no effect whatever on the operation of the system; their sole
purpose is to help the application developer understand the structure and design of
the knowledge base.

Creation
Comment attributes are specified or edited by typing into the box labeled Comments
in the Meta-Slot editor (for an individual slot), the Rule editor (for a rule), or the
Method editor (for a method).

Saving
Comment attributes are saved along with the knowledge base if the Save Comments
and Whys option is chosen in the Save Knowledge Base... command.

Related Topics
Meta-Slots Rules
Methods Why Attribute
Language Reference 1 - 29

Chapter Application Development Features1
COMPARE Function

Definition
The COMPARE function is used in expressions to compare data values for equality or
inequality. The expression can appear on the left-hand side or right-hand side of rules
and methods.

Syntax
The function consists of the word COMPARE followed by two arguments in
parentheses:

COMPARE(x,y)

Arguments
Each argument may be any arbitrary expression. The expressions may include
patterns or interpretations.

The argument values may be of any type, but the types must be comparable (either
both the same or both numeric). If one is an integer and the other floating point, the
integer will be converted to an equivalent floating point value before comparison.

Result
The function returns an integer result expressing the relation between the two
argument values:
■ If the first argument (x) is less than the second (y), the function result is -1.
■ If the arguments are equal, the function result is 0.
■ If x is greater than y, the function result is 1.

Integers and floating point values are compared numerically, strings lexically, and
dates and times chronologically. In string comparisons, equivalent upper- and
lowercase letters (such as A and a) are considered identical. In boolean comparisons,
TRUE is considered greater than FALSE.

If the argument values are not of comparable types, the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the COMPARE function:

COMPARE(365,240) = 1
COMPARE(98.6,98.6) = 0
COMPARE(12,12.0) = 0
COMPARE(12,12.3) = -1

COMPARE("Humpty","dumpty") = 1
COMPARE("boo","boojum") = -1
COMPARE("ABC","xyz") = -1
COMPARE("abc","XYZ") = -1
1 - 30 Language Reference

COMPARE Function
COMPARE("shazam!","SHAZAM!") = 0
COMPARE("","SHAZAM!") = -1

COMPARE(DATE(1776,7,4),DATE(1789,7,14)) = 1
COMPARE(TIME(8,4,23),TIME(3,6,11)) = 1

COMPARE(TRUE,FALSE) = 1

COMPARE(123,"456") = NOTKNOWN

Related Topics
Expressions Patterns
Data Types Interpretations
Language Reference 1 - 31

Chapter Application Development Features1
Comparison Operators

Definition
The comparison operators are used in a rule’s conditions to compare numerical values,
dates, and times, as well as non-numeric values in the form of slots, strings, and
booleans.

Operators
There are six comparison operators:

= Equal
<> Not equal
< Less than
<= Less than or equal
> Greater than
>= Greater than or equal

Note: For the operators = (equal) and <> (not equal) only,
comparisons may be numeric or non-numeric as described
below.

Numeric Operands
All comparison operators provide the means to compare two numeric values of the
same or compatible type. To perform this type of comparison, the operators take the
following two operands:
■ The first operand may be any numeric constant, expression, or slot yielding an

integer, floating point, date, or time value, and may include patterns.
■ The second operand may be any numeric constant, expression, or slot yielding an

integer, floating point, date, or time value, and may include patterns. It can also
include KNOWN, NOTKNOWN, and UNKNOWN.

For the operators = (equal) and <> (not equal) only, the second operand may be a list
of numbers separated by commas. Comparisons involving dates and times, must use
the Date or Time function to yield a constant value.

Note that a private slot used in the second operand is ignored unless the comparison
operator appears in a method specifically triggered for the slot. See the description of
Slots for more information about using private slots.

Non-Numeric Operands
The operators = (equal) and <> (not equal) also allow comparison for equality between
non-numeric values of the same or compatible type. To perform this type of
comparison, the = and <> operators take the following two operands:
1 - 32 Language Reference

Comparison Operators
■ The first operand can be either the name of a slot or a list of slots specified by a
pattern.

■ The second operand can be a list of one or more string or boolean constants
separated by commas, or a single slot (patterns are not allowed). It can also include
KNOWN, NOTKNOWN, and UNKNOWN.

Note: If the second operand is a slot, it must be of the same type
defined for the first operand.

Result
The result produced by a comparison operator is TRUE, FALSE, or NOTKNOWN
depending on whether the stated relation existsbbetween the two operands. If the first
operand includes a pattern, the condition tests whether at least one of the valuesiin
the!corresoonding list (for an existential pattern) or all of them (for a universal pattern)
satisfy the given relation.

In the case of the operators = (equal) and <> (not equal), string constants listed in the
second operand are recorded as possible values of the given slot, and will be presented
as suggested options when requesting a value from the user for that slot.

Numeric Examples
The following are examples of conditions using the comparison operators to test
numeric equality that involves variables, constants, and expressions:

> temperature 98.6
<= item_1.quantity * item_1.cost 10000
<= <Item>.quantity * <Item>.cost 10000
<= {Item}.quantity * {Item}.cost 10000
= switch.number 8,14,22
> item_1.quantity * item_1.cost max_cost

Non-Numeric Examples
The following are examples of conditions using the = (equal) and <> (not equal)
comparison operators to test strings and boolean constants:

= valve_1.pressure "increasing"
= valve_1.pressure "increasing","stable"
= <Valve>.pressure KNOWN
= {Valve}.pressure UNKNOWN,NOTKNOWN
<> valve_1.pressure "increasing"
<> valve_1.pressure "increasing","stable"
<> <Valve>.pressure KNOWN
<> {Valve}.pressure UNKNOWN,NOTKNOWN

Notice that the special values KNOWN, UNKNOWN, and NOTKNOWN are not
written with string quotes (" . . . ").

The following are examples of conditions using the = (equal) and <> (not equal)
comparison operators to test the equality between two slots:

= item_1.quantity max_quantity
= max_quantity item_1.quantity
Language Reference 1 - 33

Chapter Application Development Features1
= <Item>.quantity max_quantity
= {Item}.quantity max_quantity
<> item_1.quantity max_quantity
<> max_quantity item_1.quantity
<> <Item>.quantity max_quantity
<> {Item}.quantity max_quantity

The following pattern matching statements are not valid comparisons and are illegal
constructions due to the use of two dissimilar classes:

= <itemA>.quantity <itemB>.quantity
= <itemA>.quantit <itemB>.available_amount

Related Topics
Rules Floating Point Constants
Conditions Patterns
Slots Expressions
Data Types Boolean Expressions
Integer Constants DATE Function
Boolean Constants TIME Function
String Constants
1 - 34 Language Reference

Conditions
Conditions

Definition
A condition expresses a test to be performed on the left-hand side of a rule or method,
helping to determine whether the rule or method is satisfied. Conditions in methods
are optional.

Syntax
A condition consists of an operator followed by one or two operands. The possible
operators are:

Yes Write
No CreateObject
= DeleteObject
<> Member
< NotMember
<= LoadKB
> UnloadKB
>= Reset
Assign Show
Execute Strategy
Retrieve endMessage

The exact number and form of the operands varies from one operator to another; see
the sections on individual operators for details.

Rule Evaluation
The list of conditions within a rule is normally evaluated sequentially, in the order they
appear in the rule definition; this evaluation order may be altered by the inference
priorities of the data involved.

For the rule to be satisfied, all of its conditions must evaluate to TRUE. The conditions
are thus implicitly linked by the logical “and” operator. To achieve the effect of a
logical “or,” use separate rules leading to the same hypothesis.

The system executes one of two different lists of consequent actions (Then and Else) for
the same rule depending on whether the rule is satisfied or not.

Method Evaluation
The list of conditions is optional for methods. If no conditions are present, the system
automatically executes the Then actions list when the method itself is triggered. If
method conditions are present, the system executes one of two different lists of
consequent actions (Then and Else) depending on whether the method is satisfied or
not.

For the method to be satisfied, all of its conditions must evaluate to TRUE. The
conditions are thus implicitly linked by the logical “and” operator. To achieve the
effect of a logical “or,” use backward chaining on separate rules.
Language Reference 1 - 35

Chapter Application Development Features1
If present, conditions within a method are always evaluated sequentially, in the order
they appear in the method definition; unlike rule conditions this evaluation order is
not altered by the inference priorities of the data involved.

Forward Chaining
Depending on the inference strategy options currently in effect, the evaluated data
item or pattern in a condition may be forward-chained to the conditions of other rules
that share the same data. In order for the hypothesis of another rule to be placed on
the agenda for consideration, the forwarded data must make the condition of the target
rule TRUE. This form of forward chaining is known as semantic gates. Methods are
not affected by shared data because they do not have hypotheses to be considered for
evaluation, nor can a condition in a method trigger forward chaining to another rule
or method through a gate.

The system does not forward-chain the results of the Assign action triggered from the
rule or method conditions list. However, depending on the inference strategy options
currently in effect, the Retrieve and Execute actions triggered from the rule or
method’s conditions list may be forward-chained. See the Retrieve Operator and
Execute Operator topics for details.

Data that belongs to a private slot cannot trigger forward chaining since private slot
data cannot appear in the conditions or actions of rules. Only data that belongs to
public slots can trigger forward chaining.

Examples
The following examples illustrate conditions that can appear in a rule or method:

= car.color “blue”, “red”, “yellow”
Yes Question_Answered OR Info_Retrieved

Related Topics
Rules Comparison Operators
Methods Boolean Constants
Hypotheses Inference Priority Attribute
Actions Semantic Gates
Slots Inference Strategy
Forward Chaining

Also see the sections on individual operators by name, as listed above.
1 - 36 Language Reference

Context Links
Context Links

Definition
A context link (also called a weak link) is an explicit connection defined between two
hypotheses to direct the course of the inference process. It is the only possible link
between two knowledge islands.

Creation
Context links are always created interactively, via the New and Copy commands in the
Context editor.

Deletion
Context links are always deleted interactively, via the Delete command in the Context
editor.

Operation
Each time a hypothesis is investigated in the course of inference processing and its
value (TRUE, FALSE, or NOTKNOWN) is determined, the Rules Element finds any
other hypotheses that are connected to it via context links and places them on the
agenda for later consideration. When these hypotheses come to the top of the agenda,
their values in turn will be sought by backward chaining.

Asymmetry
Context links are one-directional: that is, a link from hypothesis A to hypothesis B does
not also imply a link from B to A. For the connection to operate in both directions, two
separate context links must be explicitly defined.

Precedence
Hypotheses generated as a result of context links have lower precedence (and
consequently are placed lower on the agenda) than those generated either by
backward chaining or via semantic gates. When several hypotheses are placed on the
agenda via context links, their precedence is determined according to their respective
inference priorities.

Related Topics
Hypotheses Backward Chaining
Rules Forward Chaining
Boolean Constants Inference Priority Attribute
Inference Semantic Gates
Agenda
Language Reference 1 - 37

Chapter Application Development Features1
COS Function

Definition
The COS function is used in expressions to find the cosine of a floating point number.
The expression can appear on the left-hand side or right-hand side of rules and
methods.

Syntax
The function consists of the word COS followed by a single argument in parentheses:

COS(x)

Argument
The argument may be any expression yielding a numerical result. The expression may
include patterns or interpretations.

If the value of the argument expression is an integer, it will be converted to an
equivalent floating point value.

Result
The function returns a floating point result equal to the cosine of the argument. The
argument is assumed to be expressed in radians.

If the argument expression does not produce a numerical value, an error message is
posted and the function result is NOTKNOWN.

Examples
The following examplesiillustrate the results of the COS function:

COS(0.0) = 1.0
COS(3.14 / 3) = 0.5
COS(3.14 / 2) = 0.0
COS(3.14) = -1.0

Related Topics
Expressions SIN Function
Floating Point Constants TAN Function
Integer Constants ACOS Function
Patterns COSH Function
Interpretations
1 - 38 Language Reference

COSH Function
COSH Function

Definition
The COSH function is used in expressions to find the hyperbolic cosine of a floating
point number. The expression can appear on the left-hand side or right-hand side of
rules and methods.

Syntax
The function consists of the word COSH followed by a single argument in parentheses:

COSH(x)

Argument
The argument may be any expression yielding a numerical result. The expression may
include patterns or interpretations.

If the value of the argument expression is an integer, it will be converted to an
equivalent floating point value.

Result
The function returns a floating point result equal to the hyperbolic cosine of the
argument.

If the argument expression does not produce a numerical value, an error message is
posted and the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the COSH function:

COSH(0.0) = 1.0
COSH(0.5) = 1.12
COSH(-0.5) = 1.12
COSH(1.0) = 1.54
COSH(-1.0) = 1.54

Related Topics
Expressions Interpretations
Floating Point Constants SINH Function
Integer Constants TANH Function
Patterns COS Function
Language Reference 1 - 39

Chapter Application Development Features1
CreateObject Operator

Definition
The CreateObject operator is used in the conditions and actions of a rule or method
to create dynamic objects in the course of inference processing, or to link existing
objects to new including classes or parent objects.

The operator has an equivalent Rules Element application programming interface
routine (NXP_CreateObject) and Rules Element Execute Library routine
(CreateObjects).

Operands
The CreateObject operator takes one or two operands:
■ The first operand is the name of an object or class and is usually specified as an

interpretation of a slot.
■ The optional second operand is a list of one or more class or object names

separated by commas. Classes and objects may be mixed in the same list.

Either or both operands may include patterns or interpretations.

Effect
The object designated by the first operand is made an instance of each class and a
component (subobject) of each object named in the second operand. If no object exists
with the given name, a new one is created belonging to the given classes and parent
objects.

If the first operand is a class rather than an object, it is made a subclass of each class
named in the second operand.

If either operand includes a pattern, the operation applies separately to each object in
the corresponding list.

Dynamic objects can have either public or private slots as determined by the parent
object’s slot attribute.

Any unknown name occurring in either operand will be created implicitly at compile
time. Names enclosed within vertical bars (| . . . |) will automatically be created
as classes; otherwise, the application developer will be prompted to identify the name
as either a class or an object.

Dynamic objects and links created with the CreateObject operator can be deleted by
the DeleteObject operator in the course of evaluating a rule or method.
Additionally, dynamic objects and links exist only for the duration of the session in
which they are created, and are automatically destroyed by the Quit or Restart Session
commands.
1 - 40 Language Reference

CreateObject Operator
Examples
If whats_his_name is a string slot whose value is Rover then the action

CreateObject \whats_his_name\

creates a new object named Rover, belonging to no particular class or parent object.

If Dog is the name of a class and my_pets is an object, then

CreateObject Rover Dog,my_pets

makes the object Rover an instance of Dog and a component of my_pets.

CreateObject |Poodle| Dog

makes the class Poodle a subclass of Dog.

If whats_his_name is a string slot whose value is Rover then

CreateObject 'Good_Old_'\whats_his_name\ Dog

creates an object named Good_Old_Rover belonging to class Dog.

CreateObject< my_pets>| Animal|

makes every component of object my_pets an instance of a new class named Animal.

If my_family is an object,

CreateObject my_house< my_family>

links the existing object named my_house to every component of my_family.

CreateObject <my_pets> <Dog>

links every component of object my_pets to every instance of class Dog.

Related Topics
Objects Actions
Dynamic Objects Conditions
Classes Slots
Rules Patterns
Methods Interpretations
DeleteObject Operator
Language Reference 1 - 41

Chapter Application Development Features1
Data Types

Definition
Data types are the most basic units of information with which the Rules Element can
work. There are six such types:
■ Integer (32 bit whole numbers)
■ Float (64 bit floating point numerical values)
■ Boolean (logical values)
■ String (sequences of text characters)
■ Date (calendar dates and times of day)
■ Time (intervals of duration)

There is also a seventh type named Special, representing the union of the other six:
that is, a property of this type can take on values belonging to any of the other six
elementary types. The use of this type is limited to the special property Value, used
to carry the data value associated directly with an object itself. No other property can
ever be defined to be of type Special.

Special values
All properties of a newly created object are initialized to the special value UNKNOWN,
denoting a value that has not yet been determined. Another special value, NOTKNOWN,
denotes a value that is definitively stated to be unspecified as one of the givens of the
problem. An UNKNOWN value can be resolved to a specific data value as a result of
further inference or computation. A NOTKNOWN value can never be so resolved; its
indeterminacy is an intrinsic condition of the problem itself. Both UNKNOWN and
NOTKNOWN may be modified with the Assign operator.

Related Topics
Objects String Constants
Properties DATE Function
Integer Constants TIME Function
Floating Point Constants Value Property
Boolean Constants Assign Operator
1 - 42 Language Reference

Data Validation Attribute
Data Validation Attribute

Definition
Data Validation is used to predetermine an acceptable numeric range, list of strings, or
more complex constraint for a slot or property whose value is determined at runtime.

Syntax
Data validation has three attributes. You can specify all or none as required for an
individual slot. The attributes have the following syntax requirements:

Function You can specify a boolean expression to check the
validity of the value enteredffor the slot. The slot must
be referenced by SELF. Operators such as AND, OR, and
NOT can be used, as well as any standard functions such
as RANDOM. The functions DATE and TIME should be
used to specify data and time values.
Note: A compilation error will occur if you specify the
slot by name; SELF must be used when referencing the
slot displayed by the Meta-Slot editor.

Execute You can specify an external routine installed through
the Rules Element application programming interface
call NXP_SetHandler to specify more complex
constraints. The routine must return TRUE or FALSE.

Error Help You can customize the alert dialog help string. It can be
made dynamic by using the @V() and @SELF syntax. If
no help string is specified, the system displays a default
alert window with the options ABORT, ALLOW, and
RETRY.

Data validation expressions can include pattern matching in order to match values
against a list. Examples of such a validation function include:

SELF.VALUE = <Class>.prop

SELF.item = <items>.name

This example requires SELF.VALUE to match at least one of the objects in the class
specified with the property given. The SELF variable is useful when the data
validation attribute is inherited by the children of the object whose slot includes the
validation function. The system replaces the SELF variable with the name of the object
which inherits the validation function. The list generated by the existential or
universal pattern used in a validation function cannot be reduced by further patterns
since it is local to the data validation expression.

If you specify an external routine in the “Execute field,” the system will automatically
pass the slot name, the proposed value, and the result if any of the evaluation of the
“Function field” expression to the routine. In turn the routine will return its decision
to accept or reject the proposed value for the slot.
Language Reference 1 - 43

Chapter Application Development Features1
Private slots can be the subject of a data validation test, but cannot be used in the
validation of another slot. Public slots have no such restriction.

Creation
Data validation is specified via the Data Validation fields in the Meta-Slot editor
in the case of the individual slot. Data validation can also be specified via the Property
editor in the case of an individual property. Both editors provide the same attributes.

Default
By default data validation is disabled by a strategy at the global level. The strategy
must be enabled in order for the system to process data validation expressions defined
in the Meta-Slot or Property editors.

Strategy
You can enable or disable all data validation functions at two separate levels:

End User Validation When the value of the slot for which a data validation
function exists is solicited from the end user through a
question window.

Engine Validation When the value of the slot for which a data validation
function exists is provided during the inferencing
session by one of the assignment operators (Assign,
Execute, and Retrieve).

Both types of data validation are normally disabled by default, but can be modified if
necessary globally through the Strategy Monitor window (from the Expert menu) or
locally through the Strategy operator in a rule or method. Both provide the
following options:

OFF (default) No data validation checking of the values entered.
ON/ACCEPT Accept the value entered when the data validation

expression contains a slot not yet evaluated.
OFF/REJECT Reject the value entered when the data validation

expression contains a slot not yet evaluated.

Operation
Data validation is either enabled or disabled as determined by the strategy currently
in effect. If it is enabled and the system receives a value from the end user or
determines a value through an Order of Sources for example, the inference engine
processes the data validation attributes for the slot in question. If no data validation
expression has been defined for the slot, the system will first try to inherit the data
validation attributes of the slot’s parent class or object and then try the property of the
slot. Finally, if the system determines that an incorrect value has been supplied, an
alert dialog with the default help string appears:

New value <value> for slot <slot> doesn’t satisfy <test>.

You can customize the text of the alert dialog by using the @V() and @SELF syntax.
1 - 44 Language Reference

Data Validation Attribute
Inheritance
Inheritability of data validation attributes is controlled by the inference engine. The
search for inheritable data validation attributes occurs from the more specific to the
more general. If no data validation expression or execute routine has been defined for
the slot, the system will try to inherit the data validation attributes of the slot’s parent
class or object. If none is available at the parent level; it will check at the property level.

Examples
The following example illustrates the data validation function:

SELF.quantity*Department.factor ≤ Department.threshold

Related Topics
Meta-Slots Strategy operator
Properties DATE Function
Patterns TIME Function
Slots SELF
Language Reference 1 - 45

Chapter Application Development Features1
Date Formats

Definition
A date format specifies the representation of a date value in text form for input and
output purposes.

Syntax
This section defines the syntax of format elements for dates only. See the section titled
“Formats” for the syntax of formats in general.

The following special characters are meaningful in date formats:

Y,y Year field
M,m Month or minute field
D,d Day field
H,h Hour field
S,s Second field

Note: It is important to use spaces between the format characters. For
example, “dd mm yy” is a valid format, whereas, “ddmmyy” is
not.

The meaning and usage of these fields are discussed in the relevant sections below.
Only the first element in the format list is used for output; any further elements are
meaningful for input only.

Like all formats, those for dates may include strings of literal characters enclosed)in
double quotation marks (" . . . "), and may also include the wild-card character
(*). Format elements beginning with an exclamation point (!) are ignored in database
transactions; they are meaningful only for direct interaction with the user via the
screen and keyboard.

Year
A series of Ys or ys denotes a year field. Upper- and lowercase letters may be used
interchangeably; the distinction is irrelevant. The following forms are recognized:

Uppercase Y and lowercase y may be used interchangeably.

The abbreviated, two-digit form applies to twentieth-century years (1900–1999) only.
On input, only one or two digits are accepted and are considered to be prefixed
implicitly by 19: for example, the input value 84 is interpreted as the year 1984, and
4 as 1904. On output, twentieth-century years are automatically abbreviated to their

Format Example Meaning
yy 84 Abbreviated year (2 digits)
yyyy 1984 Full year (4 digits)
1 - 46 Language Reference

Date Formats
last two digits, but years in other centuries are represented in full: for example, 1990
is represented as 90, but 1492 as 1492. A year field of any length other than two
always denotes a full four-digit year number.

Month
A series of Ms or ms denotes a month field unless immediately preceded by an hour
field, in which case it is interpreted as a minute instead (see “Minute,” below). The
following forms are recognized:

Uppercase M and lowercase m may be used interchangeably in the last two cases. In the
last case, the month number is represented in the shortest form possible, one or two
digits depending on the month.

Day
A series of Ds or ds denotes a day field. The following forms are recognized:

The three- and four-letter forms represent the day of the week. These forms are invalid
for input; on output, the weekday for a given date is computed automatically and
formatted in the specified form.

The one- and two-letter forms represent the day of the month, and do not distinguish
between uppercase D and lowercase d. In the one-letter case, the day number is
represented in the shortest form possible, one or two digits as the case may be.

Format Example Meaning
MMMM JANUARY Full month name, all caps
Mmmm January Full month name, initial cap
mmmm january Full month name, all lowercase
MMM JAN Three-letter abbreviation, all caps
Mmm Jan Three-letter abbreviation, initial cap
mmm jan Three-letter abbreviation, all lowercase
mm 01 Two-digit month number
m 1 One- or two-digit month number

Format Example Meaning
DDDD MONDAY Full weekday name, all caps
Dddd Monday Full weekday name, initial cap
dddd monday Full weekday name, all lowercase
DDD MON Three-letter abbreviation, all caps
Ddd Mon Three-letter abbreviation, initial cap
ddd mon Three-letter abbreviation, all lowercase
dd 01 Two-digit day of month
d 1 One- or two-digit day of month
Language Reference 1 - 47

Chapter Application Development Features1
Hour
A series of Hs or hs denotes an hour field. The following forms are recognized:

The distinction between uppercase H and lowercase h is irrelevant. In the one-letter
case, the hour number is represented in the shortest form possible, one or two digits as
the case may be.

Minute
A series of Ms or ms, immediately preceded by an hour field, denotes a minute field. (If
not preceded by an hour field, it is interpreted as a month instead; see “Month,”
above.) The following forms are recognized:

The distinction between uppercase M and lowercase m is irrelevant. nn the one-letter
case, the minute number is represented in the shortest form oossible, one or two digits
as the case may be.

Second
A series of Ss or ss denotes a second field. The following forms are recognized:

The distinction between uppercase S and lowercase s is irrelevant. In the one-letter
case, the second number is represented in the shortest form possible, one or two digits
as the case may be.

Examples
The format

Dddd, Mmmm d, yyyy " at " hh:mm:ss;mm-dd-yy hh:mm:ss

will output dates in the form

Thursday, December 18, 1984 at 13:43:07

and will accept them as input in the form

12-18-84 13:43:07

The format

DDD D MMM YY;mm/dd/yy

Format Example Meaning
hh 01 Two-digit hour number
h 1 One- or two-digit hour number

Format Example Meaning
mm 01 Two-digit minute number
m 1 One- or two-digit minute number

Format Example Meaning
ss 01 Two-digit second number
s 1 One- or two-digit second number
1 - 48 Language Reference

Date Formats
will output dates in the form

THU 18 DEC 84

and will accept them as input in the form

12/18/84

Default
The default system format for dates is defined in the ckbres.format module in the
file nxrun.dat. The standard default format is

Mmm dd yyyy hh:mm:ss;mm dd yy hh:mm:ss;Mmm dd yyyy; mm dd yy

This format will output dates in the form

Dec 18 1984 13:43:07

and will accept them as input in any of the forms

Dec 18 1984 13:43:07
12 18 84 13:43:07
Dec 18 1984
12 18 84

Related Topics
Formats TIME Function
Format Attribute Time Formats
DATE Function
Language Reference 1 - 49

Chapter Application Development Features1
DATE Function

Definition
A date is a Rules Element data value representing a calendar date, optionally also
including a time of day. See also the TIME Function topic.

Syntax
A date constant can be specified in either of two formats, similar to those for times (see
the TIME Function topic):

DATE(year, month, day)

DATE(year, month, day, hour, minute, second)

The parameters year, month, day, hour, minute, and second are integer values falling
within the following ranges:

0 ≤ year ≤ 32767
1 ≤ month ≤ 12
1 ≤ day ≤ 31
1 ≤ hour ≤ 24
1 ≤ minute ≤ 60
1 ≤ second ≤ 60

For example,

DATE(1904,6,16)

denotes the date 16 June 1904, and

DATE(1981,6,8,21,8,46)

denotes 8 June 1981 at 9:08:46 p.m.

Expressions
Dates and times can be combined arithmetically in various ways. You can add or
subtract two time intervals to produce a third interval representing their sum or
difference, subtract two dates to find the interval between them, or add or subtract a
date and a time to produce another date. You can also multiply or divide a time by a
number (integer or floating point). In summary, here are the valid arithmetic
operations on dates and times:

time + time yields time
time - time yields time
date - date yields time
date + time yields date
date - time yields date
number * time yields time
time * number yields time
time / number yields time
1 - 50 Language Reference

DATE Function
Related Topics
TIME Function MONTH Function
Data Types DAY Function
Expressions WEEKDAY Function
Date Formats YEARDAY Function
YEAR Function NOW Function
Language Reference 1 - 51

Chapter Application Development Features1
DATE2FLOAT Function

Definition
The DATE2FLOAT function is used in expressions to convert a date to an equivalent
floating point value. The expression can appear on the left-hand side or right-hand
side of rules and methods.

Syntax
The function consists of the word DATE2FLOAT followed by a single argument in
parentheses:

DATE2FLOAT(d)

Argument
The argument may be any expression yielding a date result. The expression may
include patterns or interpretations.

Result
The function returns a floating point result representing the number of seconds from
midnight, 1 January 1970, to the given date d. If the date is earlier than 1970, the result
will be negative.

Examples
The following examples illustrate the results of the DATE2FLOAT function:

DATE2FLOAT(DATE(1981,6,8,21,8,46)) = 360882526.0
DATE2FLOAT(DATE(1904,6,16)) = -2068416000.0
DATE2FLOAT("16 June 1904") = NOTKNOWN

Related Topics
Expressions Interpretations
DATE Function FLOAT2DATE Function
TIME Function TIME2FLOAT Function
Patterns DATE2STR Function
1 - 52 Language Reference

DATE2STR Function
DATE2STR Function

Definition
The DATE2STR function is used in expressions to convert a date value to an equivalent
character string. The expression can appear on the left-hand side or right-hand side of
rules and methods.

Syntax
The function consists of the word DATE2STR followed by one or two arguments in
parentheses:

DATE2STR(d)
DATE2STR(d,f)

Argument
Each argument may be any expression yielding a result of the appropriate type:
■ The first argument (d) is the date to be converted.
■ The optional second argument (f) is a string specifying the format under which the

first argument is to be converted. See the Date Formats topic for the syntax and
meaning of this string.

The argument expressions may include patterns or interpretations.

Result
The function returns a string result representing the date value of argument d,
converted according to format f. If no format argument is given, the default system
format for dates (defined in the ckbres.format module in the file nxrun.dat) is
used.

Examples
The following examples illustrate the results of the DATE2STR function:

DATE2STR(DATE(1904,6,16)) = "Jun 16 1904 00:00:00"
DATE2STR(DATE(1904,6,16),"m/d/yy") = "6/16/04"
DATE2STR(DATE(1904,6,16),"Dddd, Mmmm dd, yyyy") =
 "Thursday, June 16, 1904"

Related Topics
Expressions Patterns
String Constants Interpretations
DATE Function DATE2FLOAT Function
TIME Function STR2DATE Function
Date Formats
Language Reference 1 - 53

Chapter Application Development Features1
DAY Function

Definition
The DAY function is used in expressions to extract the day field of a date or time. The
expression can appear on the left-hand side or right-hand side of rules and methods.

Syntax
The function consists of the word DAY followed by a single argument in parentheses:

DAY(d)

Argument
The argument may be any expression yielding a date or time result. The expression
may include patterns or interpretations.

Result
The function returns an integer result equal to the day field of the argument. For date
arguments, the result ranges from 1 to 31.

If the argument expression does not produce a date or time value, an error message is
posted and the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the DAY function:

DAY(DATE(1492,10,12)) = 12
DAY(DATE(1981,6,8,21,8,46)) = 8
DAY(TIME(8,4,23)) = 0
DAY(TIME(3,6,11,22,34,17)) = 11
DAY("October 12, 1492") = NOTKNOWN

Related Topics
Expressions HOUR Function
DATE Function MINUTE Function
TIME Function SECOND Function
Patterns WEEKDAY Function
Interpretations YEARDAY Function
YEAR Function NOW Function
MONTH Function
1 - 54 Language Reference

DeleteObject Operator
DeleteObject Operator

Definition
The DeleteObject operator is used in a condition or action of a rule or method to
remove instances from a class or components from a parent object.

Operands
The DeleteObject operator takes one or two operands:
■ The first operand is the name of an object or class.
■ The second operand is a list of one or more class or object names separated by

commas. Classes and objects may be mixed in the same list.

Either or both operands mayiinclude patterns or interpretations.

Effect
If there is one argument and the object is a dynamic object, then the object is deleted.
Otherwise, the link is destroyed between the object designated by the first operand and
each class or parent object named in the second operand. The object itself is not
destroyed, only the link between it and the designated classes or parents.

If the first operand is a class rather than an object, it is removed as a subclass of each
class named in the second operand.

If either operand includes a pattern, the operation applies separately to each object in
the corresponding list.

Any unknown name occurring in either operand will be created implicitly when the
rule is compiled. Names enclosed within vertical bars (| . . . |) will
automatically be created as classes; otherwise, the application developer will be
prompted to identify the name as either a class or an object.

Instance and component links destroyed with the DeleteObject operator are
eliminated only for the duration of the session in which they are deleted. If the
underlying object was created dynamically (with the CreateObject operator), it will
automatically be destroyed by the Quit or Restart Session commands; if it was created
explicitly (for example, via the Object editor), it will continue to exist and its original
instance and component relationships will be restored by those commands.

Examples
If Dog is the name of a class and Fido and my_pets are objects, then

DeleteObject Fido Dog,my_pets

removes Fido as an instance of Dog and as a component of my_pets.

If Poodle is a subclass of Dog,
Language Reference 1 - 55

Chapter Application Development Features1
DeleteObject Poodle Dog

eliminates the subclass relationship.

If whats_his_name is a string slot whose value is Rover, then

DeleteObject' Good_Old_'\whats_his_name\ Dog

removes the object named Good_Old_Rover from class Dog.

DeleteObject <my_pets> Animal

removes every component of my_pets from class Animal.

If my_family is an object,

DeleteObject my_house <my_family>

destroys the links between the object my_house and every component of my_family.

DeleteObject< my_pets> <Dog>

destroys all links between the components of object my_pets and the instances of class
Dog.

Related Topics
Objects Actions
Dynamic Objects Conditions
Classes Patterns
Rules Interpretations
Methods CreateObject Operator
1 - 56 Language Reference

Dynamic Data Exchange
Dynamic Data Exchange

This topic addresses DDE calls. The Rules Element is shown both as a client and as a
server for DDE conversations. It contains the following topics.

Introduction
Dynamic Data Exchange (DDE) is a Microsoft Windows communication protocol.
Using DDE, a Windows application (the client) starts up a second Windows
application (the server), passes data, uses the functions of the server, and calls for
results. An application can be engaged in several DDE “conversations” at the same
time, acting as the client in some and as the server in others.

DDE Conversations
The syntax of a DDE message is based on the following pattern:

Operation Topic Arguments

where:

Operation is either Request, Poke, or Execute.
Topic (of the conversation) depends on the application.
Example: it can be the name of a spreadsheet file if Excel is the server.
Arguments depends on the operation.

Rules Element-Based Application as a DDE Client
A Rules Element application is the client and initiates a DDE conversation with the
server application. The Rules Element kernel currently supports three DDE calls in the
Execute library: DDE_Poke, DDE_Request and DDE_Execute. The arguments to the
DDE_ execute call (@STRING and @ATOMID which are edited in the Execute Dialog)
depend on the type of the call and are documented below.

Note: to copy the names, you can use the central column “Select Execute” pop-up
menu in the Rule or Method editor of the Rules Element development environment.

Execute “DDE_Poke”
DDE_Poke copies a value from the Rules Element memory into the designed remote
reference of the server application. The Atoms argument contains the data to be
passed to the server. The String argument contains the names of the DDE Application,
the Topic, and the remote reference, separated by spaces. The data to be passed can
also be passed as a fourth argument in the string line.

Note: In the case of Excel, remote references should be indicated using
the format R1C1 rather than A1.
Language Reference 1 - 57

Chapter Application Development Features1
Execute “DDE_Request”
DDE_Request copies a value from a designed remote reference into a Rules Element
slot. The Atoms argument contains the slot where the value will be pasted. The String
argument follows the same syntax as DDE_Poke. The remote reference argument can
also be passed in the Atoms argument as the value of a second slot.

Execute “DDE_Execute”
DDE_Execute passes commands from a Rules Element application to the remote
application. The Atoms argument does not carry information. The String argument
contains the names of the DDE Application, the Topic, and the command string to be
execute by the server, separated by spaces. The syntax of the command string depends
on the server and is usually documented in the server manuals.

Rules Element-Based Application as a DDE server
When a Rules Element application is used as a server in a DDE conversation, the Rules
Element will respond to Execute, Poke and Request messages from other client
applications using the DDE protocol as published by Microsoft. The topic of the
conversation must be “DDE”. How to generate those DDE messages will be described
in your client application manuals. In the case of an Execute message, the Rules
Element will recognize the following commands (not case sensitive):

Command Action Syntax
===
EXE_clear Clear All KB EXE_clear()
EXE_load Load KB EXE_load(KBName)
EXE_restart Restart EXE_restart()
EXE_run Knowcess EXE_run()
EXE_suggest Suggest EXE_suggest (hypoName)
EXE_volunteer Volunteer EXE_volunteer (atomName, value)

When running the Rules Element as a DDE server, you might want to prevent the
Rules Element from coming in front of your client window and getting the Windows
input focus. This can be achieved by adding the following lines to the WIN.INI file in
your Windows root directory

[Smartelt]
banner=off

Note: DDE initialization messages should be sent to the application
called by the Rules Element. You might need to rename your
Rules Element-based application to Intelligent Rules Element, if
you want the client to start up the Rules Element-based
application.

Excel Examples
Excel™ is a popular spreadsheet application (similar to Lotus 1-2-3) from Microsoft.
Both the Rules Element applications and Excel support DDE. Two Excel examples,
DATA and WEATHER, are included with the development kit which use DDE
features. The examples are contained in the directory EXAMPLES\EXCEL
1 - 58 Language Reference

Dynamic Data Exchange
Excel version 5 Notes
Starting in Excel version 5, the REQUEST(B5, “advice.str”) macro cannot be used
to retrieve the string. Use instead DDESpy.exe to show that the value is correctly sent
to Excel.

Also, with Excel 5, in order to execute an Excel macro remotely from within the Rules
Element, you must name the macro in Excel using the option: Name Define from the
Insert menu of Excel.

Rules Element as an Excel DDE client
In the example called Data, the Rules Element plays the client role in a DDE
conversation. The Rules Element uses the functionality of Excel to place data in a cell,
get data from another cell after an Excel calculation is remotely performed, and finally
has Excel display a graph showing results of the previous operations.

To run the Data demonstration:
■ Start Excel, close Sheet 1, and open DATA.XLW.
■ Start the Rules Element, load DATA.TKB, and open the list of DATA.
■ Minimize the Program Manager and arrange the windows so they can all be seen

as on the next figure. Please note that the value in cell R3C3 is 1 and that the total
of column y is 5.

■ With the window focus on the Rules Element, do a Restart, Suggest, and Knowcess
to see the Rules Element put value 5 in cell R3C3, get the new total of 12 in the slot
total.num from cell R6C3, and display a graph with the updated value.

Note: It happens that a "DDE Execute failed" message appears and that the Excel icon
or title bar blinks after doing the execute. With the current version of Excel 4.0, we are
not getting an acknowledgment to the DDE Execute Operation from Excel, even
though the command is correctly executed.

The Rules Element commands used in this example are described as follows:

Execute (“DDE_Poke”) (@WAIT=TRUE;@ATOMID=content.num;@STRING=“Excel
DATA.XLS R3C3”;)

puts the string content.num (previously set to “8”) into the cell designated in the
STRING.

Execute (“DDE_Request”) (@WAIT=TRUE;@ATOMID=total.num;@STRING=”Excel
 DATA.XLS R6C3";)

asks Excel for the content on cell R6C3 and places it in the slot total.num.

Execute (“DDE_Execute”) (@WAIT=TRUE;@STRING=”Excel DATA.XLM
[RUN("R1C1")][BEEP()]”;)
Language Reference 1 - 59

Chapter Application Development Features1
tells Excel to run the macro contained in DATA.XLM.

Rules Element as an Excel DDE server
In the example called WEATHER, the Rules Element plays the server role in a DDE
conversation. Excel volunteers data in the Rules Element, runs the inference engine
(Knowcess), and writes the value of a Rules Element slot in a cell.
■ Start the Rules Element.
■ Start Excel, close Sheet 1, and open WEATHER.XLW. Then select cell B1 (or R1C2)

in WEATHER.XLM to run the macro (select the option Run from the Macro Menu).
■ The Excel sheet prompts you for several answers to questions. Successively

answer:
OK to the Run window,
Rainy or Sunny to the weather condition and RETURN,

As a result of the DDE conversation, the cell R10C2 now displays the appropriate
advice given by the Rules Element. You can see the data being displayed both in the
Rules Element and in Excel by arranging the windows such as in the next figure.
Check the option Display Formula of the Options menu in Excel on WEATHER.XLM
macro sheet to see some of the commands that activate the Rules Element functions.
Some of these commands are as follows:

=INITIATE(“Intelligent Rules Element”,”DDE”)

is the Excel macro to initiate a DDE conversation. Following DDE calls will refer to this
conversation by its cell address, which is B5 in this case. The program the Rules
Element needs to be already running. Note that the name is Intelligent Rules Element
so that if your runtime is Rules Element-based only you will not need to change the
Excel sheet.

= EXECUTE(B5, “EXE_clear()”)

passes the command EXE_clear to be executed by the Rules Element. Consequently,
the Rules Element will clear all databases that might be loaded at the time.

=REQUEST(B5,”advice.str”)

SMART ELEMENTS

File Edit App Expert Network Report Windows
1 - 60 Language Reference

Dynamic Data Exchange
 is a DDE Excel Macro to request data from the Rules Element advice.str slot.

=TERMINATE(B5)

ends the DDE conversation.

The following figure shows the Rules Element as a server with Excel.

SMART ELEMENTS
File Edit App Expert Network Report Windows
Language Reference 1 - 61

Chapter Application Development Features1
Dynamic Objects

Definition
A dynamic object is one that is created by a condition or action of a rule or method in the
course of inference processing, rather than explicitly by the application developer.

Creation
Dynamic objects are created by executing the CreateObject operator in a condition
or action of a rule or method. It also has an equivalent Rules Element application
programming interface routine (NXP_CreateObject) and Rules Element Execute
Library routine (CreateObjects).

The name of such an object need not be fixed in advance, but may be constructed
dynamically from the value of a slot, using an interpretation: for example, if
whats_his_name is a string slot whose value is Rover, then

CreateObject 'Good_Old_'\whats_his_name\ |Dog|

creates a dynamic object named Good_Old_Rover belonging to class Dog.

Dynamic objects can have either public or private slots as determined by the parent
object’s slot attribute.

Lifetime
Dynamic objects are temporary, existing only for the duration of the session in which
they are created.

Display
When displayed on the screen (for example, in the Object editor, Object Network, or
List of Objects), the name of a dynamic object is preceded by a plus sign in parentheses
to indicate its dynamic nature:

(+)Good_Old_Rover

Deletion
The DeleteObject operator deletes dynamic objects. They are automatically deleted
by the Quit or Restart Session command ending the session in which they are created.

Related Topics
Objects Actions
Classes Slots
Rules CreateObject Operator
Methods DeleteObject Operator
Conditions Interpretations
1 - 62 Language Reference

Execute Operator
Execute Operator

Definition
The Execute operator is used in rules and methods to invoke externally-written
procedures or routines from the Rules Element library. See Chapter Two, “Execute
Library Routines” for details about individual routines.

Operands
The Execute operator takes one or two operands:
■ The first operand is a string constant or an interpretation which evaluates to a

string constant (using the @V(object.prop) syntax) specifying the name of the
external procedure to be invoked.

■ The optional second operand consists of a series of execution parameters
controlling the invocation of the procedure.

Parameters
The second operand may include the following parameters:

@STRING A string constant to be passed to the external procedure
as an argument.

@ATOMID A list of objects, slots, or classes to be passed to the
external procedure as an argument.

@TYPE=EXE External procedure is an executable file.
@TYPE=FRM External procedure is a form.

See the Intelligent Rules Element API Reference for further details on the meaning and
use of these parameters. Note that a private slot passed in the argument @ATOMID is
ignored unless the Execute operator appears in a method specifically triggered for the
slot. See the description of Slots for more information about using private slots.

Execute Dialog
When entering an Execute condition or action in the Rule editor or Method editor,
clicking in the space for the second operand displays a special dialog box for specifying
Language Reference 1 - 63

Chapter Application Development Features1
the execution parameters interactively, rather than by explicitly typing in the
keywords listed above:

Effect
The external procedure named as the first operand is executed, using the argument
values specified by the second operand.

Unless the parameter @TYPE=EXE is specified, the external procedure must previously
have been installed as an execute handler via the Rules Element application
programming interface routine NXP_SetHandler (described in the Intelligent Rules
Element API Reference).

Result
When the Execute operator is used in a condition on the left-hand side of a rule, the
return code of the executed procedure is checked; if it indicates success, the operator’s
result is set to TRUE, otherwise to FALSE.

Forward Chaining
Actions and conditions in rules and methods involving the Execute operator can
forward-chain the new value of the slot to other rules in which the slot appears in a
condition (causing the hypotheses of those rules to be placed on the agenda for
consideration). In the case of the Execute operator, forward chaining is controlled by
the global inference strategy setting from the Strategy Monitor window (from the
Expert menu) and the local strategy which is always set to CURRENT.

Data that belongs to a private slot cannot trigger forward chaining since private slot
data cannot appear in the conditions or actions of rules. Only data that belongs to
public slots can trigger forward chaining.
1 - 64 Language Reference

Execute Operator
Examples
The following are examples of conditions or actions using the Execute operator:

Execute "flapdoodle"
Execute "flapdoodle"@ TYPE=EXE;@STRING="mumble";
Execute" @v(object.prop)"@ ATOMID=fee,|fie|,fo.fum;

Related Topics
Rules Properties
Methods Slots
Conditions String Constants
Actions Forward Chaining
Objects Inference Strategy
Classes Execute Routines

Also see the Intelligent Rules Element API Reference for more information on
user-defined external procedures.

Refer to Chapter Two, “Execute Library Routines” for the complete list of available
Rules Element routines.
Language Reference 1 - 65

Chapter Application Development Features1
Execute Routines

Definition
Rules Elementexecute routines are predefined external procedures for performing
common or useful tasks, supplied with the system for use with the Execute operator.

Routines
The Rules Element run-time library includes the following routines:

Frame Operations

SetValue GetRelatives
ResetFrame PropagateValue
CopyFrame CreateObjects

Multi-Value Operations

AtomNameValue TestMultiValue
SetMultiValue ComputeMultiValue
GetMultiValue LinkMultiValue

Sorting and Comparison

RankList PatternMatcher
GetListElem Unify
FindListElem

Session Control

ControlSession Message
Journal WriteTo

Utility Operations

AtomExist FileExist
Parse CreateReport

Each of these routines is fully described in its own section of this manual. Refer to
Chapter Two, “Execute Library Routines.”

Invocation
Execute routines are invoked by using the Execute operator in a condition or action
of a rule or method. The first operand to this operator is a string constant giving the
name of the desired library routine; the second operand is a string consisting of a series
of execution parameters to control the routine’s operation.

Parameters
Two standard execution parameters are used to specify the arguments of a library
routine:
■ The @STRING parameter passes a single string argument. If two or more such

arguments are needed, they can be combined to form a multi-value and passed as
a single argument; see the section “Multi-values” for more information.
1 - 66 Language Reference

Execute Routines
■ The @ATOMID parameter passes a list of objects, properties, or classes (typically
specified via a pattern) for the library routine to operate on.

The specific usage of these parameters varies from one library routine to another, and
is described in the section on each individual routine.

Note private slots must not be passed in the @ATOMID and @STRING parameter of
the Execute routines. See the description of Slots for more information about using
private slots.

Result
All execute routines return a result of TRUE if the call is successful, FALSE if an error
occurs.

Dynamic Values
Individual atoms (objects and object properties) can be evaluated dynamically within
the @STRING parameter by enclosing them within parentheses, preceded by the
characters @V (for “value”). The atom’s current value will then be substituted into the
@STRING parameter before execution.

For example, if Ducks.start contains the multi-value string Donald,Daisy and
Ducks.more contains Huey,Dewey, Louie, then a condition or action of the form

Execute "ComputeMultiValue" @ATOMID=Ducks.start;
STRING="@VALUE=
@V(Ducks.more),@UNION,
@RETURN=Ducks.all";

is equivalent to

Execute "ComputeMultiValue" @ATOMID=Ducks.start;
@STRING="@VALUE=Huey,
Dewey,Louie,@UNION,
@RETURN=Ducks.all";

and will set the value of Ducks.all to the string Donald,
Daisy,Huey,Dewey,Louie (the union of @Ducks.start and @Ducks.more).

Strategy Options
Many execute routines include an optional parameter named @STRAT as part of their
@STRING parameter. This parameter is used to control the volunteering strategy for
any value assignments made during the routine’s execution. It can be set to any of the
following options:

SET Store value immediately, but do not forward.
FWRD Queue value for later forwarding if global strategy

Forward Action-Effects is currently enabled.
SETFWRD Combines both SET and FWRD options.

If no explicit @STRAT parameter is specified, the SET option is assumed by default.
Language Reference 1 - 67

Chapter Application Development Features1
Error Handling
Certain global flags can be used to control the handling of errors and tracing
information by the built-in execute routines. All of these are boolean-valued objects
whose Value properties contain the relevant flags:

SYS_ALERTFLAG Report errors with alert handler
SYS_TRANSFLAG Report errors in transcript
SYS_TRACEFLAG Report trace messages in transcript
SYS_BEEPFLAG Beep on error
SYS_STOPFLAGS top session on error

These objects should be defined in a separate knowledge base so that they can be
loaded in any session.

Related Topics
Conditions Execute Operator
Actions Patterns
Rules Value Property
Methods Multi-Values
Slots Inference Strategy
String Constants

Also see Chapter Two, “Execute Library Routines” for a detailed description of the
routines.
1 - 68 Language Reference

EXP Function
EXP Function

Definition
The EXP function is used in expressions to find the natural (Napierian) exponential of
a floating point number. The expression can appear on the left-hand side or right-hand
side of rules and methods.

Syntax
The function consists of the word EXP followed by a single argument in parentheses:

EXP(x)

Argument
The argument may be any expression yielding a numerical result. The expression may
include patterns or interpretations.

If the value of the argument expression is an integer, it will be converted to an
equivalent floating point value.

Result

The function returns a floating point result equal to ex, the exponential of the argument
to the Napierian base e (= 2.71828).

If the argument expression does not produce a numerical value, an error message is
posted and the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the EXP function:

EXP(0.0) = 1.0
EXP(0.5) = 1.64 (= SQRT(2.71))
EXP(1.0) = 2.71
EXP(-1.0) = 0.36 (= 1 / 2.71)

Related Topics
Expressions Patterns
Floating Point Constants Interpretations
Integer Constants LN Function
Language Reference 1 - 69

Chapter Application Development Features1
Expressions

Definition
An expression represents a computation to be performed on one or more elementary
data values. Expressions can appear on the left-hand side or right-hand side of rules
and methods. The system uses the expression result to complete the condition or
action in which the expression appears.

Binary operators
Numerical (integer and floating point) values can be combined using the standard
arithmetic operators:

+ - * /

The result of integer division is truncated toward zero. For example:

 19 / 5 = 3
-19 / 5 = -3
 19 / -5 = -3
-19 / -5 = 3

The arithmetic operators can also be applied in certain limited ways to date and time
values; see the DATE Function and the TIME Function topics for details.

Boolean Operators
Numeric or string comparisons can be combined using the standard boolean operators
when the result of the expression is a boolean value.

AND OR NOT

For example, the following expression has two requirements:

(x<10) AND (x>0)

Type conversion
If both operands to a binary operator are of the same type (integer or floating point),
then the result is also of that type. If the operands are of different types, the integer
operand is converted to floating point and the operation produces a floating point
result. For example:

1 / 2 + 8 = 0 + 8 = 8
1 / 2 + 8.0 = 0 + 8.0 = 8.0
1.0 / 2 + 8 = 0.5 + 8 = 8.5
1 / 2.0 + 8 = 0.5 + 8 = 8.5

If an operand or function argument is not of the proper type or has the special value
NOTKNOWN (denoting a value definitively stated to be unspecified), then the result of
the expression is NOTKNOWN.
1 - 70 Language Reference

Expressions
Precedence
The multiplication and division operators (* and /) take precedence over addition and
subtraction (+ and -). Thus the expression

2 + 3 * 4

is evaluated as

2 + (3 * 4) = 14

rather than as

(2 + 3) * 4 = 20

Operators of the same precedence associate to the left: for example, the expression

3 * 7 / 9

is evaluated as

(3 * 7) / 9 = 21 / 9 = 2

rather than as

3 * (7 / 9) = 3 * 0 = 0

Functions
The following functions are built into the Rules Element and can be used freely in
expressions:

Mathematical

ABS ROUND COMPARE
SIGN CEIL MAX
FLOOR MOD MIN

SIN ASIN SINH
COS ACOS COSH
TAN ATAN TANH

SQRT EXP RAND
POW LN RANDOM
LOG RANDOMSEED RANDOMMAX

Statistical

SUM AVERAGE
PROD VAR
STDEV

Dates and Times

DATE TIME NOW
YEAR HOUR WEEKDAY
MONTH MINUTE YEARDAY
DAY SECOND

Strings and Lists

LENGTH STRFIND STRUPPER
STRLEN SUBSTRING STRLOWER
STRCAT CHARFIND

Conversion
Language Reference 1 - 71

Chapter Application Development Features1
STR2INT STR2DATE FLOAT2DATE
INT2STR DATE2STR DATE2FLOAT

STR2FLOAT STR2TIME FLOAT2TIME
FLOAT2STR TIME2STR TIME2FLOAT

STR2BOOL FLOAT2INT
BOOL2STR

Related Topics
Data Types TIME Function
DATE Function Boolean Expressions

Also see the sections on individual functions by name, as listed above.
1 - 72 Language Reference

FLOAT2DATE Function
FLOAT2DATE Function

Definition
The FLOAT2DATE function is used in expressions to convert a floating point to an
equivalent date value. The expression can appear on the left-hand side or right-hand
side of rules and methods.

Syntax
The function consists of the word FLOAT2DATE followed by a single argument in
parentheses:

FLOAT2DATE(x)

Argument
The argument may be any expression yielding a numerical result. The expression may
include patterns or interpretations.

If the value of the argument expression is an integer, it will be converted to an
equivalent floating point value.

Result
The function returns a date result equivalent to the specified number of seconds (x)
past midnight, 1 January 1970, rounded to the nearest second. If the argument value
is negative, the result will be a date earlier than 1970.

Examples
The following examples illustrate the results of the FLOAT2DATE function:

FLOAT2DATE(250000000) = DATE(1977,12,3,12,26,40)
FLOAT2DATE(-777777777.7) = DATE(1945,5,9,22,37,2)
FLOAT2DATE("1234567.89") = NOTKNOWN

Related Topics
Expressions Interpretations
DATE Function DATE2FLOAT Function
TIME Function FLOAT2TIME Function
Patterns
Language Reference 1 - 73

Chapter Application Development Features1
FLOAT2INT Function

Definition
The FLOAT2INT function is used in expressions to convert a floating point number to
an equivalent integer value. The expression can appear on the left-hand side or
right-hand side of rules and metoods.

Syntax
The functioncconsists of the word FLOAT2INT followed by a single argument in
parentheses:

FLOAT2INT(x)

Argument
The argument may be any expression yielding a numerical result. The expression may
include patterns or interpretations.

Result
The function returns an integer result which is equal to the integral portion of the
argument. Thus if the argument is positive, it returns the Floor of the argument (as
an integer), and if the argument is negative, it returns the Ceil of the argument (as an
integer).

Examples
The following examples illustrate the results of the FLOAT2INT function:

FLOAT2INT(3.0) = 3
FLOAT2INT(5.68) = 5
FLOAT2INT(-4.54) = -4

Related Topics
Expressions Interpretations
Patterns Floor Function
Ceil Function
1 - 74 Language Reference

FLOAT2STR Function
FLOAT2STR Function

Definition
The FLOAT2STR function is used in expressions to convert a floating point value to an
equivalent character string. The expression can appear on the left-hand side or
right-hand side of rules and methods.

Syntax
The function consists of the word FLOAT2STR followed by one or two arguments in
parentheses:

FLOAT2STR(x)
FLOAT2STR(x,f)

Argument
Each argument may be any expression yielding a result of the appropriate type:
■ The first argument (x) is the floating point number to be converted.
■ The optional second argument (f) is a string specifying the format under which the

first argument is to be converted. See “Floating Point Formats” for the syntax and
meaning of this string.

Argument x may also yield an integer value, which will first be converted to floating
point and then to a string. The argument expressions may include patterns or
interpretations.

Result
The function returns a string result representing the numeric value of argument x,
converted according to format f. If no format argument is given, the default system
format for floating point numbers (defined in the ckbres.format module in the file
nxrun.dat) is used.

Examples
The following examples illustrate the results of the FLOAT2STR function:

FLOAT2STR(98.6) = "98.6"
FLOAT2STR(-273) = "-273.0"
FLOAT2STR(1234.5,"k,u.0") = "1,234.5"
FLOAT2STR(0.9944,"%u.00\"%\"") = "99.44%"

Related Topics
Expressions Floating Point Formats
String Constants Patterns
Integer Constants Interpretations
Floating Point Constants STR2FLOAT Function
Language Reference 1 - 75

Chapter Application Development Features1
FLOAT2TIME Function

Definition
The FLOAT2TIME function is used in expressions to convert a floating point value to an
equivalent time. The expression can appear on the left-hand side or right-hand side of
rules and methods.

Syntax
The function consists of the word FLOAT2TIME followed by a single argument in
parentheses:

FLOAT2TIME(x)

Argument
The argument may be any expression yielding a numerical result. The expression may
include patterns or interpretations.

If the value of the argument expression is an integer, it will be converted to an
equivalent floating point value.

Result
The function returns a time result equivalent to the specified number of seconds (x),
rounded to the nearest second.

Examples
The following examples illustrate the results of the FLOAT2TIME function:

FLOAT2TIME(1234567.89) = TIME(0,0,14,6,56,7)
FLOAT2TIME(-1234567.89) = TIME(0,0,-14,-6,-56,-7)
FLOAT2TIME("1234567.89") = NOTKNOWN

Related Topics
Expressions Interpretations
DATE Function TIME2FLOAT Function
TIME Function FLOAT2DATE Function
Patterns
1 - 76 Language Reference

Floating Point Constants
Floating Point Constants

Definition
A floating point constant is a sequence of characters that stand directly for a floating
point (real number) value.

Syntax
A floating ooint constant consists of one or more decimal digits (0–9), including a
decimal point (.). It may optionally be preceded by a sign (+ or -) and/or followed by
a decimal exponent. It may not include embedded spaces or commas. The decimal
point is required in order to distinguish floating point from integer constants. The
exponent, if present, is introduced by the letter E or e and may have an optional sign
of its own, which is independent of the sign of the number itself.

The number after the letter E or e must be a constant (a slot is not allowed) and if used
within a complex arithmetic expression, parentheses should be used:

3.09E-3*POW(DensityConvrtr.DensityIn,2)

is ambiguous and should be written instead as:

(3.09E-3)*(POW(DensityConvrtr.DensityIn,2))

Examples
The following are valid floating point constants:

2.718281828 38.0
-273.18 38.
+98.6 0.38
6.02e23 .38

+125e3 -125E+3 125e-5 -125E-5
1.25e+5 -1.25E5 +1.25E-3 -1.25e-3
125000.0 -125000. .00125 -0.00125

The following are not:

Related Topics
Data Types Integer Constants
Floating Point Formats Expressions

xyz Not a number
38 Integer, not floating point
62.5% Contains an invalid character
$1.98 Contains an invalid character
125 000. Contains an embedded space
125,000. Contains an embedded comma
125e2.5 Exponent not an integer
Language Reference 1 - 77

Chapter Application Development Features1
Floating Point Formats

Definition
A floating point format specifies the representation of a floating point value in text
form for input and output purposes.

Syntax
This section defines the syntax of format elements for floating point properties only.
See the section titled “Formats” for the syntax of formats in general.

The following special characters are meaningful in floating point formats:

k Use next character as thousands separator
u Suppress leading zeros
0 Placeholder for required digits
d Placeholder for significant digits
% Convert to percentage

The integral part of the number is represented by a series of zeros (0) specifying the
minimum number of places preceding the decimal separator. The first nonzero
character following this series defines the character to be used for the decimal
separator itself, separating the integral and fractional parts. (This would normally be
a period (.) in American or English usage, a comma (,) in some other countries.) The
letter u in place of the zeros limits the integral part to the smallest number of digits
actually needed to represent the given numerical value.

Following the decimal separator, the fractional part of the number is represented by a
series of 0s followed by a series of ds, either or both of which may be empty. (Notice
that all 0s must precede all ds.) The 0s denote required digits that must always be
present; the ds denote optional additional digits to be included only if significant.

The letter k specifies that the next character following it is to be used as a thousands
separator, dividing the integral part of the number into groups of three digits. (This
would be a comma (,) in American or English usage, a period (.) or space in some
other countries.) If the k is omitted, the integral part will be set as a solid series of
digits, with no separators.

The percent sign (%) causes the number to be formatted in percentage form (for
example, 0.25 as 25%).

Like all formats, those for floating point may include strings of literal characters
enclosed in double quotation marks (" . . . "), and may also include the wild-card
character (*). Format elements beginning with an exclamation point (!) are ignored in
database transactions; they are meaningful only for direct interaction with the user via
the screen and keyboard.
1 - 78 Language Reference

Floating Point Formats
Input
Oniinput, each element in the format list is tried in order until one of them matches the
input text. If no match is found, theiinput is rejected and an error message is displayed
on the screen. The following conventions apply:
■ Odd-numbered elements in the format list (the first, third, and so on) produce a

positive result, even-numbered elements (the second, fourth, and so on) produce
a negative result.

■ Input values of any length are recognized; placeholders (0 and d) used in the
format to specify the number of digits before and after the decimal separator are
ignored.

■ The specified decimal separator is recognized as separating the integral and
fractional parts of the input value.

■ The thousands separator, if any, is optional on input.
■ Strings of literal characters enclosed in double quotation marks must match

exactly, except that no distinction is made between upper- and lowercase letters.
■ The wild-card character (*) matches any sequence of zero or more characters.
■ If the format includes a percent sign (%), the input supplied is interpreted as a

percentage and is divided by 100 to arrive at the actual data value. (For example,
an input value of 37.5 produces an actual data value of 0.375.)

Output
On output, only the first one or two elements in the format list are used:
■ The first format element is used for positive and zero values, the second for

negative values; any further elements in the list are ignored. If there is no second
element, the first is used for all output values.

■ A series of zeros (0) preceding the decimal separator in a format element specifies
the minimum number of digits representing the integral part of the number.
Numbers with integral parts shorter than this are padded with leading zeros;
longer numbers are represented in full, using more than the specified number of
digits.

■ If the letter u precedes the decimal separator instead of a series of zeros, the
integral part is represented in the minimum number of digits needed, with no
leading zeros.

■ A series of zeros (0) following the decimal separator in a format element specifies
the minimum number of digits representing the fractional part of the number.
Numbers with fractional parts shorter than this are padded with trailing zeros.
Decimal places represented in the format by the letter d are included in the output
only if they contain significant digits; trailing zeros in these positions are
suppressed.

■ If the fractional part exceeds the maximum length specified by the series of 0s and
ds, it is truncated (not rounded) to the indicated number of digits.

■ If a thousands separator is specified (introduced by the letter k), it is used to
Language Reference 1 - 79

Chapter Application Development Features1
separate groups of three digits in the integral part of the number. No separator is
used in the fractional part.

■ Strings of literal characters enclosed in double quotation marks are reproduced
exactly in the output.

■ If the format includes a percent sign (%), the data value is interpreted as a
percentage and is multiplied by 100 before being output. (For example, an actual
data value of 0.375 produces an output value of 37.5.)

■ The wild-card character (*) is ignored on output.

Default
The default system format for floating point is defined in the ckbres.format module
in the file nxrun.dat. TThe standard default format is

0.0d

denoting at least one digit before and after the decimal point and no thousands
separator.

Examples
The following examples illustrate the use of floating point formats:

Format: "$"k,0.00;"($"k,0.00")";u.d

Format: %00.00d"%";;u.d*

Value Output Comments
1234.5 $1,234.50 Positive uses first element
-1234.5 ($1,234.50) Negative uses second element
12.347 $12.34 Truncated, not rounded

Input Value Comments
$1,234.5 1234.5 Matches first element
$1234.5 1234.5 Thousands separator optional
($1234.5) -1234.5 Matches second element
1234.5 1234.5 Matches third element
-1234.5 -1234.5 Matches third element
1,234.5 NOTKNOWN No match: first element has a dollar

sign, third has no thousands separator
$ 1234.5 NOTKNOWN No match; space is significant

Value Output Comments
0.062 06.20% Converted to percentage
0.2533333 25.333% Third decimal place is significant
-1.23 -123.00% Exceeds integral length
1 - 80 Language Reference

Floating Point Formats
Related Topics
Formats Floating Point Constants
Format Attribute Integer Formats

Input Value Comments
6.20% 0.062 Matches first element
-123% -1.23 Matches first element
6.20 6.2 Matches third element; no percent-

age conversion
Language Reference 1 - 81

Chapter Application Development Features1
FLOOR Function

Definition
The FLOOR function is used in expressions to find the largest whole number less than a
given floating point number. The expression can appear on the left-hand side or
right-hand side of rules and methods.

Syntax
The function consists of the word FLOOR followed by a single argument in
parentheses:

FLOOR(x)

Argument
The argument may be any expression yielding a floating point result. The expression
may include patterns or interpretations.

Result
The function returns a floating point result equal to the largest whole number less than
the argument. Notice that although the result is always a whole number, it is of type
FLOAT rather than INTEGER. For negative arguments, the rounding is toward minus
infinity, rather than toward zero.

If the argument expression does not produce a numerical value, an error message is
posted and the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the FLOOR function:

FLOOR(3.1416) = 3.0
FLOOR(98.6) = 98.0
FLOOR(-273.18) = -274.0
FLOOR(-9.9) = -10.0

Related Topics
Expressions Patterns
Floating Point Constants Interpretations
Integer Constants CEIL Function
Round Function
1 - 82 Language Reference

Format Attribute
Format Attribute

Definition
The format attribute associated with a property of a class or object specifies the
representation of its value in text form for input and output purposes.

Syntax
The syntax for format attributes is described under “Formats” and in the sections on
individual format types (such as “Integer Formats”).

Creation
The format attribute for a specific property of an individual class or object (public or
private slot) is specified or edited by typing into the box labeled Format in the
Meta-Slot editor. When specified, such an attribute overrides the format (if any)
associated with the corresponding general, system-wide property that might have
been specified in the Property editor.

Inheritance
Format attributes cannot be inherited.

Related Topics
Objects Time Formats
Classes Integer Formats
Properties Floating Point Formats
Meta-Slots Boolean Formats
Slots String Formats
Formats Date Formats
Language Reference 1 - 83

Chapter Application Development Features1
Formats

Definition
A format specifies the representation of a data value in text form for input and output
purposes.

Creation
Formats can be specified either for a general, system-wide property or for a specific
property of a given class or object (public or private slot). They are specified or edited
by typing into the box labeled Format in the Property editor or the Meta-Slot editor,
respectively.

Precedence
Theaapplicable format for a given data item is determined according to the following
order of precedence:

1. The format attribute (if any) associated with the specific data item (slot)

2. The format (if any) associated with the corresponding general property

3. The default system format for this data type (defined in the ckbres.format
module in the file nxrun.dat).

Syntax
A format consists of one or more individual format elements separated by semicolons (;):

element_1; element_2; element_3; . . .

The syntax for individual elements depends on the specific data type with which they
are associated; see the sections on individual format types (such as “Integer Formats”)
for details.

All format elements may include strings of literal characters enclosed in double
quotation marks (" . . . "). Such quoted strings will be reproduced exactly on
output and must be matched exactly on input. The quotes may be omitted if the literal
characters do not form a meaningful combination within the format itself; this practice
is discouraged, however, since the syntax of meaningful format elements may be
subject to change in the future.

On input, an asterisk (*) in any format element acts as a “wild card” that will match
any sequence of zero or more input characters. On output, it is simply ignored.

Format elements beginning with an exclamation point (!) are ignored in database
transactions; they are meaningful only for direct interaction with the user via the
screen and keyboard.
1 - 84 Language Reference

Formats
Special forms
In addition to those for specific data types, format elements may be defined for the
special values UNKNOWN and NOTKNOWN. The syntax is as follows:

@U=format_string for UNKNOWN values
@N=format_string for NOTKNOWN values

For example, the format

@U="Who knows?";@N="¿Quién sabe?"

defines the strings Who knows? and ¿Quién sabe? to stand for UNKNOWN and
NOTKNOWN values, respectively. These strings will be used to represent the
corresponding values on output and will be recognized as denoting them on input.

To avoid disturbing the sequence of odd and even format elements (see “Input,”
below), such special UNKNOWN and NOTKNOWN format elements should always be
placed at the end of the format list.

Input
On input, each element in the format list is tried in order until one of them matches the
input text. If no match is found, the input is rejected and an error message is displayed
on the screen.

For some data types, the identity of the matching format element may affect the
resulting input value:
■ For numerical (integer and floating point) data, odd-numbered elements

(element_1, element_3, . . .) produce a positive result, even-numbered
elements (element_2, element_4, . . .) produce a negative result.

■ For boolean data, odd-numbered elements produce a TRUE result, even-numbered
elements produce a FALSE result.

■ For strings, dates, and times, the identity of the matching element does not affect
the resulting value.

No distinction is made between upper- and lowercase letters in the input text: for
example, the following are all considered identical:

february
February
FEBRUARY
fEbRuArY

If the user presses the space bar while entering input interactively from the keyboard,
the Rules Element will attempt to complete the text automatically if it can be
determined without ambiguity. For example, in entering the month field of a date, the
letters fe will be expanded automatically to February; the letters ju will bring up a
dialog window to choose between June and July.

Output
On output, only the first one or two elements in the format list are used:
Language Reference 1 - 85

Chapter Application Development Features1
■ For numerical (integer and floating point) data, elemenT_1 is used for oositive
and zero values, element_2 for negative. If element_2(is not present,
element_1 is used for all values.

■ For boolean data, element_1 is used for TRUE values, element_2 for FALSE.
■ or strings, dates, and times, element_1 is used for all values.

Any remaining elements in the format list are ignored.

Related Topics
Objects Integer Formats
Classes Floating Point Formats
Properties Boolean Formats
Meta-Slots String Formats
Slots Date Formats
Time Formats
1 - 86 Language Reference

Forward Chaining
Forward Chaining

Definition
Forward chaining is the process of propagating the values of public slots (objects and
their properties) to the rules that refer to them, generating new hypotheses to be placed
on the agenda for investigation. Methods are unable to be the target of forward
chaining, but they have the ability to place the hypotheses of relevant rules on the
agenda when public slots are involved. Private slots cannot initiate forward chaining
since their value is accessible only by a method specifically triggered for the slot and
will therefore not appear in any rule.

Invocation
Forward chaining is initiated explicitly by volunteering the value of a public slot via
any of the following commands:
■ The Volunteer command on the Expert menu.
■ The Suggest/Volunteer... command on the Expert menu.
■ The Volunteer... command on the windows pop-up menu.
■ The Volunteer command on the Rule Network, Object Network, or List of Data

pop-up menu.
■ The Volunteer/Modify command on the List of Objects or List of Classes

pop-up menu.

Each of these commands assigns new values to one or more slots, which can then
forward-chain to any rules whose conditions refer to these slots.

Depending on the strategy options in effect, forward chaining can also occur implicitly,
when values are assigned to hypotheses as a result of inference processing or to
variables by the actions of rules and methods. The list of forward chaining inferencing
processes includes:
■ Hypothesis Forward occurs after the evaluation of a subgoal hypothesis (one that is

tested in the condition of another hypothesis).
■ Forward Action-Effects occurs after a rule or method action is executed and the

result is shared with another rule condition.
■ Semantic Gates occurs after data in a rule condition is evaluated that makes the

condition of another rule TRUE upon propagation.

Operation
After assigning a new value to a public slot, the Rules Element searches for any existing
rules whose conditions refer to that slot. The hypotheses of these rules are then placed
on the agenda for consideration. When the Knowcess command is issued to begin
inference processing, the values of these hypotheses will be sought by backward
Language Reference 1 - 87

Chapter Application Development Features1
chaining. Notice that this can trigger the evaluation of all rules leading to the given
hypotheses, not only those that refer to the originally volunteered slot.

Data that belongs to a private slot cannot trigger forward chaining since private slot
data cannot appear in the conditions or actions of rules. Only data that belongs to
public slots can trigger forward chaining.

Strategy
Forward chaining during the course of inference processing is subject to the global and
local strategy options currently in effect. Options relevant to this process include the
following:
■ Forward confirmed hypotheses
■ Forward rejected hypotheses
■ Forward notknown hypotheses
■ Forward through gates (rules only)
■ Forward Action-Effects (rules and methods)

See the Inference Strategy topic for further details.

In addition to these global (system-wide) and local strategy options, forward chaining
may be further restricted for individual rules by the values of their inference priorities;
see the Inference Priority Attribute topic for more information.

Related Topics
Hypotheses Agenda
Rules Inference Strategy
Actions Inference Priority Attribute
Slots Assign Operator
Boolean Constants Execute Operator
Inference Retrieve Operator
1 - 88 Language Reference

HOUR Function
HOUR Function

Definition
The HOUR function is used in expressions to extract the hour field of a date or time. The
expression can appear on the left-hand side or right-hand side of rules and methods.

Syntax
The function consists of the word HOUR followed by a single argument in parentheses:

HOUR(d)

Argument
The argument may be any expression yielding a date or time result. The expression
may include patterns or interpretations.

Result
The function returns an integer result equal to the hour field of the argument. For date
arguments, the result ranges from 0 to 23.

If the argument expression does not produce a date or time value, an error message is
posted and the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the HOUR function:

HOUR(DATE(1492,10,12)) = 0
HOUR(DATE(1981,6,8,21,8,46)) = 21
HOUR(TIME(8,4,23)) = 8
HOUR(TIME(3,6,11,22,34,17)) = 22
HOUR("October 12, 1492") = NOTKNOWN

Related Topics
Expressions DAY Function
DATE Function MINUTE Function
TIME Function SECOND Function
Patterns WEEKDAY Function
Interpretations YEARDAY Function
YEAR Function NOW Function
MONTH Function
Language Reference 1 - 89

Chapter Application Development Features1
Hypotheses

Definition
A hypothesis is a slot with a boolean value, named on the right-hand side of a rule to
specify the inference to be drawn from the rule’s conditions.

Creation
New hypotheses may be created implicitly, by using a previously undefined name as
the hypothesis of a rule in the Rule editor. On creation, such hypotheses are initialized
to the special value UNKNOWN, meaning that their value is not yet determined; this
setting may be resolved to TRUE or FALSE as a result of later processing. An existing
boolean-valued object can also be made into a hypothesis by naming it as such in the
hypothesis box of a rule.

Deletion
Hypotheses exist as objects in the Rules Element and can therefore be removed with
the Delete command in the Object editor. Deleting a hypothesis also automatically
deletes all rules leading to it if deletion is confirmed in the “Dependencies Warning
Dialog Box.”

Access
The current value of a hypothesis is denoted simply by the name of the hypothesis
itself

hypo_name

(omitting the default Value property) or by an object or class name and a property
name separated by a period

object_name.prop_name
class_name.prop_name

(if it is a property of some other object or class).

The value of the hypothesis may be set interactively via the Object editor, but it is
normally computed by the Rules Element as a result of evaluating one or more rules.
This can take place either through backward chaining (when the hypothesis itself is
suggested as a goal to be inferred) or through forward chaining (when a data value in
one of the rule’s conditions is volunteered).

Related Topics
Objects Boolean Constants
Properties Backward Chaining
Rules Forward Chaining
Conditions Value Property
1 - 90 Language Reference

Identifiers
Identifiers

Definition
An identifier is a sequence of characters used as the name of a Rules Element atom, such
as a rule, method, object, class, or property.

Syntax
An identifier consists of one or more letters (A–Z, a–z), digits (0–9), and underscores
(_), beginning with a letter. It may be up to 255 characters; all characters are
significant. Corresponding uppercase and lowercase letters are considered identical.

The underscore is a meaningful character and not just a null separator, which must be
typed by the application developer during the editing session.

In some cases, the class name must be enclosed between vertical bars (| . . . |) to
distinguish it from an object name.

Certain words, notably the names of Rules Element types, operators, functions, and
special values, are reserved by the system and should not be used as ordinary
identifiers. See the Reserved Words topic for a complete list.

Examples
The following are valid identifiers:

width TOTAL
Finished Btfsplk
taxRate H2SO4
a_very_long_name_but_still_only_one_identifier

The following are not:

4to10 Doesn’t begin with a letter.
_width Doesn’t begin with a letter.
Finished? Contains an invalid character.
tax.rate Contains an invalid character.
tax rate More than one word.
Name Reserved Word.

The following are all considered the same identifier:

taxrate TAXRATE
taxRate tAxRaTe
TaxRate

The following are different identifiers:

taxrate tax_rate

Related Topics
Objects Properties Reserved Words
Classes Expressions
Language Reference 1 - 91

Chapter Application Development Features1
If Change Method

Definition
An If Change method is an optional method that can be attached to a public or private
slot (property associated with a class or object), defining the actions to be taken
whenever the slot’s value changes during the course of evaluating a rule or other
method.

Structure
The method consists of most importantly a sequential list of actions, similar to those on
the right-hand side of a rule. If desired, the If Change method can be structured exactly
like a rule including a list of conditions on the left-hand side and two separate
consequent lists of actions on the right-hand side. The conditions list is optional. Like
all methods, the If Change method has no hypothesis component.

Creation
The If Change system method is specified via the Method editor. Creation begins by
selecting the Method field and displaying the local popup menu for the edit line.
Choose the Select Method option to view the selection dialog. Select the option
*IfChange from the list (the asterisk in front of the name distinguishes it from
user-defined methods). Or you can also type the name “IfChange” (one word) in the
edit line for the Method field. The structure to which the method is attached is
specified in the Attach To field. The structure you specify can be a slot, a class, or an
object.

Invocation
In the case of public and private slots with an If Change method attached, the system
automatically triggers the method whenever the value of the slot is changed during the
inference process. A strategy option also permits slots that are reset to UNKNOWN to
trigger the method. The If Change method actions list is executed in sequential order
as soon as the value changes.

Optionally the method can be explicitly triggered by a SendMessage operator during
the course of evaluating a rule or other method. This allows the application developer
to trigger If Change actions instead of the inference engine. In the case of a class or
object with an If Change attached, the SendMessage operator must be used in order
to trigger the method, but it will no longer be dependent on the If Change strategy (and
will actually be treated as a user-defined method by the inference engine).

If no explicit If Change method is specified at the level of the slot, a substitute method
will be sought by downward inheritance from an including class, superclass, or parent
object as directed by the inheritance strategy currently in effect. See the “Inheritance”
section for details.
1 - 92 Language Reference

If Change Method
Operators
The following operators are valid in the conditions and actions of an If Change
method:

Assign Execute
SendMessage LoadKB
CreateObject UnloadKB
DeleteObject Strategy
Retrieve InhMethod
Write NoInherit
Reset Interrupt
Show

Inheritance
If Change methods can only be inherited downward (from a class to its instances or
subclasses, or from an object to its components), never upward. The search through
the parent tree hierarchy is directed by the global inheritance strategy and can be class
or object-first and depth or breadth-first. Any explicit If Change method defined at the
level of the slot overrides this inheritance behavior; to reincorporate inheritance as part
of such a method, include an explicit call to the InhMethod operator. To prevent the
method from being inherited, change the Public option to Private in the Method
editor.

When an inheritance conflict exists between two parent objects or classes at the same
level, the application developer can use the InhMethod operator to override the
default inheritance strategy by specifying the parent object to begin the search. When
the inheritance conflict occurs between two slots at the same level, the application
developer can set the inheritance priority of the slots to override the default inheritance
strategy. If neither approach is used, by default the system chooses the method
attached to the parent whose name appears first in alphabetic order. However, if the
order is important, it is recommended that you force the method evaluation rather than
rely on the default behavior.

Strategy
Automatic execution of If Change methods is normally enabled by default, but can be
modified if necessary by changing the global inference strategy:
■ Interactively through the Strategy Monitor window (from the Expert menu), by

turning off the If Change Actions option (OFF).
■ Dynamically during the course of inference processing itself, via the Strategy

operator in a condition or action of a rule or method, using the
@CACTIONSON=OFF setting.

■ In addition to ON and OFF, a third option ON/UNKNOWN allows the system to trigger
the If Change method not only when the value of the associated slot changes but
also when it is reset to UNKNOWN. Unless this option is selected, values set to
UNKNOWN will not trigger the If Change method.
Language Reference 1 - 93

Chapter Application Development Features1
Note: The SendMessage operator can be used to explicitly trigger an
If Change method. The method triggered by the SendMessage
operator is not affected by any of the strategy settings and will
actually be treated as a user-defined method by the inference
engine.

During the inferencing process the system first uses the Strategy operator setting to
determine the global strategy, however, it is possible to invoke the Strategy Monitor
window’s If Change setting from the Strategy operator. This option is provided by
the CURRENT setting in the Strategy operator argument dialog box.

Related Topics
Objects Inheritance
Classes Inheritance Strategy
Propertie Inference
Actions Inference Strategy
Rules Strategy Operator
Methods SendMessage Operator
Order of Sources Method InhMethod Operator
Slots

Also see the sections on individual operators by name, as listed above.
1 - 94 Language Reference

Inference
Inference

Definition
Inference is the process of reasoning by which the Rules Element determines the truth
or falsity of hypotheses.

Techniques
The Rules Element uses two main inference techniques:
■ Backward chaining begins with a hypothesis whose truth or falsity is to be

determined and works backward to all rules leading to that hypothesis.
■ Forward chaining begins with the value of a public slot and works forward to all

rules whose conditions refer to that slot.

Either technique may generate further hypotheses or data values, continuing the
inference process recursively to greater depths.

Invocation
Inference is initiated by suggesting one or more hypotheses to be investigated and/or
volunteering one or more public slot values to be propagated. (See the Backward
Chaining and Forward Chaining topics for more information.) These actions
determine the agenda that will direct the course of the inference process; the contents
of the agenda may be further modified dynamically in the course of processing. The
Start With... Knowledge Base command on the Expert menu begins the inference
process itself.

Private slots cannot initiate inferencing since their value is accessible only by a method
specifically triggered for the slot and will therefore not appear in any rule.

Strategy
Various aspects of the inference process can be controlled or modified according to the
global and local strategy options currently in effect; see the Inference Strategy topic for
details.

Related Topics
Hypotheses Slots
Rules Backward Chaining
Boolean Constants Forward Chaining
Object Agenda
Properties Inference Strategy
Language Reference 1 - 95

Chapter Application Development Features1
Inference Priority Attribute

Definition
An inference priority is a number that defines the priority and behavior of a hypothesis,
rule, or data item during inference processing.

Value
The value of the inference priority must be an integer in the range ±32000.

Default
If no inference priority is explicitly defined, its value is 1 by default.

Effects
Inference priorities control the sequence of inference processing in the following ways:
■ When two or more rules lead to the same suggested hypothesis, they are evaluated

in the order of their inference priorities.
■ For rules with equal inference priorities, the order of evaluation is determined by

the highest inference priority among the data items referred to in each rule’s
conditions.

■ Within a single rule, conditions are evaluated according to the highest inference
priority among each condition’s data items.

■ When the Rules Element focuses on a new hypothesis within a particular inference
agenda queue, it focuses on the hypothesis with the highest inference priority.

In each case, the order of evaluation is from highest inference priority to lowest.

Strategy Control
Certain specific ranges of inference priorities control the strategic behavior of a rule
during inference processing. The effects of these special inference priorities are similar
to disabling various strategy options (such as Forward Action-Effects or
Forward through gates), but only for a single rule, rather than globally for the
entire system. The following inference priorities apply to rules only; the negative
values have no effect on hypotheses and data:
■ -32000 to -20001: The rule is completely disabled and can never be reached during

inference processing, either through forward or backward chaining.
■ -20000 to -10001: The rule cannot be reached by any form of forward chaining,

whether from the hypothesis of another rule, an action of a rule or method, a
semantic gate, or a data value explicitly volunteered by the user. Such a rule can
be reached only through backward chaining, when its hypothesis is suggested
either explicitly (by the user) or implicitly (as a subgoal in the investigation of some
other hypothesis).
1 - 96 Language Reference

Inference Priority Attribute
■ -10000 to -5001: The rule cannot be reached by forward chaining through a
semantic gate.

■ -5000 to -1001: The rule cannot be reached by forward chaining from an action in
another rule or method.

■ -1000 to 32000: The rule’s inference behavior is unrestricted, subject only to the
global strategy options currently in effect.

Creation
A rule’s inference priority is specified via the Inference Priority Number box in
the Rule editor; that of a slot (data item or hypothesis) is set by the Inf Number box
in the Meta-Slot editor. The inference priority ranges described above are meaningful
only when assigned to a rule through the Rule editor. Negative values assigned in the
Meta-Slot editor have no effect on inferencing behavior resulting from the evaluation
of data or hypotheses. The Meta-Slot editor in this case is used primarily to control the
order of condition evaluation in a rule or the order of hypothesis evaluation.

Instead of a single fixed value, the inference priority can be calculated dynamically by
designating an inference slot in the box labeled Inf Priority Slot in the Rule
editor or Inf Slot in the Meta-Slot editor. If present, the value of the inference slot
overrides that of the explicit inference priority.

Related Topics
Rules Inference
Objects Backward Chaining
Properties Forward Chaining
Integer Constants Inference Strategy
Hypotheses Inference Slot Attribute
Conditions Semantic Gates
Actions Methods
Meta-Slots
Language Reference 1 - 97

Chapter Application Development Features1
Inference Slot Attribute

Definition
An inference slot is a public slot whose value determines the priority and behavior of a
hypothesis, rule, or data item during inference processing.

Value
The inference slot must be an integer public slot (a property of an object or class) with
a value in the range ±32000. The negative range of values are useful on rules and
otherwise have no effect on data or hypotheses. If it is the name of an object itself, its
value is taken from the special Value property associated with the object.

Default
If no inference slot is defined or the defined slot’s value is UNKNOWN or NOTKNOWN, the
data or rule’s explicit inference priority is used instead.

Operation
If an inference slot is specified, the value of the designated variable will be used in
place of the explicit inference priority in determining the rule’s or data item’s inference
priority and strategic behavior. This allows these attributes to be calculated
dynamically at run time, rather than fixed unalterably in advance. See the Inference
Priority Attribute topic for the specific meaning and effects of these numbers on rules.
If the inference slot is UNKNOWN, the Rules Element will not try to determine its value
(the Rules Element will use the inference priority or the default value).

Creation
The inference slot is specified via the box labeled Inf Priority Slot in the Rule
editor or Inf Slot in the Meta-Slot editor. The slot name specified must be a public
slot; a private slot cannot be used for this purpose.

Related Topics
Rules Inference
Objects Inference Priority Attribute
Propertie Inference Strategy
Slot Meta-Slots
Integer Constants Value Property
Floating Point Constants
1 - 98 Language Reference

Inference Strategy
Inference Strategy

Definition
Inference strategy controls the operation of the Rules Element’s inference processing
and the propagation of results from one inference rule to another.

Options
The following option selections are available for controlling the system’s inference
strategy. The keyword (preceded by an @ sign)ffollowing each strategy nameiis the
abbreviation recorded in the text knowledge base:
■ Forward confirmed hypotheses (@PWTRUE): Any hypothesis which is in

the context of a TRUE hypothesis will be put on the agenda for evaluation.
■ Forward rejected hypotheses (@PWFALSE): Any hypothesis which is in

the context of a FALSE hypothesis will be put on the agenda for evaluation.
■ Forward notknown hypotheses (@PWNOTKNOWN): Any hypothesis which is

in the context of a NOTKNOWN hypothesis will be put on the agenda for evaluation.
■ Rule Global: Forward action-effects (@PFACTIONS): Any public slots

whose values are changed by an Assign, Retrieve, or Execute operator involved in
conditions or Then actions of a rule will be propagated forward to all rules that
refer to them in their conditions. Note: The Assign operator never forwards
actions from a condition, and the Retrieve and Execute operators only forward
actions from a condition depending on the forwarding option selected. See each
operator topic for details.

■ Rule Else: Forward action-effects (@PFEACTIONS): Any public slots
whose values are changed by an Assign, Retrieve, or Execute operator involved in
the Else actions of a rule will be propagated forward to all rules that refer to them
in their conditions.

■ Method Global: Forward action-effects (@PFMACTIONS): Any public
slots whose values are changed by an Assign, Retrieve, or Execute operator
involved in conditions or Then actions of a method will be propagated forward to
all rules that refer to them in their conditions. Note: The Assign operator never
forwards actions from a condition, and the Retrieve and Execute operators only
forward actions from a condition depending on the forwarding option selected.
See each operator topic for details.

■ Method Else: Forward action-effects (@PFMEACTIONS): Any public
slots whose values are changed by an Assign, Retrieve, or Execute operator
involved in the Else actions of a method will be propagated forward to all rules
that refer to them in their conditions.

■ Forward through gates (@PTGATES): After evaluating a rule, the inference
process will propagate via semantic gates to any other rules with which it shares
Language Reference 1 - 99

Chapter Application Development Features1
one or more public slots. The shared data item must make the condition of the
target rule TRUE to be propagated.

■ Exhaustive evaluation (@EXHBWRD): All rules leading to a suggested
hypothesis will always be evaluated, even after the value of the hypothesis has
already been determined by a previous rule.

■ Enable order of sources (@SOURCESON): Order of Sources methods are
in effect and will be executed when appropriate. Actions in Order of Sources
methods may result in further inference processing depending on the current
Forward Action-Effects strategy.

■ Enable if change (@CACTIONSON): If Change methods are in effect and will
be executed when appropriate. Actions in If Change methods may result in further
inference processing depending on the current Forward Action-Effects strategy.

■ User validation (@VALIDUSER): Enable validation of input solicited from
the user before input is accepted for inferencing.

■ Engine validation (@VALIDENGINE): Enable validation of input given by
the system before input is accepted for inferencing (for example, from an Assign,
Execute, or Retrieve).

Default
All inference strategy options listed above are normally enabled by default. The
default settings can be modified interactively through the Strategy Monitor window
(from the Expert menu) or during the course of evaluating a rule or method through
the Strategy operator. See Global Control and Local Control below for details.

Global Control
The inference strategies listed above can be individually controlled through the
Strategy Monitor window (from the Expert menu). The window has a list of
checkboxes and menu buttons which determine whether a strategy is enabled or
disabled. Clicking the mouse in any of the checkboxes toggles the corresponding
strategy setting on or off. The darkened checkboxes show which inference options are
currently enabled; unselected checkboxes are disabled. In the case of menu button
controls, other options in addition to enabled and disabled are available from a menu
that you display by clicking on the button. The currently displayed setting can be
changed by selecting a new option from the list. During inferencing the settings may
be changed interactively and placed into effect immediately.

Local Control
The system’s inference strategy can be controlled locally during the course of inference
processing via the Strategy operator in a condition or action of a rule or method. The
Strategy operator selections override their corresponding global inference strategy,
although the operator can default to the global strategy. The Strategy operator uses
an arguments dialog box to control the inference strategies listed above with the
following options:
1 - 100 Language Reference

Inference Strategy
ON Enables the strategy until the next local strategy
changes the setting.

OFF Disables the strategy until the next local strategy
changes the setting.

CURRENT Invokes the corresponding Strategy Monitor window
setting (from the Expert menu) until the next local
strategy changes the setting.

GLOBAL This option is used to synchronize control of the
individual Forward Action Effects strategies
(@PFEACTIONS, @PFMACTIONS, and @PFMEACTIONS).
with the setting of “Rule Global Forward
Action-Effects” (@PFACTIONS) that appears in the
Strategy Monitor window. For instance, you can
selectively enable or disable Else actions from a rule, or
you can select the GLOBAL option so the strategy
behaves exactly as the rule Then actions setting.

In addition to the local strategy options described here, the strategic behavior of
individual rules and hypotheses can be controlled by using certain special values for
their inference priorities: see the Inference Priority Attribute topic for details.

Related Topics
Hypotheses Semantic Gates
Rules Methods
Strategy Order of Sources Method
Inferenc If Change Method
Backward Chaining Inference Priority
Forward Chaining Strategy Operator
Language Reference 1 - 101

Chapter Application Development Features1
Inheritability Strategy

Definition
Inheritability strategy controls the inheritance of properties and their values from one
object or class to another.

Variations
The following forms of inheritance can be controlled:
■ Inheritance of property definitions between a class and its subclasses or instances.
■ Inheritance of property definitions between an object and its components

(subobjects).
■ Inheritance of property values.

In each of these cases independently, inheritance may be permitted or forbidden in any
direction or combination of directions:
■ Downward (from class to subclass, class to instance, or parent object to

component).
■ Upward (from subclass to class, instance to class, or component to parent object).
■ Both downward and upward.
■ Neither downward nor upward.
■ Private and public slots observe the same inheritability strategies. The private slot

attribute controls the accessibility of the slot value and has nothing to do with
inheritability.

Default
The system’s default inheritability strategy permits downward inheritance only, and
only in the first and third cases listed above (property definitions from class to
subclasses or instances, property values). Upward inheritance and inheritance
between objects are disabled.

The default settings can be modified interactively through the Strategy Monitor
window, during the course of evaluating a rule or method through the Strategy
operator, or at the level of the individual slot. See Global Control and Local Control
below for details.

Global Control
The global inheritability strategy in effect for the entire system can be set either with
the Strategy Monitor window (from the Expert menu) or through the Strategy
operator in a rule or method, using the options @INHCLASSDOWN, @INHCLASSUP,
@INHOBJDOWN, @INHOBJUP, @INHVALDOWN, and @INHVALUP. In the Strategy
1 - 102 Language Reference

Inheritability Strategy
Monitor window (from the Expert menu) the inheritability strategy is controlled by a
diagram of the following form:

Clicking the mouse in any of the various arrows toggles the inheritability setting for
the corresponding form of inheritance. Highlighted arrows show which inheritability
options are currently enabled; those shown in the figure are for the standard default
settings.

Local Control
The global inheritability strategy can be overridden in the case of individual slots
through the Meta-Slot editor. In the Meta-Slot editor the inheritability strategy of the
slot is controlled by a diagram of the following form:

In this case there are only two sets of arrows, controlling the inheritability of the slot
itself and of its value, respectively. Clicking inside Default button sets the local
inheritability strategy equal to the corresponding global strategy currently in effect.

The box labeled Init Value in the Meta-Slot editor lets you predetermine the value
of the slot and specify whether or not it will be inheritable (Public) or not inheritable
(Private). If an initial value is defined for the slot, it overrides the inheritability
strategy currently in effect.
Language Reference 1 - 103

Chapter Application Development Features1
Related Topics
Objects Meta-Slots
Classes Inheritance
Properties Inheritance Strategy
Rules Strategy
Methods Strategy Operator
Slots InhMethod Operator
Init Value Attribute
1 - 104 Language Reference

Inheritance
Inheritance

Definition
Inheritance is a process by which characteristics of an object or class are propagated
automatically to other, related objects or classes.

Variations
The following kinds of characteristics can be inherited:
■ Property definitions
■ Property values
■ Slot accessible by rules (public slot) or method only (private slot)
■ Data validation expression meta-slot or property attribute
■ Prompt line meta-slot attribute
■ Order of Sources and If Change methods
■ Other user-defined methods.

Any of these characteristics can be inherited in the following ways:
■ Between a class and its subclasses
■ Between a class and its instances
■ Between an object and its components (subobjects).

Direction
Inheritance can proceed in either of two directions (except methods and meta-slots):
■ Downward (from class to subclass, class to instance, or parent object to component)
■ Upward (from subclass to class, instance to class, or component to parent object)

Inheritance normally proceeds in the downward direction; upward inheritance is less
common, but can be useful in some situations. Methods and meta-slot attributes can
only be inherited downward, never upward.

Control
Inheritance takes place under the control of the global strategy settings currently in
effect; see the sections “Inheritance Strategy” and “Inheritability Strategy” for details.
The effects of these global settings are further modified by the local attributes
(inheritance priority, inheritance slot, inheritance and inheritability attributes)
associated with individual slots.

Additionally, specific inheritance behavior for individual slots can be defined via the
following operators available through methods (the first two are valid only in Order of
Sources methods):

InhValueUp
InhValueDown
Language Reference 1 - 105

Chapter Application Development Features1
InhMethod
NoInherit

The meta-slot attributes, Data Validation and Prompt Line, are not under the control
of the user; they are always inheritable in the downward direction. All other meta-slot
attributes cannot be inherited including Format, Priorities, Question Window, and
Why.

Related Topics
Objects Inheritance Priority Attribute
Classes Inheritance Slot Attribute
Properties Inheritance Strategy
Meta-Slot Inheritability Strategy
Methods InhValueDown Operator
Order of Sources Method InhValueUp Operator
If Change Method InhMethod Operator
Strategy NoInherit Operator
1 - 106 Language Reference

Inheritance Priority Attribute
Inheritance Priority Attribute

Definition
An inheritance priority is a number that defines the inheritance priority of a slot.

Value
The value of the inheritance priority must be an integer in the range ±32000.

Default
If no inheritance priority is explicitly defined, its value is 1 by default.

Operation
In seeking an inherited value for a given slot, the Rules Element will give precedence
to the candidate with the highest inheritance priority, subject to its global and local
inheritability attributes. This principle applies at each ply of the search tree, under
both depth-first and breadth-first inheritance strategies. The inheritance priority can
therefore be used to resolve inheritance conflicts when a value is sought from multiple
slots. Conflicts between methods attached to slots can also be resolved this way.
(Note: Conflicts between methods attached to classes, objects, or properties must be
resolved through the InhMethod operator.)

Creation
The inheritance priority is specified via the Inh Number box in the Meta-Slot editor.
Instead of a single fixed value, the inheritance priority can be calculated dynamically
by designating an inheritance slot in the box labeled Inh Slot. If present, the value
of the inheritance slot overrides that of the explicit inheritance priority.

Related Topics
Objects Inheritance
Classes Inheritance Slot Attribute
Properties Inheritance Strategy
Integer Constants Inheritability Strategy
Meta-Slots Methods
Language Reference 1 - 107

Chapter Application Development Features1
Inheritance Slot Attribute

Definition
An inheritance slot is a public slot whose value determines the inheritance priority of a
slot.

Value
The inheritance slot must be an integer public slot (a property associated with an object
or class) with a value in the range ±32000. If it is the name of an object itself, its value
is taken from the special Value property associated with the object.

Default
If no inheritance slot is defined, the system will use the explicit inheritance priority of
the slot whose value is being sought. See the Inheritance Priority Attribute topic for
details.

Operation
If an inheritance slot is specified, the value of the designated variable will be used in
place of the explicit inheritance priority in determining the priority with which the
slot’s value can be inherited by other objects or classes. This allows the inheritance
priority to be calculated dynamically at run time, rather than fixed unalterably in
advance. If the inheritance slot is UNKNOWN, the Rules Element will not try to
determine its value (the Rules Element will use the inheritance priority or the default
value).

In seeking an inherited value for a given slot, the Rules Element will give precedence
to the candidate with the highest inheritance priority, subject to its local inheritability
attributes and the global inheritability strategy currently in effect. This principle
applies at each ply of the search tree, under both depth-first and breadth-first
inheritance strategies. The inheritance slot can therefore be used to resolve inheritance
conflicts when a value is sought from multiple slots. Conflicts between methods
attached to slots can also be resolved this way. (Note: Conflicts between methods
attached to classes, objects, or properties must be resolved through the InhMethod
operator.)

Creation
The inheritance slot is specified by typing the name of the slot into the Inh Slot box
in the Meta-Slot editor. The slot name specified must be a public slot; a private slot
cannot be used for this purpose.
1 - 108 Language Reference

Inheritance Slot Attribute
Related Topics
Objects Floating Point Constants
Classes Inheritance
Properties Inheritance Strategy
Slots Inheritability Strategy
Meta-Slots Inheritance Priority Attribute
Integer Constants Value Property
Language Reference 1 - 109

Chapter Application Development Features1
Inheritance Strategy

Definition
Inheritance strategy controls the order in which a slot value or method is inherited from
its including classes and parent objects. If the same property can be inherited from
more than one source, the strategy determines which source will actually be used.

Variations
The search for an inherited value of a given property can be conducted in either of two
ways:
■ Class-first, examining the classes to which the object belongs before the parent

objects of which it is a component.
■ Object-first, examining parent objects before classes.

In either case, the search can proceed in either of two orders:
■ Breadth-first, examining all of the object’s immediate classes or parent objects

before any of their own more remote ancestors.
■ Depth-first, examining each complete chain of superclasses or superobjects to its

full depth before moving on to the next.

In both breadth-first and depth-first search, the order in which classes or objects are
examined at each ply of the search tree is determined by their individual inheritance
priorities or inheritance slots. In addition, the search may be constrained by the global
inheritability settings in effect or by the local inheritability attributes of a given slot.

Private and public slots observe the same inheritance strategies. The private slot
attribute controls the accessibility of the slot value and has nothing to do with
inheritance.

Default
The system’s default inheritance strategy is class-first and breadth-first. The default
settings can be modified interactively through the Strategy Monitor window (from the
Expert menu), during the course of evaluating a rule or method through the Strategy
operator, or at the level of the individual slot. In both the global Strategy Monitor
1 - 110 Language Reference

Inheritance Strategy

 window and the Meta-Slot editor, the inheritance strategy is controlled by the
following radio buttons:

Global Control
The global inheritance strategy in effect for the entire system can be set either with the
Strategy Monitor window (from the Expert menu) or via the Strategy operator in a
rule or method, using the options @INHBREADTH and @INHPARENT. Clicking on the
class-first or the object-first checkbox sets the inheritance strategy as follows, where the
diagram on the left represents breadth-first and the diagram on the right represents
depth-first:

Breath-First Depth-First

Local Control
The global inheritance strategy can be overridden in the case of individual slots
through the Meta-Slot editor.

5

6

7

8
4

2
obj

3

1

2

3

6

7
5

1
obj

8

4

Language Reference 1 - 111

Chapter Application Development Features1
Related Topics
Objects Strategy
Classes Inheritability Strategy
Properties Inheritance
Rules Inheritance Priority Attribute
Methods Inheritance Slot Attribute
Slot Strategy Operator
Meta-Slots
1 - 112 Language Reference

InhMethod Operator
InhMethod Operator

Definition
The InhMethod operator is used in the conditions or actions of methods to specify
downward inheritance of the corresponding method from an including class,
superclass, or parent object. Method inheritability allows an entire class of objects to
share a single method, which is defined once for the class and automatically inherited
by all instances.

Operand
The InhMethod operator takes one operand, which can be either the special reserved
word DEFAULT or an explicitly named parent object from which to inherit the
corresponding method.

InhMethod DEFAULT
InhMethod ParentObjectName

The operand can be an interpretation of the type \slot_name\ that resolves to the
desired slot ParentObjectName.

Effect
Execution of the method in which the InhMethod operator appears is suspended and
an inherited method of the same name is executed. The method to be executed is
sought by downward inheritance only (from class to instance, class to subclass, or
parent object to component), subject to the global and local inheritance and
inheritability strategies currently in effect. Methods can never be inherited upward.
Once the inherited method finishes executing, the execution of the original, calling
method resumes.

This operator also allows the developer to resolve inheritance conflicts by explicitly
naming a parent object in the InhMethod operand. If no method can be triggered
from the named parent object, the search for a corresponding method begins on the
branch to which the object belongs. When the operand is DEFAULT and no parent
object is explicitly named, inheritance conflicts are resolved based on the alphabetic
order of the parent object names or inheritance priorities in the case of slots. However,
if the order is important, it is recommended that you specify the method evaluation,
rather than rely on the default behavior.

Result
When the InhMethod operator is used in a condition on the left-hand side of a
method, the result produced by the operator is TRUE if the method is inherited, FALSE
if a corresponding method does not exist or the parent object named through the
operand has been deleted during the course of the session.
Language Reference 1 - 113

Chapter Application Development Features1
Example
Let’s assume the following actions appear in a method attached to a subclass
Triangles that belongs to a class Figures. The method is defined as a public one
(inheritance enabled) and has the name Init:

InhMethod Figures
Assign SELF.width SELF.height

The first action in this method demonstrates the use of the InhMethod operator to
force the evaluation of another method of the same name before assigning the values.
Let’s assume it triggers inheritance from the class Figures of a public method (also
named Init) with the following actions list:

Assign SELF.originx SELF.originx
Assign SELF.originy SELF.originy

Because the action in the first method triggers the method of the same name at the class
level (Figures), the subclass Triangles inherits the new method down from its
parent class before completing its own method actions list. In this case, the class
Figures and the subclass Triangles share the same list of properties: originx,
originy, width, and height and the definition of the method Init at the parent
class avoids duplication of the initialization actions for its subclasses (or objects) whose
properties it shares.

Related Topics
Objects If Change Method
Classes Inheritance
Conditions Inheritance Strategy
Actions Inheritability Strategy
Methods Inheritance
Order of Sources Method Inheritance Slot Attribute
1 - 114 Language Reference

InhValueDown Operator
InhValueDown Operator

Definition
The InhValueDown operator is used in the right-hand side actions of an Order of
Sources method to specify downward inheritance of a public or private slot’s value
from that of a parent class or object.

Operand
The InhValueDown operator is valid only in the THEN actions list on the right-hand
side of an Order of Sources. The InhValueDown operator takes one operand, which
must be the special reserved word DEFAULT.

Effect
The value of the slot to which this Order of Sources method belongs is sought by
downward inheritance (from class to instance, class to subclass, or parent object to
component), subject to the global and local inheritance and inheritability strategies
currently in effect.

Private and public slots both may obtain a value by downward inheritance. The
private slot attribute controls the accessibility of the slot value and has nothing to do
with inheritance.

Example
The following is the only valid form for an action using the InhValueDown operator:

InhValueDown DEFAULT

Related Topics
Objects Inheritance
Classes Inheritance Strategy
Properties Inheritability Strategy
Slots Inheritance Priority Attribute
Actio Inheritance Slot Attribute
Methods InhValueUp Operator
Order of Sources Method
Language Reference 1 - 115

Chapter Application Development Features1
InhValueUp Operator

Definition
The InhValueUp operator is used in the right-hand side actions of an Order of Sources
method to specify upward inheritance of a public or private slot’s value from that of
an instance, subclass, or component (subobject).

Operand
The InhValueUp operator is valid only in the THEN actions list on the right-hand side
of an Order of Sources. The InhValueUp operator takes one operand, which must be
the special reserved word DEFAULT.

Effect
The value of the slot to which this Order of Sources method belongs is sought by
upward inheritance (from instance to class, subclass to class, or component to parent
object), subject to the global and local inheritance and inheritability strategies currently
in effect.

Private and public slots both may obtain a value by upward inheritance. The private
slot attribute controls the accessibility of the slot value and has nothing to do with
inheritance.

Example
The following is the only valid form for an action using the InhValueUp operator:

InhValueUp DEFAULT

Related Topics
Object Inheritance
Classes Inheritance Strategy
Properties Inheritability Strategy
Slots Inheritance Priority Attribute
Actions Inheritance Slot Attribute
Methods InhValueDown Operator
Order of Sources Method
1 - 116 Language Reference

Init Value Attribute
Init Value Attribute

Definition
An Init Value Attribute can be used to declare an initialization value for individual
public and private slots.

Effect
A slot that has an initial value declared will automatically be initialized to that value
either when the knowledge base file containing the initial value declaration is loaded
or when the state of the system is reinitialized with the Restart Session command. If
the inheritability strategy of the initialized slot permits, the system automatically
propagates the value to the children slotsaaccording to the inheritability strategy
defined for the initialized slot. Whether the slot is public or private has no effect on
slot value initialization.

Notice the difference between an initial value and the assignment made through the
RunTimeValue operator. The initial value specifies a value to be set and propagated
at system initialization time; RunTimeValue specifies a default value to be set
dynamically during inference processing when processed in the Order of Sources
method. Also, no If Change method is triggered when a slot’s value is determined by
an initial value, whereas RunTimeValue will trigger the corresponding If Change
method.

Creation
The initial value is specified or edited by typing into the box labeled Init Value
Public or Init Value Private in the Meta-Slot editor. The supplied value can be
a string, integer, or boolean value (including the keyword NOTKNOWN). String values
must appear between double quotes (“a_string”).

If you want to specify an initial value for a slot that is different from its parent’s initial
value declaration, you can modify the meta-slot attribute local to the slot. Initial values
that are declared locally override any potentially inheritable initial value declarations.

Inheritance
The value of the slot can be made uninheritable by typing the value into the Private
box, otherwise type the value in the Public box. The inheritability of a slot’s initial
value when declared overrides either local or global inheritability strategies currently
in effect. An initial value declared locally also overrides any potentially inheritable
initial value declarations.
Language Reference 1 - 117

Chapter Application Development Features1
Related Topics
Boolean Value Methods
Objects Order of Sources Method
Properties RunTimeValue Operator
Slots Inheritability Strategy
Data Types Meta-Slots
1 - 118 Language Reference

INT2STR Function
INT2STR Function

Definition
The INT2STR function is used in expressions to convert an integer value to an
equivalent character string. The expression can appear on the left-hand side or
right-hand side of rules and methods.

Syntax
The function consists of the word INT2STR followed by one or two arguments in
parentheses:

INT2STR(n)
INT2STR(n,f)

Argument
Each argument may be any expression yielding a result of the appropriate type:
■ The first argument (n) is the integer to be converted.
■ The optional second argument (f) is a string specifying the format under which the

first argument is to be converted. See “Integer Formats” for the syntax and
meaning of this string.

Argument n may also yield a floating point value, which will be truncated to the next
lower integer (toward zero) before being converted. The argument expressions may
include patterns or interpretations.

Result
The function returns a string result representing the numeric value of argument n,
converted according to format f. If no format argument is given, the default system
format for integers (defined in the ckbres.format module in the file nxrun.dat) is
used.

Examples
The following examples illustrate the results of the INT2STR function:

INT2STR(98) = "98"
INT2STR(98.6) = "98"
INT2STR(-98.6) = "-98"
INT2STR(79,"x") = "4f"

Related Topics
Expressions Integer Formats
String Constants Patterns
Integer Constants Interpretations
Floating Point Constants STR2INT Function
Language Reference 1 - 119

Chapter Application Development Features1
Integer Constants

Definition
An integer constant is a sequence of characters that stand directly for an integer (whole
number) value.

Syntax
An integer constant consists of one or more decimal digits (0–9), optionally preceded
by a sign (+ or -). It must not include embedded spaces, commas, a decimal point, or
an exponent.

Examples
The following are valid integer constants:

6
-27
+441
0
16777216

The following are not:

abc Not a number
6+5 Expression, not a constant
23a Contains an invalid character
16 777 216 Contains embedded spaces
16,777,216 Contains embedded commas
98.6 Contains a decimal point
125e3 Contains an exponent

Related Topics
Data Types Floating Point Constants
Integer Formats Expressions
1 - 120 Language Reference

Integer Formats
Integer Formats

Definition
An integer format specifies the representation of an integer value in text form for input
and output purposes.

Syntax
This section defines the syntax of format elements for integer-valued properties only.
See the section titled “Formats” for the syntax of formats in general.

The following special characters are meaningful in integer formats:

d Decimal representation
X Hexadecimal representation with capital letters A–F for digit

values 10–15
x Hexadecimal representation with lowercase letters a–f for digit

values 10–15
0 significant digits only

Any of these may optionally be followed by a series of zeros (0) defining the minimum
number of digits to be used in representing the number. For example, the format d000
denotes a decimal number at least three digits long.

Like all formats, those for integers may include strings of literal characters enclosed in
double quotation marks (" . . . "), and may also include the wild-card character
(*). Format elements beginning with an exclamation point (!) are ignored in database
transactions; they are meaningful only for direct interaction with the user via the
screen and keyboard.

Input
On input, each element in the format list is tried in order until one of them matches the
input text. If no match is found, the input is rejected and an error message is displayed
on the screen. The following conventions apply:
■ Odd-numbered elements in the format list (the first, third, and so on) produce a

positive result, even-numbered elements (the second, fourth, and so on) produce
a negative result.

■ Input values of any length are recognized; zeros (0) used in the format to specify
the number of digits in the data value are ignored.

■ In hexadecimal representation, no distinction is made between uppercase digits
A–F and lowercase a–f. Both forms are recognized, and may even be mixed in the
same number; the case explicitly specified by the format itself (X or x) is ignored.

■ Strings of literal characters enclosed in double quotation marks must match
exactly, except that no distinction is made between upper- and lowercase letters.
Language Reference 1 - 121

Chapter Application Development Features1
■ The wild-card character (*) matches any sequence of zero or more characters.

Output
On output, only the first one or two elements in the format list are used:
■ The first format element is used for positive and zero values, the second for

negative values; any further elements in the list are ignored. If there is no second
element, the first is used for all output values.

■ A series of zeros (0) within a format element specifies the minimum number of
digits to be used in the output representation. Numbers shorter than this will be
padded with leading zeros; longer numbers will be represented in full, using more
than the specified number of digits.

■ Strings of literal characters enclosed in double quotation marks are reproduced
exactly in the output.

■ The wild-card character (*) is ignored on output.

Default
The default system format for integers is defined in the ckbres.format module in
the file nxrun.dat. The standard default format is

d

denoting decimal representation in the minimum required number of digits.

Examples
The following examples illustrate the use of integer formats:

Format: d000;;"+"d000;"-"d000

Format: "0x"X0000;;d

Value Output Comments
23 023 Leading zero to fill
1234 1234 Exceeds specified length
-23 -023 No secondeelement; uses first

Input Value Comments
23 23 Matches first element
-23 23 Matches first element
+23 23 Matches third element
23.0 NOTKNOWN No match; use d000*

Value Output Comments
254 0x00FE Leading zeros to fill
-1 0xFFFFFFFF Exceeds specified length
1 - 122 Language Reference

Integer Formats
Format: d000*;"minus "d000*

In the last example, notice that both input values (0xfe and 254) will be displayed on
output as 0x00FE.

Related Topics
Formats Integer Constants
Format Attribute Floating Point Formats

Input Value Comments
0xfe 254 Case is irrelevant
254 254 Matches third element

Value Output Comments
23 023 Leading zero to fill
1234 1234 Exceeds specified length
-23 minus 023 Negative uses second element

Input Value Comments
23 23 Matches first element
-23 -23 Matches first element
minus 23 -23 Matches second element
plus 23 NOTKNOWN No match
23.7 23 No rounding; wild card discards

fractional part
Language Reference 1 - 123

Chapter Application Development Features1
Interpretations

Definition
An interpretation is used in an expression to refer to an object, class, or property
indirectly, via the value of a slot calculated at runtime.

Syntax
Typically, an interpretation can be used wherever an object, class, or property name
would be valid in an expression, although it is specifically not allowed in the
SendMessage operator expression. It consists of the name of a slot enclosed
between backslashes (\ . . . \). It may optionally be preceded by a string of
characters, called the root string, enclosed in single quotation marks (' . . . ').
The root string or the variable name (but not both) may be empty.

If the slot used in the interpretation is a private slot, the interpretation can only appear
in the method attached to the slot and the SELF keyword must be used to refer to the
private slot name. Interpretations that appear in rule conditions and actions must be
made on public slots.

Meaning
The slot named within the backslashes is evaluated and the resulting string is
substituted in its place in the expression. If the interpretation includes a root string, it
is concatenated together with the value of the slot to form the required object, class, or
property name.

If the slot named between the backslashes is not of type STRING, its value is converted
into an equivalent string of characters before being used. In particular, floating point
values are truncated to their integer part only, since the decimal point (.) is not a valid
character in an object, class, or property name.

An interpretation may be embedded within a pattern, but a pattern may not be
embedded within an interpretation.

Examples
The following are valid class, object, or property interpretations:

\which_client\
\whic__client.name\
''\which_client\
'tank_'\n\
'tank_'\tank.number\
<|\component_class\|>
{\warehouse.inventory\}
regular_tank_1.\tank.level\
auxiliary_tank_1.'aux_'\tank.level\
'regular_tank_'\tank.number\.\tank.level\
\which_company.name\.\which_client\
1 - 124 Language Reference

Interpretations
The following are not valid interpretations:

\which_client Backslashes not balanced.
tank_\n\ No quotes around root.
'_tank'\n\ Invalid form for identifier.
'tank_'\m+n\ Expression inside backslashes.
'part_'\<Part>.number\

Pattern inside backslashes.
If the value of empty_tank is the string tank_3, then the expressions

\empty_tank\.capacity

and

''\empty_tank\.capacity

are both equivalent to

tank_3.capacity

Similarly, if both n and tank.number are equal to 3, then

'tank_'\n\.capacity

and

'tank_'\tank.number\.capacity

are again equivalent to

tank_3.capacity

If the value of component_class is the string Switch, then the existential pattern

<|\component_class\|>

refers to all existing instances of class Switch. If the value of
warehouse.inventory is parts_in_stock, then the universal pattern

{\warehouse.inventory\}

denotes all components (subobjects) of the object parts_in_stock.

Related Topics
Objects Data Types
Classes Identifiers
Properties Expressions
Slots Patterns
Language Reference 1 - 125

Chapter Application Development Features1
Interrupt Operator

Definition
The Interrupt operator is used in the conditions or actions of methods to interrupt
the execution of the method and return control of the system to the user.

Operand
The Interrupt operator takes one operand, which must be the boolean constant
TRUE. The following is the only valid form for an action using the Interrupt
operator:

Interrupt TRUE

Effect
Execution of the method containing the Interrupt operator is interrupted,
displaying an alert box with a message. Fo example, for an Order of Sources method:

Interrupt in Sources slot of Flap.doodle.

or, for an If Change method:

Interrupt in Action slot of Flap.doodle.

During the interruption, the user is free to activate other windows, edit the knowledge
base, invoke commands, or take any other desired action. Clicking the Continue
button in the session control panel of the Rules Element main window resumes
execution of the suspended method from the point of the interruption.

Result
When the Interrupt operator is used in a condition on the left-hand side of a
method, the result produced by the operator is always TRUE.

Related Topics
Properties Order of Sources Method
Actions If Change Method
Methods
1 - 126 Language Reference

LENGTH Function
LENGTH Function

Definition
The LENGTH function is used in expressions to find the number of objects matching a
given pattern. The expression can appear on the left-hand side or right-hand side of
rules and methods.

Syntax
The function consists of the word LENGTH followed by a single argument in
parentheses:

LENGTH(p)

Argument
The argument may be any existential pattern with a property name specified.
Universal patterns are not allowed.

Note: The pattern must include a property name or unexpected
side-effects in gating may result. If desired, you can execute
your own C routine to get the number of objects attached to a
class.

Result
The function returns an integer result equal to the number of objects in the list
corresponding to the given pattern.

Examples
The following examples illustrate the results of the LENGTH function. If class Client
has 22 instances, object job_queue has 12 components, and object orders_pending
has none, then

LENGTH(<Client>.name) = 22
LENGTH(<job_queue>.value) = 2
LENGTH(<orders_pending>) = 0

The following expressions are invalid:

LENGTH(<Client>) = 22

LENGTH(Client) Not a pattern

LENGTH(Client.name) Not a pattern

LENGTH({Client}) Universal patterns not allowed

Related Topics
Expressions Patterns
Objects Integer Constants
Classes
Language Reference 1 - 127

Chapter Application Development Features1
LN Function

Definition
The LN function is used in expressions to find the natural (Napierian) logarithm of a
floating point number. The expression can appear on the left-hand side or right-hand
side of rules and methods.

Syntax
The function consists of the word LN followed by a single argument in parentheses:

LN(x)

Argument
The argument may be any expression yielding a numerical result greater than 0.0.
The expression may include patterns or interpretations.

If the value of the argument expression is an integer, it will be converted to an
equivalent floating point value.

Result
The function returns a floating point result equal to the logarithm of the argument to
the Napierian base e (= 2.71828).

If the argument expression does not produce a numerical value, an error message is
posted and the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the LN function:

LN(0.0001) = -9.21
LN(1 / 2.71828) = -1.0
LN(SQRT(2.71828)) = 0.5
LN(2.71828) = 1.0
LN(10000) = 9.21

Related Topics
Expressions Interpretations
Floating Point Constants LOG Function
Integer Constants EXP Function
Patterns
1 - 128 Language Reference

LoadKB Operator
LoadKB Operator

Definition
The LoadKB operator is used in the conditions or actions of a rule or method to load or
enable a knowledge base.

Operands
The LoadKB operator takes one or two operands:
■ The first operand is a string constant or an interpretation which evaluates to a

string constant (using the @v(object.prop) syntax) specifying the name of the file
containing the knowledge base to be loaded. It must be between double quotes.

■ The optional second operand specifies the knowledge base’s load level, and must
be one of the following:

@LEVEL=ENABLE;
@LEVEL=DISABLEWEAK;
@LEVEL=DISABLESTRONG;

(Note that the closing semicolon is required.) If the second operand is omitted, a load
level of ENABLE is assumed by default.

LoadKB Dialog
When entering a LoadKB action in the Rule editor or Method editor, clicking in the
space for the second operand displays a special dialog box for specifying the load level
interactively, rather than by explicitly typing in the keywords listed above:

Effect
The knowledge base named as the first operand is loaded into memory from a file and
given the load level specified by the second operand. Definitions loaded from the
Language Reference 1 - 129

Chapter Application Development Features1
knowledge base are added to those already present in memory. If the designated
knowledge base is already loaded, its load level is simply changed to that specified by
the second operand.

Load Levels
The effects of the various load levels are as follows:

ENABLE: All definitions in the knowledge base are fully effective
and operational, including objects, classes, properties,
rules, and methods.

DISABLEWEAK: Object, class, and property definitions in the
knowledge base are in effect. uules and methods are
defined, but are temporarily disabled and unavailable
for inference processing; they can later be reenabled by
specifying load level ENABLE. Any such disabled rules
or methods already on the agenda remain there and
will be processed normally.

DISABLESTRONG: Object, class, and property definitions in the
knowledge base are in effect. Rules and methods are
defined, but are temporarily disabled and unavailable
for inference processing; they can later be reenabled by
specifying load level ENABLE. Any such disabled rules
or methods already on the agenda are removed from
the agenda and will not be processed.

Examples
The following are examples of actions using the LoadKB operator:

LoadKB "Inventory.tkb"

LoadKB "Inventory.ckb" @LEVEL=ENABLE

LoadKB "Inventory.ckb" @LEVEL=DISABLEWEAK

LoadKB "@v(object.prop)" @LEVEL=DISABLESTRONG

Related Topics
Rules Properties
Methods Agenda
Actions String Constants
Objects UnloadKB Operator
Classes
1 - 130 Language Reference

LOG Function
LOG Function

Definition
The LOG function is used in expressions to find the common (decimal) logarithm of a
floating point number. The expression can appear on the left-hand side or right-hand
side of rules and methods.

Syntax
The function consists of the word LOG followed by a single argument in parentheses:

LOG(x)

Argument
The argument may be any expression yielding a numerical result greater than 0.0.
The expression may include patterns or interpretations.

If the value of the argument expression is an integer, it will be converted to an
equivalent floating point value.

Result
The function returns a floating point result equal to the logarithm of the argument to
the base 10.

If the argument expression does not produce a numerical value, an error message is
posted and the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the LOG function:

LOG(0.0001) = -4.0
LOG(0.1) = -1.0
LOG(SQRT(10)) = 0.5
LOG(10) = 1.0
LOG(10000) = 4.0

Related Topics
Expressions Patterns
Floating Point Constants Interpretations
Integer Constants LN Function
Language Reference 1 - 131

Chapter Application Development Features1
MAX Function

Definition
The MAX function is used in expressions to find the largest of a set of values. The
expression can appear on the left-hand side or right-hand side of rules and methods.

Syntax
The function consists of the word MAX followed by any number of arguments in
parentheses:

MAX(x1,x2,...,xn)

Arguments
Each argument may be any arbitrary expression. The expressions may include
existential patterns or interpretations; universal patterns are not allowed.

Argument values may be of any type, but the types must be comparable (either all the
same or all numeric). If some are integers and some floating point, the integers will be
converted to equivalent floating point values before comparison.

Result
The function returns the largest of the argument values it receives. For arguments that
include patterns, it finds the largest value in the corresponding list.

Integers and floating point values are compared numerically, strings lexically, and
dates and times chronologically. In string comparisons, equivalent uppercase and
lowercase letters (such as A and a) are considered identical. In boolean comparisons,
TRUE is considered greater than FALSE.

If the argument values are not of comparable types, the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the MAX function:

MAX(365,240,577) = 577
MAX(98.6,37.0,-273.18) = 98.6
MAX(12,12.0) = 12.0
MAX(12,12.3) = 12.3
MAX(12,11.7) = 12.0

MAX("Hickory","Dickory","Dock") = "Hickory"
MAX("boo","ooojum") = "boojum"
MAX("ABC","xyz") = "xyz"
MAX("abc","XYZ") = "XYZ"
MAX("","SHAZAM!") = "SHAZAM!"

MAX(DATE(1776,7,4),DATE(1789,7,14)) = DATE(1789,7,14)
MAX(TIME(8,4,23),TIME(3,6,11)) = TIME(8,4,23)

MAX(TRUE,FALSE) = TRUE
1 - 132 Language Reference

MAX Function
MAX(123,"456") = NOTKNOWN

If class Tank has four instances with capacity values of 6.3, 14.5, 12.9, and 9.0,
then

MAX(<Tank>.capacity) = 14.5

Related Topics
Expressions Interpretations
Data Types MIN Function
Patterns
Language Reference 1 - 133

Chapter Application Development Features1
Member Operator

Definition
The Member operator is used in the conditions of a rule or method to test whether an
object belongs to a given class or list.

Operands
The Member operator takes two operands:
■ The first operand is either a single object or a list of objects specified by a pattern.
■ The second operand is a list of objects specified by a pattern. This operand must

use the pattern matching syntax.

The second operand is commonly a list of objects satisfying some qualification or
relation, as determined by a prior condition within the same rule or method.

Result
The result produced by the Member operator is TRUE if the first operand is a member
of the class or list designated by the second, FALSE if it isn’t. If the first operand is a
pattern, the condition tests whether at least one of the objects in the corresponding list
(for an existential pattern) or all of them (for a universal pattern) also belong to the
second class or list. The contents of the first list are then reduced to the intersection of
the two.

Examples
The following are examples of conditions using the Member operator:

Member the_stock <Portfolio>
Member <Portfolio> <Common_Stock>
Member {Portfolio} <Common_Stock>

Related Topics
Rules Objects
Methods Patterns
Conditions NotMember Operator
1 - 134 Language Reference

Meta-Slots
Meta-Slots

Definition
Meta-slots are attributes associated with a slot (a property associated with a class or
object), governing its inheritability and relationships with the user interface.

Variations
The following meta-slots can be associated with an individual slot:
■ The public/private option controls whether the slot value will be accessible by rules

and methods (public slot) or by methods only (private slot).
■ The inheritance strategy controls the inheritance of the slot’s value from including

classes and parent objects.
■ The inheritability strategy controls the inheritance of the slot and its value by

subclasses, instances, and components.
■ The inheritance priority defines the priority with which the slot or its value can be

inherited.
■ The inheritance slot allows the inheritance priority to be determined dynamically at

run time, rather than fixed unalterably in advance.
■ The inference priority defines the slot’s priority and behavior during inference

processing.
■ The inference slot allows the inference priority to be determined dynamically at run

time, rather than fixed unalterably in advance.
■ The format attribute defines the way in which the slot’s value is displayed on the

screen.
■ The prompt line attribute defines the text to be displayed on the screen when

requesting the slot’s value from the user. This meta-slot can be inherited
downward.

■ The why attribute allows you to customize the Why information for a particular
slot.

■ The comment attribute helps document the slot’s meaning or usage for the benefit
of the application developer.

■ The init value field specifies an initialization value for the individual slot to be used
when the knowledge base is loaded. The inheritability strategy of this meta-slot is
specified for each value.

■ The question window attribute lets you associate the comoonent of your application
interface that the system will use to solicit the slot’s value from the end-user.

■ The data validation attribute lets you predetermine the range of input or list of
strings that the system will accept from the end-user when the value of the slot is
sought. This meta-slot can be inherited downward.
Language Reference 1 - 135

Chapter Application Development Features1
Creation
Meta-slots are specified by editing the contents of the relevant boxes in the Meta-Slot
editor.

Indication
The presence of one or more meta-slot definitions for an individual slot is indicated by
a solid-colored box at the right end of the property’s value in the Class or Object editor.
If no meta-slots are defined, the box is displayed in outline only. Clicking on the box
with the mouse brings up the Meta-Slot editor, allowing the meta-slots to be defined
or modified.

Related Topics
Objects Format Attribute
Classes Question Window
Properties Data Validation
Slots Init Value Attribute
Inheritance Strategy Why Attribute
Inheritability Strategy Comment Attribute
Inheritance Priority Attribute Inference Priority Attribute
Inheritance Slot Attribute Inference Slot Attribute
Prompt Line Attribute
1 - 136 Language Reference

Methods
Methods

Definition
A method is an attribute attached to an object, class, property, public slot or private slot,
consisting of a sequence of actions to be executed under certain conditions during
inference processing. There are two general categories of methods. User-defined
methods that may be triggered through the use of the SendMessage operator during
the course of evaluating rules and other methods. System methods are automatically
triggered by the inference engine under predefined circumstances. Unlike public slots,
private slots must have their attached method triggered explicitly by a SendMessage
operator.

Structure
The method consists of most importantly a sequential list of actions, similar to those on
the right-hand side of a rule. If desired, the method can be structured exactly like a rule
including a list of conditions and two separate consequent lists of actions. Unlike rules,
methods have no hypothesis component. Methods can also accept local arguments
which you use in the method actions and conditions. Generic methods can use the
SELF variable to represent the current class or object.

Creation
Creation begins by typing the name of the method in the Method field of the Method
editor. Or you can display the local popup menu for the edit line and choose the Select
Method option to make a selection from the list of existing methods. System methods
are usually attached at the level of the individual slot (optionally to a class or object,
see the Order of Sources Method and If Change Method topicsffor further details).
User-defined methods can be attached to a property, a class, or an object, as well as a
public or private slot. The atom name to which the method is attached is specified in
the Attach To field.

If local arguments will be passed to the method by the SendMessage operator, the
method itself defines the characteristics of the arguments locally. The Local
Arguments component of the Method editor lets you specify the argument name for
use in the method’s conditions and actions. The name you specify must be preceded
by an underscore (_). Other fields determine the local argument’s usage for that
particular method.

Invocation
User-defined methods are not limited to slots, but must be explicitly triggered through
a SendMessage operator that appears in a condition or action of a rule or method. The
application developer has the choice to send the message at startup or from the
interface using either the scripting language or using the Rules Element application
Language Reference 1 - 137

Chapter Application Development Features1
programming interface. Whenever a method is triggered by the SendMessage
operator, the system executes the complete list of actions.

There are two types of system methods that are available at the level of the individual
public slot:
■ The order of sources method is triggered automatically when the value of a public slot

is needed in the course of inference processing and was found to be UNKNOWN.

Note: In the case of a private slot an Order of Sources method can be attached, but
the system is unable to trigger the method automatically. The application
developer is required to use the SendMessage operator to explicitly trigger the
system method of a private slot.

■ The if change method is triggered automatically when the value of a public or
private slot is changed in the course of inference processing.

The list of conditions is optional for all methods. If no conditions are present, the
system automatically executes the Then actions list when the method itself is triggered.
If method conditions are present, the system executes one of two different lists of
consequent actions (Then or Else) depending on whether the method is satisfied or not.

For the method to be satisfied, all of its conditions must evaluate to TRUE. The
conditions are thus implicitly linked by the logical “and” operator. To achieve the
effect of a logical “or,” use the boolean OR operator within a single condition.

If present, conditions within a method are always evaluated sequentially, in the order
they appear in the method definition; unlike rule conditions this evaluation order is
not altered by the inference priorities of the data involved.

If the system tries to trigger a method for a property name, it first tries the slot to which
the property belongs (object.prop or class.prop). When no slot has been defined, the
system will try the property definition itself.

If no method is specified at the level of the addressee (in the case of a user-defined
method) or at the level of the slot (in the case of a system method), a substitute method
of the same name will be sought by downward inheritance. See the section on
“Inheritance” for more details.

Strategy
Execution of system methods that are under the control of the inference engine (If
Change and Order of Sources) is normally enabled by default, but can be disabled if
necessary by changing the global inference strategy. This can be done in either of two
ways:
■ Interactively through the Strategy Monitor window (from the Expert menu), by

turning off the If Change Actions option or the Order of Sources
Actions option.

■ Dynamically in the course of inference processing itself, via the Strategy
operator in a condition or action of a rule or method.
1 - 138 Language Reference

Methods
Note: The SendMessage operator can be used to explicitly trigger
any method. The method triggered by the SendMessage
operator is not affected by any of the strategy settings and will
actually be treated as a user-defined method by the inference
engine.

Forward Chaining
Actions that appear in the conditions list or actions list of a method may forward-chain
data from public slots to relevant rules depending on the inferencing strategies
currently in effect. The method actions include: Assign, Retrieve (from a
database), and Execute (using an external routine). From the method conditions list
only the results of the Retrieve and Execute actions may be forward-chained. The
Assign operator has no effect on forward chaining from the conditions list. See the
individual operator topics for details.

Data that belongs to a private slot that appears in a method condition or action cannot
trigger forward chaining since private slot data cannot appear in the conditions or
actions of rules. Only data that belongs to public slots can trigger forward chaining.

Methods are not affected by the results of actions or gates because they do not have
hypotheses to be considered for evaluation.

Inheritance
Methods can only be inherited downward (from a class to its instances or subclasses,
or from an object to its components), never upward. The search through the parent
tree hierarchy is directed by the global inheritance strategy and can be class or
object-first and depth or breadth-first. If the method should not be inherited, change
the Public option to Private in the Method editor.

When an inheritance conflict exists between two parent objects or classes at the same
level, the application developer can use the InhMethod operator to override the
default inheritance strategy by specifying the parent object upon which to begin the
search. When the inheritance conflict occurs between two slots at the same level, the
application developer can set the inheritance priority of the slots to override the default
inheritance strategy. If neither approach is used, by default the system chooses the
method attached to the parent whose name appears first in alphabetic order.

Private and public slots observe the same inheritance strategies. The private slot
attribute controls the accessibility of the slot value and has nothing to do with
inheritance.

Example
Let’s assume the following actions appear in two methods attached to the subclasses
Triangles and Rectangles that belong to a class Figures. The method attached
to Triangles is defined as a public one (inheritance enabled) and has the name
ComputeArea:
Language Reference 1 - 139

Chapter Application Development Features1
Assign (SELF.width*SELF.height)/2 SELF.area

The second method attached to Rectangles is also defined as a public one and has
the same name ComputeArea:

Assign SELF.width*SELF.height SELF.area

To trigger these methods, let’s assume we have a rule with the following SendMessage
action:

SendMessage “ComputeArea” @TO:<Figures>

Because the SendMessage operator in this rule specifies a pattern match on the class
Figures as its addressee, the message is received by each object that belongs to the
class. Let’s assume the following objects exist: Rect_1, Rect_2, Tri_1, and Tri_2
and that no method is attached at their level. In case, each object will automatically
inherit the method ComputeArea defined at the level of its parent class and the
specific values for the properties width and height may be supplied by the objects
themselves or may be obtained from a question or some other means.

In this example, definition of the method ComputeArea at the level of the parent
classes (Triangles and Rectangles) avoids duplication of the area computation
action for each object whose properties they share.

Related Topics
Objects Inheritance
Classes Inheritance Strategy
Properties Inheritance Priority
Conditions Strategy
Actions If Change Method
Rules Order of Sources Method
Slots InhMethod Operator
Inference SendMessage Operator
Forward Chaining
1 - 140 Language Reference

MIN Function
MIN Function

Definition
The MIN function is used in expressions to find the smallest of a set of values. The
expression can appear on the left-hand side or right-hand side of rules and methods.

Syntax
The function consists of the word MIN followed by any number of arguments in
parentheses:

MIN(x1,x2,...,xn)

Arguments
Each argument may be any arbitrary expression. The expressions may include
existential patterns or interpretations; universal patterns are not allowed.

Argument values may be of any type, but the types must be comparable (either all the
same or all numeric). If some are integers and some floating point, the integers will be
converted to equivalent floating point values before comparison.

Result
The function returns the smallest of the argument values it receives. For arguments
that include patterns, it finds the smallest value in the corresponding list.

Integers and floating point values are compared numerically, strings lexically, and
dates and times chronologically. In string comparisons, equivalent uppercase and
lowercase letters (such as A and a) are considered identical. In boolean comparisons,
TRUE is considered greater than FALSE.

If the argument values are not of comparable types, the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the MIN function:

MIN(365,240,577) = 240
MIN(98.6,37.0,-273.18) = -273.18
MIN(12,12.0) = 12.0
MIN(12,12.3) = 12.0
MIN(12,11.7) = 11.7

MIN("Hickory","Dickory","Dock") = "Dickory"
MIN("boo","boojum") = "boo"
MIN("ABC","xyz") = "ABC"
MIN("abc","XYZ") = "abc"
MIN("","SHAZAM!") = ""

MIN(DATE(1776,7,4),DATE(1789,7,14)) = DATE(1776,7,4)
MIN(TIME(8,4,23),TIME(3,6,11)) = TIME(3,6,11)

MIN(TRUE,FALSE) = FALSE
Language Reference 1 - 141

Chapter Application Development Features1
MIN(123,"456") = NOTKNOWN

If class Tank has four instances with capacity values of 6.3, 14.5, 12.9, and 9.0,
then

MIN(<Tank>.capacity) = 6.3

Related Topics
Expressions Interpretations
Data Types MAX Function
Patterns
1 - 142 Language Reference

MINUTE Function
MINUTE Function

Definition
The MINUTE function is used in expressions to extract the minute field of a date or time.
The expression can appear on the left-hand side or right-hand side of rules and
methods.

Syntax
The function consists of the word MINUTE followed by a single argument in
parentheses:

MINUTE(d)

Argument
The argument may be any expression yielding a date or time result. The expression
may include patterns or interpretations.

Result
The function returns an integer result equal to the minute field of the argument. For
date arguments, the result ranges from 0 to 59.

If the argument expression does not produce a date or time value, an error message is
posted and the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the MINUTE function:

MINUTE(DATE(1492,10,12)) = 0
MINUTE(DATE(1981,6,8,21,8,46)) = 8
MINUTE(TIME(8,4,23)) = 4
MINUTE(TIME(3,6,11,22,34,17)) = 34
MINUTE("October 12, 1492") = NOTKNOWN

Related Topics
Expressions DAY Function
DATE Function HOUR Function
TIME Function SECOND Function
Patterns WEEKDAY Function
Interpretations YEARDAY Function
YEAR Function NOW Function
MONTH Function
Language Reference 1 - 143

Chapter Application Development Features1
MOD Function

Definition
The MOD function is used in expressions to find the remainder of one floating point or
integer number modulo of another. The expression can appear on the left-hand side
or right-hand side of rules and methods.

Syntax
The function consists of the word MOD followed by two arguments in parentheses:

MOD(x,y)

Arguments
Each argument may be any expression yielding a numerical result. The expressions
may include patterns or interpretations.

Result
The function returns a floating point result equal to the remainder of the first argument
modulo the second (x mod y) if one or both arguments are floats. If both arguments
are integers, the function will also return an integer. This value is defined as the
difference between y and the next smaller whole multiple of x. Truncation is always
toward zero, yielding a result of the same sign as x.

If either argument expression does not produce a numerical value, an error message is
posted and the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the MOD function:

MOD(8, 3) = 2
MOD(8, -3.0) = 2.0
MOD(-8, 3.0) = -2.0
MOD(-8, -3) = -2
MOD(8.5, 3.1) = 2.3 (= 8.5 - 2 * 3.1)

Related Topics
Expressions Patterns
Floating Point Constants Interpretations
Integer Constants
1 - 144 Language Reference

MONTH Function
MONTH Function

Definition
The MONTH function is used in expressions to extract the month field of a date or time.
The expression can appear on the left-hand side or right-hand side of rules and
methods.

Syntax
The function consists of the word MONTH followed by a single argument in
parentheses:

MONTH(d)

Argument
The argument may be any expression yielding a date or time result. The expression
may include patterns or interpretations.

Result
The function returns an integer result equal to the month field of the argument. For
date arguments, the result ranges from 1 (January) to 12 (December).

If the argument expression does not produce a date or time value, an error message is
posted and the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the MONTH function:

MONTH(DATE(1492,10,12)) = 10
MONTH(DATE(1981,6,8,21,8,46)) = 6
MONTH(TIME(8,4,23)) = 0
MONTH(TIME(3,6,11,22,34,17)) = 6
MONTH("October 12, 1492") = NOTKNOWN

Related Topics
Expressions HOUR Function
DATE Function MINUTE Function
TIME Function SECOND Function
Patterns WEEKDAY Function
Interpretations YEARDAY Function
YEAR Function NOW Function
DAY Function
Language Reference 1 - 145

Chapter Application Development Features1
Multi-Values

Definition
A multi-value is a string value representing a series of individual items that can be
extracted or manipulated separately.

Syntax
A multi-value consists of one or more string-valued items separated by commas. (If
there is just one item, the multi-value is indistinguishable from a simple string value
representing the item.) Leading and trailing spaces around each item are ignored, but
internal spaces within an item are significant.

The length of a multi-value string is limited by default to no more than 2,048
characters, but may be extended by setting NXP_BUFSIZE.

Operations
The following execute routines perform various operations on multi-values:

GetMultiValue ComputeMultiValue
SetMultiValue LinkMultiValue
TestMultiValue AtomName

Example
The string

"London , Paris, New York , Tokyo "

is a legal multi-value consisting of the four items

London
Paris
New York
Tokyo

Notice that the spaces before and after each item are ignored, but the internal space in
New York is significant.

Related Topics
String Constants TestMultiValue Routine
Execute Routines ComputeMultiValue Routine
GetMultiValue Routine LinkMultiValue Routine
SetMultiValue Routine AtomName Routine

Refer to Chapter Two, “Execute Library Routines” for a description of specific
routines.
1 - 146 Language Reference

No Operator
No Operator

Definition
The No operator is used in the conditions of a rule or method to test whether a boolean
value or boolean expression is FALSE.

Operands
The No operator takes a single operand, which must be either a boolean-valued slot, a
list of such slots specified by a pattern, or a boolean expression.

Result
The result produced by the No operator is the logical inverse of its boolean operand:
TRUE if the operand is FALSE, FALSE if the operand is TRUE. If the operand includes
a pattern, the condition tests whether the overall result of the pattern match is FALSE.
Thus for an existential pattern, the result is TRUE if all values in the corresponding list
are FALSE; for a universal pattern, it is TRUE if at least one value in the list is FALSE.
If the operand is a boolean expression, the result is the logical inverse of the value of
the resolved expression (either TRUE or FALSE).

Examples
The following are examples of conditions using the No operator:

No credit_approved
No switch_1.on
No <Switch>.on
No {Switch}.on

Related Topics
Rules Boolean Constants
Methods Patterns
Conditions Yes Operator
Boolean Expressions
Language Reference 1 - 147

Chapter Application Development Features1
NoInherit Operator

Definition
The NoInherit operator is used in the conditions or actions of methods to prevent
inheritance of the standard default behavior for the given method.

Operand
The NoInherit operator takes one operand, which must be the boolean constant
TRUE. The following is the only valid form for an action using the NoInherit
operator:

NoInherit TRUE

Effect
The NoInherit operator is meaningful only when used alone, as the only action in a
method. The standard default behavior for the given metood is disabled, preventing
any inheritance of methods or values from other classes and objects. In the case of an
Order of Sources method, the user will always be prompted interactively for the value
of the slot to which the method is attached.

Result
When the NoInherit operator is used in a condition on the left-hand side of a
method, the result produced by the operator is always TRUE.

Related Topics
Objects Methods
Classes Order of Sources Method
Properties If Change Method
Actions Inheritance
1 - 148 Language Reference

NotMember Operator
NotMember Operator

Definition
The NotMember operator is used in the conditions of a rule or method to test whether
an object is absent from a given class or list.

Operands
The NotMember operator takes two operands:
■ The first operand is either a single object or a list of objects specified by a pattern.
■ The second operand is either a class or a list of objects specified by a pattern.

The second operand is commonly a list of objects satisfying some qualification or
relation, as determined by a prior condition within the same rule or method.

Result
The result produced by the NotMember operator is TRUE if the first operand is not a
member of the class or list designated by the second operand, FALSE if it is. If the first
operand is a pattern, the condition tests whether at least one of the objects in the
corresponding list (for an existential pattern) or all of them (for a universal pattern) are
excluded from the second class or list. The contents of the first list are then reduced to
the difference of the two (the set of all members of the first that do not belong to the
second).

Examples
The following are examples of conditions using the NotMember operator:

NotMember the_stock Common_Stock
NotMember the_stock <Portfolio>
NotMember <Portfolio> <Common_Stock>

Related Topics
Rules Objects
Methods Patterns
Conditions Member Operator
Language Reference 1 - 149

Chapter Application Development Features1
NOW Function

Definition
The NOW function is used in expressions to find the current date and time. The
expression can appear on the left-hand side or right-hand side of rules and methods.

Syntax
The function consists of the word NOW followed by an empty pair of parentheses:

NOW()

Argument
The function takes no arguments.

Result
The function returns a date result equal to the current calendar date and clock time at
the time of call.

Example
The following is an example using the NOW() operator:

NOW() = Jul 17 1990 15:22:24

Related Topics
Expressions DAY Function
DATE Function HOUR Function
TIME Function MINUTE Function
Patterns SECOND Function
Interpretations WEEKDAY Function
YEAR Function YEARDAY Function
MONTH Function
1 - 150 Language Reference

Objects
Objects

Definition
An object is the fundamental representation unit in the Rules Element which can have
associated with it one elementary data value or a list value expressed as a string
(multi-value).

Structure
Every object has a name, which must comply with the Rules Element’s standard rules
for a well-formed identifier. The object’s information content consists of its properties
and its components. The object may be defined to belong to one or more classes, which
determine the names and types of its properties.

Properties
The property is always a simple data value belonging to one of the six elementary data
types (integer, floating point, boolean, string, date, or time), and is identified by name.
Its current value is denoted by appending the name of the property to the name of the
object, separated by a period (.). This construction is known as a slot:

object_name.property_name

In addition, one elementary data value or a list value expressed as a string
(multi-value) may be associated directly with the object itself. This value is assigned
to a special property named Value, which usually need not be named explicitly when
referring to the value. For example, the name object_name by itself, without any
qualifying property, is equivalent to the expression object_name.Value when used
in places where a slot is expected. If the object is specified in an @V() interpretation or
in the case where the property name is ambiguous, you will need to use the full
construction object_name.Value.

Components
Unlike a property, a component (also called a subobject) is in turn a full-fledged object
with properties and components of its own. Components need not be (and in general
aren’t) of the same class as the parent object to which they belong.

Methods
A method is by definition triggered through a message sent directly to the object to
which the method is attached. In the case where the system tries to bind a message
with a method but the object has no method attached, the system will try to use
downward inheritance to obtain one. In a situation where the object belongs to
multiple classes, each with its own method defined, then an InhMethod operator can
be used to resolve the conflict by explicitly naming the parent class.
Language Reference 1 - 151

Chapter Application Development Features1
Creation
Objects can be created by several means:
■ Explicitly, via the New or Copy command in the Object editor.
■ Implicitly, by using a previously undefined object name in a condition or action of

a rule or method, or as a component of another object.
■ Dynamically, by executing the Retrieve operator to bring in database

information in the course of evaluating a rule or method.
■ Dynamically, by executing the CreateObject operator in the course of

evaluating a rule or method. It also has an equivalent Rules Element application
programming interface routine (NXP_CreateObject) and Rules Element
Execute Library routine (CreateObjects).

Objects created dynamically are called dynamic objects. Such objects are temporary,
existing only for the duration of the session in which they are created.

Deletion
Objects can be destroyed in either of two ways, depending on how they were originally
created:
■ Objects created interactively by the application developer, either explicitly or

implicitly, are destroyed with the Delete command in the Object editor.
■ Dynamic objects can be deleted by executing the DeleteObject operator in the

course of evaluating a rule or method.

Dynamic objects are destroyed automatically by the Quit or Restart Session command
ending the session in which they are created.

Related Topics
Classes CreateObject Operator
Properties DeleteObject Operator
Identifiers Value Property
Data Types Patterns
Rules Methods
Dynamic Objects Slots

Refer to the Intelligent Rules Element Database Integration Guide for information
about creating objects using database retrieve operations.
1 - 152 Language Reference

Order of Sources Method
Order of Sources Method

Definition
The Order of Sources is an optional system method that can be attached to a slot
(property associated with a class or object), defining the procedure for determining the
slot’s value when needed in the course of evaluating a rule or method. If no Order of
Sources method exists, the inference engine uses the system default procedure instead,
except in the case of private slots, whose Order of Sources method must be explicitly
triggered.

Structure
The method consists most importantly of a sequential list of actions, similar to those on
the right-hand side of a rule. If desired, the Order of Sources method can be structured
exactly like a rule including a list of conditions on the left-hand side and two separate
consequent lists of actions on the right-hand side. The conditions list is optional. Like
all methods, the Order of Sources method has no hypothesis component.

Creation
The Order of Sources system method is specified via the Method editor. Creation
begins by selecting the Method field and displaying the local popup menu for the edit
line. Choose the Select Method option to view the selection dialog. Select the option
*OrderOfSources from the list (the asterisk in front of the name distinguishes it from
user-defined methods). Or you can also type the name “OrderOfSources” (one word)
in the edit line for the Method field. The structure to which the method is attached is
specified in the Attach To field. The structure you specify can be a slot, a class, or an
object.

Deleting a user-defined Order of Sources method, causes the system to use the default
behavior described under “Default” below.

Invocation
In the case of a public slot with an Order of Sources attached, the inference engine
automatically triggers the method when the value of a slot is needed and is set to
UNKNOWN. Optionally the method can be explicitly triggered by a SendMessage
operator during the course of evaluating a rule or other method. This allows the
application developer to trigger initialization instead of the inference engine. In the
case of a class or object with an Order of Sources attached, the SendMessage operator
must be used in order to trigger the method, but it will no longer be dependent on the
Order of Sources strategy (and will actually be treated as a user-defined method by the
inference engine).

If the Order of Sources is triggered automatically, and depending on the current
strategy, the system executes each action in sequential order until the value of the slot
Language Reference 1 - 153

Chapter Application Development Features1
is found and then stops. In the case of an Order of Sources that is triggered explicitly
by a SendMessage operator, the system will first determine whether the value of slot
has already been determined. If the slot value needs to be determined, and depending
on the current strategy, the system executes the Order of Sources actions list in
sequential order until the value of the slot is found and then stops. The actions
execution behavior can be altered for both types of Order of Sources (triggered
automatically or by a SendMessage operator) by setting the global or local Order of
Sources strategy to ON/CONTINUE. If the Order of Sources is triggered
automatically, however, arguments that might have been passed by the SendMessage
operator are ignored.

In the case of a private slot with an Order of Sources method attached, the system is
unable to trigger the method automatically. The application developer is required to
use the SendMessage operator to explicitly trigger the Order of Sources method of a
private slot. The SendMessage operator must appear in a method and cannot used in
a rule condition or action.

If no explicit Order of Sources method is specified at the level of the slot, a substitute
method will be sought by downward inheritance from an including class, superclass,
or parent object as directed by the inheritance strategy currently in effect. See the
“Inheritance” section for details.

Inheritance
Order of Sources methods can only be inherited downward (from acclass to its
instances or subclasses, or from an object to its components), never upward. The
search through the parent tree hierarchy is directed by the global inheritance strategy
and can be class or object-first and depth or breadth-first. Any explicit Order of
Sources method defined at the level of the slot overrides this inheritance behavior; to
reincorporate the inheritance behavior as part of such a method, include an explicit call
to the InhMethod operator as described in the “Default” section below. To prevent
the method from being inherited, change the Public option to Private in the
Method editor.

When an inheritance conflict exists between two parent objects or classes at the same
level, the application developer can use the InhMethod operator to override the
default inheritance behavior by specifying the parent object to begin the search. When
the inheritance conflict occurs between two slots at the same level, the application
developer can also set the inheritance priority of the slots to resolve the conflict. If
neither approach is used, by default the system chooses the method attached to the
parent whose name appears first in alphabetic order.

Default
If no explicit Order of Sources is specified, the value of an unknown slot is determined
by the following sequence of steps:
1 - 154 Language Reference

Order of Sources Method
1. An applicable Order of Sources method is sought by downward inheritance from
an including class or parent object. If such an inherited method is found, it is used
in place of this default method. (Note that methods can only be inherited
downward, never upward.)

2. If the desired value is a boolean and appears as the hypothesis of one or more
inference rules, the value is sought by backward chaining to those rules.

3. The needed value itself is sought by downward inheritance from an including
class or parent object.

4. The value is sought by upward inheritance from a component object.

5. The user is prompted for the value interactively.

Unless the Order of Sources strategy setting is ON/CONTINUE, this process
terminates as soon as any step yields a value for the desired property; any remaining
steps are skipped.

Any explicit Order of Sources defined for a slot overrides the default method described
above. To reincorporate the default behavior as part of such a method, include the
equivalent sequence of operators explicitly within the method:

InhMethod
Backward
InhValueDown
InhValueUp
AskQuestion

To disable downward inheritability of a particular method, select the Private option in
the Method editor for the method definition.

Operators
The following operators can occur in an Order of Sources method defined for a slot:

Assign Strategy
SendMessage UnloadKB
CreateObject RunTimeValue*
DeleteObject InhValueDown*
Retrieve† InhValueUp*
Write† InhMethod
Reset NoInherit
Show† Backward*†
Execute AskQuestion*†
LoadKB Interrupt

Operators marked by an asterisk (*) may be used to obtain a value, with the exception
that AskQuestion, Backward, RunTimeValue, InhValueUp and InhValueDown
are available only on the right-hand side of the Order of Sources method.

Operators marked by a cross (†) may not be used in the case of a private slot whose
value is being sought by the Order of Sources method attached to the slot.
Language Reference 1 - 155

Chapter Application Development Features1
Strategy
Execution of Order of Sources system methods by the inference engine is normally
enabled by default, but can be modified if necessary by changing the global inference
strategy:
■ Interactively through the Strategy Monitor window (from the Expert menu), by

turning off the Order of Sources option.
■ Dynamically during the course of inference processing itself, via the Strategy

operator in a condition or action of a rule or method, using the @SOURCESON=OFF
setting.

■ In addition to ON and OFF, a third option ON/CONTINUE forces the system to
execute every action in the actions list, even after the value of the slot is found.
Unless this option is selected, the system will stop executing the Order of Sources
actions once the value is found.

Note: The SendMessage operator can be used to explicitly trigger an Order of Sources
method. The method triggered by the SendMessage operator is not affected by any
of the strategy settings and will actually be treated as a user-defined method by the
inference engine.

During the inferencing process the system first uses the Strategy operator setting to
determine the current strategy, however, it is possible to invoke the Strategy Monitor
window Order of Sources setting from the Strategy operator. This option is
provided by the CURRENT setting in the Strategy operator argument dialog box.

Related Topics
Objects Inheritance
Classes Inheritance Strategy
Properties Inference
Actions Inference Strategy
Rules Backward Chaining
Slots Strategy Operator
Methods InhMethod Operator
If Change Method SendMessage Operator

Also see the sections on individual operators by name, as listed above.
1 - 156 Language Reference

Patterns
Patterns

Definition
A pattern is used in the conditions or actions of a rule or method to refer collectively to
all existing instances of a class (including those of subclasses) or all components
(subobjects) of an object.

Syntax
A pattern consists of the name of a class or object enclosed between angle brackets
(< . . . >) or curly braces ({ . . . }), optionally qualified by a dot (.) and a
property name. The brackets or braces may be doubled (<< . . . >>), tripled
(<<< . . . >>>), etc., provided that they are evenly balanced on left and right.

The class name may appear between vertical bars inside the brackets or braces
(<| . . . |>) to distinguish it from an object name.

Interpretations of the class or object name are valid within patterns. The string that
appears in the interpretation is the name of a slot that resolves to a class or object name
to which the pattern applies.

Scope
The scope of a pattern is limited to the conditions and actions of the single rule or
method in which it appears. Occurrences of the same pattern in other rules or methods
are separate and unrelated to the one in question. Objects with private slots are not
included in the list resulting from a pattern matching statement. When establishing a
pattern the system considers only public slots and ignores any objects whose private
slots belong to the same class.

Meaning
A pattern represents a list which is defined at runtime and contains an indefinite
number of objects. Any condition or action in which the pattern appears is understood
to apply separately to each object in the list. For example, the action

Assign <Rect>.length * <Rect>.width <Rect>.area

independently sets the pubic slot values for each object that belongs to class Rect and
has the property area equal to length times width.

Note: You cannot do tests on a pattern without specifying a property
or using the property Value. Objects whose properties
comprise a private slot (specifiedaas a Meta-Slot attribute of the
slot) are not included in the list of objects generated by the
pattern.

Initially, the list consists of all existing instances of the specified class or all components
(subobjects) of the specified object. Each time the pattern appears in a condition, the
Language Reference 1 - 157

Chapter Application Development Features1
list is reduced to only that subset of its previous contents that satisfy the given
condition. Later occurrences of the pattern within the same rule refer only to this
reduced list of objects, and may in turn reduce its contents still further. To begin a new
list based on the same class or object, use a different number of brackets or braces: for
example, the patterns

<Rect>

and

<<Rect>>

refer to two independent lists of objects belonging to class Rect. Action side lists
generated by patterns cannot be reduced further because no tests are performed on the
list.

The angle brackets < . . . > form an existential pattern, meaning “There exists an
object in the list such that . . . ” Any condition including such a pattern is TRUE if there
is at least one instance of the given class or component of the given object that satisfies
the condition. For example, the condition

< <Item>.quantity * <Item>.cost 10000

is TRUE if there is at least one instance of class Item for which the product of the
properties quantity and cost is less than 10000.

The curly braces { . . . } form a universal pattern, whose meaning is “For all
objects in the list, . . . ” In this case, the condition is TRUE only if it is satisfied by every
instance or component in the list. For example, the condition

< {Item}.quantity * {Item}.cost 10000

is TRUE if quantity times cost is less than 10000 for every object belonging to class
Item. Universal patterns can be used in either condition or action lists, but unlike the
existential pattern they cannot generate reduced lists.

Because the action side of a rule or method cannot perform tests, only the universal
pattern is meaningful. If angle brackets (existential pattern) are used on the actions
side of a rule or method, they will be read by the system as curly braces (universal
pattern) and the list will contain all of the objects of the parent on which the pattern is
done.

Evaluation
The system completes the evaluation of the entire pattern before it produces a
consequence effect on the rule or method condition. This means each public slot
specified by a pattern is evaluated before returning the value of the condition. In the
case of existential patterns, the evaluation continues even after the system finds one
slot that satisfies the condition. In the case of universal patterns, the evaluation
continues even after one slot fails to satisfy the condition. However, you can assign
inference priorities to individual object slots and force the evaluation order of the
object slots in the pattern. If no priorities are specified, the default is to process the
object slots in alphabetic order.
1 - 158 Language Reference

Patterns
If the pattern is performed on a set of objects whose properties comprise only private
slots, the pattern is not evaluated and the condition is automatically set to FALSE. The
occurrence of a private slot in the class specified by a pattern will send a message to the
Rules Element Transcript.

Implicit Definition
If the name appearing between brackets or braces is not yet known to the system, it will
be defined implicitly as a result of its use in a pattern. By default, the name is assumed
to refer to a single object rather than a class; to define a new class implicitly, enclose the
name between vertical bars inside the brackets or braces. For example, if the name
Item is not yet defined, the pattern

<Item>

will prompt you as to whether you want to create an object or class named Item, while

<|Item|>

will create a new class by that name.

Examples
The following are examples of valid patterns:

The following are not legal:

Some additional illegal comparisons using patterns are:

<Switch> Existential pattern.
<|Switch|> Existential pattern with explicit class name.
{Switch} Universal pattern.
{\SwitchClassName\}.on Universal pattern with interpretation to get class name.
<Switch>.on Existential pattern on class members with prop “on”.
<<Switch>>.on Produces new existential pattern list for class members

with prop “on”.

<Switch Unbalanced brackets.
<<Switch> Unbalanced brackets.
<Switch} Mismatched brackets.
<|Switch Mismatched brackets.

= <Switch>.on <RefSwitch>.off Comparison on different classes.
= <Switch>.on {Switch}.status Comparison on different pattern types.
= {Switch}.on <Switch>.status Comparison on different pattern types.
Language Reference 1 - 159

Chapter Application Development Features1
Related Topics
Objects Methods
Classes Conditions
Properties Actions
Rules Data Validation Attribute
Slots
1 - 160 Language Reference

POW Function
POW Function

Definition
The POW function is used in expressions to raise a floating point number to any required
power. The expression can appear on the left-hand side or right-hand side of rules and
methods.

Syntax
The function consists of the word POW followed by two arguments in parentheses:

POW(x,y)

Arguments
Each argument may be any expression yielding a numerical result. The expressions
may include patterns or interpretations. If the value of the second argument is not a
whole number, the first argument must be greater than or equal to 0.0.

If the value of either argument expression is an integer, it will be converted to an
equivalent floating point value.

Result
The function returns a floating point result equal to the first argument raised to the

power specified by the second (xy). The function is equivalent to the expression

EXP(y * LN(x))

If either argument expression does not produce a numerical value, an error message is
posted and the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the POW function:

POW(3, 5) = 243.0
POW(-3, 5) = -243.0
POW(3.1, 5.4) = 450.14
POW(3, -2) = 0.11
POW(3, 0.5) = 1.73
POW(3, 0) = 1.00
POW(0, 3) = 0.00

Related Topics
Expressions Interpretations
Floating Point Constants EXP Function
Integer Constants LN Function
Patterns
Language Reference 1 - 161

Chapter Application Development Features1
PROD Function

Definition
The PROD function is used in expressions to find the product of a set of numerical
values. The expression can appear on the left-hand side or right-hand side of rules and
methods.

Syntax
The function consists of the word PROD followed by any number of arguments in
parentheses:

PROD(x1,x2,...,xn)

Arguments
Each argument may be any expression yielding a numerical or time-valued result.
There may be either a list of arguments or a pattern matching list.

If some of the argument values are integers and some floating point, the integers will
be converted to equivalent floating point values before computation.

Result
The function multiplies together all the argument values and returns their product.
For arguments that include patterns, it multiplies all values in the corresponding list.

If any argument is of a non-numeric type, an error message is posted and the function
result is NOTKNOWN.

Examples
The following examples illustrate the results of the PROD function:

PROD(365,240,577) = 50545200
PROD(98.6,37.0,-273.18) = -996615.27
PROD(12,11.7) = 140.4
PROD(TIME(8,4,23),TIME(3,6,11)) = NOTKNOWN
PROD(123,"456") = NOTKNOWN

If class Tank has four instances with capacity values of 6.3, 14.5, 12.9, and 9.0,
then

PROD(<Tank>.capacity) = 10605.73

Related Topics
Expressions Interpretations
Data Types SUM Function
Patterns
1 - 162 Language Reference

Prompt Line Attribute
Prompt Line Attribute

Definition
The prompt line attribute associated with a public slot specifies the text (up to 2,048
characters, extendable via NXP_BUFSIZE) to be displayed on the screen when
requesting the slot’s value interactively from the end user.

Usage
The text of the prompt line is displayed either in the Rules Element main window or a
custom window that you provide, whenever the value of the given public slot must be
requested from the user. There are several ways this can happen:
■ The user explicitly volunteers the value with the Volunteer or

Suggest/Volunteer... command.
■ An AskQuestion operator is executed in an Order of Sources method.
■ The value is needed in the course of evaluating a rule’s conditions during inference

processing.

The prompt line can only be used in the case of a public slot. Private slots cannot be
updated directly and must use a method to determine the slot value.

Creation
The prompt line attribute is specified or edited by typing into the box labeled Prompt
Line in the Meta-Slot editor. You can also use the @V() and @SELF constructions in
the Prompt Line.

Default
If no prompt line is explicitly specified, one of the following messages will be used by
default, depending on the situation:

What is the capacity of tank_3?
Volunteer the capacity of tank_3
Modify the capacity of tank_3

(where, in this case, the data item being requested is named tank_3.capacity).

Inheritance
Inheritability of the prompt line attribute is controlled by the inference engine. If no
prompt line has been specified for the slot, the system will try to inherit the prompt line
attribute of the slot’s parent class or object.
Language Reference 1 - 163

Chapter Application Development Features1
Related Topics
Objects Order of Sources Method
Classes Inference
Properties Meta-Slots
Rules AskQuestion Operator
Conditions Question Window Attribute
Methods SELF
Slots
1 - 164 Language Reference

Properties
Properties

Definition
A property is an attribute which can be associated with an object or class.

Form
Every property has a name, which must comply with the Rules Element’s standard
rules for a well-formed identifier. Its value is always a simple data value belonging to
one of the six elementary data types (integer, floating point, boolean, string, date, or
time).

Scope
The definition of a given property is not local to a particular object or class, but global
throughout the entire system. This means that two objects may not have properties
with the same name but different types: a given property name always designates a
value of the same type, wherever it may occur. (The specific value of the property may,
of course, vary from one object to another.) The one exception to this rule is the special,
predefined property named Value; see “Value Property” for more information.

Creation
Properties can be created in either of two ways:
■ Implicitly, by using a previously undefined property name in a condition or action

of a rule or method in the Rule, Object, Class or Method editor.
■ Interactively, via the New or Copy command in the Property editor.

Deletion
Properties are destroyed with the Delete command in the Property editor.

Access
The current value of a property when associated with a given object or class is denoted
by appending the name of the property to the name of the object, separated by a period
(.). This construction is known as a slot:

object_name.property_name

Slots can be defined by a meta-slot attribute to be either public or private. A public
slot’s current value can be changed in either of two ways:
■ Explicitly, by executing the Assign operator in a condition or action of a rule or

method.
■ Interactively, via the Volunteer command.
Language Reference 1 - 165

Chapter Application Development Features1
A private slot’s current value can be changed only by triggering a method attached to
the slot. Private slots let you use object-encapsulation and therefore are accessible only
by methods.

Related Topics
Objects Conditions Rules
Classes Value Property Data ValidationAttribute
Slots Assign Operator Methods
Data Types
1 - 166 Language Reference

Question Window Attribute
Question Window Attribute

Definition
The question window attribute associated with a public slot specifies the window to be
displayed on the screen when requesting the slot’s value interactively from the end
user. The window is a custom resource created using the graphical user interface
builder, called Open Editor.

Usage
The window you specify in the question window attribute lets you use a question
window of your own design instead of the session control panel of the Rules Element
main window. The custom window is opened during application processing by the
NOIR question handler:
■ For a public slot with a window specified in the slot’s meta-slot.
■ For a public slot with a window specified in the meta-slot of one of the slot’s

parents.

The question window can only be used in the case of a public slot. Private slots cannot
be updated directly and must use a method to determine the slot value.

Creation
The question window attribute is specified by typing the name of the window into the
box labeled Question Win in the Meta-Slot editor. The name must include the
window’s full resource name:

ModuleName.WindowName

The window resource itself is created through the Resource Browser window as
described in the OPEN INTERFACE User’s Guide.

Default
If you are running your application from the Rules Element development version and
no question window is explicitly specified, the system displays the question in the
session control panel of the Rules Element main window that uses the meta-slot
prompt line attribute or default question to solicit the value of the slot with a list of
choices for string slots.

If, however, you want to run your application using the Rules Element standalone and
no question window is explicitly specified, the system does not have the option to
display the session control panel (since there will be no main window). Consequently,
the user prompt will never be displayed and the system automatically assigns the
value NOTKNOWN to the slot value. Before running a standalone application, assign a
simple window to the question window attribute for every slot that you anticipate may
become evaluated.
Language Reference 1 - 167

Chapter Application Development Features1
Inheritance
Inheritability of the question window attribute is controlled by the inference engine. If
no question window has been specified for the slot, the system will try to inherit the
question window attribute of the slot’s parent class or object.

Related Topics
Methods
Prompt Line Attribute
Meta-Slots
Slots

For complete details about building graphical user interfaces for your Rules Element
application, refer to the Open Interface Element User’s Guide.
1 - 168 Language Reference

RAND Function
RAND Function

Definition
The RAND function is used in expressions to generate a random floating point number.
The expression can appear on the left-hand side or right-hand side of rules and
methods.

Syntax
The function consists of the word RAND followed by an empty pair of parentheses:

RAND()

Arguments
The function takes no arguments.

Result
The function returns a random floating point result generated from a uniform
distribution on the range 0 <= x <= 32767. The floating point number will never have
a decimal part.

Examples
The following examples illustrate the results of the RAND function:

RAND() = 17515.0

RAND() = 542.0

RAND() = 26874.0

Related Topics
Expressions RANDOM Function
Floating Point Constants RANDOMMAX Function
RANDOMSEED Function
Language Reference 1 - 169

Chapter Application Development Features1
RANDOM Function

Definition
The RANDOM function is an alternate way to generate a random floating point number
in expressions. On some platforms (usually UNIX) it is better than RAND due to the
specific machine implementation, while on others it is exactly the same as RAND. The
expression can appear on the left-hand side or right-hand side of rules and methods.

Syntax
The function consists of the word RANDOM followed by an empty pair of parentheses:

RANDOM()

Arguments
The function takes no arguments.

Result
The function returns a random floating point result which does not include a decimal
part. Note that this result is more random than the RAND function on many platforms.
If an argument is given to RANDOMSEED, then the argument is used as the seed for the
random number generator. RANDOMMAX is the maximum value over which the
uniform distribution is distributed. Note that RANDOMMAX is machine dependent
which means that the range of the RANDOM function is machine dependent and thus
applications using it may not behave exactly the same from one hardware platform to
the next. However, the ratio RANDOM() / RANDOMMAX() provides you with a random
generator that is portable across platforms. It returns a floating point value between 0
and 1.

Examples
The following examples illustrate the results of the RANDOM function:

RANDOM() = 5758.0

RANDOM() = 247512.0

Related Topics
Expressions RAND Function
Floating Point Constants RANDOMMAX Function
RANDOMSEED Function
1 - 170 Language Reference

RANDOMMAX Function
RANDOMMAX Function

Definition
The RANDOMMAX function is used to get the upper bound of the RANDOM function. The
function can appear on the left-hand side or right-hand side of rules and methods.

Syntax
The function consists of the word RANDOMMAX without any arguments:

RANDOMMAX()

Arguments
This function takes no arguments.

Result
This function returns the upper bound over which the RANDOM function will generate

uniform random numbers. The upper bound is machine dependent (231-2 on the

Macintosh, 231-1 on the UNIX platforms, and 215-1 on the DOS machines).

Examples
The following examples illustrate the results of the RANDOMMAX function when used on

the Macintosh (it returns the value of 231-2):

RANDOMMAX () = 2147483646

Related Topics
Expressions RAND Function
Floating Point Constants RANDOM Function
RANDOMSEED Function
Language Reference 1 - 171

Chapter Application Development Features1
RANDOMSEED Function

Definition
The RANDOMSEED function is used to give a specific seed to the RANDOM random
number generator. On machines where RANDOM and RAND are identical (typically
non-UNIX), RANDOMSEED will also seed the RAND function. The function can appear
on the left-hand side or right-hand side of rules and methods.

Syntax
The function consists of the word RANDOMSEED followed by the seed within a pair of
parentheses:

RANDOMSEED(x)

Arguments
The function takes an integral argument. The argument can be any slot or interpreted
value which evaluates to an integer.

Result
Giving the RANDOMSEED function a particular value within an application is useful for
generating the same sequence of random numbers for each run of the application. The
function returns the integer argument.

Examples
The following example illustrates the results of the RANDOMSEED function:

RANDOMSEED(12345) = 12345

Related Topics
Expressions RAND Function
Floating Point Constants RANDOM Function
RANDOMMAX Function
1 - 172 Language Reference

Reserved Words
Reserved Words

Definition
A reserved word is a word that is used by the Rules Element for a special purpose (such
as the name of a type, operator, or special value) and is not available for use as an
ordinary identifier. Some reserved words are case sensitive, others are case
insensitive.

The following words are reserved:

AND* InhMethod Retrieve
AskQuestion InhValueDown RunTimeValue
Assign InhValueUp SELF*
Backward INTEGER* SendMessage
BOOLEAN Interrupt Show
CreateObject KNOWN* Strategy
DATE LoadKB STRING
DEFAULT* Member Time
DeleteObject No TRUE*
Execute NoInherit UNKNOWN*
FALSE* NOTKNOWN* UnloadKB
FLOAT NotMember Value*
IfChange* Null* Write

OR Yes

* denotes case insensitive reserved word.

Examples
The following examples show the difference between case sensitive and case
insensitive reserved words:

UNKNOWN reserved (case insensitive)

uNknoWn reserved (case insensitive)

Yes reserved (case sensitive)

YES not reserved (case sensitive)

Related Topics
Identifiers
Expressions
Data Types

Also see the sections on individual operators and functions by name, as listed above.
Language Reference 1 - 173

Chapter Application Development Features1
Reset Operator

Definition
The Reset operator is used in rules and methods to reset a variable to UNKNOWN.

Operands
The Reset operator takes one operand, which may be either a slot or a list of slots
specified by a pattern.

Effects
The designated slot is set to the special value UNKNOWN, denoting a value that has not
yet been determined. If the operand includes a pattern, all slots in the corresponding
list are set to UNKNOWN.

If the slot to be reset is a hypothesis, all rules and the rules left-hand side conditions
pointing to it are reset to the UNKNOWN state as well. The Reset operator is then
applied in turn to any hypotheses occurring in the conditions of these rules,
propagating backward recursively to unlimited depth. Only hypotheses are affected,
however; no other data occurring in the conditions of any rule are reset.

If the designated slot is of any type other than boolean, or does not occur as the
hypothesis of any rule, then only that one slot is reset to UNKNOWN.

The effects of the Reset operator are never propagated forward to other rules and
have no effect on the state of the agenda. If there are any If Change actions, they will
not be fired.

Result
When used in a condition on the left-hand side of a rule, the Reset operator always
produces a TRUE result unless the operand includes a pattern with no matching values,
in which case the result is NOTKNOWN.

Examples
The following are examples of conditions or actions using the Reset operator:

Reset total
Reset customer.name
Reset all_tanks_full
Reset tank_9.full
Reset <Tank>.full

Related Topics
Rules Data Types Agenda
Methods Hypotheses Objects
Conditions Patterns Properties
Actions Forward Chaining
1 - 174 Language Reference

Retrieve Operator
Retrieve Operator

Definition
The Retrieve operator is used in the conditions or actions of rules and methods to
read information from a database or spreadsheet.

Operands
The Retrieve operator takes two operands:
■ The first operand is either a string constant or an interpretation to a string constant

specifying the name of the file containing the database to be queried or the login
name/password for a DBMS.

■ The second operand consists of a series of parameters defining the specific
retrieval operation to be performed.

Parameters
The second operand may include the following parameters:

@TYPE Type of database (creator software and file format)
@BEGIN Command string for opening transaction
@END Command string for closing transaction
@QUERY Command string for querying database
@ARGS Argument list for query command
@ATOMS List of objects or propertiesaaffected
@NAME Correspondence between recordsaand objects
@FIELDS List of field names to retrieve from
@PROPS List of properties to retrieve to
@SLOTS List of slots to retrieve to
@FILL Create new objects
@CREATE Classes or parents to link new objects to
@UNKNOWN Retrieve UNKNOWN values
@FWRD Forward retrieved values
@CURSOR Current position for sequential retrieval

See the Database Integration Guide for further details on the meaning and use of these
parameters.

When entering a Retrieve action in the Rule editor or Method editor, clicking in the
space for the second operand displays the Database editor dialog box for specifying the
retrieval parameters interactively, rather than by explicitly typing them in as listed
above.
Language Reference 1 - 175

Chapter Application Development Features1
Note that data retrieved for a private slot named in @SLOTS is ignored unless the
Retrieve operator appears in a method specifically triggered for the slot. See the
description of Slots for more information about using private slots.

Effect
The requested information is retrieved from the specified database to the Rules
Element knowledge base for further processing.

Result
When used in a condition on the left-hand side of a rule, the Retrieve operator
always produces a TRUE result, even if no records are retrieved satisfying the given
query. The only exception is if an error occurs while attempting to open the database
or transmit the query, in which case the result is FALSE.

Forward Chaining
Actions and conditions in rules and methods involving the Retrieve operator can
forward chain the new value of the slot to other rules in which the slot appears in a
condition (causing the hypotheses of those rules to be placed on the agenda for
consideration). This form of fowward chaining, known as Forward Action-Effects,
isccontrolledffirst by a strategy setting in the Database editor. If the Current option
is checked, the system uses the local strategy currently in effect (determined by the
Strategy operator), unless the Retrieve operator appears in a left-hand side
condition, in which case the Rule Global strategy setting in the Strategy Monitor
window is used.

Data that belongs to a private slot cannot trigger forward chaining since private slot
data cannot appear in the conditions or actions of rules. Only data that belongs to
public slots can trigger forward chaining.

Examples
See the Database Integration Guide for examples of the use of the Retrieve operator.

Related Topics
Rules Properties
Methods Slots
Actions String Constants
Conditions Write Operator
Objects Inference Strategy
Classes Forward Chaining

Also see the Database Integration Guide for more information on database operations.
1 - 176 Language Reference

ROUND Function
ROUND Function

Definition
The ROUND function is used in expressions to find the nearest whole number to a given
floating point number. The expression can appear on the left-hand side or right-hand
side of rules and methods.

Syntax
The function consists of the word ROUND followed by a single argument in
parentheses:

ROUND(x)

Argument
The argument may be any expression yielding a floating point result. The expression
may include patterns or interpretations.

Result
The function returns a floating point result equal to the nearest whole number to the
argument. Notice that although the result is always a whole number, it is of type
FLOAT rather than INTEGER.

If the argument expression does not produce a numerical value, an error message is
posted and the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the ROUND function:

ROUND(3.1416) = 3.0
ROUND(98.6) = 99.0
ROUND(-273.18) = -273.0
ROUND(-9.9) = -10.0

Related Topics
Expressions Patterns
Floating Point Constants Interpretations
Integer Constants CEIL Function
FLOOR Function
Language Reference 1 - 177

Chapter Application Development Features1
Rules

Definition
A rule is the Rules Element’s basic unit of inference and reasoning.

Structure
Every rule consists of the following parts:
■ One or more conditions under which the rule is to be invoked, or fired.
■ Exactly one hypothesis, which is inferred to be true if all of the conditions are

satisfied.
■ Zero or more Then actions to be taken when the conditions are satisfied.
■ Zero or more Else actions to be taken when any condition is not satisfied.

Collectively, the conditions constitute the left-hand side of the rule and the hypothesis
and actions together constitute the right-hand side.

In addition, a rule may optionally have an inference priority or inference slot to control
its order of evaluation relative to other rules leading to the same hypothesis, and a
comment attribute and why attribute to help document its meaning or purpose for the
benefit of the application developer.

Evaluation
The evaluation of a rule may be triggered in either of two ways:
■ By backward chaining, when its hypothesis is suggested as a goal to be investigated.
■ By forward chaining, when a data value named in one of its conditions is

volunteered.

Evaluation proceeds by evaluating each of the conditions on the rule’s left-hand side:
■ If all the conditions are TRUE, the rule’s hypothesis is set to TRUE and all actions

specified on its right-hand side are executed.
■ If any condition is NOTKNOWN, the hypothesis is set to NOTKNOWN.
■ Otherwise, if any condition is FALSE, the hypothesis is set to FALSE.

Conditions and actions are normally executed sequentially, in the order they appear in
the rule definition, but this order may be altered by the inference priorities oriinference
slots of the data involved. Rule evaluation stops as soon as one condition is evaluated
as FALSE. Depending on the strategy options currently in effect, the inferred value of
the hypothesis and the results of any actions taken may be forward-chained, resulting
in other hypotheses being placed on the agenda for consideration. Actions may be
executed whether or not the rule’s conditions are satisfied by specifying separate lists
of actions using the Then and Else lists. If all the conditions are met, the system
executes the Then actions list; otherwise, the system executes the Else actions list.
1 - 178 Language Reference

Rules
Creation
Rules are created interactively via the New and Copy commands in the Rule editor (you
can also create rules by editing the text knowledge base directly). Rules cannot include
tests on private data. Only public slot values may be tested in rule conditions. Private
slots are accessible by methods only.

Deletion
Rules are always deleted interactively, via the Delete command in the Rule editor.

Related Topics
Hypotheses Agenda
Conditions Strategy
Actions Forward Chaining
Slots Backward Chaining
Inference Priority Attribute Semantic Gates
Inference Slot Attribute Comment Attribute
Why Attribute
Language Reference 1 - 179

Chapter Application Development Features1
RunTimeValue Operator

Definition
The RunTimeValue operator is used in Order of Sources methods to define a default
value for a property.

Operand
The RunTimeValue operator takes one operand, which must be one of the following:
■ A constant of the proper type for the property being initialized.
■ The special value NOTKNOWN.

Effect
The value of the operand is assigned as the value of the property to which this Order
of Sources method belongs. This operator is typically used as the last line of the
method, to specify a default value for the property in case all preceding actions fail to
yield a usable value.

Notice the difference between RunTimeValue and the related Initial Value attribute
from the Meta-Slot editor. RunTimeValue specifies a default value to be set
dynamically during inference processing; the Init Value attribute specifies an initial
value to be set at system initialization time. In the case of multiple KBs, always use
RunTimeValue instead of the Init Value attribute because the Init Value attribute
won’t be used when a knowledge base is dynamically loaded.

Examples
The following are examples of actions using the RunTimeValue operator:

RunTimeValue 28
RunTimeValue -273.18
RunTimeValue "SHAZAM!"
RunTimeValue TRUE
RunTimeValue DATE(1981,6,8,21,8,46)
RunTimeValue TIME(8,4,23)
RunTimeValue NOTKNOWN

Related Topics
Objects Methods
Properties Actions
Data Types Init Attribute
Value Order of Sources Method
1 - 180 Language Reference

SECOND Function
SECOND Function

Definition
The SECOND function is used in expressions to extract the seconds field of a date or time.
The expression can appear on the left-hand side or right-hand side of rules and
methods.

Syntax
The function consists of the word SECOND followed by a single argument in
parentheses:

SECOND(d)

Argument
The argument may be any expression yielding a date or time result. The expression
may include patterns or interpretations.

Result
The function returns an integer result equal to the seconds field of the argument. For
date arguments, the result ranges from 0 to 59.

If the argument expression does not produce a date or time value, an error message is
posted and the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the SECOND function:

SECOND(DATE(1492,10,12)) = 0
SECOND(DATE(1981,6,8,21,8,46)) = 46
SECOND(TIME(8,4,23)) = 23
SECOND(TIME(3,6,11,22,34,17)) = 17
SECOND("October 12, 1492") = NOTKNOWN

Related Topics
Expressions DAY Function
DATE Function HOUR uunction
TIME Function MINUTE Function
Patterns WEEKDAY Function
Interpretations YEARDAY Function
YEAR Function NOW Function
MONTH Function
Language Reference 1 - 181

Chapter Application Development Features1
SELF

Definition
The special name SELF is used to refer to the current class or object executing a
method, data validation function, or prompt line attribute.

Syntax
The name SELF is case-insensitive. Typically, it is qualified by a dot (.) and a property
name to refer to a specific slot. All of the following forms are equivalent:

SELF.property_name
Self.property_name
self.property_name
sElF.property_name

It is imoortant to realize that SELF is not usually used to designate an object slot
without a corresponding property name. The only exception is in the case of a
hypothesis slot since the property name VALUE need not be explicitly stated for
hypotheses.

Usage
The name SELF may be used in a Data Validation function, any action occurring in a
method (but not in a rule), or within the @V syntax of the Prompt Line attribute. In a
method associated with a property of a class, it refers to the particular object (instance)
of the class for which the method is being executed.

SELF is instantiated by the value of the current object under evaluation. Since Prompt
Lines, Data Validation attributes, and methods can be inherited down, the child object
inheriting the item instantiates the SELF variable.

If the dynamic quality of the SELF is desired in the @STRING parameter of an execute
routine, the syntax is @SELF.

The SELF keyword must be used when referring to private slots in a method
associated with the slot.

Example
A class named Rectangle might include the following action in an If Change method
associated with property width:

Assign SELF.width * SELF.height SELF.area

If theBox is an instance of class Rectangle whose width property is changed in the
course of inference processing, the If Change method will be executed with SELF
referring to object theBox. The action shown above will then set theBox.area to the
product of theBox.width and theBox.height.

The method action:
1 - 182 Language Reference

SELF
Assign 10 <self>.prop

will set the value of the slot <self>.prop of all children of the current object or class
with the property prop to 10.

Related Topics
Objects Methods
Classes Order of Sources Method
Properties If Change Method
Actions Prompt Line Attribute
Rules Data Validation Attribute
Slots
Language Reference 1 - 183

Chapter Application Development Features1
Semantic Gates

Definition
A semantic gate (also called a strong link) is a connection between the left-hand side
conditions of two inference rules that share the same data.

Creation
Semantic gates are created implicitly by defining rules that share data in the relevant
ways; no special action is required to establish them.

Deletion
Just as semantic gates are not explicitly created, they cannot be explicitly destroyed
except by deleting the rules involved, or by redefining them so as to remove the
relevant data dependencies.

Operation
Each time a data item or pattern is evaluated in the course of inference processing, the
Rules Element searches the knowledge base for other rules whose conditions refer to
that same data. For each such rule, it evaluates the relevant condition and, if TRUE,
places the rule’s hypothesis on the agenda for later consideration. When this
yypothesis oomes to the top of the agenda, its value will be sought by backward
chaining. ootice thattthis can trigger the evaluation of all rules leading to the given
hypothesis, not only those that refer to the original data item.

Data associated with private slots cannot form semantic gates because private slots
cannot appear in rule conditions. Only public slots that appear in rule conditions can
form semantic gates.

Precedence
Hypotheses generated as a result of semantic gates have lower precedence (and
consequently are placed lower on the agenda) than those generated by backward
chaining, but higher than those generated via context (weak) links. When several
hypotheses are placed on the agenda via gates, their precedence is determined
according to the inference priorities of the rules involved.

Strategy
The use of semantic gates is normally enabled by default, but can be disabled if
necessary by changing the global inference strategy. This can be done in either of two
ways:
■ Interactively through the Strategy Monitor window (from the Expert menu), by

turning off the Forward through Gates option.
■ Dynamically during the course of inference processing itself, via the Strategy
1 - 184 Language Reference

Semantic Gates
operator in the conditions or actions of a rule, using the @PTGATES=OFF setting.

During the inferencing process the system first uses the Strategy operator setting to
determine the current strategy, however, it is possible to invoke the Strategy Monitor
window’s Forward through Gates setting from the Strategy operator. This option is
provided by the CURRENT setting in the Strategy operator argument dialog box.

Related Topics
Objects Inference
Properties Agenda
Classes Backward Chaining
Rules Forward Chaining
Conditions Inference Priority Attribute
Actions Inference Slot Attribute
Hypotheses Inference Strategy
Patterns Strategy Operator
Slots Context Links
Language Reference 1 - 185

Chapter Application Development Features1
SendMessage Operator

Definition
The SendMessage operator is used in the conditions and actions of rules and methods
to explicitly trigger user-defined methods and pass arguments that the method uses in
its conditions and actions.

Operands
The SendMessage operator takes two operands:
■ The first operand is a quoted string specifying the name of the method to be

triggered.
■ The second operand requires the name of one or more addressees which will

receive the message to trigger a method. It can be a class, object, slot, or property
name. As an alternative it can also be a pattern match when a list of addresses
belongs to the same class. (The method to trigger need not be attached directly to
the target object since methods can be inherited.)

Interpretations cannot be specified for the addressee using either the @V or
\obj.prop\ notation.

■ Optionally, the second operand can include a series of message passing parameters
specifying the arguments to pass to the method.

Parameters
The second operand may include the following message parameters:

@TO=; Name of addressee(s) to send the message to. Can be a
class, object, slot, or property name. List of addressees
must be separated by commas or the list can be
specified by the desired pattern matching syntax. Or,
can be a pattern match on a class (i.e., <Figures>).

@ARG1=; Corresponds to the first argument to pass to the
addressees, can be a value you supply or a slot name.
(Optional)

. . .
@ARGx=; Corresponds to the last argument to pass to the

addressees, can be a value you supply or a slot name.
(Optional)

The order of the arguments list determines which variable it corresponds to in the
Method’s local argument definition template. The first argument corresponds to the
first row of the Method editor’s Local Arguments component, the second argument
corresponds to the second row of the Method editor’s Local Arguments component,
and so on. See the Message dialog window below for more details about specifying
local arguments.
1 - 186 Language Reference

SendMessage Operator
If a slot name is used an argument to pass, it is usually a public slot. Private slots can
also be used as arguments but have the particular restrictions that they can appear only
in the method attached to the private slot and they can only be passed by value (not by
reference). The SELF keyword must be used to refer to the private slot.

Message Dialog
When entering a SendMessage condition or action in the Rule editor or Method
editor, clicking in the space for the second operand displays a special dialog box for
specifying the addressee(s) and optional message passing parameters interactively,
rather than by explicitly typing in the keywords listed above. The SendMessage dialog
window has the following fields:

Send To This field holds the names of one or more addressees.
A list can be specified by pattern matching syntax or
individual atoms separated by commas. No quotes are
needed; the system inserts them automatically.

Template Atom This menu button is used with the Args table (see
below). It lets you choose a prototype for your
arguments (argument prototypes are defined in the
Method editor Local Arguments area). The displayed
list of possible prototypes is limited to object structures
that have the method named as the first operand
attached.

Args Each row of this table corresponds to a single argument
to pass to the method. The Template Atom selection
helps you to identify the order that the defining atom
expects the arguments. Click in a row and the system
displays the argument parameters (Name, Type, and
Nature) from the Method editor’s argument template
Language Reference 1 - 187

Chapter Application Development Features1
in the Help box. .

Send To list must be able to use the same argument prototype (specified by the
Template Atom field). Sending messages to addressees with local arguments that are
defined differently requires separate SendMessage operators. If arguments that are
passed during application processing do not match types, the system writes an error
message to the Transcript window and automatically sets a condition with the
SendMessage operator to FALSE. If more arguments are passed to the method’s local
variables than needed, the extra arguments are ignored. If desired, passing arguments
to local variables can be avoided by defining an initial value in the Method editor for
each local variable used by that method.

Effect
The method named as the first operand is triggered for the list of addressees specified
by the second operand. If no method is specified at the level of an addressee, a
substitute method of the same name will be sought by downward inheritance from an
including class or parent object as directed by the inheritance strategy currently in
effect. If the message is sent to a slot, the system can also try to trigger the method
attached to the property of the slot, or to the property of the same name (a property
that exists independent of an object or class)

The application developer can resolve inheritance conflicts between two parent slots
by assigning inheritance priorities to the slots or through the InhMethod operator to
explicitly nameaan inheritance path. If no conflict resolution is specified, the method
is chosen by default based on the alphabetic order of the parent names.
1 - 188 Language Reference

SendMessage Operator
The method that is successfully triggered is treated by the system as a “user-defined”
method whether it was originally created as a user-defined method or as a system
method (Order of Sources or If Change). In the default strategy case, the system
executes the list of Then or Else actions, depending on the evaluation status of the
method left-hand side, from top to bottom until the value of the slot is found.
Changing the local or global Order of Sources strategy to ON/CONTINUE will force
the system to execute all the actions in the list even after the value of the slot is found.

The triggered method may receive data to be used as local arguments in its list of
conditions and actions. The SendMessage operator specifies the data, and the
triggered method processes the data according to a template that defines its usage.
Data passed to the object receiving the message can be passed by reference or by value
as defined in the Local Arguments component of the Method editor.

When the data is a slot value “passed by reference,” the method’s actions list can alter
the value of the slot that contains the data and may produce forward chaining action
effects and trigger any If Change method attached to the slot. Public slots can be
passed by reference but private slots cannot (private slots value are accessible only
locally by the method). When data is “passed by value,” the value is used by the
method locally and has no side-effects on processing. Both private and public slots can
be passed by value. If a slot name is specified as an argument but no initial value
appears in the Meta-Slot editor, the system will use the default value specified in the
Method editor arguments template.

The Nature field of the Local Arguments component in the Method editor lets you
specify how the argument is passed to the named method: select the SlotRef popup
menu option when you want the slot value to be passed to the method by reference
(thus allowing the method to modify the named slot), or select the Slot popup menu
option when you want the slot value to be passed to the method by value (thus
preventing named slot from being modified outside of the method). Note: If the
argument passed is an object or class name, it is always passed by Reference (never by
Value). For more information about the Method editor, refer to the User’s Guide.

Result
When the SendMessage operator is used in a condition on the left-hand side of a rule
or method, the result produced by the operator is TRUE if the message is successfully
bound to the method, FALSE if the named method does not exist at the level of the
addressee or at its parent object level or if arguments passed during application
processing do not match the types specified for the method’s local variables.

Examples
The following are examples of actions using the SendMessage operator:

SendMessage “Init” @To=<|Figures|>

SendMessage “Rotate” @To=<|Figures|>, @Arg1=90

SendMessage “ComputeArea” @To=Circle
Language Reference 1 - 189

Chapter Application Development Features1
SendMessage “ComputeArea” @To=circle1, @Arg1=circle1.radius

SendMessage“ Close” @To=valve1, valve2, valve3

It is not legal to use interpretations in the arguments list of the SendMessage operator.

Refer to the User’s Guide for information about implementing the method and its local
arguments.

Related Topics
Objects Methods
Properties InhMethod Operator
Conditions Inheritance Priority
Actions Inheritance Strategy
Rules Pattern Matching
Slots
1 - 190 Language Reference

Show Operator
Show Operator

Definition
The Show operator is used in rules and methods to display the contents of an
information file on the screen for the benefit of the user. It has the same functionality
as the Apropos command from the Rules Element’s pop-up menus.

Operands
The Show operator takes one or two operands:
■ The first operand is a string constant or an interpretation evaluating to a string

constant (using the @v(object.prop) syntax) specifying the name of the file
containing the information to be displayed. It must be between double quotes.

■ The optional second operand consists of a series of display parameters controlling
the display of the information.

File formats
The file-name extension indicates the type of information the file contains and the form
in which it is encoded. You are not required to specify the extension since the Rules
Element recognizes the type by reading the file. The following file formats are
recognized:

.nbm Rules Element bitmap file on Unix or VMS (was .bmap)

.bm X Windows bitmap file (was .x)

.bmp PC bitmap file

.gif Giff format file

.mcp MacPaint file

.txt ASCII text file
Additional formats supported on the Macintosh include PICT (drawing, eg. MacDraw)
and PICT2.

Of these file types, all but the PC bitmap file (.bmp) are portable across platforms. You
can use the Rules Element-provided converter utility when porting to another
platform, as described in your Installation Guide.

If the file name has no extension, the Rules Element will try all possible extensions.
This allows the same knowledge base to run easily on different platforms. To convert
to a non-graphic terminal, for example, you can simply replace your graphics files with
text files (.txt) without modifying the knowledge base itself.

You can specify a list of directory names which will be searched automatically for the
designated information files if the full pathname is not given by:
■ Using the SearchPaths string resource on the Macintosh
Language Reference 1 - 191

Chapter Application Development Features1
■ Setting the ND_DATA environment variable under Unix, VMS, and PCs.

Parameters
The second operand may include the following display parameters:

@KEEP=TRUE; Display information in a new window and keep it until
the next show or the user explicitly closes it.

@KEEP=FALSE; Use same window as previous Show operation
@WAIT=TRUE; Display Continue and Close buttons; wait for mouse

click before continuing
@WAIT=FALSE; No Continue button; just display information and

continue processing
@RECT=left,top; Specify window’s location
@RECT=left,top,width,height;

Specify window’s location and size

Show Dialog

When entering a Show condition or action in the Rule editor or Method editor, clicking
in the space for the second operand displays a special dialog box for specifying the
display parameters interactively, rather than by explicitly typing in the keywords
listed above:

Effect
The information contained in the file named as the first operand is displayed in a
window on the screen, subject to the display options specified by the second operand.
1 - 192 Language Reference

Show Operator
Result
When used in a condition on the left-hand side of a rule or method, the Show operator
always produces a TRUE result, even if no information file exists with the specified
name.

Note: The Show operator can be customized by installing an
APROPOS handler with the Rules Element application
programming interface. The Rules Element will use the
user-defined function instead of the default behavior described
above.

Examples
The following are examples of actions using the Show operator:

Show "Diagnostic1"
Show "Diagnostic1.mcp"
Show "Diagnostic1.txt"
Show "Diagnostic1" @KEEP=FALSE;@WAIT=TRUE;
Show "Diagnostic1"@ KEEP=TRUE;@WAIT=TRUE;@RECT=100,150;
Show "@v(obj.prop)" @KEEP=TRUE;@WAIT=FALSE;@RECT=100,150,275,140;

Related Topics
Rules Actions
Methods Apropos handler of API
Conditions
Language Reference 1 - 193

Chapter Application Development Features1
SIGN Function

Definition
The SIGN function is used in expressions to find the sign of a number. The expression
can appear on the left-hand side or right-hand side of rules and methods.

Syntax
The function consists of the word SIGN followed by a single argument in parentheses:

SIGN(x)

Argument
The argument may be any expression yielding a numerical result. The expression may
include patterns or interpretations.

Result
The function returns an integer result equal to the sign of the argument:
■ If the argument is positive, the function result is 1.
■ If the argument is zero, the function result is 0.
■ If the argument is negative, the function result is -1.

If the argument expression does not produce a numerical value, an error message is
posted and the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the SIGN function:

SIGN(28) = 1
SIGN(-5) = -1
SIGN(98.6) = 1
SIGN(-273.18) = -1
SIGN(0) = 0

Related Topics
Expressions Patterns
Floating Point Constants Interpretations
Integer Constants
1 - 194 Language Reference

SIN Function
SIN Function

Definition
The SIN function is used in expressions to find the sine of a floating point number. The
expression can appear on the left-hand side or right-hand side of rules and methods.

Syntax
The function consists of the word SIN followed by a single argument in parentheses:

SIN(x)

Argument
The argument may be any expression yielding a numerical result. The expression may
include patterns or interpretations.

If the value of the argument expression is an integer, it will be converted to an
equivalent floating point value.

Result
The function returns a floating point result equal to the sine of the argument. The
argument is assumed to be expressed in radians.

If the argument expression does not produce a numerical value, an error message is
posted and the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the SIN function:

SIN(0.0) = 0.0
SIN(3.14 / 6) = 0.5
SIN(3.14 / 2) = 1.0
SIN(3.14) = 0.0
SIN(-3.14 / 2) = -1.0

Related Topics
Expressions Interpretations
Floating Point Constants COS Function
Integer Constants TAN Function
Patterns ASIN Function
Language Reference 1 - 195

Chapter Application Development Features1
SINH Function

Definition
The SINH function is used in expressions to find the hyperbolic sine of a floating point
number. The expression can appear on the left-hand side or right-hand side of rules
and methods.

Syntax
The function consists of the word SINH followed by a single argument in parentheses:

SINH(x)

Argument
The argument may be any expression yielding a numerical result. The expression may
include patterns or interpretations.

If the value of the argument expression is an integer, it will be converted to an
equivalent floating point value.

Result
The function returns a floating point result equal to the hyperbolic sine of the
argument.

If the argument expression does not produce a numerical value, an error message is
posted and the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the SINH function:

SINH(0.0) = 0.0
SINH(0.5) = 0.52
SINH(-0.5) = -0.52
SINH(1.0) = 1.17
SINH(-1.0) = -1.17

Related Topics
Expressions Interpretations
Floating Point Constants COSH Function
Integer Constants TANH Function
Patterns
1 - 196 Language Reference

Slots
Slots

Definition
A slot is the constructed unit in the Rules Element which stores a data value for objects
or classes. It is the fundamental unit upon which rules and methods act to evaluate
conditions or perform actions. The usage of slots depends upon whether the slot is
defined as public or private.

Structure
For each property associated with a particular object or class name, the Rules Element
constructs a slot. This construction is denoted by appending the name of the property
to the name of the object or class, separated by a period (.):

object_name.property_name or class_name.property_name

Because the property associated with the object or class defines the data type, the slot
data value belongs to one of the six elementary data type (integer, floating point,
boolean, string, date, or time). If data encapsulation is required, the slot can be defined
to be private to the object. Unless specified, slots are created as public and data
protection is not provided. Property names associated with a particular object or class
must be unique whether the slot is defined as public or private.

Scope
Unlike properties, the slot is local to a particular object or class. Initially all slots,
regardless of its data type, have the value UNKNOWN. During knowledge processing the
Rules Element tries to determine the data value of a slot when it is needed to evaluate
a rule or method condition. In most cases the slot will be public. If data protection is
desired, the application developer may decide to use a private slot to store the data
value. While public slot values are accessible globally by any rule or method, private
slot values are accessible only locally through a method associated with the class,
object, or property named by the slot.

Private slots, together with methods, let application developers enforce object
encapsulation when particular functionality and objects should be hidden. The
developer can be sure that no part of their application will modify the stored value
other than the object’s associated method. On the other hand, a private slot value set
by the action of a method has no consequence on rule processing. The resulting data
value will not produce forward chaining of any kind (either through semantic gates or
forward action effects) because the private slot cannot be used in rules. To ensure data
protection is maintained for private slots the following behavior is enforced:
■ Private slots cannot appear in the conditions and actions or rules.
■ Private slots are ignored in pattern matching conditions.
■ Methods attached to a private slot can only be triggered from another method.
Language Reference 1 - 197

Chapter Application Development Features1
■ Interpretations on a private slot are only valid in the method associated with the
object, class, or property named by the slot and the SELF keyword must be used.

Public slots, in contrast to private slots, are the fundamental unit upon which rule test
conditions act. The Rules Element tries to determine a value for a public slot through
a variety of means defined by the system default Order of Sources strategy. Also,
public slots can be used without restriction in method conditions and actions where
they can have consequences on rule processing (through semantic gates and forward
action affects).

Private and public slots have the same value and property inheritance behavior. It is
legal to inherit up and down from a private slot. It is also legal to inherit into a private
slot. Inheritance of slots is controlled by inheritability strategies.

Creation
Slots can be created in either of two ways:
■ Implicitly, by using a previously undefined slot name in a condition or action in

the Rule, Object, Class or Method editor.
■ Interactively, by adding previously created property names to the list that appears

in the Class or Object editor.

By default slots are created as globally accessible (public) and data protection is not
provided. A private slot is created by setting the Private attribute in the Meta-Slot
editor. Slots created from properties inherited from a parent class or object which are
private will also be private in the child.

Deletion
Slots are destroyed by removing property names from the Class or Object editor list of
associated properties.

Access
How a slot’s current value is obtained depends upon whether the slot is private or
public.

A private slot’s data value is always obtained by a method associated with the slot (or
its class, object, or property). The method is triggered through the use of the
SendMessage operator in the conditions or actions of another method. The method
used to determine a private slot’s value cannot never be triggered from a rule since it
is not legal to specify private slot names in rule conditions and actions. Also, the
private slot name cannot appear directly in the conditions or actions of a method. It is
only legal to refer to the private slot name using the SELF operator in the conditions or
actions of the method associated with the slot. The construction
SELF.property_name allows an inherited method to properly access a private slot
used in the method’s conditions or actions. Use of the actual private slot name is not
legal even in the method and will produce an error message during compilation.
1 - 198 Language Reference

Slots
A public slot’s data value is obtained by the standard Order of Sources method defined
by the Rules Element (see Order of Sources Method).

Related Topics
Patterns Methods
Forward Chaining Meta-Slots
Interpretations SELF
Inference SendMessage Operator
Inheritance If Change Method
Rules Order of Sources Method
Language Reference 1 - 199

Chapter Application Development Features1
SQRT Function

Definition
The SQRT function is used in expressions to find the square root of a floating point
number. The expression can appear on the left-hand side or right-hand side of rules
and methods.

Syntax
The function consists of the word SQRT followed by a single argument in parentheses:

SQRT(x)

Argument
The argument may be any expression yielding a numerical result greater than or equal
to 0.0. The expression may include patterns or interpretations.

If the value of the argument expression is an integer, it will be converted to an
equivalent floating point value.

Result
The function returns a floating point result equal to the square root of the argument.

If the argument expression does not produce a numerical value, an error message is
posted and the functionrresult is NOTKNOWN.

Examples
The following examples illustrate the results of the SQRT function:

SQRT(0.0) = 0.0
SQRT(0.5) = 0.71
SQRT(1.0) = 1.0
SQRT(2) = 1.41
SQRT(2.0) = 1.41
SQRT(4) = 2.0

Related Topics
Expressions Patterns
Floating Point Constants Interpretations
Integer Constants
1 - 200 Language Reference

STDEV Function
STDEV Function

Definition
The STDEV function is used in expressions to find the standard deviation of a set of
numerical values. The expression can appear on the left-hand side or right-hand side
of rules and methods.

Syntax
The function consists of the word STDEV followed by any number of arguments in
parentheses:

STDEV(x1,x2,...,xn)

Arguments
Each argument may be any expression yielding a numerical or time-valued result.
There may be either a list of arguments or a pattern matching list.

If some of the argument values are integers and some floating point, the integers will
be converted to equivalent floating point values before computation.

Result
The function returns a floating point result equal to the standard deviation of all the
argument values (the square root of the sum of the squares of the differences of the
values from the mean divided by the number of values). For arguments that include
patterns, it uses all values in the corresponding list.

If any argument is of a non-numeric type, an error message is posted and the function
result is NOTKNOWN.

Examples
The following examples illustrate the results of the STDEV function:

STDEV(365,240,577) = 139.09
STDEV(98.6,37.0,-273.18) = 162.69
STDEV(12,11.7) = 0.15
STDEV(TIME(8,4,23),TIME(3,6,11)) = NOTKNOWN
STDEV(123,"456") = NOTKNOWN

If class Tank has four instances with capacity values of 6.3, 14.5, 12.9, and 9.0,
then

STDEV(<Tank>.capacity) = 3.22

Related Topics
Expressions Interpretations
Data Types AVERAGE Function
Patterns VAR Function
Language Reference 1 - 201

Chapter Application Development Features1
Strategy

Definition
Strategy options determine various aspects of the Rules Element’s behavior under the
control of the application developer or of the inference process itself.

Variations
Strategy options include three general varieties:
■ Inference strategy controls the operation of the Rules Element’s inference

processing and the propagation of results from one inference rule or method to
another rule.

■ Inheritability strategy controls the inheritability of properties and their values
from one object or class to another.

■ Inheritance strategy controls the order in which an object’s classes and parent
objects are searched for the inherited values of its properties. If the same property
can be inherited from more than one source, the strategy determines which source
will actually be used.

See the sections “Inference Strategy,” “Inheritability Strategy,” and “Inheritance
Strategy” for further information.

Control
Strategy options can be set either interactively, with the Strategy Monitor window
(from the Expert menu), or dynamically in the course of inference processing itself, via
the Strategy operator in the conditions or actions of a rule or method.

Related Topics
Rules Inference Strategy
Methods Inheritance Strategy
Actions Inheritability Strategy
Inference Strategy Operator
Inheritance
1 - 202 Language Reference

Strategy Operator
Strategy Operator

Definition
The Strategy operator is used in the conditions or actions of a rule or method to
control or modify the system’s global strategy settings.

Operands
The Strategy operator takes a single operand, which consists of a series of individual
strategy options of the forms

@option=TRUE;

@option=FALSE;

Notice that the closing semicolon (;) is required, even for the last option in the list.

Parameters
The following strategy options are recognized:

Inference

@PWTRUE Forward confirmed hypotheses (“Propagate when
TRUE”).

@PWFALSE Forward rejected hypotheses (“Propagate when
FALSE”).

@PWNOTKNOWN Forward NOTKNOWN hypotheses (“Propagate when
NOTKNOWN”).

@PFACTIONS Forward Action-Effects for rules (“Propagate forward
actions”). Specifically controls the rule left-hand side
and right-hand side Then part.

@PFEACTIONS Forward Action-Effects for rules (“Propagate forward
actions”). Controls only the rule right-hand side Else
part.

@PFMACTIONS Forward Action-Effects for methods (“Propagate
forward actions”). Specifically controls the method
left-hand side and right-hand side Then part.

@PFMEACTIONS Forward Action-Effects for methods (“Propagate
forward actions”). Controls only the method
right-hand side Else part.

@PTGATES Forward through gates (“Propagate through gates”).
@EXHBWRD Exhaustive evaluation (“Exhaustive backward”).
@SOURCESON Automatically trigger Order of Sources methods when

value is needed.
@CACTIONSON Automatically trigger If Change methods when value

changes.
Language Reference 1 - 203

Chapter Application Development Features1
@VALIDUSER Enable validation of input solicited from the user
before input is accepted for inferencing.

@VALIDENGINE Enable validation of input given by the system before
input is accepted for inferencing (for example, from an
Assign, Execute, or Retrieve).

Inheritability

@INHCLASSDOWN Inherit class properties downward
@INHCLASSUP Inherit class properties upward
@INHOBJDOWN Inherit object properties downward
@INHOBJUP Inherit object properties upward
@INHVALDOWN Inherit property values downward
@INHVALUP Inherit property values upward

Inheritance

@INHPARENT Inherit object-first
@INHBREADTH Inherit breadth-first

See the Inference Strategy, Inheritance Strategy, and Inheritability Strategy topics for
further details on the meanings and effects of individual options.

Strategy Arguments Dialog
When entering a Strategy action in the Rule editor or Method editor, clicking in the
space for the first operand displays an arguments dialog box for specifying the strategy
arguments interactively, rather than by explicitly typing in the keywords listed above.
The inference strategies shown in the dialog box have the following options that you
can select:

ON Enables the strategy until the next local strategy
changes the setting.

OFF Disables the strategy until the next local strategy
changes the setting.

CURRENT Invokes the corresponding Strategy Monitor window
setting (on the Expert menu) until the next local
strategy changes the setting.

GLOBAL This option is used to synchronize control of the
individual Forward Action Effects strategies
(@PFEACTIONS, @PFMACTIONS, and @PFMEACTIONS)
with the setting of “Rule Global Forward
Action-Effects” (@PFACTIONS) that appears in the
Strategy Monitor window. For instance, you can
selectively enable or disable Else actions from a rule, or
you can select the GLOBAL option so the strategy
behaves exactly as the rule Then actions setting.
1 - 204 Language Reference

Strategy Operator
In addition to the local strategy options described here, the strategic behavior of
individual rules can be controlled by using certain special values for their inference
priorities. See the Inference Priority Attribute topic for details.

Effect
The designated global strategy settings are enabled or disabled, as specified. Options
not explicitly modified by changing the setting CURRENT, remain unchanged from
their previous global settings.

Examples
The following are examples of actions using the Strategy operator:

Strategy @PWTRUE=TRUE;@PWFALSE=TRUE;@PWNOTKNOWN=FALSE;

Strategy @INHPARENT=FALSE;@INHBREADTH=TRUE;

Strategy @INHOBJDOWN=TRUE;

Related Topics
Rules Inference Strategy
Methods Inheritance Strategy
Actions Inheritability Strategy
Inference NXP_Strategy call from API
Inheritance
Language Reference 1 - 205

Chapter Application Development Features1
STRCAT Function

Definition
The STRCAT function is used in expressions to concatenate two character strings. The
expression can appear on the left-hand side or right-hand side of rules and methods.

Syntax
The function consists of the word STRCAT followed by two arguments in parentheses:

STRCAT(s1,s2)

Arguments
Each argument may be any expression yielding a string result. The expressions may
include patterns or interpretations.

Result
The function returns a string result equal to the concatenation of the two argument
strings.

If either argument expression does not produce a string value, an error message is
posted and the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the STRCAT function:

STRCAT("flap","doodle") = "flapdoodle"
STRCAT("flap","") = "flap"
STRCAT("","doodle") = "doodle"
STRCAT("","") = ""
STRCAT("flap",s) = "flapdoodle" if s="doodle"
STRCAT("red_",STRCAT("flap","doodle") = "red_flapdoodle"

Related Topics
Expressions STRLEN Function
String Constants SUBSTRING Function
Patterns STRFIND Function
Interpretations STRUPPER Function
STRLOWER Function
1 - 206 Language Reference

STRFIND Function
STRFIND Function

Definition
The STRFIND function is used in expressions to search a character string for another
character string. The expression can appear on the left-hand side or right-hand side of
rules and methods.

Syntax
The function consists of the word STRFIND followed by two arguments in
parentheses:

STRFIND(s1,s2)

Arguments
Each argument may be any expression yielding a string result:
■ The first argument (s1) is the string to be searched.
■ The second argument (s2) specifies the string to search for.

The argument expressions may include patterns or interpretations.

Result
The function returns an integer result equal to the offset from the beginning of the first
argument string (s1) to the first occurrence of the second string (s2). The search is case
sensitive, therefore corresponding uppercase and lowercase letters (such as A and a)
are considered different for purposes of the search. An offset of 0 denotes the first
character in string s1 (no offset at all from the start of the string). If s1 does not contain
s2, the function result is -1. If either argument expression does not produce a string
value, an error message is posted and the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the STRFIND function:

STRFIND("SHAZAM!","SHA") = 0
STRFIND("SHAZAM!","A") = 2
STRFIND("SHAZAM!","ZAM") = 3
STRFIND("SHAZAM!","ZAMS") = -1
STRFIND("SHAZAM!","ZaM") = -1
STRFIND("SHAZAM!","") = 0
STRFIND("","SHAZAM!") = -1

Related Topics
Expressions SUBSTRING Function STRUPPER Function
String Constants STRLEN Function STRLOWER Function
Patterns STRCAT Function Interpretations
CHARFIND Function
Language Reference 1 - 207

Chapter Application Development Features1
String Constants

Definition
A string constant is a sequence of text characters used directly as a data value in a Rules
Element rule or method, or as a property of an object.

Syntax
A string constant consists of any sequence of characters enclosed in double quotation
marks (" . . . "). To include the double quote character itself within a string,
precede it with a backslash (\). The backslash is merely a syntactic marker, and will
not be included in the string; any backslash not followed immediately by a quote
character is considered to stand for itself and will be included in the string.

Note: in many places where arguments must be string constants, you can include an
interpreted slot with the syntax @v(slot).

Examples
The following are valid string constants:

"e"
"SHAZAM!"
"Jack and Jill went up the hill"
"Press \"Return\" to continue"
"Either\Or"
"%?*!!*"
"1789"
""

The last example denotes the empty string, which contains no characters at all. Notice
that the string 1789 is merely a sequence of characters, and is not the same as the
integer 1789.

The following are not valid string constants:

Related Topics
Objects STRLEN Function
Properties STRCAT Function
Rules SUBSTRING Function
Data Types STRFIND Function
Integer Constants STRUPPER Function
String Formats STRLOWER Function

SHAZAM! Not enclosed in quotes.
"Either\Or Quotes not balanced.
" Quotes not balanced.
"Press "Return" to continue" Quotes not backslashed.
1 - 208 Language Reference

String Formats
String Formats

Definition
A string format specifies the representation of a string value for input and output
purposes.

Syntax
This section defines the syntax of format elements for string-valued properties only.
See the section titled “Formats” for the syntax of formats in general.

The following special character is meaningful in string formats:

s Placeholder for value of string

Like all formats, those for string values may include strings of literal characters
enclosed in double quotation marks (" . . . "), and may also include the wild-card
character (*). Format elements beginning with an exclamation point (!) are ignored in
database transactions; they are meaningful only for direct interaction with the user via
the screen and keyboard.

Input
On input, each element in the format list is tried in order until one of them matches the
input text. If no match is found, the input is rejected and an error message is displayed
on the screen. The following conventions apply:
■ Strings of literal characters enclosed in double quotation marks must match

exactly, except that no distinctioniis made between uppercase and lowercase
letters.

■ The wild-card character (*) matches any sequence of zero or more characters.
■ The letter s in the format specification also matches any sequence of zero or more

characters, and in addition assigns these characters as the value of the string slot
being read.

Output
On output, only the first element in the format list is used (except if preceded by an !):
■ Strings of literal characters enclosed in double quotation marks are reproduced

exactly in the output.
■ The letter s in the format specification is replaced in the output by the value of the

string slot being written.
■ The wild-card character (*) is ignored on output.

Default
The default system format for strings is defined in the ckbres.format module in the
file nxrun.dat. The standard default format is simply:
Language Reference 1 - 209

Chapter Application Development Features1
s

If necessary, the ckbres.format module in the file nxrun.dat can be modified to
substitute another default format instead.

Example
The following example illustrates the use of string formats:

Example 1 Format: "Color is "s;s;@N="Color is undefined"

Example 2 Format: !"Color is "s;s

Example 3 Format: *" is "s;s

Related Topics
Formats
Format Attribute
String Constants

Value Output Comments
"red" Color is red Uses first element
NOTKNOWN Color is undefined Uses last (@N=) element

Input Value Comments
Color is
blue

"blue" Matches first element

Color Is
Blue

"Blue" Match is case-insensitive

green "green" Matches second element
NOTKNOWN NOTKNOWN Reserved word
Color is
undefined

 NOTKNOWN Matches last (@N=) ele-
ment

undefined "undefined" Matches second element

Value Output on Screen Output in Database
"red" Color is red red

Value Input Comments
red "The color of this car is red" "The color of this car" is

matched by *
1 - 210 Language Reference

STRLEN Function
STRLEN Function

Definition
The STRLEN function is used in expressions to find the length of a character string. The
expression can appear on the left-hand side or right-hand side of rules and methods.

Syntax
The function consists of the word STRLEN followed by a single argument in
parentheses:

STRLEN(s)

Argument
The argument may be any expression yielding a string result. The expression may
include patterns or interpretations.

Result
The function returns an integer result equal to the number of characters in the
argument string.

If the argument expression do not produce a string value, an error message is posted
and the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the STRLEN function:

STRLEN("a") = 1
STRLEN("SHAZAM!") = 7
STRLEN("1492") = 4
STRLEN("") = 0

Related Topics
Expressions STRCAT Function
String Constants SUBSTRING Function
Patterns STRFIND Function
Interpretations STRUPPER Function
STRLOWER Function
Language Reference 1 - 211

Chapter Application Development Features1
STRLOWER Function

Definition
The STRLOWER function is used in expressions to convert a character string to
lowercase. The expression can appear on the left-hand side or right-hand side of rules
and methods.

Syntax
The function consists of the word STRLOWER followed by a single argument in
parentheses:

STRLOWER(s)

Argument
The argument may be any expression yielding a string result. The expression may
include patterns or interpretations.

Result
The function returns a string result equivalent to the argument string with all letters
converted to lowercase. Nonalphabetic characters are unaffected.

If the argument expression does not produce a string value, an error message is posted
and the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the STRLOWER function:

STRLOWER("SHAZAM!") = "shazam!"
STRLOWER("ShaZam!") = "shazam!"
STRLOWER("shazam!") = "shazam!"
STRLOWER("23 SKIDOO") = "23 skiooo"
STRLOWER("") = ""

Related Topics
Expressions STRUPPER Function
String Constants STRLEN Function
Patterns STRCAT Function
Interpretations SUBSTRING Function
STRFIND Function
1 - 212 Language Reference

STRUPPER Function
STRUPPER Function

Definition
The STRUPPER function is used in expressions to convert a character string to
uppercase. The expression can appear on the left-hand side or right-hand side of rules
and methods.

Syntax
The function consists of the word STRUPPER followed by a single argument in
parentheses:

STRUPPER(s)

Argument
The argument may be any expression yielding a string result. The expression may
include patterns or interpretations.

Result
The function returns a string result equivalent to the argument string with all letters
converted to uppercase. Nonalphabetic characters are unaffected.

If the argument expression does not produce a string value, an error message is posted
and the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the STRUPPER function:

STRUPPER("shazam!") = "SHAZAM!"
STRUPPER("ShaZam!") = "SHAZAM!"
STRUPPER("SHAZAM!") = "SHAZAM!"
STRUPPER("23 skidoo") = "23 SKIDOO"
STRUPPER("") = ""

Related Topics
Expressions STRLOWER Function
String Constants STRLEN Function
Patterns STRCAT Function
Interpretations SUBSTRING Function
STRFIND Function
Language Reference 1 - 213

Chapter Application Development Features1
STR2BOOL Function

Definition
The STR2BOOL function is used in expressions to convert a character string to the
boolean value it represents. The expression can appear on the left-hand side or
right-hand side of rules and methods.

Syntax
The function consists of the word STR2BOOL followed by one or two arguments in
parentheses:

STR2BOOL(s)
STR2BOOL(s,f)

Argument
Each argument may be any expression yielding a string result:
■ The first argument (s) is the string to be converted.
■ The optional second argument (f) is a string specifying the format by which the

first argument is to be interpreted. See “Boolean Formats” for the syntax and
meaning of this string.

The argument expressions may include patterns or interpretations.

Result
The function returns a boolean result equal to the boolean value represented by string
s, interpreted according to format f. If no format argument is given, the default
system format for booleans (defined in the ckbres.format module in the file
nxrun.dat) is used.

If the string s cannot be interpreted as a boolean value under the given format, the
function result is NOTKNOWN.

Examples
The following examples illustrate the results of the STR2BOOL function:

STR2BOOL("FALSE") = FALSE
STR2BOOL("Nope","Yup;Nope") = FALSE
STR2BOOL("FALSE","Yup;Nope") = NOTKNOWN
STR2BOOL("MAYBE") = NOTKNOWN
STR2BOOL("") = NOTKNOWN

Related Topics
Expressions Patterns
String Constants Interpretations
Boolean Constants BOOL2STR Function
Boolean Formats
1 - 214 Language Reference

STR2DATE Function
STR2DATE Function

Definition
The STR2DATE function is used in expressions to convert a character string to the date
value it represents. The expression can appear on the left-hand side or right-hand side
of rules and methods.

Syntax
The function consists of the word STR2DATE followed by one or two arguments in
parentheses:

STR2DATE(s)
STR2DATE(s,f)

Argument
Each argument may be any expression yielding a string result:
■ The first argument (s) is the string to be converted.
■ The optional second argument (f) is a string specifying the format by which the

first argument is to be interpreted. See “Date Formats” for the syntax and meaning
of this string.

The argument expressions may include patterns or interpretations.

Result
The function returns a date result equal to the date represented by string s, interpreted
according to formatff. If no format argument is given, the default system format for
dates (defined in the ckbres.format module in the file nxrun.dat) is used.

If the string s cannot be interpreted as a date under the given format, the function
result is NOTKNOWN.

Examples
The following examples illustrate the results of the STR2DATE function:

STR2DATE("jun 16 1904") = DATE(1904,6,16)
STR2DATE("6/16/04","m/d/yy") = DATE(1904,6,16)
STR2DATE("Bloomsday") = NOTKNOWN
STR2DATE("") = NOTKNOWN

Related Topics
Expressions Date Formats
String Constants Patterns
DATE Function Interpretations
TIME Function DATE2STR Function
Language Reference 1 - 215

Chapter Application Development Features1
STR2FLOAT Function

Definition
The STR2FLOAT function is used in expressions to convert a character string to the
floating point value it represents. The expression can appear on the left-hand side or
right-hand side of rules and methods.

Syntax
The function consists of the word STR2FLOAT followed by one or two arguments in
parentheses:

STR2FLOAT(s)
STR2FLOAT(s,f)

Argument
Each argument may be any expression yielding a string result:
■ The first argument (s) is the string to be converted.
■ The optional second argument (f) is a string specifying the format by which the

first argument is to be interpreted. See “Floating Point Formats” for the syntax and
meaning of this string.

The argument expressions may include patterns or interpretations.

Result
The function returns a floating point result equal to the numeric value represented by
string s, interpreted according to format f. If no format argument is given, the default
system format for floating point numbers (defined in the ckbres.format module
in the file nxrun.dat) is used.

If the string s cannot be interpreted as a floating point value under the given format,
the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the STR2FLOAT function:

STR2FLOAT("98.6") = 98.6
STR2FLOAT("-273.18") = -273.18
STR2FLOAT("98.6 degrees","0.0*") = 98.6
STR2FLOAT("1,234.5","k,u.0") = 1234.5
STR2FLOAT("degrees","0.0*") = NOTKNOWN
STR2FLOAT("") = NOTKNOWN
1 - 216 Language Reference

STR2FLOAT Function
Related Topics
Expressions Patterns
String Constants Interpretations
Floating Point Constants FLOAT2STR Function
Floating Point Formats
Language Reference 1 - 217

Chapter Application Development Features1
STR2INT Function

Definition
The STR2INT function is used in expressions to convert a character string to the
integer value it represents. The expression can appear on the left-hand side or
right-hand side of rules and methods.

Syntax
The function consists of the word STR2INT followed by one or two arguments in
parentheses:

STR2INT(s)
STR2INT(s,f)

Argument
Each argument may be any expression yielding a string result:
■ The first argument (s) is the string to be converted.
■ The optional second argument (f) is a string specifying the format by which the

first argument is to be interpreted. See “Integer Formats” for the syntax and
meaning of this string.

The argument expressions may include patterns or interpretations.

Result
The function returns an integer result equal to the numeric value represented by string
s, interpreted according to format f. If no format argument is given, the default
system format for integers (defined in the ckbres.format module in the file
nxrun.dat) is used.

If the string s cannot be interpreted as an integer value under the given format, the
function result is NOTKNOWN.

Examples
The following examples illustrate the results of the STR2INT function:

STR2INT("23") = 23
STR2INT("23 skidoo","d*") = 23
STR2INT("4F","x") = 79
STR2INT("skidoo","d*") = NOTKNOWN
STR2INT("") = NOTKNOWN
1 - 218 Language Reference

STR2INT Function
Related Topics
Expressions Patterns
String Constants Interpretations
Integer Constants INT2STR Function
Integer Formats
Language Reference 1 - 219

Chapter Application Development Features1
STR2TIME Function

Definition
The STR2TIME function is used in expressions to convert a character string to the time
value it represents. The expression can appear on the left-hand side or right-hand side
of rules and methods.

Syntax
The function consists of the word STR2TIME followed by one or two arguments in
parentheses:

STR2TIME(s)
STR2TIME(s,f)

Argument
Each argument may be any expression yielding a string result:
■ The first argument (s) is the string to be converted.
■ The optional second argument (f) is a string specifying the format by which the

first argument is to be interpreted. See “Time Formats” for the syntax and
meaning of this string.

The argument expressions may include patterns or interpretations.

Result
The function returns a time result equal to the time interval represented by string s,
interpreted according to format f. If no format argument is given, the default system
format for times (defined in the ckbres.format module in the file nxrun.dat) is used.

If the string s cannot be interpreted as a time under the given format, the function
result is NOTKNOWN.

Examples
The following examples illustrate the results of the STR2TIME function:

STR2TIME("0 years 29 days 12:44:03") = TIME(0,0,29,12,44,3)
STR2TIME("29 days 12:44:03") = NOTKNOWN
STR2TIME("29 days 12:44:03", "dd*hh:mm:ss") = TIME(0,0,29,12,44,3)
STR2TIME("12:44:03") = TIME(0,0,0,12,44,3)
STR2TIME("") = NOTKNOWN

Related Topics
Expressions Time Formats
String Constants Patterns
DATE Function Interpretations
TIME Function TIME2STR Function
1 - 220 Language Reference

SUBSTRING Function
SUBSTRING Function

Definition
The SUBSTRING function is used in expressions to extract a substring of a given
character string. The expression can appear on the left-hand side or right-hand side of
rules and methods.

Syntax
The function consists of the word SUBSTRING followed by three arguments in
parentheses:

SUBSTRING(s,m,n)

Arguments
Each argument may be any expression yielding a result of the appropriate type:
■ The first argument (s) is the string from which the substring is to be extracted.
■ The second argument (m) is an integer giving the offset in characters from the

beginning of the string to the beginning of the substring.
■ The third argument (n) is an integer giving the length of the substring in

characters.

The second and third arguments may be given as floating point values, which will be
converted to equivalent integers. The argument expressions may include patterns or
interpretations.

Result
The function returns the substring of n characters taken from string s beginning at
offset m.

An offset of 0 denotes the first character in string s (no offset at all from the start of the
string). If the end of the string is encountered prematurely, the resulting substring will
be shorter than the requested length n. If the offset m lies beyond the end of string s,
the function will return the empty string.

If any of the argument expressions does not produce a value of the appropriate type,
an error message is posted and the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the SUBSTRING function:

SUBSTRING("SHAZAM!",0,2) = "SH"
SUBSTRING("SHAZAM!",3,3) = "ZAM"
SUBSTRING("SHAZAM!",3,10) = "ZAM!"
SUBSTRING("SHAZAM!",0,7) = "SHAZAM!"
SUBSTRING("SHAZAM!",0,10) = "SHAZAM!"
SUBSTRING("SHAZAM!",3,0) = ""
Language Reference 1 - 221

Chapter Application Development Features1
SUBSTRING("SHAZAM!",10,3) = ""
SUBSTRING("SHAZAM!",-3,2) = ""
SUBSTRING("SHAZAM!",-3,5) = "SH"
SUBSTRING("",0,3) = ""

Related Topics
Expressions SUBSTRING Function
String Constants STRLEN Function
Patterns STRCAT Function
Interpretations STRUPPER Function
STRLOWER Function
1 - 222 Language Reference

SUM Function
SUM Function

Definition
The SUM function is used in expressions to find the sum of a set of numerical values.
The expression can appear on the left-hand side or right-hand side of rules and
methods.

Syntax
The function consists of the word SUM followed by any number of arguments in
parentheses:

SUM(x1,x2,...,xn)

Arguments
Each argument may be any expression yielding a numerical or time-valued result.
There may be either a list of arguments or a pattern matching list.

If some of the argument values are integers and some floating point, the integers will
be converted to equivalent floating point values before computation.

Result
The function adds together all the argument values and returns their sum. For
arguments that include patterns, it adds all values in the corresponding list.

Integer and floating point values may be mixed in the same sum, but time values can
be added only to each other. If numeric and time arguments are mixed, or if any
argument is of another type, an error message is posted and the function result is
NOTKNOWN.

Examples
The following examples illustrate the results of the SUM function:

SUM(365,240,577) = 1182
SUM(98.6,37.0,-273.18) = -137.58
SUM(12,11.7) = 23.7
SUM(TIME(8,4,23),TIME(3,6,11)) = TIME(11,10,34)
SUM(123,"456") = NOTKNOWN

If class Tank has four instances with capacity values of 6.3, 14.5, 12.9, and 9.0,
then

SUM(<Tank>.capacity) = 42.7
Language Reference 1 - 223

Chapter Application Development Features1
Related Topics
Expressions Patterns
Data Types Interpretations
DATE Function PROD Function
TIME Function
1 - 224 Language Reference

TAN Function
TAN Function

Definition
The TAN function is used in expressions to find the tangent of a floating point number.
The expression can appear on the left-hand side or right-hand side of rules and
methods.

Syntax
The function consists of the word TAN followed by a single argument in parentheses:

TAN(x)

Argument
The argument may be any expression yielding a numerical result. The expression may
include patterns or interpretations.

If the value of the argument expression is an integer, it will be converted to an
equivalent floating point value.

Result
The function returns a floating point result equal to the tangent of the argument. The
argument is assumed to be expressed in radians.

If the argument expression does not produce a numerical value, an error message is
posted and the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the TAN function:

TAN(0.0) = 0.0
TAN(3.14 / 4) = 1.0
TAN(3.14 / 3) = 1.73
TAN(3.14) = 0.0
TAN(-3.14 / 3) = -1.73

Related Topics
Expressions Interpretations
Floating Point Constants SIN Function
Integer Constants COS Function
Patterns ATAN Function
Language Reference 1 - 225

Chapter Application Development Features1
TANH Function

Definition
The TANH function is used in expressions to find the hyperbolic tangent of a floating
point number. The expression can appear on the left-hand side or right-hand side of
rules and methods.

Syntax
The function consists of the word TANH followed by a single argument in parentheses:

TANH(x)

Argument
The argument may be any expression yielding a numerical result. The expression may
include patterns or interpretations.

If the value of the argument expression is an integer, it will be converted to an
equivalent floating point value.

Result
The function returns a floating point result equal to the hyperbolic tangent of the
argument.

If the argument expression does not produce a numerical value, an error message is
posted and the function result isNNOTKNOWN.

Examples
Theffollowing examples illustrate the results of the TANH function:

TANH(0.0) = 0.0
TANH(0.5) = 0.46
TANH(-0.5) = -0.46
TANH(1.0) = 0.76
TANH(-1.0) = -0.76

Related Topics
Expressions Interpretations
Floating Point Constants SINH Function
Integer Constants COSH Function
Patterns
1 - 226 Language Reference

Time Formats
Time Formats

Definition
A time format specifies the representation of a time value in text form for input and
output purposes.

Syntax
This section defines the syntax of format elements for times only. See the section titled
“Formats” for the syntax of formats in general.

The following special characters are meaningful in time formats:

Y,y Years field
M,m Months or minutes field
D,d Days field
H,h Hours field
S,s Seconds field

Time formats are case insensitive. A series of Ms or ms immediately preceded by an
hours field denotes a minutes field; otherwise it is interpreted as months instead.

Like all formats, those for times may include strings of literal characters enclosed in
double quotation marks (" . . . "), and may also include the wild-card character
(*). Format elements beginning with an exclamation point (!) are ignored in database
transactions; they are meaningful only for direct interaction with the user via the
screen and keyboard.

Input
On input, each element in the format list is tried in order until one of them matches the
input text. If no match is found, the input is rejected and an error message is displayed
on the screen. The following conventions apply:
■ Input values of any length are recognized; the number of letters used to specify a

field in the format is ignored.
■ Strings of literal characters enclosed in double quotation marks must match

exactly, except that no distinction is made between uppercase and lowercase
letters.

■ The wild-card character (*) matches any sequence of zero or more characters.

Output
On output, only the first element in the format list is used:
■ Strings of literal characters enclosed in double quotation marks are reproduced

exactly in the output.
■ The wild-card character (*) is ignored on output.
Language Reference 1 - 227

Chapter Application Development Features1
■ The number of letters used to define a field within a format element specifies the
minimum number of digits to be used in that field’s output representation. Values
shorter than this will be padded with leading zeros; longer values will be
represented in full, using more than the specified number of digits.

Example
The format

hh:mm:ss;*h*m*s*

will format times on output in the form

02:06:50

and will accept them on input in such forms as

02:06:50
2:06:50
2:6:50

(matching the first format element) or

The elapsed time is 2 hours, 6 minutes, and 50 seconds.

(matching the second).

Default
The default system format for times is defined in the ckbres.format module in the
file nxrun.dat. The standard default format is

y" years "d" days "hh:mm:ss;yy dd hh:mm:ss;hh:mm:ss

This format will output times in the form

3 years 193 days 22:34:17

and will accept them as input in any of the forms

3 years 193 days 22:34:17
3 193 22:34:17
22:34:17

If necessary, the ckbres.format module in the file nxrun.dat can be modified to
substitute another default format instead.

Related Topics
Formats TIME Function
Format Attribute Date Formats
DATE Function
1 - 228 Language Reference

TIME Function
TIME Function

Definition
A time is a data value representing an interval of duration or elapsed time. See also the
DATE Function topic.

Time Syntax
A time constant can be specified in either of two formats, similar to those for dates (see
the DATE Function topic):

TIME(hours, minutes, seconds)

TIME(years, months, days, hours, minutes, seconds)

In this case, however, the ranges of the parameters are different:

0 ≤ years ≤ 32767
0 ≤ months ≤ 255
0 ≤ days ≤ 32767
0 ≤ hours ≤ 255
0 ≤ minutes ≤ 255
0 ≤ seconds ≤ 255

For example,

TIME(8,4,23)

denotes a time interval of 8 hours, 4 minutes, and 23 seconds, while

TIME(3,6,11,22,34,17)

denotes an interval of 3 years, 6 months, 11 days, 22 hours, 34 minutes, and 17 seconds.

Expressions
Dates and times can be combined arithmetically in various ways. You can add or
subtract two time intervals to produce a third interval representing their sum or
difference, subtract two dates to find the interval between them, or add or subtract a
date and a time to produce another date. You can also multiply or divide a time by a
number (integer or floating point). In summary, here are the valid arithmetic
operations on dates and times:

time + time yields time
time - time yields time
date - date yields time
date + time yields date
date - time yields date
number * time yields time
time * number yields time
time / number yields time
Language Reference 1 - 229

Chapter Application Development Features1
Related Topics
Date HOUR Function
Data Types MINUTE Function
Expressions SECOND Function
Time Formats NOW Function
1 - 230 Language Reference

TIME2FLOAT Function
TIME2FLOAT Function

Definition
The TIME2FLOAT function is used in expressions to convert a time to an equivalent
floating point value. The expression can appear on the left-hand side or right-hand
side of rules and methods.

Syntax
The function consists of the word TIME2FLOAT followed by a single argument in
parentheses:

TIME2FLOAT(t)

Argument
The argument may be any expression yielding a time result. The expression may
include patterns or interpretations.

Result
The function returns a floating point result representing the number of seconds
equivalent to the given time t.

Examples
The following examples illustrate the results of the TIME2FLOAT function:

TIME2FLOAT(TIME(3,6,11,22,34,17)) = 111515657.0
TIME2FLOAT(TIME(8,4,23)) = 29063.0
TIME2FLOAT("8:4:23") = NOTKNOWN

Related Topics
Expressions Interpretations
DATE Function FLOAT2TIME Function
TIME Function DATE2FLOAT Function
Patterns
Language Reference 1 - 231

Chapter Application Development Features1
TIME2STR Function

Definition
The TIME2STR function is used in expressions to convert a time value to an equivalent
character string. The expression can appear on the left-hand side or right-hand side of
rules and methods.

Syntax
The function consists of the word TIME2STR followed by one or two arguments in
parentheses:

TIME2STR(t)
TIME2STR(t,f)

Argument
Each argument may be any expression yielding a result of the appropriate type:
■ The first argument (t) is the time to be converted.
■ The optional second argument (f) is a string specifying the format under which the

first argument is to be converted. See “Time Formats” for the syntax and meaning
of this string.

The argument expressions may include patterns or interpretations.

Result
The function returns a string result representing the time value of argument t,
converted according to format f. If no format argument is given, the default system
format for times (defined in the ckbres.format module in the file nxrun.dat) is
used.

Examples
The following examples illustrate the results of the TIME2STR function:

TIME2STR(TIME(0,0,29,12,44,03)) = "0 years 29 days 12:44:03"
TIME2STR(TIME(0,0,29,12,44,03), "dd\" days \"hh:mm:ss") =

 "29 days 12:44:03"
TIME2STR(TIME(0,0,0,12,44,03)) = "12:44:03"

Related Topics
Expressions Time Formats
String Constants Patterns
DATE Function Interpretations
TIME Function STR2TIME Function
1 - 232 Language Reference

UnloadKB Operator
UnloadKB Operator

Definition
The UnloadKB operator is used in the conditions or actions ofaa rule or method to
unload or disable a knowledge base.

Operands
The UnloadKB operator takes one or two operands:
■ The first operand is a stringcconstant or interpretation which evaluates to a string

constant (using the @V(object.prop) syntax) specifying the name of the file
containing the knowledge base to be unloaded. It must be between double quotes.

■ The optional second operand specifies the knowledge base’s load level, and must
be one of the following:

@LEVEL=ENABLE;
@LEVEL=DISABLEWEAK;
@LEVEL=DISABLESTRONG;
@LEVEL=DELETE;
@LEVEL=WIPEOUT;

(Note that the closing semicolon is required.) If the second operand is omitted, a load
level of DELETE is assumed by default.

UnloadKB Dialog
When entering an UnloadKB action in the Rule editor or Method editor, clicking in the
space for the second operand displays a special dialog box for specifying the load level
interactively, rather than by explicitly typing in the keywords listed above:
Language Reference 1 - 233

Chapter Application Development Features1
Effect
The knowledge base named as the first operand is unloaded from memory or changed
to the load level specified by the second operand. Definitions not belonging to the
given knowledge base remain in effect.

Load levels
The effects of the various load levels are as follows:

ENABLE: All definitions in the knowledge base are fully effective
and operational, including objects, classes, properties,
rules, and methods.

DISABLEWEAK: Object, class, and property definitions from the
knowledge base remain in effect. Rules and methods
remain defined, but become temporarily disabled and
unavailable for inference processing; they can later be
reenabled with LoadKB. Any such disabled rules or
methods already on the agenda remain there and will
be processed normally.

DISABLESTRONG: Object, class, and property definitions from the
knowledge base remain in effect. Rules and methods
remain defined, but become temporarily disabled and
unavailable for inference processing; they can later be
reenabled with LoadKB. Any such disabled rules or
methods already on the agenda are removed from the
agenda and will not be processed.

DELETE: Object, class, and property definitions from the
knowledge base remain in effect. Rules and methods
are permanently deleted from memory and no longer
available for inference processing; they can be
reenabled only by reloading the knowledge base with
LoadKB.

WIPEOUT: All definitions from the knowledge base are
permanently deleted from memory, including objects,
classes, properties, rules, and methods; they can be
reenabled only by reloading the knowledge base with
LoadKB.

Examples
The following are examples of actions using the LoadKB operator:

UnloadKB" Inventory.kb"
UnloadKB" Inventory.kb" @LEVEL=DISABLEWEAK
UnloadKB "Inventory.kb" @LEVEL=DISABLESTRONG
UnloadKB Inventory.kb" @LEVEL=DELETE
UnloadKB" Inventory.kb" @LEVEL=WIPEOUT
1 - 234 Language Reference

UnloadKB Operator
Related Topics
Rules Classes String Constants
Methods Properties Actions
LoadKB Operator Agenda
Objects NXP_UnloadKB function of API
Language Reference 1 - 235

Chapter Application Development Features1
Value Property

Definition
The special property named Value holds the data value (if any) associated directly
with an object or class itself. Together the object and special property form a slot of any
data type.

Type
The Value property is defined to be of type Special, allowing it to take on values of
different data types for different objects. For any given object, however, its value is
restricted to exactly one of the six elementary data types.

Access
The current value of an object’s Value property is ordinarily denoted simply by the
name of the object itself, with no qualifying property name. If the_object is the
name of an object, the expressions

the_object

and

the_object.Value

are equivalent.

Restrictions
You cannot perform a pattern matching over a list of objects’ Value property. The
value property will never inherit a value nor a method.

Modifying
The Value property associated with a particular object can be changed by assigning a
new value directly to the name of the object itself in either of two ways:
■ Explicitly, by executing the Assign operator in a condition or an action.
■ Interactively, via the Volunteer command.

Related Topics
Objects Conditions
Properties Actions
Data Types Assign Operator
1 - 236 Language Reference

VAR Function
VAR Function

Definition
The VAR function is used in expressions to find the variance of a set of numerical values.
The expression can appear on the left-hand side or right-hand side of rules and
methods.

Syntax
The function consists of the word VAR followed by any number of arguments in
parentheses:

VAR(x1,x2,...,xn)

Arguments
Each argument may be any expression yielding a numerical result. The expressions
may include existential patterns or interpretations; universal patterns are not allowed.

If some of the argument values are integers and some floating point, the integers will
be converted to equivalent floating point values before computation.

Result
The function returns a floating point result equal to the statistical variance of all the
argument values (the sum of the squares of the differences of the values from the mean
divided by the number of values). For arguments that include patterns, it uses all
values in the corresponding list.

If any argument is of a non-numeric type, an error message is posted and the function
result is NOTKNOWN.

Examples
The following examples illustrate the results of the VAR function:

VAR(365,240,577) = 19348.66
VAR(98.6,37.0,-273.18) = 26469.61
VAR(12,11.7) = 0.02
VAR(TIME(8,4,23),TIME(3,6,11)) = NOTKNOWN
VAR(123,"456") = NOTKNOWN

If class Tank has four instances with capacity values of 6.3, 14.5, 12.9, and 9.0,
then

VAR(<Tank>.capacity) = 10.38

Related Topics
Expressions Interpretations
Data Types AVERAGE Function
Patterns STDEV Function
Language Reference 1 - 237

Chapter Application Development Features1
WEEKDAY Function

Definition
The WEEKDAY function is used in expressions to find the day of the week corresponding
to a given date. The expression can appear on the left-hand side or right-hand side of
rules and methods.

Syntax
The function consists of the word WEEKDAY followed by a single argument in
parentheses:

WEEKDAY(d)

Argument
The argument may be any expression yielding a date result. The expression may
include patterns or interpretations.

Result
The function returns an integer result representing the day of the week corresponding
to the given date argument. The result ranges from 1 (Monday) to 7 (Sunday).

If the argument expression does not produce a date value, an error message is posted
and the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the WEEKDAY function:

WEEKDAY(DATE(1492,10,12)) = 4
WEEKDAY(DATE(1981,6,8,21,8,46)) = 1
WEEKDAY(TIME(8,4,23)) = NOTKNOWN
WEEKDAY(TIME(3,6,11,22,34,17)) = NOTKNOWN
WEEKDAY("October 12, 1492") = NOTKNOWN

Related Topics
Expressions YEAR Function
DATE Function MONTH Function
TIME Function DAY Function
Patterns HOUR Function
Interpretations MINUTE Function
YEARDAY Function SECOND Function
NOW Function
1 - 238 Language Reference

Why Attribute
Why Attribute

Definition
The why attribute associated with a slot, rule, or method specifies the text to be
displayed on the screen when the end user requests an explanation for the system’s
current focus of attention.

Usage
The text of the why attribute is displayed in a dialog window whenever the end user
selects the Why option from the session control panel of the Rules Element main
window. The text describes the inferencing links leading to the slot displayed in the
session control panel. The dialog window displays two buttons that let the end user
traverse the backward chaining links starting from the current focus of attention:
■ The Why button displays the why text associated with the next rule in the

backward chaining links.
■ The How button displays the why text associated with the previous rule in the

backward chaining links.

Creation
The why text is specified or edited by typing into the box labeled Why in the Rule
editor, Method editor, or Meta-Slot editor. The supplied text has the following effect
on the explanation dialog window:

Rule Editor Why text appears in the bottom box that normally gives
information about left-hand side conditions.

Method Editor Why text appears in the bottom box that normally gives
information about left-hand side conditions.

Meta-Slot Editor Why text appears in the top box that normally gives
information about the hypothesis.

You can also use the @V(object.prop) and @F(filename) constructions in the
why attribute of all three editors. If a file is specified, it can contain @V variables that
the system interprets.

Default
If no why text is explicitly specified, the system follows syntactic rules to derive the text
displayed by the explanation dialog window.

Inheritance
The Why attribute cannot be inherited.
Language Reference 1 - 239

Chapter Application Development Features1
Related Topics
Rules Meta-Slots Forward Chaining
Methods Backward Chaining Inference
1 - 240 Language Reference

Write Operator
Write Operator

Definition
The Write operator is used in conditions or actions of rules and methods to write
information to a database.

Operands
The Write operator takes two operands:
■ The first operand is either a string constant or an interpretation evaluating to a

string constant specifying the name of the file containing the database to be
updated or the login name/password for a DBMS.

■ The second operand consists of a series of parameters defining the specific update
operation to be performed.

Parameters
The second operand may include the following parameters:

@TYPE Type of database (creator software and file format)
@BEGIN Command string for opening transaction
@END Command string for closing transaction
@QUERY Command string for updating database
@ARGS Argument list for update command
@ATOMS List of objects or properties affected
@NAME Correspondence between objects and records
@FIELDS List of field names to update
@PROPS List of properties to update from
@SLOTS List of slots to update from
@FILL Create new records or files
@UNKNOWN Write UNKNOWN values
@CURSOR Current position for sequential update

See the Database Integration Guide for further details on the meaning and use of these
parameters.

When entering a Write action in the Rule editor or Method editor, clicking in the space
for the second operand displays the Database editor dialog box for specifying the
update parameters interactively, rather than by explicitly typing them in as listed
above.
Language Reference 1 - 241

Chapter Application Development Features1
Note that private slots passed in the argument @Slots are ignored unless the Write
operator appears in a method specifically triggered for the slot. See the description of
Slots for more information about using private slots.

Effect
The designated information is written to the specified database from the Rules Element
knowledge base.

Examples
See the Database Integration Guide for examples of the use of the Write operator.

Related Topics
Rules Properties Classes
Methods Slots
Actions String Constants
Objects Retrieve Operator

Also see the Database Integration Guide for more information on database operations.
1 - 242 Language Reference

YEAR Function
YEAR Function

Definition
The YEAR function is used in expressions to extract the year field of a date or time. The
expression can appear on the left-hand side or right-hand side of rules and methods.

Syntax
The function consists of the word YEAR followed by a single argument in parentheses:

YEAR(d)

Argument
The argument may be any expression yielding a date or time result. The expression
may include patterns or interpretations.

Result
The function returns an integer result equal to the year field of the argument.

If the argument expression does not produce a date or time value, an error message is
posted and the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the YEAR function:

YEAR(DATE(1492,10,12)) = 1492
YEAR(DATE(1981,6,8,21,8,46)) = 1981
YEAR(TIME(8,4,23)) = 0
YEAR(TIME(3,6,11,22,34,17)) = 3
YEAR("October 12, 1492") = NOTKNOWN

Related Topics
Expressions HOUR Function
DATE Function MINUTE Function
TIME Function SECOND Function
Patterns WEEKDAY Function
Interpretations YEARDAY Function
MONTH Function NOW Function
DAY Function
Language Reference 1 - 243

Chapter Application Development Features1
YEARDAY Function

Definition
The YEARDAY function is used in expressions to find the ordinal day of the year
corresponding to a given date. The expression can appear on the left-hand side or
right-hand side of rules and methods.

Syntax
The function consists of the word YEARDAY followed by a single argument in
parentheses:

YEARDAY(d)

Argument
The argument may be any expression yielding a date result. The expression may
include patterns or interpretations.

Result
The function returns an integer result equal to the ordinal day of the year
corresponding to the given date argument. The result ranges from 1 to 366.

If the argument expression does not produce a date value, an error message is posted
and the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the YEARDAY function:

YEARDAY(DATE(1492,10,12)) = 286
YEARDAY(DATE(1981,6,8,21,8,46)) = 159
YEARDAY(TIME(8,4,23)) = NOTKNOWN
YEARDAY(TIME(3,6,11,22,34,17)) = NOTKNOWN
YEARDAY("October 12, 1492") = NOTKNOWN

Related Topics
Expressions YEAR Function
DATE Function MONTH Function
TIME Function DAY Function
Patterns HOUR Function
Interpretations MINUTE Function
WEEKDAY Function SECOND Function
NOW Function
1 - 244 Language Reference

Yes Operator
Yes Operator

Definition
The Yes operator is used in the conditions of a rule or method to test whether a boolean
value or boolean expression is TRUE.

Operands
The Yes operator takes a single operand, which must be either a boolean-valued slot,
a list of such slots specified by a pattern, or a boolean expression.

Result
The result produced by the Yes operator is simply the value of its boolean operand,
TRUE or FALSE as the case may be. If the operand includes a pattern, the condition
tests whether at least one of the values in the corresponding list (for an existential
pattern) or all of them (for a universal pattern) are TRUE. If the operand is a boolean
expression, the result is the same as the value of the resolved expression (either TRUE
or FALSE).

Examples
The following are examples of conditions using the Yes operator:

Yes credit_approved
Yes switch_1.on
Yes <Switch>.on
Yes {Switch}.on

Related Topics
Rules Boolean Constants
Methods Patterns
Conditions No Operator
Boolean Expressions
Language Reference 1 - 245

Chapter Application Development Features1
1 - 246 Language Reference

Chapter
2 Execute Library Routines 2

This chapter describes the various Execute routines you can use as application design
features.

Execute Library Overview

Definition
The Rules Element library of Execute routines has predefined procedures for
performing common or useful tasks, built into the system for use with the Execute
operator.

Routines
The Rules Element run-time library includes the following routines:

Frame Operations

SetValue CreateObjects
ResetFrame GetRelatives
CopyFrame PropagateValue

Multi-Value Operations

AtomNameValue TestMultiValue
SetMultiValue ComputeMultiValue
GetMultiValue LinkMultiValue

Sorting and Comparison

RankList PatternMatcher
GetListElem Unify
FindListElem

Session Control

ControlSession Message
Journal WriteTo

Utility Operations

AtomExist FileExist
CreateReport Parse

Each of these routines is fully described in its own section of this manual.
Language Reference 2 - 1

Chapter Execute Library Routines2
Multi-Values
A multi-value slot is defined as a string slot containing a list of values separated by
commas. Leading and trailing blanks around each value are ignored, but internal
blanks are not. For example, the following is a legal multi-value string:

apple, banana, two words, hello

This contains four values: apple, banana, two words, and hello. Notice that the
blanks before and after each value are ignored, but the internal blank in two words is
retained. Also notice that when a multi-value appears in an expression, it does not
have to be enclosed in quotes.

The values are always maintained as strings, but they can be compared as floats, ints,
dates, etc. with the TestMultiValue Execute. But since the values are actually
maintained as strings, it is still up to the application developer to make sure the values
make sense. In other words, if the application developer wants to do integer
comparisons, it is up to him or her to make sure the values really are integers. As far
as the Rules Element is concerned, a multi-value slot is just a string slot. See also the
section on Using Multi-Values.

Error Handling
Certain global flags can be used to control the handling of errors and tracing
information by the built-in Execute routines. Currently, the application developer can
define “System Objects” to set the error handling and tracing status. At present, the
following system objects are implemented:

SYS_ALERTFLAG Boolean - if true, errors are reported with alert handler.

SYS_TRACEFLAG Boolean - if true, report trace messages in transcript.

SYS_TRANSFLAG Boolean - if true, errors are reported in transcript

SYS_BEEPFLAG Boolean - if true, errors just beep

SYS_STOPFLAG Boolean - if true, stops session on error.

All of these are boolean-valued objects whose Value properties contain the relevant
flag. These objects are defined in a separate knowledge base so that they can be loaded
in any session. Be sure to use them when developing the application.

Other Notes
■ The executes all evaluate to TRUE if successful, and FALSE if there were any

errors.
■ Throughout this chapter, the word “frame” is used for “object or class” to describe

the Execute routines.
■ If a slot is expected in a parameter, and you are using a slot with .Value, you must

explicitly add the .Value. Otherwise, the Execute routine will assume you are
2 - 2 Language Reference

Execute Library Overview
referring to a frame.
■ When typing text parameters into the execute dialogs, quotes are never used.

Note: The total length of a multi-value is limited only by the available
memory.

Invocation
Execute routines are invoked by using the Execute operator in a condition or action
of a rule or method. The first operand to this operator is a string constant giving the
name of the desired Execute routine; the second operand is a string consisting of a
series of parameters to control the routine’s operation.

Parameters
Two standard parameters are used to specify the arguments of an Execute routine
(both parameters may be given as dynamic interpretations):
■ The @STRING parameter passes a single string argument. If two or more such

arguments are needed, they can be combined to form a multivalue and passed as
a single argument; see the section “Multivalues” for more information.

Atom names you specify for the @STRING parameter must be compiled in the
corresponding Rules Element editor before the system will recognize it. Merely
typing atom names into the execute dialogs’ @STRING fields will produce error
messages during application processing.

■ The @ATOMID parameter passes a list of objects, properties, or classes (typically
specified via a pattern) for the Execute routine to operate on.

Note: Private slots must not be passed in the @ATOMID and @STRING
parameter of the Execute routines. Also, class name atoms you
specify in the execute dialogs must not include vertical bars.

The specific usage of these parameters varies from one Execute routine to another, and
is described in the sections on each individual routine.

Result
All Execute routines return a result of TRUE if the call is successful, FALSE if an error
occurs.

Dynamic Values
Individual atoms (objects and object properties) can be evaluated dynamically within
the @STRING and @ATOMID parameters. Each parameter uses its own syntax as
follows: @STRING interpretations must be in the form of @V(theAtom.property) -
the atom name enclosed within parentheses and preceded by the characters @V.
Language Reference 2 - 3

Chapter Execute Library Routines2
@ATOMID interpretations must be in the form of \theAtom.property\ - the atom
name enclosed within backslashes. The slot’s current value will then be substituted
into the corresponding parameter before execution.

For example, if Ducks.start contains the multi-value string Donald,Daisy and
Ducks.more contains Huey,Dewey, Louie, then a condition or action of the form

Execute "ComputeMultiValue" @ATOMID=Ducks.start;
 @STRING="@VALUE=@V(Ducks.more),

 @UNION,@RETURN=Ducks.all";

is equivalent to

Execute "ComputeMultiValue" @ATOMID=Ducks.start;
@STRING="@VALUE=Huey,DeweyLouie,
@UNION,@RETURN=Ducks.all";

and will set the value of Ducks.all to the string Donald,
Daisy,Huey,Dewey,Louie (the union of @Ducks.start and @Ducks.more).

When an Execute routine is invoked from a method, atoms can also be evaluated
dynamically within the @STRING parameter using the @SELF operator. For example,
suppose there is a class Birds with a subclass Ducks. In addition, suppose Birds has
a property Parents which is a multivalue string and it has an Order of Sources
method with the following Execute routine:

Execute "GetRelatives" @ATOMID=SELF; @STRING="@PARENTS,
@RETURN=@SELF.Parents"

If a rule dynamically creates an object called Donald of class Ducks, and then tries to
get the value of Donald.Parents, the Order of Sources method inherited from
Birds will be triggered, and GetRelatives will evaluate SELF as Donald. So,
Donald.Parents will get the multivalue Ducks, Birds since these are the parents
of Donald.

Strategy Options
Many Execute routines include an optional parameter named @STRAT as part of their
@STRING parameter. This parameter is used to control the volunteering strategy for
any value assignments made during the routine’s execution. It can be set to any of the
following options:

SET Store value immediately, but do not forward

FWRD Queue value for later forwarding if global strategy Forward ac-
tion effects is currently enabled

SETFWRD Combines both SET and FWRD options

If no explicit @STRAT parameter is specified, the SET option is assumed by default.

Note: See Chapter One, “Application Development Features” for
details on the Strategy operator.
2 - 4 Language Reference

Execute Library Overview
Related Topics
Conditions Execute Operator
Actions Patterns
Rules Value Property
Methods Multi-Values
String Constants Inference Strategy

Also see the sections on individual Execute routines by name, as listed above.
Language Reference 2 - 5

Chapter Execute Library Routines2
Using The Execute Library

The functions in the execute library can be used like any user-defined Execute routine
in either conditions or actions of rules and methods. They normally return TRUE unless
there was some sort of error. They can be divided up into several functional groups:

Frame Operations This set of routines performs “crunching” operations on frames
such as setting values, copying values, etc.

Multi-Value Operations
This set of routines performs operations on multi-values.

Sorting and Comparison
This set of routines performs operations on pattern matching
lists.

Session Control This set of routines controls the session and perform I/O.

Utility Operations This set of routines performs useful tasks that extend applica-
tion development.

The following sections explain each of the categories of executes with examples on how
you might want to use them.

Frame Operations
The Frame Operations perform “crunching” operations on frames (objects or classes)
such as setting values, copying values, etc. They include the following:

CopyFrame, CreateObjects, ResetFrame, SetValue, GetRelatives,
PropagateValue

These operations do things which could be done frame by frame in other ways, but it
is more convenient to use these executes. For example, CopyFrame copies the values
in all properties of a frame (except Value) to a list of frames. Without this function,
you could copy the values one by one, but it would be very inconvenient.

Also, the Reset operator could be used to reset individual slots, but the ResetFrame
execute can reset all the slots in a list of frames all at once.

CreateObjects eliminates the need to have a rule which loops around itself creating
objects one by one.

SetValue sets all slots in a list of slots or frames to a given value, which again, would
be very inconvenient otherwise.

GetRelatives gets the names of the parents or children of a frame and returns the
answer as a multi-value.

PropagateValue propagates a value up or down through the inheritance paths from
a given frame.
2 - 6 Language Reference

Using The Execute Library
Multi-Value Operations
Multi-values can be used in many ways. The executes that deal with multi-values are
as follows:

ComputeMultiValue, GetMultiValue, LinkMultiValue, SetMultiValue,
TestMultiValue, AtomNameValue

One way you might want to use multi-values is to keep track of properties which have
an unspecified number of “sub-properties”. For example, you might have a class of
<Restaurants> with a property serves which contains the types of food served at
a certain restaurant. The serves property for a given restaurant might contain
something like chicken, fish, pasta. The SetMultiValue execute can be used
for adding and deleting values from these multi-values. This is an ideal way of
maintaining this information because each restaurant may serve a different number of
foods.

The following diagram shows an example of how this sort of example might be set up:

Now, suppose you wanted to ask something like, “Who serves fish?” You could use
the TestMultiValue execute to find all the restaurants that serve fish and attach
them to a class like this:

TestMultiValue (@STRING="@TEST=fish, @SUPERSET, @RETURN=Fishy";
@ATOMID=<Restaurants>.serves;)

After that execute, the restaurants Chez_Bob, Pasta_Pete, and See_Food will be
attached to the class Fishy. You could then do further pattern matching or testing on
that list. Notice we are using @SUPERSET because we are finding the restaurants that
serve a superset of fish. A restaurant which serves only fish would qualify.

Restaurants serves

Chez_Bob Edna's Pasta_Pete See_Food

serves =
"chicken,
fish, pasta,
beef"

serves =
"pizza,
hamburgers,
subs"

serves =
"pasta, fish,
chicken,
salads"

serves =
"fish,
chicken"
Language Reference 2 - 7

Chapter Execute Library Routines2
Now let’s ask the question, “What do Chez_Bob and Pasta_Pete have in common?” We
would do that like this:

ComputeMultiValue (@STRING="@VALUE=@V(Chez_Bob.serves),
@INTERSECT, @RETURN=common.mulval";
@ATOMID=Pasta_Pete.serves;)

After that execute, the multi-value common.mulval will contain the intersection of the
two restaurants, i.e. chicken, fish, pasta. Notice we are using the @V(...)
notation to evaluate Chez_Bob.serves dynamically.

Now let’s say that Pasta_Pete is purchased by Chez_Bob, so they decide to combine
the menus. We could add the foods served by Pasta_Pete to the foods served by
Chez_Bob like this:

SetMultiValue (@STRING="@ADD=@V(Pasta_Pete.serves)";
@ATOMID=Chez_Bob.serves;)

Since @NODUPLICATE is the default, Chez_Bob.serves will now contain chicken,
fish, pasta, beef, salads. Again, notice the @V(...) notation.

Another way you might want to use multi-values is to maintain relationships between
objects. The values within a multi-value could actually be object names. So, for
example, you might have a class of <Desks> with a property on_top_of, and another
class of <Desk_accessories>. The on_top_of slot for a given desk might contain
the names of <Desk_accessories> objects which are on top of the desk. So, a given
desk may have an on_top_of slot containing something like stapler, tape,
phone. Each of the values in that multi-value are actually the names of objects in the
class <Desk_accessories>.
2 - 8 Language Reference

Using The Execute Library
The following figure shows a possible configuration with multi-values being used for
relationships between objects:

Desks

Desk
Accessories

on_top_of

near

MyDesk

on_top_of = "phone, rolodex, stapler,
tape, stack_o_papers, phone_book"

near = "trash_can, lamp"

near

weight

phone rolodex

stapler

tape
phone
book

stack o'
papers

trash
can lamp

near = "rolodex,
phone_book"

near = "phone,
phone_book"

near = "phone,
rolodex"

near = "stapler"

near = "tape" near = NULL near = "lamp" near = "trash_can"

weight = 4 weight = 2 weight = 5 weight = 1

weight = 1 weight = 7 weight = 8 weight = 15
Language Reference 2 - 9

Chapter Execute Library Routines2
With this sort of set up, there are all sorts of questions we might want to ask. For
example, “What’s on top of my desk?” This may seem trivial, but it could be that the
multi-value was constructed by other rules, and you may now want to use that list as
a pattern matching list in another condition of a rule or method. So, to get the objects
in a multi-value and attach them to a class, we would do this:

LinkMultiValue (@STRING="@LINKTO=DeskStuff";@ATOMID=MyDesk.on_top_of;)

After this execute, the class DeskStuff would have as objects phone, rolodex,
stapler, tape, stack_o_papers, and phone_book.

Another thing you might want to do is construct a multi-value containing the names of
all the desk accessories. That multi-value could then be used with TestMultiValue
or ComputeMultiValue. This would be done like this:

AtomNameValue (@STRING="@RETURN=DeskStuff.mulval";@ATOMID=<Desk_Accessories>;)

After this execute, DeskStuff.mulval will contain the multi-value phone,
rolodex, phone_book, tape, stapler, stack_o_papers, trash_can,
lamp.

You might also want to ask more complicated questions like, “What objects on my desk
are heavy?” Let’s assume that “heavy” is greater than or equal to five pounds. To do
this, we would first need to create a list of objects on the desk by using
LinkMultiValue as above. Then, we would use the list <DeskStuff> in a pattern
matching statement like this:

>= <DeskStuff>.weight 5

Directly after this statement, the pattern matching list will contain only the objects on
the desk whose weight is greater than or equal to 5.

Another possible question would be, “Is the trash can on top of my desk?” To do this,
you would use the following execute:

TestMultiValue (@STRING="@TEST=trash_can, @SUPERSET,
@RETURN=answer.bool"; @ATOMID=MyDesk.on_top_of;)

After this execute, the boolean slot answer.bool will contain FALSE because the
multi-value MyDesk.on_top_of is not a superset of trash_can. Or, to put it
another way, MyDesk.on_top_of does not contain trash_can.

Now, suppose there is an earthquake and the phone falls off the desk. How would we
update our objects to reflect this? First, we want to remove the phone from the desk,
and then we want to update the objects that the phone is near, and the objects that are
near the phone. There is probably more than one way to do this, but here is one
possibility:

Step 1: Remove phone from the desk:

SetMultiValue (@STRING="@DELETE=phone"; @ATOMID=MyDesk.on_top_of;)

Step 2: Link the objects that were near the phone to a temporary class:

LinkMultiValue (@STRING="@LINKTO=NearStuff"; @ATOMID=phone.near;)
2 - 10 Language Reference

Using The Execute Library
Step 3: Make sure none of those objects is near the phone:

SetMultiValue (@STRING="@DELETE=phone"; @ATOMID=<NearStuff>.near;)

Step 4: Delete all the things that were near the phone:

SetMultiValue (@STRING="@DELETE=@V(phone.near)"; @ATOMID=phone.near;)

Okay, so how does this work? Step 1 simply deletes phone from the multi-value
MyDesk.on_top_of.

Step 2 takes the object names in the multi-value phone.near and links them to a
temporary class NearStuff. In this case, that would link the objects rolodex and
phone_book to NearStuff like this:

Step 3 deletes phone from each of the multi-values in the list <NearStuff>.near. In
other words, since the phone is not near any of the objects in <NearStuff> anymore,
we want to make sure that those objects do not list phone as a nearby thing. So, in this
case, phone is deleted from rolodex.near and phone_book.near.

Finally, step 4 deletes everything that was near the phone because it is not near
anything anymore. Notice we are using the @V(...) notation to insure that
everything in the current multi-value is deleted from itself. For this step, you could
also simply set the value of phone.near to an empty string using the Assign
operator. Notice that this is not the same as setting it to UNKNOWN. Notice also that if
you use the Assign operator, you may cause side effects like forwarding through
gates unless you set the strategies appropriately.

phone

near = "rolodex, phone_book"

rolodex
phone
book

NearStuff
LinkMultiValue attaches

these objects to this class.
Language Reference 2 - 11

Chapter Execute Library Routines2
Sort and Compare
The Sorting and Comparison executes perform operations on pattern matching lists.
This category includes the following executes:

FindListElem, GetListElem, RankList, PatternMatcher, Unify

These are used for ranking lists and getting individual elements, ranges of elements, or
finding the MIN and MAX in a list. Also, PatternMatcher performs a more general
purpose pattern matching, and Unify performs a two-way pattern match.

For example, suppose we have a class of <Cars> with properties mileage,
engine_size and rank. In a database, we have the latest information on current
cars. So, we create an object for each car and get the mileage and engine_size from
the database. Now, suppose we want to find the ten highest mileage cars available. To
do this, we would first use the RankList execute to rank the list using mileage as the
RANKBY property, and rank as the RANKSET property. Then, we would use
GetListElem to get elements 1 through 10 by rank. We could then use the returned
list of ten cars to do some other pattern matching like finding the cars whose engines
are greater than or equal to 1500 cc.
2 - 12 Language Reference

Using The Execute Library
The following diagram shows the steps involved in this example:

Session Control
The Session Control operations control the session and perform I/O. They include the
following:

ControlSession, Message, Journal, WriteTo

A very useful thing that you can do is send messages to the environment. For example,
you can put results into the transcript, or issue alert messages to the user. You can also
put up question boxes in which the user must respond with Yes, No, OK, or Cancel.
You can then use the response to control the application. If you are writing your own
environment in C or some other language, these executes will call your own transcript

Cars

mileage

engine_size

rank

...Car1 Car2 Car3 Carn
Retrieve
from

database

Execute "RankList" (@STRING="@RANKBY=mileage, @RANKSET=rank,
@DECREASING"; @ATOMID=<Cars>;)

Step 1:

Step 2:

Step 3:

Execute "GetListElem" (@STRING="@FROM=1, @TO=10, @RANKSET=rank,
@LINKTO=High_Mileages"; @ATOMID=<Cars>;)

Step 4:

>= <|High_Mileages|>.engine_size 1500
Language Reference 2 - 13

Chapter Execute Library Routines2
handler or alert handler. The Session Control operations also control the session,
suggest hypotheses, perform journaling, and so on.

Utilities
The Utilities are Execute routines that perform useful tasks that extend your
application development capabilities. They include the following:

AtomExist, CreateReport, FileExist, Parse

Generally, these functions are used for testing the existence of certain things, and
sending messages to the environment. For example, suppose you have a Retrieve in
your rule, but the file does not exist. Normally, you would get an error, and the rule
would simply fail at that point. But, by using FileExist before the Retrieve, you
could check if the file exists and then act accordingly. For example, if the file doesn’t
exist, you might want to try another file, or a different search path. Another
particularly useful routine is CreateReport. This routine lets you generate a
formatted file to report the results of an application processing session.
2 - 14 Language Reference

AtomExist Routine
AtomExist Routine

Definition

The Execute routine AtomExist tests whether a designated atom (a class, object,
property, slot, rule, or method) currently exists.

Interactive Dialog

AtomExist is chosen with the Select Execute popup menu command in the Rule
editor or Method editor, which automatically displays a special dialog box for
specifying the execute parameters interactively, rather than by explicitly typing them
in as listed below:

Parameters

The @ATOMID parameter is ignored.

The @STRING parameter must include the following:

@NAME=atom_name Name of desired atom.

@RETURN=answer_slot Name of slot in which to return result of test.

Both parameters are required. The destination specified by @RETURN must be a
boolean-valued slot.

Effect

The destination slot designated by the @RETURN parameter is set to TRUE or FALSE,
depending on whether the requested atom currently exists.
Language Reference 2 - 15

Chapter Execute Library Routines2
Result

The result returned by AtomExist is TRUE if the call is successful, FALSE if an error
occurs.

Examples

A condition or action of the form

Execute "AtomExist" @STRING="@NAME=Flapdoodle,
@RETURN=TheAnswer.Value";

will set TheAnswer.Value to TRUE if the object Flapdoodle currently exists, FALSE
if it does not.
2 - 16 Language Reference

AtomNameValue Routine
AtomNameValue Routine

Definition

The Execute routine AtomNameValue stores the names or values of one or more atoms
(objects, classes, or slots) into a string-valued variable as a multivalue.

Interactive Dialog

AtomNameValue is chosen with the Select Execute popup menu command in the Rule
editor or Method editor, which automatically displays a special dialog box for
specifying the execute parameters interactively, rather than by explicitly typing them
in as listed below:

Parameters

The @ATOMID parameter is a pattern specifying a list of atoms (objects, classes, or slots)
whose names or values are to be listed.

The @STRING parameter may include the following:

@RETURN=destinationString slot into which the requested atom names or values are
to be stored.

@ADD (Optional) If present, append new atom names or values to ex-
isting contents of destination variable instead of assigning out-
right (no duplicates are added).

@STRAT=options (Optional) Strategy options governing the assignment (see Exe-
cute Library Overview for details).
Language Reference 2 - 17

Chapter Execute Library Routines2
@NAMES (Optional) The names of the atoms are listed in the destination.
This is the default.

@VALUES (Optional) The values of the atoms are listed in the destination.
In this case, the atoms must be slots.

The @RETURN parameter must designate a slot (property associated with an object) as
the destination, and not simply the name of an object itself: for example, a destination
of @RETURN=theResult is invalid, and must be specified as
@RETURN=theResult.Value instead.

Effect

The names or values of the atoms satisfying the pattern given by @ATOMID are
concatenated together, separated by commas, to form a multi-value. (Notice that if
there is only one such atom, its name alone is equivalent to a one-element multi-value.)
This multi-value is then assigned as the new value of the string variable designated by
@RETURN (unless @ADD is specified, in which case it is instead appended to the end of
the variable’s existing value without duplicates. Duplicates can be requested explicitly
with the SetMultiValue routine).

Result

The result returned by AtomNameValue is TRUE if the call is successful, FALSE if an
error occurs.

Examples

If class Duck has a single instance named Donald, a condition or action of the form

Execute "AtomNameValue" @ATOMID=<Duck>;
@STRING="@RETURN=Duckburg.residents";

will assign the string Donald as the value of Duckburg.residents. If there are two
instances of Duck named Donald and Daisy, Duckburg.residents will be set to
the multi-value string Donald,Daisy. If the previous value of
Duckburg.residents was Daffy, then

Execute "AtomNameValue" @ATOMID=<Duck>;
@STRING="@RETURN= Duckburg.residents,
@ADD";

will set it to Daffy,Donald,Daisy. If the object Nephews has three components
(subobjects) named Huey, Dewey, and Louie, then

Execute "AtomNameValue" @ATOMID=<Nephews>.uncle;
@STRING= "@RETURN=Cartoon.relatives";

will set Huey.uncle,Dewey.uncle,Louie.uncle as the new value of
Cartoon.relatives.

If class Duck has two instances, Donald and Daisy, and a property bill_size, and
Donald.bill_size is 5 and Daisy.bill_size is 4, then:
2 - 18 Language Reference

AtomNameValue Routine
Execute "AtomNameValue" @ATOMID=<Duck>.bill_size;
@STRING="@RETURN=Duckbill.sizes,
@Values";

will set the string slot Duckbill.sizes to the multivalue string 5,4. The value type
of the slots in @ATOMID can be anything (string, integer, time, date, etc.)

Related Topics

Execute Operator
Multi-Values
Patterns
Language Reference 2 - 19

Chapter Execute Library Routines2
ComputeMultiValue Routine

Definition

The Execute routine ComputeMultiValue combines multi-values in various ways to
form new multi-values.

Interactive Dialog

ComputeMultiValue is chosen with the Select Execute popup menu command in the
Rule editor or Method editor, which automatically displays a special dialog box for
specifying the execute parameters interactively, rather than by explicitly typing them
in as listed below:

Parameters

The @ATOMID parameter is the name of a slot (a property associated with a given
object) containing a multi-value string to be operated on.

The @STRING parameter may include the following:

@VALUE=multi_val (Required for some operations--see Operations below) Second
multi-value operand.

@operation Operation to be performed (see Operations below).

@RETURN=answer Destination slot in which to return result of operation.
2 - 20 Language Reference

ComputeMultiValue Routine
@COMP=value-type (Optional) Specifies the way in which the individual values in
the multivalues are to be compared (see Value Types below).

@VALUETYPE=type The valuetype specifier can be used for indicating how the indi-
vidual values in a multivalue are to be compared. If it is absent,
STRING is the default.

Operations

The operation specifier included in the @STRING parameter identifies the operation to be
performed on the pair of multi-values designated by @ATOMID and @VALUE. It must
consist of exactly one of the following:

@UNION All elements in either @ATOMID or @VALUE or both

@INTERSECT All elements in both @ATOMID and @VALUE

@COMPLEMENT All elements in @ATOMID or @VALUE but not both

@DIFFERENCE All elements in @ATOMID but not @VALUE

@MIN Smallest element in @ATOMID

@MAX Largest element in @ATOMID

Notice that the operations @MIN and @MAX take only one operand (@ATOMID); the
second operand (@VALUE) is ignored and may be omitted.

Value Types

The @COMP specifier can be used for indicating how the individual values in a
multivalue are to be compared. If it is absent, STRING is the default. The following
types are valid: STRING, INT, FLOAT, DATE, and TIME.

For example, if one multivalue contains the element 1.0 and another multivalue
contains the element 1.00, these will be regarded as the same value if @COMP=FLOAT is
specified. However, if @COMP=STRING is specified (the default), they are regarded as
two different strings.

Effect

The two multi-values specified by the @ATOMID and @VALUE parameters are combined
according to the requested operation, and the result is stored into the destination slot
designated by @RETURN.

Result

The result returned by ComputeMultiValue is TRUE if the call is successful, FALSE if
an error occurs.
Language Reference 2 - 21

Chapter Execute Library Routines2
Examples

If Ducks.start contains the multi-value Donald,Daisy, Dewey, a condition or
action of the form

Execute "ComputeMultiValue" @ATOMID=Ducks.start;
@STRING="@VALUE=Huey,Dewey,Louie,
@UNION,@RETURN=Ducks.union";

will assign the string Donald,Daisy,Dewey,Huey,Louie (the union of @ATOMID
and @VALUE) as the new value of Ducks.union; notice that the element Dewey is not
duplicated.

Execute "ComputeMultiValue" @ATOMID=Ducks.start;
@STRING="@VALUE=Huey,Dewey,Louie,
@INTERSECT,@RETURN=Ducks.intersect";

will set Ducks.intersect to Dewey (the intersection of @ATOMID and @VALUE).

Execute "ComputeMultiValue" @ATOMID=Ducks.start;
@STRING="@MIN,@RETURN=Ducks.first";

will set Ducks.first to Daisy (the smallest element alphabetically in @ATOMID).

Related Topics

Execute Operator
Multi-Values
2 - 22 Language Reference

ControlSession Routine
ControlSession Routine

Definition

The Execute routine ControlSession performs various control operations affecting
the operation of the current Rules Element session.

Interactive Dialog

ControlSession is chosen with the Select Execute popup menu command in the
Rule editor or Method editor, which automatically displays a special dialog box for
specifying the execute parameters interactively, rather than by explicitly typing them
in as listed below:

Parameters

The @ATOMID parameter is an (optional) list of hypotheses to be suggested or
unsuggested.

The @STRING parameter may include the following:

@STOP (Optional) Stop session.

@RESTART (Optional) Stop session and reinitialize all values.

@SUGLIST (Optional) Suggest hypotheses on knowledge base’s suggest
list.

@SUGGEST (Optional) Suggest hypotheses specified by @ATOMID.

@UNSUGGEST (Optional) Unsuggest hypotheses specified by @ATOMID.

@KNOWCESS (Optional) Initiate inference processing.

The parameters @SUGGEST and @UNSUGGEST are mutually exclusive, and may not
both be specified. If neither is present, the @ATOMID parameter is ignored.
Language Reference 2 - 23

Chapter Execute Library Routines2
Effect

The control operations specified by the @STRING parameter are executed. Operations
are always performed in the order shown under “Parameters” above, regardless of the
order in which they actually appear in the @STRING parameter.

All parameters in ControlSession are performed even if one of them is
StopSession. ControlSession can be regarded as a single atomic function.

The operations @SUGGEST and @UNSUGGEST apply to the list of hypotheses specified
by the @ATOMID parameter; @SUGLIST applies to the hypotheses in the suggest list
saved with the knowledge base itself.

The operations @RESTART and @KNOWCESS are equivalent to the Expert menu
commands Restart Session and Knowcess, respectively.

Result

The result returned by ControlSession is TRUE if the call is successful, FALSE if an
error occurs.

Examples

A condition or action of the form

Execute "ControlSession" @STRING="@STOP";

will stop the current session.

Execute "ControlSession" @STRING="@RESTART, @SUGLIST, @KNOWCESS";

will stop the session, reinitialize all values, suggest all hypotheses on the knowledge
base’s suggest list, and restart inference processing.

Execute "ControlSession" @STRING="@SUGGEST"; @ATOMID=hypo1,hypo2;

will suggest the hypotheses hypo1 and hypo2.

Related Topics

Multi-Values
Patterns
Execute Operator
2 - 24 Language Reference

CopyFrame Routine
CopyFrame Routine

Definition

The Execute routine CopyFrame copies property values from one frame (object or
class) to another.

Interactive Dialog

CopyFrame is chosen with the Select Execute popup menu command in the Rule
editor or Method editor, which automatically displays a special dialog box for
specifying the execute parameters interactively, rather than by explicitly typing them
in as listed below:

Parameters

The @ATOMID parameter consists of two items:
■ The name of a source frame (object or class) whose property values are to be copied
■ The name of the destination frame to which they are to be copied, or a pattern

specifying a list of such frames

The @STRING parameter is optional, and consists entirely of the following:

@STRAT=options (Optional) Strategy options governing the assignment (see Exe-
cute Library Overview for details).

Effect

The values of all of the source frame’s properties are copied to the corresponding
properties of each destination frame, with the following exceptions:
■ The destination frame must already possess a property with the given name. If it
Language Reference 2 - 25

Chapter Execute Library Routines2
does not, the property is not automatically associated with the destination frame
and its value is not copied.

■ The source frame’s Value property is never copied.

Result

The result returned by CopyFrame is TRUE if the call is successful, FALSE if an error
occurs.

Examples

Suppose class Box has two instances named box1 and box2 and two properties named
width and height, and that cube1 is an instance of class Cube with properties
width, height, and depth. Then a condition or action of the form

Execute "CopyFrame" @ATOMID=cube1,box1;

will copy the values of cube1.width and cube1.height to box1.width and
box1.height, respectively. The value of cube1.depth is not copied, since the
destination frame box1 has no property named depth.

Execute "CopyFrame" @ATOMID=cube1,<Box>;

will set both box1.width and box2.width equal to cube1.width, and both
box1.height and box2.height equal to cube1.height.

Related Topics

Execute Operator
Data Types
Value Property
Patterns
2 - 26 Language Reference

CreateObjects Routine
CreateObjects Routine

Definition

The Execute routine CreateObjects creates dynamic objects and attaches them to
one or more frames (classes or objects) as specified.

Interactive Dialog

CreateObjects is chosen with the Select Execute popup menu command in the Rule
editor or Method editor, which automatically displays a special dialog box for
specifying the execute parameters interactively, rather than by explicitly typing them
in as listed below:

Parameters

The @ATOMID parameter is the list of frames (objects or classes) whose properties the
dynamic objects may inherit.

The @STRING parameter may include the following:

@ROOT=obj_name Root part of name assigned to all created objects, full name in-
cludes start_num.

@FROM=start_num (Optional) System increments this starting number for each new
dynamic object and adds to root part of name to create unique
object name.

@NUMOBJS=total Number of dynamic objects the system is to create.
Language Reference 2 - 27

Chapter Execute Library Routines2
The full object name consists of the concatenated values of @ROOT and @FROM. If
@FROM is omitted, the system automatically increments the number part of the object
name starting from the default value 1.

Effect

The parameters @ROOT and @FROM (if present) determine the name of objects the
system creates dynamically by attaching them to the parent objects or classes specified
in @ATOMID. The system keeps track of the total number of objects created by
incrementing the number part of the full object name and stops when the number
reaches the specified number @NUMOBJS. Dynamic objects automatically inherit
properties from their parents if the inheritance strategy is unmodified.

Result

The result returned by CreateObjects is TRUE if the call is successful, FALSE if an
error occurs.

Examples

A condition or action of the form

Execute “CreateObjects” @STRING="@ROOT=myObj, @NUMOBJS=10";
@ATOMID=ClassA,ClassB;)

will create ten objects called myObj1 through myObj10. Each of them will be attached
to the classes ClassA and ClassB. If any of these objects already exist, they will just be
attached to the classes. If the @FROM parameter is added to the previous example, then

Execute “CreateObjects” @STRING="@ROOT=myObj, @FROM=21,
@NUMOBJS=10"; @ATOMID=ClassA;)

will create ten objects called myObj21 through myObj30 and attach them each to
ClassA.

Related Topics

Properties Execute Operator
Inheritance Strategy Dynamic Objects
Inheritance
2 - 28 Language Reference

CreateReport Routine
CreateReport Routine

Definition

The Execute routine CreateReport processes a text file containing formatting
commands and interpretations on slot variables and then displays the processed file.

Interactive Dialog

CreateReport is chosen with the Select Execute popup menu command in the Rule
editor or Method editor, which automatically displays a special dialog box for
specifying the execute parameters interactively, rather than by explicitly typing them
in as listed below:

Parameters

The @ATOMID parameter is ignored.

The @STRING parameter can include the following:

@FILE=file_name Name of file to convert.

@ORX=horizontal origin Horizontal origin of the window displayed.

@ORY=vertical origin Vertical origin of the window displayed.

@EXTX=width Width of the window displayed.

@EXTY=height Height of the window displayed.

@WAIT Display Continue and Close buttons; Wait for mouse
click before continuing.

@KEEP Display Information in a new window and keep it until
the next show or the user explicitly closes it.
Language Reference 2 - 29

Chapter Execute Library Routines2
Only the FILE parameter is required.

Effect

The text file designated by the @FILE parameter is processed line by line. It can contain
commands and slot variable names as described below. You assemble the commands
of the text formatting language in the text file using any text editor.

Formatting commands specify alignment, page length, inclusion of other files, and
sections which are included or not depending on variable values from the Rules
Element. (See Formatting Commands for more information on the available
commands.) Slot variables names are interpreted and are substituted with their current
values.

The processed file will not be displayed if it contains a #noDisplay# formatting
command and if it is saved on disk (#NewFile# or # AddFile# commands).

Interpreting Slot Variables

When CreateReport processes a text file, the contents of the text file are
preprocessed. It considers any string between “\” (back slashes) or between the
parentheses of @V() an interpretation (dynamic value) and replaces it with the current
value of the interpreted variable, provided it is a valid slot of the knowledge base. For
example:

...\passenger.fullname\...

or

...@V(passenger.fullname)

is displayed as ...Mark Johnson... if the current value of the property fullname
of the object passenger is Mark Johnson.

After this preprocessing, the system searches for global commands and executes the
corresponding instructions. Afterwards, the system scans the text one character at a
time; it then interprets and executes the local commands.

Important:
■ All the formatting commands and their arguments can be interpreted. This means

that the system can interpret a dynamic Rules Element variable to obtain the
command keyword and its arguments.

■ If your final text must contain a backslash (\), write “\\” so that the parser does
not mistake it for an interpretation.

Because the dynamic values are interpreted before the rest, you should beware of using
dynamic values containing “#”: when the system scans the content of the file, it
understands these symbols as the beginning or the end of a command.
2 - 30 Language Reference

CreateReport Routine
Formatting Commands

The text formatting language contains commands that describe the way the text
following the command needs to appear on the screen. Each command starts and
finishes with a # on its own line. Do not use this symbol in the text itself. The following
list identifies these commands that belong to one of three categories: screen layout
commands, text commands, and file commands.

Screen Layout Commands
The following commands control how much of the screen the text window uses. A text
window can consist of several screen pages and is scrollable by the end user.

Specify a Header #OpenHeader#
...(text)

#CloseHeader#

These two commands specify a header for the text window using text you supply. The
text must not exceed five lines. The text between these two commands can contain
interpretations of Rules Element variables.

Specify a Footer #OpenFooter#
...(text)

#CloseFooter#

These two commands specify a footer for the text window using text you supply. The
text must not exceed five lines. The text in between these two commands can contain
interpretations of Rules Element variables.

Set Page Length #PageLength=XXX#

This command sets the length of the page (number of lines between the top two
consecutive headers) to XXX. The system adds a page break every XXX lines. The
default page length is 50 lines. Page breaks appear as lines of “-”. To change this
default character, see the #SetPageBreak=char# below.

Set Page Width #PageWidth=XXX#

This command sets the width of the page (in number of columns) to XXX. Lines wrap
around every XXX characters. The default page width is 80 columns.

Set Left Margin #LeftMargin=XXX#

This command sets the left margin to XXX characters. The default left margin is 0.

Set Right Margin #RightMargin=XXX#

This command sets the right margin to XXX characters. The default right margin is 0.
Language Reference 2 - 31

Chapter Execute Library Routines2
Specify Page Break Character #SetPageBreak=char#

This command changes the character used for displaying page breaks to the one you
specify.

Insert Page Break #PageBreak#

This command forces a page break on the line.

Text Commands
The following commands control aspects of the text itself, including color, alignment,
and exact position:

Set Tabs #Tabs=X#

This command lets you tab at every X number of spaces or multiple of the number. Be
careful using tabs with dynamic text variables since the formatted text position
depends on the slot value not the slot name.

Center Text #Center#

This command centers the text following it. Text remains centered until the Rules
Element finds a #LeftAlign# or #RightAlign# command.

Left Align Text #LeftAlign#

This command makes the text following it left aligned. Text stays left aligned until the
Rules Element finds a #Center# or #RightAlign# command.

Right Align Text #RightAlign#

This command makes the text following it right aligned. Text stays right aligned until
the Rules Element finds a #Center# or #LeftAlign# command.

Set Text Column #LXXX#

This command begins the text following it on column XXX. This command can appear
embedded inside the text.

Align Text Column #RXXX#

This command begins the text following it on column XXX and makes it right aligned.
This command can appear embedded inside the text.

Set Word Wrap #WordWrap#

This command allows word wrap. Text you display does not exceed
#PageWidth=XXX#. Word wrap is the default condition.

Set Character Wrap #CharWrap#

This command allows character wrap. This disables the word wrap condition.
2 - 32 Language Reference

CreateReport Routine
Set Precision #Precision=X#

This command lets you change the precision used to display the fractional part of a
floating point number. The default is 0, so fractions are ignored.

Set Date #date=YYYYY#

This command displays the current system date in the format specified by YYYYY,
where Y can be any of the following characters:

Blank spaces and ’/’ are valid separators. As an example, #date=D_m/d/y# is
replaced by Wed_01/03/90 (the underscore denotes a blank space).

File Commands
The following commands access files or external devices:

Override Form Feed #NoFormFeed#

This command overrides the default form feed that normally occurs when you print a
text file, create a new file (#NewFile#), or append the file to an existing file
(#AddFile#).

Include a File #Include a filename [,<class>] {{[+,-] index] } #

This command causes the file you specify (filename) to appear in the current text file.
For complete details about including files, refer to the Include Command section
below.

Copy Text to File #NewFile=filename#

This command creates a new text file (filename) and stores all the text preceding this
command in the newly created file. The text is stored exactly as it appears on the
screen, without commands.

Store Text Only in File #AddFile=filename#

This command stores all the text preceding this command in the file you specify
(filename), without commands. If the file you specify already exists, the text is
appended to the end of the file.

Do not display the Text #NoDisplay#

d Uses the current date.

h Uses the current hour.

m Uses the month number.

y Uses the current year.

D Uses the first three letters of the day.

M Uses the first three letters of the month.
Language Reference 2 - 33

Chapter Execute Library Routines2
This command will cause the text not to be displayed once it has been processed (the
default is to display the text). However, this commands will only be effective if the text
was saved with a #NewFile# or #AddFile# command.

Conditional Statements

The following command structure lets you display text or execute commands only if
the conditions you specify are met.

#if(condition)#
... commands and text
#elseif(condition)#
... commands and text
#else#
... commands and text
#endif#

The condition compares one or more variables of the knowledge base to the value you
specify as follows:

(\ObjectName.Property\==Value)

This command structure uses the following operators to make comparisons:

Additionally, logical operators let you chain variables together or negate the variable,
as follows:

Note: Use parentheses to limit operators if needed.

Include Command

This command tells CreateReport to find the file you specify and include it in the
current text file. The full possible syntax of an include command is the following:

#include=filename[,<class>[.prop]]{[,[+,-]index]}#

!= Variable is not equal to the value.

== Variable is equal to the value.

< Variable is less than value.

> Variable is greater than value.

<= Variable is less than or equal to value.

>= Variable is greater than or equal to value.

&& Logical and

|| Logical or

! Logical not.
2 - 34 Language Reference

CreateReport Routine
The filename can be followed with a class (or object) name between <> characters. In
this case, the file will be included once for each of the subobjects of the class (or object)
and each occurrence of !SELF! in the included file will be substituted with that
subobject name. Additionally, if the class (or object) name is followed with a property
name, occurrences of !PROP! in the included file will be substituted with that property
name.

Any property specified after <class>[.prop] is used for determining how the
different subobjects should be sorted. Several of these properties can be used in which
case the subobjects are first sorted on the first index, using the second index in case of
a tie and so on. If the index is prefixed with a '-' (minus) character, the sorting is done
is descending order. By default the order is ascending.

Result
The result returned by CreateReport is TRUE if the call is successful, FALSE if an
error occurs.

Examples
A condition or action of the form

Execute "CreateReport" @STRING="@FILE=myfile";

will convert the file myfile and display the converted file

If myfile contains the following lines:

#center#
Example of CreateReport file
#leftalign#
#if(\displayall\==TRUE)#
#include=myfile2.txt,<class>#
#endif#
End of CreateReport file

and myfile2 contains:

Object of class: !SELF! with value @V(!SELF!.Info)

and displayall is TRUE and class has two subobjects obj1 and obj2 with their
property Info being Info1 and Info2, the converted file will be displayed as:

Example of CreateReport file

Object of class: obj1 with value Info1

Object of class: obj2 with value Info2

End of CreateReport file
Language Reference 2 - 35

Chapter Execute Library Routines2
FileExist Routine

Definition

The Execute routine FileExist tests whether a designated file currently exists.

Interactive Dialog

FileExist is chosen with the Select Execute popup menu command in the Rule
editor or Method editor, which automatically displays a special dialog box for
specifying the execute parameters interactively, rather than by explicitly typing them
in as listed below:

Parameters

The @ATOMID parameter is ignored.

The @STRING parameter must include the following:

@FILE=file_name Name of desired file.

@RETURN=answer_slot Name of slot in which to return result of test.

Both parameters are required. The destination specified by @RETURN must be a
boolean-valued slot.

Effect

The destination slot designated by the @RETURN parameter is set to TRUE or FALSE,
depending on whether the requested file currently exists. If the @FILE parameter does
not specify a full path name, the file is sought in the current search path.
2 - 36 Language Reference

FileExist Routine
Result

The result returned by FileExist is TRUE if the call is successful, FALSE if an error
occurs.

Examples

A condition or action of the form

Execute "FileExist" @STRING="@FILE=Flapdoo.dle,
@RETURN=TheAnswer.Value";

will set TheAnswer.Value to TRUE if file Flapdoo.dle exists in the current search
path, FALSE if it does not.
Language Reference 2 - 37

Chapter Execute Library Routines2
FindListElem Routine

Definition

The Execute routine FindListElem finds the largest or smallest object in a list
according to the value of a designated property, and attaches it to a specified frame
(object or class).

Interactive Dialog

FindListElem is chosen with the Select Execute popup menu command in the Rule
editor or Method editor, which automatically displays a special dialog box for
specifying the execute parameters interactively, rather than by explicitly typing them
in as listed below:

Parameters

The @ATOMID parameter is a pattern specifying a list of slots (object properties) whose
values are to be searched.

The @STRING parameter may include the following:

@LINKTO=destination Destination frame to which retrieved element is to be at-
tached.

@MIN (Optional) Find smallest value in list.

@MAX (Optional) Find largest value in list.

@REMOVE=parent_frame (Optional) Parent frame from which element is to be de-
tached.
2 - 38 Language Reference

FindListElem Routine
Exactly one of the parameters @MIN and @MAX must be specified. The @REMOVE
parameter, if present, must explicitly name a parent frame because the elements may
have more than one parent.

Effect

The list of slots specified by @ATOMID is searched for the minimum or maximum value,
as requested. The corresponding object is then attached to the frame named by the
@LINKTO parameter as an instance or component (subobject). If a @REMOVE parameter
is specified, the object is detached from the designated frame after being attached to the
@LINKTO frame.

Result

The result returned by FindListElem is TRUE if the call is successful, FALSE if an
error occurs.

Examples

Suppose the object Nephews has three components (subobjects) with the following
properties:

nephew1.name = "Huey" nephew1.capColor = "red"
nephew2.name = "Dewey" nephew2.capColor = "green"
nephew3.name = "Louie" nephew3.capColor = "blue"

Then a condition or action of the form

Execute "FindListElem" @ATOMID=<Nephews>.name;
@STRING="MIN,@LINKTO=SomeDucks";

will attach nephew2 (the object with the smallest value for property name) as a
component of the object SomeDucks, while

Execute "FindListElem" @ATOMID=<Nephews>.capColor;
@STRING="MAX,@LINKTO=SomeDucks,
@REMOVE=Nephew";

will instead attach nephew1 (the object with the largest value for property capColor)
as a component of SomeDucks, and will also remove it as an instance of class Nephew.

Note: The value types of the slots can be anything (STRING, INTEGER,
TIME, DATE, etc.) and they will be compared accordingly. You
don’t need to specify the value types, however all the slots in the
@ATOMID pattern must be the same type.

Related Topics

Execute Operator
Patterns
Language Reference 2 - 39

Chapter Execute Library Routines2
GetListElem Routine

Definition

The Execute routine GetListElem retrieves elements from a list of frames (objects or
classes) and attaches them to another frame.

Interactive Dialog

GetListElem is chosen with the Select Execute popup menu command in the Rule
editor or Method editor, which automatically displays a special dialog box for
specifying the execute parameters interactively, rather than by explicitly typing them
in as listed below:

Parameters

The @ATOMID parameter is a pattern specifying a list of frames (objects or classes)
whose elements are to be retrieved.

The @STRING parameter may include the following:

@LINKTO=destination Destination frame to which retrieved elements are to be
attached.

@FROM=start_index Index of first element to be retrieved. If start_index is
negative, then counting starts from the end of the list.

@TO=end_index (Optional) Index of last element to be retrieved. If
end_index is negative, then counting starts from the
2 - 40 Language Reference

GetListElem Routine
end of the list.

@RANKSET=rank_prop (Optional) Property by which elements are to be
ranked. Property must be the type INT.

@REMOVE=parent_frame
(Optional) Parent frame from which elements are to be
detached.

The @REMOVE parameter, if present, must explicitly name a parent frame because the
elements may have more than one parent.

Effect

The elements found at the given indices in the list specified by @ATOMID are attached
as instances or components (subobjects) of the destination frame designated by
@LINKTO. If no @TO index is given, only the single element at index @FROM is
retrieved.

If either the @FROM or @TO parameters is negative, the counting starts from the end
of the list. For example, @FROM = -1, @TO = -3 will get the last element through the
third-from-last.

If a @RANKSET parameter is present, it identifies an integer property giving each list
element’s ordinal rank according to some ranking criterion (presumably assigned via
an earlier call to the Execute routine RankList). The @FROM and @TO indices then
refer to this logical rank rather than to the element’s physical position within the list.

If a @REMOVE parameter is specified, the list elements are detached from the
designated frame after being attached to the @LINKTO frame.

Result

The result returned by GetListElem is TRUE if the call is successful, FALSE if an error
occurs.

Examples

Suppose class Duck has five instances whose name properties are equal to Donald,
Daisy, Huey, Dewey, and Louie. Then a condition or action of the form

Execute "GetListElem" @ATOMID=<Duck>;@STRING="@FROM=2,@TO=4,
 @LINKTO=SomeDucks";

will attach Daisy, Huey, and Dewey (the second through fourth elements of the list) as
components of the object SomeDucks.

If a previous call to RankList has ranked the instances of Duck alphabetically
according to their name properties, setting

Daisy.name_rank = 1
Dewey.name_rank = 2
Donald.name_rank = 3
Language Reference 2 - 41

Chapter Execute Library Routines2
Huey.name_rank = 4
Louie.name_rank = 5

then

Execute "GetListElem" @ATOMID=<Duck>;@STRING="@FROM=2,@TO=4,
@LINKTO=SomeDucks,@RANKSET=name_rank,
@REMOVE=Duck";

will instead attach Dewey, Donald, and Huey (the second- through fourth-ranked
elements according to property name_rank) as components of SomeDucks, and will
also remove them as instances of class Duck.

If you used the parameters in the above example, @FROM=-1, @TO=-2, the last
through second to last elements, namely HUEY and LOUIE, are attached to SomeDucks
since the indices are negative.

Related Topics

Execute Operator
Patterns
RankList Routine
2 - 42 Language Reference

GetMultiValue Routine
GetMultiValue Routine

Definition

The Execute routine GetMultiValue extracts one or more elements from a
multi-value.

Interactive Dialog

GetMultiValue is chosen with the Select Execute popup menu command in the Rule
editor or Method editor, which automatically displays a special dialog box for
specifying the execute parameters interactively, rather than by explicitly typing them
in as listed below:

Parameters

The @ATOMID parameter consists of one or two items:
■ The name of a slot (object property), multi_val, containing a multi-value string

whose elements are to be extracted
■ (Optional) A slot name, return_slot, or a pattern, return_pat, specifying a list of

slots to receive the extracted elements

The @STRING parameter may include the following:

@INDEX=index_number (Optional) Index of desired element.

@LENGTH (Optional) Requests number of elements in multi-value.

@RETURN=length_slot (Optional) Slot in which to return number of elements.

@STRAT=options (Optional) Strategy options governing the assignment
Language Reference 2 - 43

Chapter Execute Library Routines2
(see Execute Library Overview for details).

If @LENGTH is specified, then @RETURN must be included as well.

Effect

If an @INDEX parameter is given, the element at that index in multi_val is returned as
the value of return_slot. If the specified index exceeds the number of elements in the
multi-value, a warning will be posted to the transcript, but the Execute routine itself
will not fail.

If no @INDEX parameter is given, all elements of multi_val are extracted and assigned
individually to the slots designated by return_pat.

If @LENGTH is specified, the length of multi_val (the number of elements it contains) is
assigned as the value of length_slot.

Result

The result returned by GetMultiValue is TRUE if the call is successful, FALSE if an
error occurs.

Examples

Suppose the object Nephews has three components (subobjects) named Huey, Dewey,
and Louie, each of which has a property named capColor. If TheColors.Value
contains the multi-value red,green,blue, then

Execute "GetMultiValue" @ATOMID=TheColors.Value,
<Nephews>.capColor;

will assign red, green, and blue to Huey.capColor, Dewey.capColor, and
Louie.capColor, respectively.

Execute "GetMultiValue" @ATOMID=TheColors.Value,Dewey.capColor;
 @STRING="@INDEX=2";

will set Dewey.capColor to green, the second element of TheColors.Value, and

Execute "GetMultiValue" @ATOMID=TheColors.Value;
@STRING="@LENGTH,

 @RETURN=TheColors.len";

will set TheColors.len to 3, the number of elements in TheColors.Value.

Note: if the number of elements in the multivalue does not match the
number of slots in the return_pat, a warning will be posted in the
transcript, but the Execute routine itself will not fail.

Related Topics

Execute Operator
Multi-Values
Patterns
2 - 44 Language Reference

GetRelatives Routine
GetRelatives Routine

Definition

The Execute routine GetRelatives stores the inheritance pathway class and/or
object names of a given frame in a string slot as a multi-value.

Interactive Dialog

GetRelatives is chosen with the Select Execute popup menu command in the Rule
editor or Method editor, which automatically displays a special dialog box for
specifying the execute parameters interactively, rather than by explicitly typing them
in as listed below:

Parameters

The @ATOMID parameter is the name of a frame whose inheritance pathway is to be
tested.

The @STRING parameter may include the following:

@ONELEVEL (Optional) Get only immediate parents or children.

@EVERYLEVEL (Optional) Get all parents or children up or down from every
level of inheritance.

@CHILDREN (Optional) Get descendants for class or object.

@PARENTS (Optional) Get ancestors for class or object.
Language Reference 2 - 45

Chapter Execute Library Routines2
@CLASSES (Optional) Report relatives that are classes.

@OBJECTS (Optional) Report relatives that are objects.

@RETURN=multi_val Name of slot in which to report results.

The parameters @CHILDREN and @PARENTS are mutually exclusive, and may not both
be specified, as are @ONELEVEL and @EVERYLEVEL. If @CLASSES and @OBJECTS are
omitted then both classes and objects are reported.

Effect

The target slot @RETURN contains the names of the relatives of the specified atom as a
multi-value. Relatives are the objects and classes that form the inheritance pathways
of the specified atom (@ATOMID). The relatives can be the parents or children, classes
and/or objects, immediate or all inclusive depending on the @STRING options
specified.

Result

The result returned by GetRelative is TRUE if the call is successful, FALSE if an error
occurs.

Example

ClassA and ClassB both have children ClassC and ClassD. ClassC has a child
ObjE and ClassD has a child ObjF like this:

GetRelatives (@STRING="@ONELEVEL, @CHILDREN,
@RETURN=answer.mulVal"; @ATOMID=ClassA;)

This will return the multi-value ClassC,ClassD in answer.mulVal.

ClassA ClassB

ClassC ClassD

ObjE ObjF
2 - 46 Language Reference

GetRelatives Routine
GetRelatives (@STRING="@EVERYLEVEL, @CHILDREN,
@RETURN=answer.mulVal";@ATOMID=ClassB;)

This will return the multi-value ClassC,ClassD,ObjE,ObjF in answer.mulVal.

GetRelatives (@STRING="@EVERYLEVEL, @CHILDREN, @CLASSES,
@RETURN=answer.mulVal"; @ATOMID=ClassB;)

This will return the multi-value ClassC,ClassD in answer.mulVal. Notice that
ObjE and ObjF are not included because we specified @CLASSES only.

GetRelatives (@STRING="@EVERYLEVEL,
@PARENTS,@RETURN=answer.multiVal";
@ATOMID=ObjE;)

This will return the multi-value ClassC,ClassA,ClassB in slot
answer.multiVal.
Language Reference 2 - 47

Chapter Execute Library Routines2
Journal Routine

Definition

The Execute routine Journal performs all of the Rules Element’s standard journaling
operations.

Interactive Dialog

Journal is chosen with the Select Execute popup menu command in the Rule editor
or Method editor, which automatically displays a special dialog box for specifying the
execute parameters interactively, rather than by explicitly typing them in as listed
below:

Parameters

The @ATOMID parameter is ignored.

The @STRING parameter may include the following:

@operation Journaling operation to be performed (see Operations below).

@FILE=file_name (Optional) Name of journal file.

@PLAYSTEP (Optional) Replay step by step.

@PLAYSKIPSHOW (Optional) Skip Show operators.

@PLAYNOSCAN (Optional) Don’t scan file.

The @FILE parameter is not needed with the journaling operations @RECORDSTOP and
@PLAYSTOP (see “Operations,” below), but is required with all other operations. The
last three parameters are meaningful only in connection with the @PLAYSTART
operation.
2 - 48 Language Reference

Journal Routine
Operations

The operation specifier included in the @STRING parameter identifies the journaling
operation to be performed. It must consist of exactly one of the following:

All operations except @RECORDSTOP and @PLAYSTOP require a @FILE parameter to
identify the journal file to be used. The @PLAYSTART operation may optionally be
modified by including the additional parameters @PLAYSTEP, @PLAYNOSCAN, or
@PLAYSKIPSHOW.

Effect

The journaling operation specified in the @STRING parameter is executed.

Result

The result returned by Journal is TRUE if the call is successful, FALSE if an error
occurs.

Examples

A condition or action of the form

Execute "Journal" @STRING="@STATESAVE,@FILE=Session.jou";

will save the current state of the session in the journal file Session.jou; thereafter,

Execute "Journal" @STRING="@STATERESTORE,@FILE=Session.jou";

will restore the session to the state previously saved.

Related Topics

Execute Operator
Journaling

@RECORDSTART Start Recording

@RECORDSTOP Stop recording

@PLAYSTART Start playback

@PLAYSTOP Stop playback

@VALUESSAVE Save slot values only

@STATESAVE Save complete state

@STATERESTORE Restore complete state
Language Reference 2 - 49

Chapter Execute Library Routines2
LinkMultiValue Routine

Definition

The Execute routine LinkMultiValue creates links from objects listed by name in a
list of multi-values to a specified class or object.

Interactive Dialog

LinkMultiValue is chosen with the Select Execute popup menu command in the
Rule editor or Method editor, which automatically displays a special dialog box for
specifying the execute parameters interactively, rather than by explicitly typing them
in as listed below:

Parameters

The @ATOMID parameter is a list of multivalue slots which contain the names of objects
to be linked.

The @STRING parameter may include the following:

@LINKTO=atom_name Objects named in the multi-values are linked to this
frame (object or class).

@CREATEOBJECTS (Optional) Ensures all objects named in the multi-val-
ues are linked whether they already exist or not.

If you omit the @CREATEOBJECTS parameter, you must ensure the names in the
multivalues are legitimate object names.
2 - 50 Language Reference

LinkMultiValue Routine
Effect

The values in the multivalue lists become objects linked to the specified object or class.
If the @CREATEOBJECTS parameter is specified, new objects are created; otherwise, the
names in the multivalue lists must already exist in the system as object names.

Result

The result returned by LinkMultiValue is TRUE if the call is successful, FALSE if an
error occurs.

Examples

Assume <MClass> contains three objects Obj1, Obj2, and Obj3 with a string
property mval for holding a multi-value. The current values are as follows:

Obj1.mval = "alpha,beta,charlie"
Obj2.mval = "delta,echo,fox"
Obj3.mval = "gulf,hotel,india"

Assume that the objects alpha, beta, charlie, delta, and echo already exist.

LinkMultiValue (@STRING="@LINKTO=myFrame"; @ATOMID=Obj1.mval;)

This will link all of the objects whose names are in Obj1.mval to the frame myFrame.
So, alpha, beta, and charlie will all be linked to myFrame.

LinkMultiValue (@STRING="@LINKTO=myFrame";
@ATOMID=Obj1.mval,Obj2.mval;)

This will link the objects in Obj1.mval and Obj2.mval to myFrame. However, since
fox does not exist, it will not be created or linked.

LinkMultiValue (@STRING="@LINKTO=myFrame, @CREATEOBJECTS";
@ATOMID=<MClass>.mval;)

This will link all objects whose names are in all of the multi-values that are in the class
MClass to the frame myFrame. Since @CREATEOBJECTS is specified, the objects that
don’t exist yet (fox, gulf, hotel and india) will be created.

Related Topics

Inheritance
Multi-Values
Execute Operator
AtomName Routine
Language Reference 2 - 51

Chapter Execute Library Routines2
Message Routine

Definition

The Execute routine Message posts a message on the screen or sends one to the banner
or transcript handler.

Interactive Dialog

Message is chosen with the Select Execute popup menu command in the Rule editor
or Method editor, which automatically displays a special dialog box for specifying the
execute parameters interactively, rather than by explicitly typing them in as listed
below:

Parameters

The @ATOMID parameter is ignored.

The @STRING parameter may include the following:

@TEXT=text_string Text of message to be posted.

@RETURN=reply_slot(Optional) Name of slot in which to return user’s reply.

@OK (Optional) If present, use dialog box with one button labeled
OK.

@OKCANCEL (Optional) If present, use dialog box with two buttons labeled
OK and Cancel.

@YESNOCANCEL (Optional) If present, use dialog box with three buttons labeled
Yes, No, and Cancel.
2 - 52 Language Reference

Message Routine
@BANNER (Optional) If present, send message to banner handler.

@TRANSCRIPT (Optional) If present, send message to transcript handler.

@STRAT=options (Optional) Strategy options governing assignment to reply slot
(see Execute Library Overview for details).

The parameters @OK, @OKCANCEL, @YESNOCANCEL, @BANNER, and @TRANSCRIPT are
mutually exclusive; at most one may be specified. If none is present, @OK is assumed
by default.

The @RETURN parameter is needed only with @OKCANCEL or @YESNOCANCEL, and will
be ignored if @OK, @BANNER, or @TRANSCRIPT is specified.

Effect

If @OK, @OKCANCEL, or @YESNOCANCEL is specified, the message given by the @TEXT
parameter is displayed in a dialog box with the requested number of buttons using the
Alert Handler. The value returned in the @RETURN parameter identifies the button the
user used to dismiss the dialog:

1 OK or Yes
0 Cancel
-1 No

If @BANNER or @TRANSCRIPT is specified, the message is sent to the banner or
transcript handler instead of an on-screen dialog box; no result value is returned.

Result

The result returned by Message is TRUE if the call is successful, FALSE if an error
occurs.

Examples

A condition or action of the form

Execute "Message" @STRING="@TEXT=Do you want to continue?,
@OKCANCEL,@RETURN=answer.Value";

will post the message Do you want to continue? in a dialog box with two buttons
labeled OK and Cancel. The contents of answer.Value will be set to 1 or 0 to
indicate whether the user clicked OK or Cancel.

A condition or action of the form

Execute "Message" @STRING="@TEXT=Now entering rule 5,
@TRANSCRIPT";

will post the message Now entering rule 5 to the transcript.

Related Topics

Execute Operator Multi-Values
Language Reference 2 - 53

Chapter Execute Library Routines2
Parse Routine

Definition

The Execute routine Parse separates a larger string into its component parts and
stores the next string token into a slot.

Interactive Dialog

Parse is chosen with the Select Execute popup menu command in the Rule editor or
Method editor, which automatically displays a special dialog box for specifying the
execute parameters interactively, rather than by explicitly typing them in as listed
below:

Parameters

The @ATOMID parameter consists of two parts:
■ CharPosSlot: The character position from which to begin parsing is an integer slot.
■ CharStringSlot: The slot that contains the string to be parsed into component

strings.

The @STRING parameter may include the following:

@WORDS (Optional) Search for string tokens separated by spaces.

@LIST (Optional) Search for string tokens separated by com-
mas.

@RETURN=string_slot Name of slot in which to return the next token after the
2 - 54 Language Reference

Parse Routine
current character position.

If @WORDS and @LIST are omitted, the system uses the default @WORDS mode. The
destination specified by @RETURN must be a string slot.

Effect

This execute parses the @ATOMID string slot for either words or list elements. In either
@WORDS or @LIST mode, the ParseStringSlot will be parsed starting from the character
position in the integer slot CharPosSlot. The next string token found will be returned
in the StringSlot. If no token is found, an empty string will be returned, and the
CharPosSlot will be set to -1. If a token is found, CharPosSlot will be advanced to the
next character position after the token. This enables you to set up a looping rule which
parses out each token one by one. (See examples.)

In @WORDS mode, a token is defined as a string of visible (non-blank) characters
separated by spaces. In this mode, a comma or an equals sign can also separate two
tokens. In that case, the comma or equals sign would be considered as a separate token.
For example, the following shows how a string would be parsed in @WORDS mode:

The string: "hello there a=b 1,2"
Token 1: "hello"
Token 2: "there"
Token 3: "a"
Token 4: "="
Token 5: "b"
Token 6: "1"
Token 7: ","
Token 8: "2"

In @LIST mode, a token is defined as a string of characters separated by commas. In
this case, the commas are not considered tokens, just separators. The leading and
trailing blanks in a token are eliminated, but embedded blanks are retained. Here is an
example of parsing in @LIST mode:

The string: "item1, item2, two words"
Token 1: "item1"
Token 2: "item2"
Token 3: "two words"

Result

The result returned by Parse is TRUE if the call is successful, FALSE if an error occurs.

Examples

The following example shows how to set up 2 rules which parse the words out of a
sentence:

Example 1

Rule 1:
Language Reference 2 - 55

Chapter Execute Library Routines2
If there is evidence of something
And "This is a sentence" is assigned to ParseString.strVal
And 0 is assigned to CharPos.intVal
And there is no evidence of ParseLoop

Then Hypo
is confirmed.

Rule 2:

If CharPos.intVal is greater than or equal to 0
And Execute "Parse" (@ATOMID=CharPos.intVal,

ParseString.strVal"; @STRING="@WORDS,
@RETURN=Token.strVal";)

And <...do something with Token.strVal here...>

Then ParseLoop
is confirmed.
And Reset ParseLoop

When Hypo is suggested, the string This is a sentence is assigned to
ParseString.strVal, and CharPos.intVal is set to zero. Then, the next
condition forces backward chaining to rule 2. That rule checks to see if
CharPos.intVal is greater than or equal to zero. Since it is, it then executes Parse.
Parse will return the first token in ParseString.strVal by setting
Token.strVal to This. You can then do whatever you want with that token. Parse
also sets CharPos.intVal to the character position right after the token, which in this
case would be 4 (since the count starts at 0). On the right hand side of the rule, the
hypothesis ParseLoop is reset which causes it to be executed again.

The next time Rule 2 is executed, CharPos.intVal will be 4, so the token returned by
Parse will be is. The loop continues in this manner until no more tokens are found.
At that point, CharPos.intVal is set to -1, and the hypothesis ParseLoop is rejected
which then causes Hypo to be confirmed.

Examples 2 and 3

The following two examples show the difference between parsing in @WORDS mode
and @LIST mode. For both examples, CharPos.intVal contains 0 and
ParseString.strVal contains the following string:

"Hello there, Bob"

@PARSE (@STRING="@WORDS, @RETURN=Token.strVal";
@ATOMID=CharPos.intVal, ParseString.strVal;)

After executing this, Token.strVal will contain Hello, and CharPos.intVal will
contain 5 since the token ends on character 4 (starting the count with 0). If this were
executed again, the next time Token.strVal would contain there and
CharPos.intVal would contain 11. The next time, Token.strVal would contain
"," and CharPos.intVal would contain 12. Then, Bob and 16. Finally, on the fifth
try, the token would be empty, and CharPos.intVal would be set to -1 to indicate
that there are no more tokens in the string.

@PARSE (@STRING="@LIST, @RETURN=Token.strVal";
@ATOMID=CharPos.intVal, ParseString.strVal;)
2 - 56 Language Reference

Parse Routine
After executing this, Token.strVal will contain Hello there and
CharPos.intVal will contain 11. Since we are in @LIST mode, everything up to the
comma is considered part of the token except for leading and trailing blanks. If we
execute this again, Token.strVal will contain Bob and CharPos.intVal will
contain 16. Finally, a third execution will cause the token to be empty and
CharPos.intVal will be -1. Notice in @LIST mode, the comma was never returned
as a token. @LIST mode is useful for parsing lists such as multi-values.

Related Topics

Execute Operator
Language Reference 2 - 57

Chapter Execute Library Routines2
PatternMatcher Routine

Definition

The Execute routine PatternMatcher compares a slot against a list of slots and links
a specified number of matches to a specified class.

Interactive Dialog

PatternMatcher is chosen with the Select Execute popup menu command in the
Rule editor or Method editor, which automatically displays a special dialog box for
specifying the execute parameters interactively, rather than by explicitly typing them
in as listed below:

Parameters

The @ATOMID parameter consists of two parts:
■ The test slot that you want to compare to the list of slots.
■ The list of slots that you perform the test on.

The @STRING parameter may include the following:

@LINKTO=destination Destination frame to which successfully tested elements
are attached.
2 - 58 Language Reference

PatternMatcher Routine
@LINKTESTED=testedFrame
(Optional) Frame to which tested but failed elements
are attached.

@LINKUNTESTED=untestedFrame
(Optional) Frame to which not yet tested elements are
attached.

@NUMMATCH=number (Optional) Continue test until specified number of
matches are found.

@operation (Optional) Test operation to be performed (see Opera-
tions below).

If @NUMMATCH is omitted, the system uses the default 1. Also if no test operator
keyword is supplied, the default is @EQUAL.

Operations

The operation specifier included in the @STRING parameter identifies the operation to
be performed on the pair of multi-values designated by @ATOMID and @VALUE. It must
consist of exactly one of the following:

@EQUAL All elements in ListOfSlots that have values equal to the value of
testSlot

@NOT_EQUAL All elements in ListOfSlots that have values that are not equal to
the value of testSlot

@LESS All elements in ListOfSlots that have values less than the value
of testSlot

@LESS_EQUAL All elements in ListOfSlots that have values less than or equal to
the value of testSlot

@GREATER All elements in ListOfSlots that have values greater than the val-
ue of testSlot

@GREATER_EQUAL All elements in ListOfSlots that have values greater than or
equal to the value of testSlot

Effect

The PatternMatcher tests each of the slots in the ListOfSlots against the
testSlot according to one of the test operators. As soon as the specified number of
matches is found, PatternMatcher stops checking. For example, if the
ListOfSlots has five slots that pass the test, but @NUMMATCH was set to 3, only the
first three successful tests will be linked to the linkFrame.

Optionally, you can also have all slots which were tested but don’t pass the test
condition attached to the testedFrame, and all slots which have yet to be tested
linked to the untestedFrame. If the actual number of matches is less than the number
Language Reference 2 - 59

Chapter Execute Library Routines2
specified in @NUMMATCH, then the whole list will be searched and nothing will be linked
to the untestedFrame.

Result

The result returned by PatternMatcher is TRUE if the call is successful, FALSE if an
error occurs.

Examples

Assume <Class1> has two properties weight and color and five objects Obj1
through Obj5. The current values are as follows:

Obj1.weight = 10 Obj1.color = blue
Obj2.weight = 20 Obj2.color = green
Obj3.weight = 30 Obj3.color = orange
Obj4.weight = 40 Obj4.color = red
Obj5.weight = 50 Obj5.color = yellow

Another object tester also has two properties pounds and finish with values as
follows:

tester.pounds = 25 tester.finish = "orange"

Also, we have three classes for attaching results: linkClass, testedClass, and
untestedClass.

PatternMatcher (@STRING="@LINKTO=linkClass, @GREATER, @NUMMATCH=2";
@ATOMID=tester.pounds,<Class1>.weight;)

This will match the first two objects in Class1 whose weight is greater than
tester.pounds. So, in this case, Obj3 and Obj4 will be linked to linkClass.

PatternMatcher (@STRING="@LINKTO=linkClass,
@LINKTESTED=testedClass,
@LINKUNTESTED=untestedClass,
@GREATER, @NUMMATCH=2";
@ATOMID=tester.pounds,<Class1> weight;)

This is basically the same as the previous example, except that we are linking the tested
and untested objects to frames. So, in this case, Obj1 and Obj2 will be linked to
testedClass, Obj3 and Obj4 will be linked to linkClass, and Obj5 will be linked
to untestedClass.

PatternMatcher (@STRING="@LINKTO=linkClass, @EQUAL";
@ATOMID=tester.finish,<Class1>.color;)

This will find the first object in Class1 whose color is equal to the finish in tester. So,
in this case, Obj3 will be linked to linkClass.

Related Topics

Patterns
Execute Operator
2 - 60 Language Reference

PropagateValue Routine
PropagateValue Routine

Definition

The Execute routine PropagateValue assigns the value of a specified atom to atoms
in the inheritance pathway that contain the same property.

Interactive Dialog

PropagateValue is chosen with the Select Execute popup menu command in the
Rule editor or Method editor, which automatically displays a special dialog box for
specifying the execute parameters interactively, rather than by explicitly typing them
in as listed below:

Parameters

The @ATOMID parameter is the name of a slot whose properties you wish to propagate.

The @STRING parameter may include the following:

@ONELEVEL (Optional) Propagate only to immediate parents or children.

@EVERYLEVEL (Optional) Propagate to all parents or children up or down from
@ATOMID.

@CHILDREN (Optional) Propagate down to descendants.

@PARENTS (Optional) Propagate up to ancestors.

@CLASSES (Optional) Propagate to relatives that are classes.

@OBJECTS (Optional) Propagate to relatives that are objects.
Language Reference 2 - 61

Chapter Execute Library Routines2
The parameters @CHILDREN and @PARENTS are mutually exclusive, and may not both
be specified, as are @ONELEVEL and @EVERYLEVEL. If @CLASSES and @OBJECTS are
omitted then both classes and objects are used.

Effect

The relatives that share the same property as the specified atom receive the value of
that atom. Relatives are the objects and classes that form the inheritance pathways of
the specified atom. The relatives can be the parents or children, classes and/or objects,
immediate or all inclusive depending on the @STRING options specified.

Result

The result returned by PropagateValue is TRUE if the call is successful, FALSE if an
error occurs.

Examples

A <ClassA> and <ClassB> both have subclasses <ClassC> and <ClassD>.
<ClassC> has a subobject ObjE. <ClassD> has a subobject ObjF:

PropagateValue (@STRING="@EVERYLEVEL, @CHILDREN"; @ATOMID=ClassA.intval;)

This will propagate the current value in ClassA.intval to all of the children which
have a property intval on all levels. So, whatever the current value is
ClassA.intval is, that value will be propagated to ClassC.intval,
ClassD.intval, ObjE.intval and ObjF.intval.

PropagateValue (@STRING="@ONELEVEL, @PARENTS"; @ATOMID=ClassC.intval;)

ClassA ClassB

ClassC ClassD

ObjE ObjF
2 - 62 Language Reference

PropagateValue Routine
This will propagate the current value of ClassC.intval to its parents,
ClassA.intval and ClassB.intval. If those objects do not have the property
intval, it will not be created and the value will not be propagated.

PropagateValue (@STRING="@EVERYLEVEL, @CHILDREN, @CLASSES";
@ATOMID=ClassA.intval;)

This will propagate the current value of ClassA.intval to all of the children classes
(not objects). So, the value will be propagated to ClassC.intval and
ClassD.intval.

Related Topics

Patterns
Execute Operator
Language Reference 2 - 63

Chapter Execute Library Routines2
RankList Routine

Definition

The Execute routine RankList ranks a list of objects or classes according to the value
of a designated property.

Interactive Dialog

RankList is chosen with the Select Execute popup menu command in the Rule editor
or Method editor, which automatically displays a special dialog box for specifying the
execute parameters interactively, rather than by explicitly typing them in as listed
below:

Parameters

The @ATOMID parameter is a pattern specifying a list of objects or classes to be ranked.

The @STRING parameter may include the following:

@RANKBY=rank_prop Property determining ranking.

@RANKSET=set_prop Property into which rank is to be stored.

@INCREASING (Optional) If present, rank in increasing order.

@DECREASING (Optional) If present, rank in decreasing order.
2 - 64 Language Reference

RankList Routine
@STRAT=options (Optional) Strategy options governing the assignment
(see Execute Library Overview for details).

At most one of the parameters @INCREASING and @DECREASING may be specified; if
neither is present, @INCREASING is assumed by default.

Effect

The objects or classes specified by @ATOMID are ranked according to the value of the
property designated by @RANKBY. The property designated by @RANKSET is then set
to the corresponding numerical rank, from 1 to the length of the list.

If the @INCREASING parameter is specified, a rank of 1 denotes the object or class with
the smallest value for the designated property; if @DECREASING, the one with the
greatest value.

The rank_prop can be any type (STRING, INTEGER, TIME, DATE, etc.) but all of the
objects or classes in the pattern must have this property. Also, the set_prop must be
INTEGER type and all of the objects or properties in the pattern must have this
property.

Result

The result returned by RankList is TRUE if the call is successful, FALSE if an error
occurs.

Examples

If class Duck has five instances whose name properties are equal to Donald, Daisy,
Huey, Dewey, and Louie, then

Execute "RankList" @ATOMID=<Duck>;@STRING= "@RANKBY=name,
@RANKSET=name_rank,@INCREASING";

will rank the instances alphabetically by their name fields, setting Daisy.name_rank
equal to 1, Dewey.name_rank to 2, Donald.name_rank to 3, Huey.name_rank to
4, and Louie.name_rank to 5, while

Execute "RankList" @ATOMID=<Nephews>;@STRING= "@RANKBY=name,
@RANKSET=name_rank, @DECREASING";

will set Daisy.name_rank to 5, Dewey.name_rank to 4, Donald.name_rank to 3,
Huey.name_rank to 2, and Louie.name_rank to 1.

Related Topics

Patterns
Execute Operator
Language Reference 2 - 65

Chapter Execute Library Routines2
ResetFrame Routine

Definition

The Execute routine ResetFrame resets all properties of one or more frames (objects
or classes) to UNKNOWN.

Interactive Dialog

ResetFrame is chosen with the Select Execute popup menu command in the Rule
editor or Method editor, which automatically displays a special dialog box for
specifying the execute parameters interactively, rather than by explicitly typing them
in as listed below:

Parameters

The @ATOMID parameter is the name of a frame (object or class) whose properties are
to be reset, or a pattern specifying a list of such frames.

The @STRING parameter is ignored.

Effect

All properties of each object or class designated by the @ATOMID parameter are reset to
UNKNOWN.

Result

The result returned by ResetFrame is TRUE if the call is successful, FALSE if an error
occurs.

Examples

Suppose class Cube has two instances named cube1 and cube2 and three properties
named width, height, and depth. Then an action of the form
2 - 66 Language Reference

ResetFrame Routine
Execute "ResetFrame" @ATOMID=cube1;

will reset the properties

cube1.width
cube1.height
cube1.depth

to UNKNOWN, and

Execute "ResetFrame" @ATOMID=<Cube>;

will reset

cube1.width cube2.width
cube1.heightcube2.height
cube1.depth cube2.depth

Related Topics

Data Types
Patterns
Execute Operator
Language Reference 2 - 67

Chapter Execute Library Routines2
SetMultiValue Routine

Definition

The Execute routine SetMultiValue adds or deletes elements from one or more
multi-values.

Interactive Dialog

SetMultiValue is chosen with the Select Execute popup menu command in the Rule
editor or Method editor, which automatically displays a special dialog box for
specifying the execute parameters interactively, rather than by explicitly typing them
in as listed below

Parameters

The @ATOMID parameter is the name of a slot (object property) containing a multi-value
string to be operated on, or a pattern specifying a list of such slots.

The @STRING parameter may include the following:

@ADD=value_list (Optional) List of elements to be added.

@DELETE=value_list(Optional) List of elements to be deleted.

@DUPLICATE (Optional) Allow duplicate occurrences of the same element in
a multi-value.
2 - 68 Language Reference

SetMultiValue Routine
@NODUPLICATE (Optional) Avoid duplicate occurrences of the same element in
a multi-value.

@STRAT=options (Optional) Strategy options governing the assignment (see Exe-
cute Library Overview for details).

@COMP=value-type (Optional) Specifies the way in which the individual values in
the multivalues are to be compared. (See Value Types below.)

At most one of the parameters @DUPLICATE and @NODUPLICATE may be specified; if
neither is present, @NODUPLICATE is assumed by default.

Value Types

The comp specifier can be used for indicating how the individual values in a
multivalue are to be compared. If it is absent, STRING is the default. The following
types are valid: STRING, INT, FLOAT, DATE, and TIME.

For example, if one multivalue contains the element 1.0 and another multivalue
contains the element 1.00, these will be regarded as the same value if @COMP=FLOAT is
specified. However, if @COMP=STRING is specified (the default), they are regarded as
two different strings.

Effect

If an @ADD parameter is given, each individual element in the @ADD list is added to the
multi-value(s) designated by @ATOMID. If @DUPLICATE is specified, elements already
present in the multi-value will be included again; if @NODUPLICATE, such additional
occurrences will be suppressed.

If a @DELETE parameter is given, each individual element in the @DELETE list is
deleted from the multi-value(s) designated by @ATOMID. If @DUPLICATE is specified,
only the first occurrence of each element will be deleted, leaving any additional
occurrences intact; if @NODUPLICATE, all occurrences of each element will be deleted.

Both @ADD and @DELETE may be specified in a single SetMultiValue. In that case, the
deletes are done first.

Result

The result returned by SetMultiValue is TRUE if the call is successful, FALSE if an
error occurs.

Examples

If Duckburg.residents contains the multi-value Donald,Daisy,Dewey, a
condition or action of the form

Execute "SetMultiValue" @ATOMID=Duckburg.residents;
@STRING="@ADD=Huey,Dewey,Louie";
Language Reference 2 - 69

Chapter Execute Library Routines2
will assign the string Donald,Daisy,Dewey,Huey,Louie as the new value of
Duckburg.residents (since in the absence of any explicit indication, the default
behavior is @NODUPLICATE). By contrast,

Execute "SetMultiValue" @ATOMID=Duckburg.residents;
@STRING="@ADD=Huey,Dewey,Louie,
@DUPLICATE";

will set it to Donald,Daisy,Dewey,Huey,Dewey,Louie, with the element Dewey
duplicated. Following this operation,

Execute "SetMultiValue" @ATOMID=Duckburg.residents;
@STRING="@DELETE=Dewey";

will set Duckburg.residents to Donald,Daisy,Huey, Louie (defaulting to
@NODUPLICATE and deleting all occurrences of the element Dewey), whereas

Execute "SetMultiValue" @ATOMID=Duckburg.residents;
@STRING="@DELETE=Dewey,@DUPLICATE";

will set it to Donald,Daisy,Huey,Dewey,Louie (deleting just the first occurrence
of Dewey).

Related Topics

Multi-Values
Patterns
Execute Operator
2 - 70 Language Reference

SetValue Routine
SetValue Routine

Definition

The Execute routine SetValue stores a fixed value into one or more designated slots
(object properties).

Interactive Dialog

SetValue is chosen with the Select Execute popup menu command in the Rule editor
or Method editor, which automatically displays a special dialog box for specifying the
execute parameters interactively, rather than by explicitly typing them in as listed
below:

Parameters

The @ATOMID parameter is a pattern specifying a list of objects or slots whose values
are to be set.

The @STRING parameter may include the following:

@VALUE=new_value Value to be stored.

@STRAT=options (Optional) Strategy options governing the assignment (see Exe-
cute Library Overview for details).

The @VALUE parameter may specify a value of any type.
Language Reference 2 - 71

Chapter Execute Library Routines2
Effect

If @ATOMID represents a list of object properties, then all of the designated properties
will be set to the value specified by @VALUE. If @ATOMID represents a list of objects
themselves, then all properties of each such object will be set to the given value. Notice
that this routine does not set the values associated directly with the objects themselves;
if this is what is needed, the objects’ Value property must be specified explicitly.

If the type of a property doesn’t match that of the value to which it is to be set, the value
is automatically converted to the required type. Some such conversions may not work
properly, however (such as Date to Boolean); it is the application developer’s
responsibility to ensure that the specified assignments are meaningful.

Result

The result returned by SetValue is TRUE if the call is successful, FALSE if an error
occurs.

Examples

Suppose class Box has two instances named box1 and box2 and two properties named
width and height. Then a condition or action of the form

Execute "SetValue" @ATOMID=<Box>.width; @STRING="@VALUE=10";

will assign the value 10 to the properties box1.width and box2.width,

Execute "SetValue" @ATOMID=<Box>; @STRING="@VALUE=10";

will assign it to box1.width, box1.height, box2.width, and box2.height, and

Execute "SetValue" @ATOMID=<Box>.Value; @STRING="@VALUE=10";

will assign it directly to the objects box1 and box2 (that is, to the properties
box1.Value and box2.Value).

Related Topics

Execute Operator
Data Types
Value Property
Patterns
2 - 72 Language Reference

TestMultiValue Routine
TestMultiValue Routine

Definition

The Execute routine TestMultiValue compares multi-values for a variety of possible
relations.

Interactive Dialog

TestMultiValue is chosen with the Select Execute popup menu command in the
Rule editor or Method editor, which automatically displays a special dialog box for
specifying the execute parameters interactively, rather than by explicitly typing them
in as listed below:
Language Reference 2 - 73

Chapter Execute Library Routines2
Parameters

The @ATOMID parameter is the name of a slot (object property) containing a multi-value
string to be tested, or a pattern specifying a list of such slots.

The @STRING parameter may include the following:

@TEST=test_val Slot containing multi-value to compare against.

@condition Test to be applied (see Test conditions below).

@RETURN=answer Destination in which to return result of test.

@STRAT=options (Optional) Strategy options governing the assignment (see Exe-
cute Library Overview for details).

@COMP=value-type (Optional) Specifies the way in which the individual values in
the multivalues are to be compared. (See Value Types below.)

The destination specified by @RETURN must be either a boolean-valued slot, the name
of a class, or the name of an object. If it is a boolean slot, then @ATOMID must also
designate a single slot (rather than a pattern matching a whole list of slots).

Value Types

The comp specifier can be used for indicating how the individual values in a
multivalue are to be compared. If it is absent, STRING is the default. The following
types are valid: STRING, INT, FLOAT, DATE, and TIME.

For example, if one multivalue contains the element 1.0 and another multivalue
contains the element 1.00, these will be regarded as the same value if @COMP=FLOAT is
specified. However, if @COMP=STRING is specified (the default), they are regarded as
two different strings.

Test conditions

The test condition included in the @STRING parameter specifies the type of comparison
to be performed on the multi-values. It consists of one of the four keywords

followed by one of the six comparison operators

MIN Smallest element

MAX Largest element

ANY Any element

ALL All elements

= Equal

<> Not equal

< Less than
2 - 74 Language Reference

TestMultiValue Routine
followed by another of the four keywords. The first keyword refers to the multi-value
specified by the @ATOMID parameter, the second to that specified by the @TEST
parameter. Thus, for example, the test condition @MIN>MAX tests whether the smallest
element of @ATOMID is greater than the largest element of @TEST. Thus 96 test
conditions are possible (though some of them turn out to have the same meaning):

In addition, four special test conditions are recognized

<= Less than or equal

> Greater than

>= Greater than or equal

@MIN=MIN @MAX=MIN @ANY=MIN @ALL=MIN

@MIN=MAX @MAX=MAX @ANY=MAX @ALL=MAX

@MIN=ANY @MAX=ANY @ANY=ANY @ALL=ANY

@MIN=ALL @MAX=ALL @ANY=ALL @ALL=ALL

@MIN<>MIN @MAX<>MIN @ANY<>MIN @ALL<>MIN

@MIN<>MAX @MAX<>MAX @ANY<>MAX @ALL<>MAX

@MIN<>ANY @MAX<>ANY @ANY<>ANY @ALL<>ANY

@MIN<>ALL @MAX<>ALL @ANY<>ALL @ALL<>ALL

@MIN<MIN @MAX<MIN @ANY<MIN @ALL<MIN

@MIN<MAX @MAX<MAX @ANY<MAX @ALL<MAX

@MIN<ANY @MAX<ANY @ANY<ANY @ALL<ANY

@MIN<ALL @MAX<ALL @ANY<ALL @ALL<ALL

@MIN<=MIN @MAX<=MIN @ANY<=MIN @ALL<=MIN

@MIN<=MAX @MAX<=MAX @ANY<=MAX @ALL<=MAX

@MIN<=ANY @MAX<=ANY @ANY<=ANY @ALL<=ANY

@MIN<=ALL @MAX<=ALL @ANY<=ALL @ALL<=ALL

@MIN>MIN @MAX>MIN @ANY>MIN @ALL>MIN

@MIN>MAX @MAX>MAX @ANY>MAX @ALL>MAX

@MIN>ANY @MAX>ANY @ANY>ANY @ALL>ANY

@MIN>ALL @MAX>ALL @ANY>ALL @ALL>ALL

@MIN>=MIN @MAX>=MIN @ANY>=MIN @ALL>=MIN

@MIN>=MAX @MAX>=MAX @ANY>=MAX @ALL>=MAX

@MIN>=ANY @MAX>=ANY @ANY>=ANY @ALL>=ANY

@MIN>=ALL @MAX>=ALL @ANY>=ALL @ALL>=ALL
Language Reference 2 - 75

Chapter Execute Library Routines2
@SUBSET @SUPERSET @NOT_SUBSET @NOT_SUPERSET

making a total of 100 possible test conditions in all.

The following chart shows how many of the executes have related meanings. The
operators in the left column replace the asterisk (*) in the expressions along the top row.
All of the operations in a given box have the same meaning. For example, the following
three operations have the same effect when used in TestMultiValue: MAX>MIN,
2 - 76 Language Reference

TestMultiValue Routine
ANY>MIN, MAX>ANY. In addition, these are the same as ANY>ANY which is
shown in the column header.

Effect

As noted above, if the @RETURN parameter designates a boolean slot, then @ATOMID
must also be a single slot containing a multi-value string. The multi-values specified

M * T

=

<>

>

<

>=

<=

ANY * ANY ANY * ALL ALL * ANY ALL * ALL

∃ m∈ M /
∃ t∈ T, m=t

∃ m∈ M /
∃ t∈ T, m≠ t

∀ t∈ T /
∃ m∈ M, t=m

SUPERSET

∃ m∈ M /
∀ t∈ T / m≠ t

NOT_SUBSET

∀ m∈ M /
∃ t∈ T, m=t

SUBSET

∃ t∈ T /
∀ m∈ M, t≠ m

NOT_SUPERSET

∀ m∈ M /
∃ t∈ T, m=t

∀ t∈ T /
∃ m∈ M, t=m

AND

∀ m∈ M /
∀ t∈ T, m≠ t

MAX>MIN
ANY>MIN
MAX>ANY

MAX>MAX
ANY>MAX
MAX>ALL

MIN>MIN
ALL>MIN
MIN>ANY

MIN>MAX
ALL>MAX
MIN>ALL

MIN<MAX
ANY<MAX
MIN<ANY

MIN<MIN
ANY<MIN
MIN<ALL

MAX<MAX
ALL<MAX
MAX<ANY

MAX<MIN
ALL<MIN
MAX<ALL

MAX>=MIN
ANY>=MIN
MAX>=ANY

MAX>=MAX
ANY>=MAX
MAX>=ALL

MIN>=MIN
ALL>=MIN
MIN>=ANY

MIN>=MAX
ALL>=MAX
MIN>=ALL

MIN<=MAX
ANY<=MAX
MIN<=ANY

MIN<=MIN
ANY<=MIN
MIN<=ALL

MAX<=MAX
ALL<=MAX
MAX<=ANY

MAX<=MIN
ALL<=MIN
MAX<=ALL
Language Reference 2 - 77

Chapter Execute Library Routines2
by @ATOMID and @TEST are compared according to the given test condition, and the
boolean result is stored into the slot specified by @RETURN.

If the @RETURN parameter instead designates a class or an object, then @ATOMID may
be either a single slot containing a multi-value string or a pattern matching a whole list
of such slots. Each multi-value in turn is compared with the one specified by the
@TEST parameter, using the given test condition. If @RETURN is a class, all multi-values
for which the result of the test is TRUE are added to it as instances; if it is an object, they
are associated with it as components (subobjects).

Result

The result returned by TestMultiValue is TRUE if the call is successful, FALSE if an
error occurs.

Examples

In all of the following examples, TheAnswer is a boolean-valued object and ABC, BCD,
and CDE are instances of class Alphabet with the following initial values:

ABC.members = "alpha,beta,charlie"
BCD.members = "beta,charlie,dog"
CDE.members = "charlie,dog,echo"

Example 1

A condition or action of the form

Execute "TestMultiValue" @ATOMID=ABC.members;
@STRING="@TEST=alpha,charlie,beta,
@ALL=ALL,@RETURN=TheAnswer.Value";

will set TheAnswer.Value to TRUE, since all elements in ABC.members equal all
elements in @TEST. (Notice that the order in which the elements are given is
unimportant.) However,

Execute "TestMultiValue" @ATOMID=ABC.members;
@STRING="@TEST=alpha,beta,
@ALL=ALL,@RETURN=TheAnswer.Value";

sets TheAnswer.Value to FALSE (since ABC.members contains elements that are not
matched by those in @TEST), and

Execute "TestMultiValue" @ATOMID=ABC.members;
@STRING="@TEST=alpha,beta,gamma,
@ALL=ALL,@RETURN=TheAnswer.Value";

also sets it to FALSE (since @TEST contains elements that don’t match those in
ABC.members).

Example 2

Execute "TestMultiValue" @ATOMID=ABC.members;
@STRING="@TEST=alpha,gamma,
@ANY=ANY,@RETURN=TheAnswer.Value";
2 - 78 Language Reference

TestMultiValue Routine
sets TheAnswer.Value to TRUE (since ABC.members contains at least one element
that matches at least one element in @TEST), but

Execute "TestMultiValue" @ATOMID=ABC.members;
@STRING="@TEST=gamma,delta,
@ANY=ANY,@RETURN=TheAnswer.Value";

sets it to FALSE (since ABC.members and @TEST have no elements in common).

Example 3

Execute "TestMultiValue" @ATOMID=ABC.members;
@STRING="@TEST=alpha,delta,
@ANY>ANY,@RETURN=TheAnswer.Value";

sets TheAnswer.Value to TRUE, since ABC.members contains at least one element
(beta) that is greater than at least one element in @TEST (alpha), but

Execute "TestMultiValue" @ATOMID=ABC.members;
@STRING="@TEST=alpha,delta,
@ALL>ALL,@RETURN=TheAnswer.Value";

sets it to FALSE, since not all elements in ABC.members are greater than all elements
in @TEST.

Example 4

Execute "TestMultiValue" @ATOMID=ABC.members;
@STRING="@TEST=alpha,beta,gamma,
@MAX>MIN,@RETURN=TheAnswer.Value";

sets TheAnswer.Value to TRUE, since the largest element in ABC.members
(charlie) is greater than the smallest element in @TEST (alpha), but

Execute "TestMultiValue" @ATOMID=ABC.members;
@STRING="@TEST=alpha,beta,gamma,
@MIN>MAX,@RETURN=TheAnswer.Value";

sets it to FALSE, since the smallest element in ABC.members (alpha) is not greater
than the largest element in @TEST (gamma), and

Execute "TestMultiValue" @ATOMID=ABC.members;
@STRING="@TEST=alpha,beta,gamma,
@MAX<MIN,@RETURN=TheAnswer.Value";

also sets it to FALSE, since the largest element in ABC.members (charlie) is not less
than the smallest element in @TEST (alpha).

Example 5

Execute "TestMultiValue" @ATOMID=ABC.members;
@STRING="@TEST=alpha,beta,
@SUPERSET,@RETURN=TheAnswer.Value";

sets TheAnswer.Value to TRUE (since ABC.members is a superset of @TEST), and

Execute "TestMultiValue" @ATOMID=ABC.members;
@STRING="@TEST=alpha,beta,gamma,charlie,

@SUBSET,@RETURN=TheAnswer.Value";

also sets it to TRUE (since ABC.members is a subset of @TEST), but
Language Reference 2 - 79

Chapter Execute Library Routines2
Execute "TestMultiValue" @ATOMID=ABC.members;
@STRING="@TEST=alpha,gamma,
@SUBSET,@RETURN=TheAnswer.Value";

sets it to FALSE (since in this case ABC.members is not a subset of @TEST).

Example 6

Execute "TestMultiValue" @ATOMID=<Alphabet>.members;
@STRING="@TEST=apple,candy,
@ANY<ANY,@RETURN=TheAnswer";

associates the objects ABC and BCD as components (subobjects) of TheAnswer, since
they each contain at least one element that is less than at least one element of the @TEST
multi-value. However, CDE.members contains no such element, so CDE is not made a
component of TheAnswer.

Execute "TestMultiValue" @ATOMID=<Alphabet>.members;
@STRING="@TEST=dog,SUPERSET,
@RETURN=TheAnswer";

makes BCD and CDE components of TheAnswer, since they are both supersets of
@TEST, but ABC is not.

Execute "TestMultiValue" @ATOMID=<Alphabet>.members;
@STRING="@TEST=alpha,echo,
@ANY=ANY,@RETURN=TheAnswer";

makes ABC and CDE components of TheAnswer, since they each contain at least one
element (alpha and echo, respectively) that is equal to some element of @TEST.
However, BCD.members contains no such element, so BCD is not made a component
of TheAnswer.

Related Topics

Comparison Operators
Multi-Values
Patterns
Execute Operator
2 - 80 Language Reference

Unify Routine
Unify Routine

Definition

The Execute routine Unify compares specified properties of two lists of frames
(objects or classes) and finds those pairs that satisfy a stated condition.

Interactive Dialog

Unify is chosen with the Select Execute popup menu command in the Rule editor or
Method editor, which automatically displays a special dialog box for specifying the
execute parameters interactively, rather than by explicitly typing them in as listed
below:

Parameters

The @ATOMID parameter consists of the following items, separated by commas:

from_length Number of frames in from_list.

from_list List of frames to be compared.

to_list List of frames to compare to.

The @STRING parameter may include the following:
Language Reference 2 - 81

Chapter Execute Library Routines2
@TESTFROM=from_prop
Relevant property of from_list.

@TESTTO=to_prop Relevant property of to_list.

@condition Test condition to be applied (see Test conditions below).

@SETFROM=set_from_prop
(Optional) Property to copy from from_list.

@SETTO=set_to_prop
(Optional) Property to copy to in to_list.

@FROMLINK=from_link_frame
(Optional) Frame in which to accumulate from_list elements.

@TOLINK=to_link_frame
(Optional) Frame in which to accumulate to_list elements.

The @TESTFROM and @TESTTO parameters are required. All others are optional, but
the pairs @SETFROM/@SETTO and @FROMLINK/@TOLINK must be specified together:
that is, if one of the pair is present, the other must be present as well.

Test Conditions

The test condition included in the @STRING parameter specifies the type of comparison
to be performed. It must consist of exactly one of the following:

If no test condition is specified, @EQUAL is assumed by default.

Effect

The value of property from_prop for each frame in from_list is compared with that
of property to_prop for each frame in to_list, using the stated test condition. If the
condition holds and the parameters @SETFROM and @SETTO are specified, then the
value of property set_from_prop in the from_list element is copied to property
set_to_prop in the to_list element. In addition, if @FROMLINK and @TOLINK are
specified, then the from_list element is attached to from_link_frame as an
instance or component, and the to_list element is similarly attached to
to_link_frame.

This behavior is summarized by the following fragment of pseudo-code:

EQUAL Equality

NOT_EQUAL Inequality

LESS Less-than

LESS_EQUAL Less-than-or-equal

GREATER Greater-than

GREATER_EQUAL Greater-than-or-equal
2 - 82 Language Reference

Unify Routine
for each from_frame in from_list
for each to_frame in to_list

if from_frame.from_prop <condition> to_frame.to_prop
assign from_frame.set_from_prop to

to_frame.set_to_prop
attach from_frame to from_link_frame
attach to_frame to to_link_frame

end if
end for

end for

Result

The result returned by Unify is TRUE if the call is successful, FALSE if an error occurs.

Examples

Example1: Suppose we have a class Pianos with property width and a class
Doorways with property height. Since a piano must be tilted on its side to get
through a door, the width of the piano must be less than the height of the door. A
condition or action of the form

Execute "Unify" @ATOMID=numPianos.Value,<Pianos>,<Doorways>;
@STRING="@LESS,@TESTFROM=width,
@TESTTO=height,@SETFROM=model,
@SETTO=accommodates,
@FROMLINK=Small_enough_pianos,
@TOLINK=Big_enough_doors";

will test the width of each piano against the height of each door to see if it will fit. If,
say, Grand_Piano.width is less than Front_Door.height, then Grand_Piano
will become an instance of class Small_enough_pianos, Front_Door will become
an instance of Big_enough_doors, and the value of Grand_Piano.model
(Steinway, for example) will be assigned to Front_Door.accommodates.

Example 2: Suppose we have a class Truck_Drivers with properties city and name,
and a class Trucks with properties location and driver. In order for a truck to be
driven, there must be an available driver in the same city. A condition or action of the
form:

Execute "Unify" @ATOMID=numTruckDrivers.Value, <Truck_Drivers>, <Trucks>;
@STRING="@EQUAL, @TESTFROM=city,@TESTTO=location,
@SETFROM=name, @SETTO=driver, @FROMLINK=Can_Drive,
@TOLINK=can_go";

will test the city of each Truck_Driver against the location of each Truck to see if
they match. If, for example, Chuck.city and Ace.location are both "Chicago",
then Chuck will become an instance of class Can_Drive, Ace will become an instance
of class Can_Go, and the value of Chuck.name (Charles Smith, for example) will
be assigned to Ace.Driver.

It is important to note that:
■ The length of the first list (from_length) can be obtained in a condition directly
Language Reference 2 - 83

Chapter Execute Library Routines2
before the Unify execute by using the Length function.
■ When a match is found in a Unify, the appropriate assignments take place and no

further matches are sought on that object! For example, once we have found a
driver for a truck, no further searching is done on that truck, even if several drivers
are available in the same city.

Related Topics

Patterns
Execute Operator
Length Function
Comparison Operators
2 - 84 Language Reference

WriteTo Routine
WriteTo Routine

Definition

The Execute routine WriteTo writes a message to the transcript, a file, or the terminal.

Interactive Dialog

WriteTo is chosen with the Select Execute popup menu command in the Rule editor
or Method editor, which automatically displays a special dialog box for specifying the
execute parameters interactively, rather than by explicitly typing them in as listed
below:

Parameters

The @ATOMID parameter is an optional list of slots (object properties) whose values are
to be appended to the message.

The @STRING parameter may include the following:

@TEXT=text_string Text of message to be written.

@TRANSCRIPT (Optional) If present, write message to transcript.

@FILE=file_name (Optional) If present, write message to specified file.

@TERMINAL (Optional) If present, write message to terminal.
Language Reference 2 - 85

Chapter Execute Library Routines2
@ADD (Optional) If present, append message to existing file.

@NEW (Optional) If present, create new file.

Any combination of the parameters @TRANSCRIPT, @FILE, and @TERMINAL may be
included, but at least one must be present. If neither @ADD nor @NEW is specified, @ADD
is assumed by default.

Effect

The message given by the @TEXT parameter is written to the transcript, a file, and/or
the terminal, as specified by the parameters. If a list of slots is specified with @ATOMID,
their names and current values are written after the end of the message text.

The @ADD and @NEW options are meaningful only if a file name is given with @FILE.
@ADD appends the message to the end of the designated file; if the file does not exist, it
is created automatically. @NEW forces creation of a new file containing the specified
message; if an old file already exists with the same name, it is converted to a
$$$backup file.

Result

The result returned by WriteTo is TRUE if the call is successful, FALSE if an error
occurs.

Examples

A condition or action of the form

Execute "WriteTo" @STRING="@TEXT=Failure in Valve #3,
@TRANSCRIPT";

will write the message Failure in Valve #3 to the transcript.

A condition or action of the form

Execute "WriteTo" @STRING="@TEXT=Tank pressures are ,
@TRANSCRIPT,@FILE=Session.log";
@ATOMID=<Tank>.pressure;

will append the message Tank pressures are to both the transcript and the file
Session.log, followed by the values of the property pressure for all instances of
class Tank.

Related Topics

Patterns
Execute Operator
2 - 86 Language Reference

Chapter
3 Database Integration Topics 3

This chapter describes the various procedures, key concepts, and general principles of
the Rules Element database interface. The topics appear in alphabetical order.

Core Database Topics
New users should read these first for more detailed in-
formation about the different ways the database inter-
face can be used and for specific information about
specific database types.

Database Interface Features
Identifies features of the Rules Element database inter-
face that you can use to extend the database retrieve
and write capabilities of your knowledge-based appli-
cation.

Rule Editor / Method Editor Windows
Lists topics related to setting up database retrieve /
write operations in a rule or method.

Database Editor Windows
Lets you find descriptions of the Database Editor win-
dows’ various fields.

Database Interface Operations
The topics in this list identify optional as well as re-
quired tasks of the retrieve / write operations. This in-
formation supplements the Database Editor Windows
topics list.

Before looking up topics in this chapter read Chapter Seven, “Application Data”in the
Intelligent Rules Element User’s Guide.
Language Reference 3 - 1

Chapter Database Integration Topics3
Access String

General
When the Rules Element begins a retrieve or write operation, it first needs to access the
file or database server containing the data to be accessed.

The first argument of a Retrieve or Write command is a quoted string which specifies
the database access string used to establish communications with the database. This
string can be as simple as just a filename or something more complex, for example
containing one or more of the following fields: username, password, server name,
database name, network transport mechanism, or computer node name. Typically, the
more complicated access strings are used by relational databases.

Related Topics
Access String Specification
Retrieve Operator
Write Operator
3 - 2 Language Reference

Access String Specification
Access String Specification

General
To supply the database access string field enter the name of the file (for flat file
databases) or the database access string (for relational databases) as the first argument
of the Retrieve or Write operator. A quoted entry for this field is required for the Rules
Element to initiate the desired operation. To pass a null string specify "" (double
quotes) as the first argument of the Retrieve or Write operator.

The following example shows how the database access string would be specified for a
Retrieve operation. In this example, the access string "scott tiger" appears as the
Retrieve operator’s first argument in the Rule Editor window.

Figure 3-1 Specifying a Database Access String

Flat-File Databases
For flat-file databases, the string is interpreted as a file name, and is handled like any
other file name on your operating system. For flat-file databases such as NXPDB and
Language Reference 3 - 3

Chapter Database Integration Topics3
DBASE III files, the access string must contain the filename of the data file or database.
The filename extension is optional. If it is not specified, the Rules Element uses the
following default extensions:

.NXP NXP and NXPDB files

.SLK SYLK (Excel) files

.DBF DBase III files

.WKS WKS files (Lotus 1-2-3)

Relational Databases
For relational databases such as Oracle, Sybase, and Ingres, the Rules Element needs
the access string used to sign on to the database manager. The string you supply is
passed to the database manager for interpretation. Parameters in the connection string
must be delimited by a space character.

You must not skip parameters within the access string, but you can omit the last
parameter in the string. If you need to, use a dummy name to supply a connection
parameter that is not used, but do not skip a parameter or replace one by blanks. For
example, in the case of Sybase, the connection string might take the following form:

"scott tiger hyperion SYBASE_HYPERION MyApp customerdb"

In this example, the application name MyApp was supplied as a dummy placeholder.

Details about specific database access string requirements are located in the
corresponding database name topic in this manual.

Pathname Specification
Absolute or relative pathnames can be used. The pathname syntax depends on the
underlying operating system:

For DOS A:\dir1\dir2\file1
For UNIX /dir1/dir2/file1
For VMS $disk:[dir1.dir2]file1

If a relative filename specification is used, the Rules Element will use its own search
path (the logical name ND_PATH on VMS, the shell variable ND_PATH on UNIX, or
the path specified in the Rules Element on the Macintosh) to locate flat-file databases.
The filename will be concatenated to each of the directories in the search path until a
file is found.

Environment Variables
On some systems (VMS & UNIX), the Rules Element will attempt to construct the
access string argument using environment variables. On VMS systems, you can
specify a VMS logical name. On UNIX systems, you can use shell environment
variables (setenv(1) or EXPORT variables). This feature is particularly useful with
3 - 4 Language Reference

Access String Specification
ORACLE, as the account/password information can be hidden in an environment
variable.

Dynamic Values
It's possible to use Rules Element interpretations ("@V(...)") in this field. Instead of
having a fixed value, the string can be constructed at runtime from the string values of
various object slots. The quoted string can contain any of the following constructs:

@V(obj.prop) will be replaced by the current value of obj.prop

@SELF will be replaced by the name of the current object (methods
only)

@PROP will be replaced by the name of the current property (methods
only)

For example, when working with flat-file databases different cases can be stored in files
called filecase1, filecase2, etc. If you specify "@V(cur_case.filename)",
and cur_case.filename currently holds the value filecase2, then the file
filecase2 will be used for the transaction.

Note: Slot names used in @V(obj.prop) constructs are not compiled
when the rule or method containing the retrieve or write
statement is compiled, they are interpreted at runtime. Usually,
these slots exist elsewhere in the knowledge base, but if you
misspell a name in these special constructs, the Rules Element
will not create the corresponding object or slot and you will get
an error at runtime.

Related Topics
Write Operator Oracle
Retrieve Operator Sybase
Interpretations @(V...) Informix
Dynamic Values Ingres

Also, look up your database type for details about the exact syntax required.
Language Reference 3 - 5

Chapter Database Integration Topics3
Arguments Overview

The Retrieve and Write operators invoke a Database Editor window that provides
fields to specify the retrieve or write operation. The following two lists give an
overview of the fields for the Retrieve window and the Write window.

Retrieve Arguments
The following table summarizes the various arguments available in a Retrieve
operation:

Database Type Always required. Indicates type of database to retrieve
from. The default type is machine dependent.

Name Name of the object to be updated or created when read-
ing the current record. If the object already exists, the
record is retrieved (see the In filter) into the object. If
the object does not exist and CreateObject is checked, a
dynamic object is created. If the object does not exist
and CreateObject is not checked, the record is skipped.
This field is not normally used for sequential queries or
atomic queries.

In List of objects, classes, slots used to filter what is to be
retrieved. If empty list (the default), all fields are re-
trieved. If non-empty list, only those fields mapped to
objects or slots in the lists are retrieved. Pattern match-
ing lists or interpretations can be used. Used in
grouped or atomic transactions.

Link To List of classes or objects to which the new or updated
object should be linked. Pattern matching lists or inter-
pretations can be used.

Cursor For sequential retrieves, an atom of type integer that
represents the record number or the query number. For
atomic retrieves, it must be present, but specified as
UNKNOWN. For grouped retrieves, it must be empty.

Begin Box for the command starting the transaction of a rela-
tional database. Executed only once for sequential re-
trieves. Also used to hold the range name for the
SYLKDB (Excel) and WKSDB (Lotus123) types.

End Box for end of transaction command (typically used for
Write). End statement is only done the last time during
a sequential operation.
3 - 6 Language Reference

Arguments Overview
Create Object Enables the creation of dynamic objects when the cur-
rent Name doesn't exist in the KB. Valid for grouped re-
trieve operations only.

Fields / Props List Describes how to map the fields of each record to the
property-slots of the object in the Rules Element. If the
lists are empty, ALL property names will be used as
Field names. If the lists are not empty, only the Fields /
Properties specified are affected. For atomic or sequen-
tial retrieves, the Rules Element list should be slots
(obj.prop). Otherwise, a list of properties belonging to
the object being retrieved into should be provided.

Query Box for the actual database query. Look up your data-
base type for details. Query is used to select the current
record in sequential mode. The cursor refers to a query
id in that case.

Retrieve Unknown Check this option to enable UNKNOWN values to be
read (string "Unknown" in the database or spread-
sheet). The default is to have the option off so that only
meaningful values are retrieved.

Retrieve Strategies Specify the way values are propagated after a Retrieve.
Always Forward means values are used in the forward
chaining. Current Forward means the current strategy
of the rule is used (this is the default). Do Not Forward
means the values are used without effects. Note that
the If Change methods are also triggered when new val-
ues are retrieved.

Write Arguments
The following table summarizes the various arguments available in a Write operation:

Database Type Always required. Indicates type of database to write to.
The default type is machine dependent.

Name Name of the object to use for updating the current
record. If the object already exists, the record is updat-
ed (see the In filter), otherwise the record is skipped.
This field is not normally used for sequential queries or
atomic queries.

In Filters records to be written back. If empty list (the de-
fault), all fields are updated. If non-empty list, only
those fields mapped to objects or slots in the lists are
written. All remaining atoms in the list create new
records (if Create Record selected). Pattern matching
Language Reference 3 - 7

Chapter Database Integration Topics3
lists or interpretations can be used. Usually not used in
sequential transactions.

Cursor An atom of type integer that represents the record num-
ber or the query number. Typically used for sequential
write(s) following sequential retrieves.

SqlError Name of the slot in the knowledge base that you want
to use to trap Sql database server error messages.

Fields / Props List Describes how to map the fields of each record to the
property-slots of the object in the Rules Element. If the
lists are empty, ALL property names will be used as
Field names. If the lists are not empty, only the Fields /
Properties specified are affected. For atomic or sequen-
tial writes, the Rules Element list should be slots
(obj.prop). Otherwise, a list of properties belonging to
the object being written should be provided.

Create New Record Enables the creation of new records with the atoms in
the In list not already used, otherwise updates the
records that already exist. Valid for grouped write op-
erations only.

Insert Only Assumes no records exist in the database to correspond
to the atoms in the In list and enables the creation of all
new records. Not used for sequential transactions.

New File Instead of updating an existing file, a new file is created
with a set of new records. Note that if the In list is emp-
ty, each object of the KB is written in a record. And if
the Fields and Properties lists are empty, all existing
properties are used. Cannot be used in sequential write
or with relational databases.

Begin Box for the command starting the transaction of a rela-
tional database. Executed only once for sequential
transactions. Also used to hold the range name for the
SYLKDB (Excel) and WKSDB (Lotus123) types.

Query Box for the actual database query. Look up your data-
base type for details. Query is used to select the current
record in sequential mode. The cursor refers to a query
id in that case.

End Box for end of transaction command (typically used for
Write). End statement is only done the last time during
a sequential operation.

Write Unknown Check this option to enable UNKNOWN values to be
written (string "Unknown" in the database or spread-
3 - 8 Language Reference

Arguments Overview
sheet). The default is to have the option off so that only
meaningful values are stored.

Related Topics
Database Editor Windows
Retrieve Operator
Write Operator

Also, look up individual arguments and your database type for more detailed
information.
Language Reference 3 - 9

Chapter Database Integration Topics3
Atomic Retrieve

General
Atomic retrieval can be used with both flat-file databases and relational databases such
as INGRES, Sybase, and Oracle.

An atomic retrieve operation reads the fields from one record (and only one record)
into slots in the Rules Element’s working memory. The slots (object.property
combinations) usually all belong to the same object, but it's also possible to read the
fields into slots belonging to two or more objects.

Atomic retrieves are used when the knowledge base needs to retrieve a single, isolated
bit of information about the problem at hand. For example, an atomic read would be
used to get a single car's Price and Sportive fields from the CARS database.

Atomic retrieves are also "isolated" from the standpoint that they don't need any
"surrounding" logic in the knowledge base or object network to support them. A
retrieve can be included in the LHS or RHS of any rule without regard for it affecting
other rules in the knowledge base. Of course, if the retrieve is used in the LHS of a rule
and it returns "False", then execution of the LHS will be terminated and the rule's
hypothesis will be set to "False".

Specification
The Rules Element recognizes atomic retrieves from the fact that a cursor slot is
provided in the database retrieve window, and it has the value UNKNOWN when the
retrieve is executed. If the cursor's value is NOT unknown, the Rules Element will
assume that the retrieve is sequential and unpredictable results will occur.

To determine which record will be retrieved, a query is included in the database
retrieve window's Query field. The query should be specific enough to return one, and
only one record to the Rules Element. If the query isn't specific enough and more than
one record is returned, only the first record is processed. For relational databases, you
can use any query accepted by the database manager (usually an ANSI SQL statement),
for flat-file databases, you can use the Rules Element Query Language to filter the
records.

If the query fails and no record is returned by the retrieve, the cursor slot is set to -1. If
the query succeeds and the record is retrieved, the cursor is set to an arbitrary positive
number.

Atomic retrieves always read the record's fields into specific slots which already exist
when the retrieve is issued. As a rule, objects are not created by atomic retrieves.
3 - 10 Language Reference

Atomic Retrieve
Fields
To build an atomic retrieve, complete the Retrieve screen in the Database Editor
window as follows.
■ Ensure that the cursor slot which will be specified in the retrieve window has an

"Unknown" value. An easy way to do this is to include a "Reset slot_name" (where
"slot_name" is the cursor's slot name) before the retrieve operation.

■ Specify Retrieve as the operator for the LHS, RHS, if change, or order of sources
statement.

■ As the first operand of the Retrieve, specify the database access string for the
relational database being accessed.

■ In the database retrieve window, click on the appropriate selection in the Database
Type field for the database being retrieved from.

■ The Begin field should contain whatever is appropriate for your database.
■ In the Query field specify the database table name and appropriate SQL query OR

the Rules Element query to select the record to be retrieved.
■ The End field should contain whatever is appropriate for your database to end a

transaction.
■ The Name field should be left blank.
■ The Cursor field should contain the name of the slot to be used as the cursor for

this retrieve operation. This slot must be of the integer type, and MUST have an
"Unknown" value when the retrieve is issued. The slot name may be specified as
"object.property" or just "object", which is shorthand for "object.Value".

■ The In field should contain the name of the slot that will update the database
record field.

■ The Link to field should be left empty
■ In the Database Fields column, specify the names of the database fields to be

retrieved. In the corresponding Object Properties column, specify the property
slots into which the fields should be retrieved.

■ The Create Object option must be left unselected. Only grouped retrieves can be
used to create objects.

Related Topics
Cursor Slot Specification Retrieving from Databases
Access String Slot Specification for Retrieves
Query Retrieve Operations Object Names In Retrieve Operations
Database Editor Windows

Also, look up individual arguments and your database type for more detailed
information.
Language Reference 3 - 11

Chapter Database Integration Topics3
Atomic Write

General
Atomic write operations can be used with both flat-file databases and relational
databases such as INGRES, Sybase, and Oracle.

An atomic write takes the slots from one or more objects and writes them out to fields
in a database record. In the vast majority of the cases, the slots are written to a single
record, but it's also possible to update multiple records with an atomic write operation.
The fields can all be written from slots which belong to the same object, or from slots
belonging to several objects. When all the slots are written from the same object, the
object-property relationship is, in effect, transformed into a record-field relationship.

Atomic writes are used to write out a single piece of information from the Rules
Element’s working memory. For example, an atomic write could be used in a slot's If
Change actions to update a field in a database record when a slot's value changes.

For example, a knowledge base which recalculates the Price properties of cars (to
apply a discount) could use an atomic write to update the CARS database with new
DB_PRICE field values.

Atomic writes are "isolated" from the standpoint that they don't need any
"surrounding" logic in the knowledge base or object network to support them. An
atomic write can be included in the LHS or RHS of any rule without regard for it
affecting other rules in the knowledge base. Of course, if the write is used in the LHS
of a rule and it returns "False" (due to an error), then execution of the LHS will be
terminated and the rule's hypothesis will be set to "False".

Specification
An atomic write is recognized by the fact that a cursor slot is provided in the database
write window, and it has an ‘UNKNOWN’ value when the write is executed. If the
cursor's value is NOT unknown, the Rules Element will assume that the write is
sequential and unpredictable results will occur.

To determine which record's fields will receive the slots, a query is included in the
database write window's Query field. It is very important that the query be specific
enough to update ONLY the intended records. If the query is not specific enough, then
many more records could be updated than intended. For relational databases, you can
use any query accepted by the database manager (usually an ANSI SQL statement), for
flat-file databases, you can use the Rules Element Query Language to filter the records.

The Rules Element implements atomic writes by building a SQL UPDATE statement
with a WHERE clause constructed from the Query field. For example, if the Query
field contained:
3 - 12 Language Reference

Atomic Write
CARS WHERE DB_CAR_NAME='car_1'

the SQL statement would look like:

UPDATE CARS SET WHERE DB_CAR_NAME='car_1'

It's also possible to use a "parameterized query" which substitutes data from the
knowledge base into the query at execution time.

If the query fails and no records are updated, the cursor slot is set to -1. If the query
succeeds and record(s) are updated, the cursor is set to an arbitrary positive number.

Atomic writes always update existing records. Atomic writes cannot be used to add
new records.

Fields
To build an atomic write, complete the Write screen in the Database Editor window as
follows.
■ Ensure that the cursor slot which will be specified in the Write window has an

"Unknown" value. An easy way to do this is to include a "Reset slot_name" (where
"slot_name" is the cursor's slot name) before the write operation.

■ Specify Write as the operator in the LHS or RHS of the rule.
■ As the first operand of the Write, specify the database access string for the

relational database being accessed.
■ In the database write window, click on the appropriate selection in the Database

Type field for the database being retrieved from.
■ The Begin field should contain whatever is appropriate for your database. See the

Beginning Database Operations topic for more information.
■ In the Query field specify the database table name and appropriate SQL query OR

the Rules Element query to select the record to be updated.
■ The End field should contain whatever is appropriate for your database to end a

transaction. For almost all relational databases, either "COMMIT" or "COMMIT
RELEASE" should be specified.

■ The Name field may be left blank or may contain an explicit object name whose
property slots will be written to the record's fields.

■ The Cursor field should contain the name of the slot to be used as the cursor for
this write operation. This slot must be of the integer type, and MUST have an
"Unknown" value when the retrieve is issued. The slot name may be specified as
"object.property" or just "object", which is shorthand for "object.Value".

■ The In and Link to fields should be left empty
■ In the Object Properties column, specify the property slots which are to be written

to the fields in the database. In the Database Fields column, specify the
corresponding field which is to receive each property slot.

■ The Create New Record option must be left unselected. Only grouped writes can
be used to create records.
Language Reference 3 - 13

Chapter Database Integration Topics3
Related Topics
Cursor Slot Specification Slot Specification for Writes
Query Write Operations Access String
Database Editor Windows Beginning Database Operations
Write Unknown Ending Database Operations
Writing to Databases

Also, look up individual arguments and your database type for more detailed
information.
3 - 14 Language Reference

Begin - (@BEGIN)
Begin - (@BEGIN)

Syntax
The formal syntax of the begin statement is:

@BEGIN=quoted_string;

Note: When editing the Begin field in the retrieve or write dialog
screens, do not enclose the entry in double quotes; the Rules
Element will insert them.

Usage
The Begin argument is used in two different contexts:
■ When using a relational database, the begin string will be sent to the DBMS server

before the query string is executed. It is most frequently used to initiate write
transactions.

■ A Sybase update transaction might be initiated by specifying:

@BEGIN="begin transaction change_price";
■ The begin string can also be used to perform operations which are neither retrieve

nor write requests. It can be used for operations such as deleting records,
dropping or creating tables, and specifying a timeout period. Look up your
database type for more examples on how this string can be used.

■ When using SYLKDB spreadsheet databases, the begin string can be used to
specify a database range name. If no range is specified, the Rules Element will use
the default range Database. See the SYLKDB topic for further details.

The special construct @V(obj.prop) can be used in the begin field, as well as @SELF,
and @PROP when initiating retreive or write from a method.

 For sequential queries the begin statement is performed only once, before the retrieval
of the first record.

Related Topics
Interpretations @V(...)
Dynamic Values
Beginning Database Operations

Also, look up your database type for more detailed information.
Language Reference 3 - 15

Chapter Database Integration Topics3
Beginning Database Operations

General
Before beginning a retrieve or write operation, the Rules Element executes whatever
statements have been included in the Begin field of the retrieve or write window.

For the SYLKDB database type, the Begin field holds the database range name. See the
topic “SYLKDB” for more details.

For most relational databases, this field is not required. Some databases, such as
Sybase, require that you include a Begin Transaction or similar statement in this field.

Actually, any valid SQL statement can be included in the Begin field since it is passed
"as-is" to the database manager. This is useful for executing SQL DML (or data
manipulation language) statements before retrieve or write operations. For example,
statements like CREATE TABLE, DROP TABLE, and DELETE can be executed from
the Begin field.

Note that the Rules Element doesn't make any effort to receive data from the statement
in the Begin field, so coding a SELECT would not be very useful.

For example, to delete all the records from the CARS table before beginning a Write
operation, a statement like the following could be included in the Begin field:

DELETE FROM CARS

Multiple statements can be included in the Begin field by separating them with
semicolons (";").

If the statements executed from the Begin field fail, the retrieve or write operation will
be terminated.

Note that for sequential retrieve operations, the Begin field is ONLY executed before
the first retrieve--it's not re-executed for each record.

Specification
To fill in the Begin field you just include the SQL statements you would like executed
before beginning the database operation. More than one statement can be executed by
separating the statements with semicolons.

Interpretations ("@V(...)") can be used in the Begin field.
3 - 16 Language Reference

Beginning Database Operations
The following example shows a write operation using the Begin field to delete all the
records from the CARS table before beginning the write

Figure 3-2 Using the Begin Field to Delete Records

Related Topics
Interpretations @V(...)
Dynamic Values
Begin - (@Begin)
File Retrieves @F(...)

Also, look up your database type for more detailed information.
Language Reference 3 - 17

Chapter Database Integration Topics3
Create New Record - (@FILL)

Usage
The Create New Record setting is only meaningful in the context of a grouped write
only. Create New Record specifies whether new records may be added to a database
during a grouped write. The system first updates existing records before creating new
ones. If you already know that the records do not exist, you can instead specify the
Insert Only setting so no update is attempted first.

In the write dialog screen this setting can be specified by clicking in the Create New
Record check box. In a text format knowledge base it will appear as:

@FILL=ADD;

When New File is selected, Create New Record is automatically implied. The Insert
Only setting is not compatible with either of these settings.

Related Topics
Grouped Write Arguments Overview
Database Editor Windows New File
Writing to Databases Insert Only
Spreadsheets
3 - 18 Language Reference

Create Object - (@FILL)
Create Object - (@FILL)

Usage
The Create Object setting is used in the context of a grouped retrieve only. It controls
whether or not dynamic objects are created during a retrieve operation.

In the retrieve dialog screen this setting can be specified by clicking in the Create Object
check box. In a text format knowledge base it will appear as:

@FILL=ADD;

If this setting is disabled, @FILL will not appear in the text format knowledge base.

Related Topics
Grouped Retrieve Database Editor Windows
Arguments Overview Retrieving from Databases
Debugging Operations
Language Reference 3 - 19

Chapter Database Integration Topics3
Cursor Slot Specification

Purpose
The Rules Element uses a cursor to determine the type of database transaction being
requested. For sequential queries the cursor keeps track of the last record retrieved.

The presence or absence of a cursor determines whether the transaction is a grouped
transaction:

Cursor absent Grouped transaction

Cursor present Atomic or Sequential transaction

If present, the value of the cursor slot immediately before the transaction determines
whether an atomic or sequential query is being requested:
■ If the value of the cursor slot is NON-NEGATIVE when a retrieve query is

requested, the Rules Element treats the transaction as a sequential one.
■ If the value of the cursor slot is UNKNOWN when a retrieve or write query is

requested, the Rules Element treats the transaction as an atomic one.
■ If the value of the cursor slot is NEGATIVE or NOTKNOWN when a retrieve or

write query is requested, the Rules Element generates an error message.

Typically, in the case of a sequential retrieve, once a record has been retrieved a set of
rules is fired to analyze the retrieved data. The cursor slot is used to hold the current
state of the transaction so that the Rules Element knows how to resume its operation
when another retrieve is executed to fetch the next record.

Value
The value of the cursor slot has different meanings depending on the type of database
being accessed:
■ For flat-file databases, the cursor holds the index of the last record retrieved, and

is incremented each time a new record is retrieved. If the initial value of the cursor
slot is 0, the retrieve will begin with the first record in the file. By specifying a
positive cursor slot value, the retrieve can be started anywhere in the file. The
cursor slot value can also be changed by rules to skip records in the file.

■ For relational databases, the cursor slot holds a stream number or an SQL cursor
number (Oracle, Sybase, Ingres, ...). It is not modified when subsequent records
are retrieved because the index in the virtual table is maintained internally by the
DBMS. If several sequential transactions are active simultaneously, a unique
cursor must exist for each one. For relational databases, the cursor slot must be
initialized to 0 for any sequential transaction. During the first retrieve, the cursor
slot will always be set to a positive value which will not be modified by subsequent
retrieves (except when the retrieve fails because of an error or when all of the
3 - 20 Language Reference

Cursor Slot Specification
records have been retrieved). Consequently, the cursor slot value must never be
modified by rules which are fired between retrieve transactions

When the retrieve encounters the end of a flat-file or the end of a virtual table of records
(end-of-fetch), the Rules Element will set the value of the cursor slot to -1. The looping
logic driving the application should test for this value and exit the retrieve loop.

The cursor will also be set to -1 if a query cannot be processed successfully for other
reasons (data file not found, invalid field names, etc.). An error message will also be
written into the transcript window.

Sequential Operations
With relational databases, sequential writes are usually performed in conjunction with
sequential retrieves. A sequential write should use the same cursor as its associated
sequential retrieve to ensure that the last record retrieved is updated. A sequential
write does not modify the value of the cursor slot.

With flat-file databases, a sequential write can be executed independently of a
sequential retrieve. In this case, the cursor value will directly index the record to be
updated, and will be incremented automatically.

Related Topics
Atomic Retrieve Atomic Write
Sequential Retrieve Sequential Write
Cursor Record Specification for Writes

Also, look up your database type for details about how the cursor slot should be
specified.
Language Reference 3 - 21

Chapter Database Integration Topics3
Cursor - (@CURSOR)

Usage
The cursor argument is only used in atomic and sequential transactions. If this
argument is omitted the query is evaluated as a grouped query.

For sequential queries the cursor keeps track of the last record retrieved.

For atomic queries the value of the cursor slot indicates whether the query was
successful.

In the retrieve or write dialog screens it is specified in the Cursor field. In a text format
knowledge base it will appear as:

@CURSOR=slot;

The cursor is an integer object slot typically defined as object.prop.

Examples:
■ CurrentRecord.number
■ TheCursor (shorthand for TheCursor.Value)

The data type of a cursor slot must be integer.

The Cursor Slot Specification topic explains how the cursor is used in database
transactions.

Related Topics
Atomic Retrieve Atomic Write
Sequential Retrieve Sequential Write
Cursor Slot Specification Database Editor Windows
Arguments Overview Record Specification for Writes
3 - 22 Language Reference

Database Interface Concepts
Database Interface Concepts

General
The Rules Element database interface is used to transfer data between external data
sources and the Rules Element's object representation. In many applications, the data
is stored in an external file or database, where its format is very different from the Rules
Element's object representation. The object representation - classes, objects, properties,
and slots - is a structure for data which the inference engine reasons over. The database
interface transforms and translates the data between its external format (a file or
database) and the Rules Element object representation.

From another perspective, the database interface allows one to manage knowledge and
facts separately in a Rules Element application:
■ Knowledge is represented by rules describing the reasoning process, and a set of

classes, objects, and properties which represent the world upon which the
reasoning takes place.

■ Knowledge is input by the application designers as they build the Rules Element
application.

■ Facts represent the actual data which is being processed by the knowledge base,
and is represented in the Rules Element’s working memory by classes, objects, and
properties.

■ In some applications, all of the facts are input by the user, in others some or all of
the facts are obtained from external files or databases. The reasoning process can
also produce new or altered facts, which can in turn be saved on external files or
databases.

The database interface provides for a clean separation of knowledge and facts:
knowledge is stored in knowledge bases (or KBs), facts are stored in external files or
databases. The database interface allows the application to Retrieve data - or facts -
from an external file or database, and Write the results of its reasoning - new or altered
facts - into an external file or database. This approach has several advantages:
■ The size of the knowledge base remains reasonable because only the rules and the

structural representation of the facts (classes, objects, etc) are saved as knowledge.
The facts or data are stored and retrieved separately.

■ The size of the data or facts may be very large and is managed (in the case of
relational databases) by powerful database managers which provide services such
as data integrity for shared data, fast indexing, and so forth.

■ Since they are stored in external data files or databases, data or facts can be
accessed or produced by other applications.
Language Reference 3 - 23

Chapter Database Integration Topics3
Features of the Database Interface
The Rules Element database interface has many features which make it a good method
for transferring data between the Rules Element and external files or databases:
■ The database interface is invoked using Rules Element rules or methods. The

database interface takes care of translating the parameters on the Retrieve or Write
statement into the appropriate database access commands.

■ Translation of data between the data's external representation (records, rows, cells,
etc) and the Rules Element’s object representation is handled automatically by the
database interface.

■ During retrieve operations, you can control whether the database interface should
update existing Rules Element objects, or create new objects to represent the
external data. Likewise, during write operations, the database interface can
handle either updating existing records or creating new ones.

■ Since Rules Element knowledge bases are portable, the Rules Element Retrieve and
Write statements are also portable. Of course, the portability of the application
will be influenced by the portability of the target databases(s). Applications which
use platform specific databases like ODBC will be less portable than those which
use portable databases like Oracle or flat files.

■ If the database changes, at the most only small modifications will have to be made
to the Rules Element knowledge base. For example, changing a knowledge base
to access a relational database instead of a spreadsheet file requires only a few
parameter changes in the Rules Element knowledge base.

Of course, if by chance your database type is not supported by the Rules Element, there
are other methods for interfacing the Rules Element to external files or databases.
These include the following.
■ A program using the Rules Element Application Programming Interface (API)

could load a Rules Element knowledge base, read the records from the database,
and volunteer the information into the Rules Element’s working memory. When
the inferencing process was complete, the program could use the Rules Element
API again to extract the information from the Rules Element’s working memory
and write it back out to the database.

■ A Rules Element Execute handler could be written, which is invoked via an
"execute" statement in a Rules Element rule or method. When called, the handler
would read data from the database and volunteer it into the Rules Element’s
working memory. The knowledge base can pass a list of the objects to receive data
from the database to the handler in the "execute" statement. Another execute could
be used to write the data from the Rules Element’s working memory to the external
file. Since an execute handler only receives object identifiers, or Atomids, the
handler would still have to use the Rules Element API to extract the actual data
from the Rules Element’s working memory.

■ A program could also be written as a Rules Element "question handler" to retrieve
the data from the database. In this case, it would still have to use the Rules Element
3 - 24 Language Reference

Database Interface Concepts
API to volunteer the data into the Rules Element, and would have the additional
problem of determining whether the Atomid passed to the question handler
should even come from a database (it could come from the user, or another data
source).

If you use one of these methods for accessing your database, keep the following
considerations in mind:
■ The programs or handlers described are written in a high level language which

supports the Rules Element API.
■ The program or handler must do the transformation between the database or file's

format and the Rules Element’s object representation.
■ The programs or handler is responsible for all interaction with the database or file's

access methods.
■ If your Rules Element application is to be portable, special care must be taken to

ensure that the programs or handlers used to access the file or database are also
portable.

When possible, using the Rules Element database interface to access external data bases
and files is much easier than writing your own program(s) to handle the transfer. Only
in the rare occurrence where the Rules Element doesn't support your external file type
should it be necessary for you to provide your own access. Refer to the Rules Element
API Programmer’s Reference Manual for details about the previously mentioned
handlers needed to interface the Rules Element with unsupported databases.

Using the Rules Element Database Interface
Following are examples of applications which use the Rules Element database
interface. In each case, one or more of the rules use the database interface to either get
data from a database into Rules Element’s objects, or take Rules Element objects and
write them to a database:

Retrieving Records Sequentially

Assume that you have a Rules Element knowledge base to evaluate credit applications
to determine whether or not the applications should be approved. The current
application being processed is represented in the Rules Element by the object
current_application, with the properties applicant_name, income,
prior_bankruptcy, and application_approved. Rules will evaluate whether or
not the application should be approved or denied, and the object's
application_approved property updated as appropriate.

The credit applications themselves are stored in a relational database as rows in a table
- a format which is very different from the Rules Element’s class and object
organization.
Language Reference 3 - 25

Chapter Database Integration Topics3
To implement this, a rule would use the database interface to retrieve the rows one at
a time from the table. As each row is fetched, its column values are "pasted" into the
properties of the object current_application. The Rules Element then uses the
rules created by the application designer to determine whether or not to approve the
application, and sets the application_approved property appropriately. Another
rule would use the database interface to write the object out to the appropriate row in
the database. During the write, the database interface will transform the object's
properties into the appropriate columns in the row.

Retrieving Records as a Group

Another example is a knowledge base to assist in projecting the budget for a company
which is divided up into departments. The example company is represented by objects
in the class department, each of which has the properties personnel_cost,
overhead, rent, income, department_name, and final_budget. The rules
evaluate the needs of all the departments together, and update each department
object’s properties to reflect the final budget allocation.

The departmental information is stored in an EXCEL spreadsheet file. The file's format
is very different from the knowledge base's representation of the data - it is organized
in cells whereas the data in the knowledge base is organized in classes, objects, and
properties. Another characteristic of this example is the requirement to process all the
departments at once - in a group as it were.

Here, a Rules Element rule uses the database interface to read in all the department
records from the spreadsheet, creating an object for each department. The objects are
created in the department class, and the database interface takes care of pasting the
appropriate cells into each object’s properties. The rules then develop a proposed
budget and update each object’s final_budget property in the Rules Element’s
working memory. Another rule writes the updated objects out to the EXCEL
spreadsheet - with the database interface transforming the objects and properties back
into EXCEL’s cell-type organization.

Retrieving One Record at a Time

A system for configuring automobiles accepts input from a car buyer on the features
they would like to order with their car. Each feature is represented by an object with
the properties Feature_Name, Color, Style, Price, Dimension, and
Stock_Number. The user only selects the Feature_name, color and style for
each feature - the remaining information - Price, Dimension, and Stock_Number -
must be retrieved from a database. The records are accessed one at a time, as the
features are selected.

In this knowledge base, a rule would use the database interface to retrieve the
appropriate record from the database as each feature was selected by the user. As each
record is retrieved, the Rules Element would update the object's Price, Dimension,
and Stock_Number properties with the information from the database. The rest of the
3 - 26 Language Reference

Database Interface Concepts
knowledge base evaluates the feature's compatibility with other features (represented
by previously created objects) already on the car.

Summary
You can see that the database interface is very much like a "pipe" between the Rules
Element’s working memory and an external data source like a database or a
spreadsheet. However, the database interface does much more than simply transfer
data - it also transforms it between the Rules Element’s class-object-property
representation and the external data source's format. You can also see that the database
interface is capable of different types of processing - retrieving all the records one at a
time, retrieving all records at once, and retrieving only one record. See the Related
Topics list for more information about these operations.

All of these examples use only one type of database, but it's possible to read and write
multiple database types from the same Rules Element knowledge base. Since the
database interface always reads into and writes from the Rules Element objects, the
Rules Element application doesn't have to be concerned about conversions between
different database types.

Related Topics
Databases Spreadsheets
Retrieving from Databases Writing to Databases
Database Editor Windows Arguments Overview
Language Reference 3 - 27

Chapter Database Integration Topics3
Database Editor Windows

Usage
The retrieve and write dialog windows behave in a manner similar to that of the other
Rules Element editors like the Rule Editor and the Object Editor. A cell can be selected
by clicking on it with a mouse, or by using the RETURN, TAB or DOWN ARROW keys
to move forward through the fields, or by using the UP ARROW or shift-TAB keys to
move backwards through the fields.

Figure 3-3 Retrieve Dialog Screen
3 - 28 Language Reference

Database Editor Windows
Figure 3-4 Write Dialog Screen

A DBMS can be selected by clicking on the desired name in the list of database types.

The Copy property pop-up menus can be used while editing the Object Properties list
to avoid typing errors in atom names.

Note: : When editing the fields Begin, Query and End, do not add
double quotes. They will be inserted automatically by the Rules
Element.

Each field and button in the write and retrieve windows has an associated key word.
The correspondence between the two is as follows:

Begin @BEGIN

Query (1st part of query cell) @QUERY

Query arguments (2nd part of
query cell)

@ARGS

End @END

Name @NAME

Cursor @CURS

In @ATOMS
Language Reference 3 - 29

Chapter Database Integration Topics3
Saving Fields
When you are in one of the Database Editor windows and you click on the OK button,
the arguments you have entered are saved in the Rule or Method Editor, prefixed by
their keywords (see above). The entire argument list of your Retrieve or Write can be
viewed in the edit line at the top of the Rule or Method Editor. To do this, you can
either clear the Retrieve from the first column and then click in the third column , or
you can click on the right side of the third column to bring up the pop-up, and then
move away from it, leaving the argument list displayed in the edit line. A knowledge
base saved in a text format can be edited with any standard text editor.

Related Topics
Arguments Overview Write Operator
Retrieve Operator Retrieving from Databases
Writing to Databases Databases
Spreadsheets Database Type
Debugging Operations

Also, look up individual arguments and your database type for more detailed
information about completing the Database Editor windows.

Link to @CREATE

Database Fields @FIELDS

Object Properties @PROPS or @SLOTS

Database Type @TYPE

Create Object (Retrieve) @FILL

Create New Record (Write) @FILL

Insert Only (Write) @FILL

New File (Write) @FILL

SqlError (Write) @ERROR

Retrieve Unknown (Retrieve) @UNKNOWN

Write Unknown (Write) @UNKNOWN

Forward buttons @FWRD
3 - 30 Language Reference

Database Type - (@TYPE)
Database Type - (@TYPE)

Purpose
This keyword specifies the type of database to be accessed. It can take one of the
following values:

Note: : This list is continually growing and additional database
interfaces may be available that are not documented here.
Contact Neuron Data to determine the availability of any
database interface not listed above.

SQLSERVER is not supported on the PC.

NXP, NXPDB, SYLK, SYLKDB, WKS, WKSDB, and DBF3 are
available on all versions of the Rules Element, even if the spreadsheet
or database application is not available for that platform. These
formats are provided to ensure compatibility across platforms. For
example, a flat-file database created by dBase III on an IBM-PC can be
read by the Rules Element database interface on a VAX or UNIX
platform.

DAL_CL1 Apple's Data Access Language (formerly CL/1)

DB2 IBM's DB2 relational database

DBF3 dBase III

INFORMIX Informix's SQL relational database

INGRES Ingres' SQL relational database

NONSTOP Tandem’s relational database

NXP Rules Element’s spreadsheet

NXPDB Rules Element’s database table

ORACLE Oracle's SQL relational database

SQLBASE GUPTA's relational database

SQLDS IBM's SQL/DS relational database

SQLSERVER Sybase's OS/2 relational database

SYBASE Sybase's SQL relational database

SYLK EXCEL spreadsheet

SYLKDB EXCEL database

WKS Lotus 1-2-3 spreadsheet

WKSDB Lotus 1-2-3 database
Language Reference 3 - 31

Chapter Database Integration Topics3
When opening flat-file databases, the Rules Element checks the file header and will
generate runtime errors if there is a mismatch between the database type specified and
the file header.

Related Topics
Database Editor Windows Arguments Overview
Databases Spreadsheets
DBF3 INGRES
ORACLE INFORMIX
SYBASE WKS
SYLK
3 - 32 Language Reference

Databases
Databases

The concept of databases describes a much more typical organization of data which is
common to all other database and file formats supported by the Rules Element.
Although the terminology varies widely among the file types and products, the basic
data structure is the same.

Terminology
In a database, data is grouped into logical entities which we will refer to as records. A
record represents an individual thing such as a transaction, an inventory item, an event
record, or a personnel record. The decision of what goes into a record is completely up
to the application designer.

Each record is divided up into fields, which represent individual data items about the
thing the record represents. For example, a car inventory record could contain fields
for the car's price and its model. Generally, records of the same type contain the same
fields, but this is not necessarily so.

Records of the same type are grouped together into files. Again, generally all the
records in a file contain the same fields, but some file or database formats allow some
fields to be omitted in some records.

File formats like NXPDB, DBASE III, and others use the terms file, record, and field to
describe this organization. Relational databases such as ORACLE, INGRES, SYBASE,
and Apple's DAL use the terms table, row, and column, but the structure is exactly the

Honda 15,000 Red

BMW 39,000 Black

Saab 50,000 Green

Records

Fields

File
Language Reference 3 - 33

Chapter Database Integration Topics3
same: tables (files) are composed of rows (records), which in turn are made up of
columns (fields).

With relational databases, it is important to note that it is possible to access rows from
two or more tables in a single request using a JOIN. Nonetheless, the Rules Element
database interface always sees a single virtual table which is the result of the join
operation. No matter how many tables are involved, the data is still presented to the
Rules Element database interface as a collection of columns, organized into rows, from
a single table.

Related Topics
Database Type DBF3
INGRES Oracle
SYBASE SYLK
WKS Spreadsheets
Retrieving from Databases
Writing to Databases

Table File
Row Record

Column Field
3 - 34 Language Reference

DBF3
DBF3

General
DBF3 is the dBase III format. The Rules Element can read and write this format on any
platform, even if the data file can be used directly only by dBase III on the IBM-PC.

Header names cannot exceed 10 characters according to DBF3 specification. By
default, new DBF3 files are created with the following field widths:

boolean 1 (Logical value)

integer 10

float 10 + <Current Precision in the Rules Element>

string, date, time 30

special property Value 30

The Rules Element Flat-File Format topic explains how you can define your own field
width and override these default values.

In dBase III, boolean values are stored in a one-character field. By default, the Rules
Element uses the following formats for boolean values:

When writing into the DBF3 file

TRUE becomes y

FALSE becomes n

NOTKNOWN becomes *

UNKNOWN becomes ? when Write UnKnown is enabled, (otherwise noth-
ing is written).

When reading a DBF3 file

y,Y,t,T are interpreted as TRUE

n,N,f,F are interpreted as FALSE

u,U,? are interpreted as UNKNOWN

* is interpreted a NOTKNOWN

Note that data and time data types, as well as indices are not supported.

Related Topics
Databases
Retrieving from Databases
Language Reference 3 - 35

Chapter Database Integration Topics3
Writing to Databases
Rules Element Flat-File Format
3 - 36 Language Reference

Debugging Operations
Debugging Operations

This section contains information that might be of use when it comes to debugging why
your Retrieve or Write operation is not behaving exactly as you had wanted. Among
the topics covered are: using the Transcript window, stand-alone query testing, and
miscellaneous commonly occurring errors.

Transcript Window
The Transcript window is probably the single most useful debugging tool for
debugging database interface problems. To cause the Rules Element to write to the
Transcript window when in the Development interface, you should select the “Enable
Write” option from the window’s popup menu.

Transcript Window Usage

When trying to debug a Retrieve or Write using the Transcript window, it is a good
idea to try to come up with a test case with only one or at most a few rules. This avoids
filling the transcript log with volumes of information not relevant to the problem, and
also makes the debugging go faster since the entire KB is not being run. If this is not
possible, a couple of other possibilities exist. One possibility is to set the Rules Element
breakpoints before and after the database operation. You can enable the Transcript
window when the first breakpoint is reached, and disable it afterwards. Another
possibility is to add new conditions or actions just before and after the database
operation to enable and disable the Transcript writing.

Even in this case, a Retrieve and/or Write can still generate a significant amount of
information to the Transcript window. If this slows down the application too much,
you can select the Close option from the Transcript window’s popup menu while the
writing is going on. This should cause the application to record the information, but
run significantly faster, since the window is not being updated (typically not a fast
operation). When the session ends, you can then bring the Transcript window up to
browse through the information reported by the Rules Element.

Database Messages

The Transcript window should now contain messages of the form: "xxx Interface
executing: ..." (or something along these lines), where "xxx" is the specific database
interface you have (e.g. Oracle, Sybase, etc). You should try to find each occurrence of
one of these lines and determine if they were successfully executed. Any failure should
be apparent by the appearance of an error message following the executing message.
These error messages will usually have been generated by the specific database server,
returned to the Rules Element, and displayed in the Transcript window by the Rules
Element. Note that not all error messages are fatal: (e.g. warnings about trying to drop
Language Reference 3 - 37

Chapter Database Integration Topics3
tables that don't exist, etc). Other messages, however, will be fatal (e.g. access failed
because of invalid database access string, and field name doesn't exist).

Error Slot
If you want to trap each error and test the value before proceeding, you can use the
SqlError field of the Database Editor window to create an error slot. The error slot you
specify will receive the error message or number generated by the specific relational
database server. If the database returns either an error number or an error message at
runtime, the transaction is immediately halted, and the inference engine automatically
sets the left-hand side Retrieve or Write condition to FALSE. If no error slot is
specified, error messages that are generated at runtime can be viewed in the Transcript
window that you enable.

Query Syntax
You should also check that the "..." part of the executing message appears to be valid
query syntax (SQL, RDO or whatever) for your database. In many cases, you can
execute almost exactly the same query outside the Rules Element environment by
using an interface provided for the database. For example, with ORACLE, you could
use SQL*Plus; with SYBASE, you could use isql and so on.

Sometimes the problem may be with the presence (or absence) of quotes around the
information being passed to the database. The Rules Element normally knows to
transfer integer fields without quotes, string fields with quotes, and so on (although
this is not always the case). The Rules Element does not normally know the datatype
of the database field it is writing into and might inappropriately provide (or not
provide) quotes around the database field value. This can be detected by the Transcript
window error message, and confirmed by a standalone query test.

In most places where quotes are required (in the Name field and in the Fields list) it’s
possible to provide a "hint" to the Rules Element to override its default handling. The
way to do this is to preface the database fieldname with "{I}" (denoting integer-like, or
more generally, numeric) or "{S}" (denoting string, the normal default). Specifying
something as a numeric fieldname should force the Rules Element to omit putting
quotes around the field value. Likewise, specifying "{S}" should force quotes to be
placed around the field value. This syntax is documented under the Query Language
topic, and the datatypes / database interfaces that need this syntax are documented
under specific database types.

Rules Element Messages
The Transcript window could also indicate that the problem with the database
operation is not with the database server, but on the Rules Element end of the
transaction. For example, the field might exist, but there is no object available to
Retrieve the information into. Similarly on a Write, there might not be an object from
3 - 38 Language Reference

Debugging Operations
which to obtain information, or the Name field might be causing the wrong database
record to be updated.

A more common problem occurs with formats being incompatible between the Rules
Element default and the default for the appropriate database. See your database topic
in this chapter for a datatype compatibility table. Typically this occurs with dates and
times. The Transcript window again should show the information being returned from
the database and the Rules Element format(s) which are being tried for a match.

Other Errors
A variety of other common errors may occur as follows.

Name Field

In a Write statement, you should never use a database field name in both the Name and
Field areas. This might work in some cases, but in other cases it will lead to
unpredictable results. It is acceptable to duplicate the database field name in this
manner in a Retrieve statement, however.

The Name field consists of a series of expressions like: 'root1'!field1!'root2'!field2! ...
with a maximum of five root/field combinations being allowed. On RETRIEVEs and
WRITEs, typical field names are strings and integers. Some other conversions may be
done by the Rules Element to retrieve into a proper object name, but the conversion is
not always reversed on a write operation.

Commit

Following a write operation or on the last write before the end of the session, you
should typically specify "commit" or "rollback" in the End field. You should issue a
"commit" if you are satisfied with what has been written; "rollback" otherwise. The
Rules Element does NOT automatically commit for you (this would negate the
advantages offered with commit/rollback). However, you should be aware that when
you do a RESTART, the Rules Element automatically does a rollback. If you forget the
commit, even though all your database writes succeeded, the actions from this session
will be totally undone by the rollback.

No Fields Specified

A common mistake when coding a Grouped Retrieve is to omit the Fields and Props
from the retrieve, thinking this will retrieve all the properties of the object(s) you are
interested in. This, however, causes the Rules Element to construct a query which
attempts to select all the properties which the Rules Element knows about from the
database/table (using the property names as field names). Even if the knowledge base
is carefully constructed to only include properties known to be present in the table, the
Rules Element has special properties (e.g. "Value") which probably won't be in the table
and will cause the query to fail. This should be noticeable if, again, you look at the
Language Reference 3 - 39

Chapter Database Integration Topics3
Transcript output and notice the names of the various database fields that the Rules
Element is trying to retrieve information from.

Create Object Not Specified

Another common mistake when coding a Grouped Retrieve is to neglect to check the
Create Object (@FILL=ADD) box in the Database Editor window. In this case, the
Rules Element only retrieves those rows whose names match the names of existing
objects as specified by the Name field. If no Name field is specified, then the Rules
Element uses a Name field in the database to get an object name, and tries to find an
existing object with that name. If the field doesn't exist in the database, or the field
exists, but there is no object with that name, the Retrieve will succeed from the Rules
Element's perspective, but fail from yours. If a Name field has been specified with
roots and database field names, then the Rules Element will look for an existing object
with that name. Again, if it doesn't exist, the Retrieve will not return any information
from the database.

Related Topics
Query Language Name
End Create Object
Retrieving from Databases Writing to Databases
Database Editor Windows Formats
Existence Filtering SqlError
3 - 40 Language Reference

Dynamic Values
Dynamic Values

You can use reserved words or arguments to tailor your query so that values in the
query are not determined until the query is evaluated.

Using Reserved Words
You can use two reserved words to tailor your queries:
■ Use @V to use the current value of the property slot.
■ Use @SELF to use the current object whose property is being evaluated. This is

valid only when the Retrieve or Write is in an Order of Sources or If Change.

For example, this query finds the value of MyFavoriteColor.value. If the value is
blue, then the query retrieves all records where the color is blue:

cars where color contains @V(MyFavoriteColor.value)

This example uses the value of the current object to find all employees whose salary is
greater than that value:

employees where salary > @V(@SELF.amount)

Using Arguments
You can also use arguments to tailor your queries. To use arguments, specify an
identifier in the query. The Rules Element then checks the contents of the Query
Arguments field (second cell) to determine the value of the identifier.

SQL identifiers use this format:

:argument

where argument is a string that you supply.

This is an example of a query that uses an argument:

employees where salary > :v1

:v1 refers to the first value in the Query Arguments field. The Query Arguments field
contains this:

TooBigSalary.amount

Related Topics
Query Retrieve Operations Query Write Operations
Writing to Databases Database Editor Windows
Query Language Interpretations @V(...)
Query Arguments
Language Reference 3 - 41

Chapter Database Integration Topics3
End - (@END)

Syntax
The formal syntax of the end statement is:

@END=quoted_string;

When editing the end field in the retrieve or write dialog screens, do not enclose the
entry in double quotes; the Rules Element will insert them.

Usage
This argument is used only with relational databases. It contains a statement which
will be sent to the DBMS server just before the resources involved in the transaction are
released (after the last record has been retrieved or updated). Typically, this string will
contain Commit or Rollback statements.

The special constructs @V(obj.prop), @SELF, and @PROP can be used in the End
field.

Note: : For sequential queries the end statement is performed only
once, after the retrieval of the last record.

Related Topics
Database Editor Windows Debugging Operations
Arguments Overview Ending Database Operations
Interpretations @V(...) Dynamic Values
3 - 42 Language Reference

Ending Database Operations
Ending Database Operations

Purpose
Once the database successfully completes a retrieve or write operation, it executes
whatever statement has been included in the End field of the database retrieve or write
window.

The End field is used ONLY with relational databases such as Oracle, Informix, Sybase
and INGRES. For most databases, this field is only used for write operations, and in
these cases will contain a SQL COMMIT or COMMIT RELEASE statement.

The COMMIT statement is used to signal the database manager that all of the updates
to the database are complete, and should be made permanent. Optionally, the word
RELEASE can also be included to tell the Rules Element to close its connection with the
database manager.

It's a good practice to always include a COMMIT in the End field, since different
database managers have different default actions if an application terminates without
issuing a COMMIT or ROLLBACK statement. Some databases will automatically
commit the changes, other will assume that a failure has occurred and will roll the
changes back.

Actually, any valid SQL statement can be included in the End field since it is passed
as-is to the database manager. This is useful for executing SQL DML (or data
manipulation language) statements after retrieve or write operations. For example,
statements like CREATE TABLE, DROP TABLE, and DELETE can be executed from
the End field.

Note that the Rules Element doesn’t try to receive data from the statement in the End
field, so coding a SELECT wouldn’t make much sense.

Multiple statements can be included in the End field by separating them with
semicolons (;).

Specification
Filling in the End field is quite simple--you just include the SQL statements you would
like executed when the database operation is complete. The key words COMMIT and
ROLLBACK have been defined by a resource file with the definition supported for
each database. When the Rules Element parses the End field and finds the keyword
COMMIT or ROLLBACK, it will convert it to the correct database SQL query. The
resource file ensures that these keywords can be used without regard to which
database system is to be accessed.

More than one statement can be executed by separating the statements with
semicolons. Interpretations @V(...) can be used in the End field.
Language Reference 3 - 43

Chapter Database Integration Topics3
The syntax of the COMMIT and ROLLBACK keywords for your database are defined
by the resource file nxda.dat. You can view and edit the definitions in the Resource
Browser by displaying the resource names NxDa.Commit.DbName and
NxDa.Rollback.DbName (where DbName is the name of the database supported
or ANSI, in the case of the default ANSI SQL). The Rules Element will try to execute
the query as defined in the resource file, if it doesn’t find a resource defined for a
particular database, it will use the ANSI SQL type.

The following example shows a write operation using the End field to commit the
changes after a write operation.

Figure 3-5 Filling in the End Field

Related Topics
Database Editor Windows Debugging Operations
Arguments Overview End
File Retrieves @F(...) Interpretations @V(...)
Dynamic Values
3 - 44 Language Reference

Existence Filtering Operations
Existence Filtering Operations

Existence filtering is used in grouped retrieve operations which specify specific objects
to update. During the retrieve operation the Rules Element determines if the specified
objects exist to hold the record's fields. It is possible to use the object's existence as a
final criteria for determining if the record should be retrieved or not.

Existence filtering cannot be used with sequential and atomic retrievals because the
slot names (object.property combinations) are always specified explicitly for these
operations. The Rules Element's rule compiler requires that explicitly named slots exist
when the rule is compiled, thus the object will always exist when the retrieve is
executed.

Existence filtering can be used with grouped retrieval since the object may not exist
when the retrieve is executed. Existence filtering can be used to bypass retrieving a
record if the object doesn't already exist, or if the object doesn't already exist in the In
list. This section discusses how to use existence filtering.

Usage
During a retrieve, the Rules Element builds an object name to identify which object will
hold the current record's fields. Existence filtering can then be used to make the final
determination of whether or not to retrieve the record. Stated simply, existence
filtering means:
■ If the object doesn't already exist, then don't create it (and bypass the record).
■ If the object isn't in the In list - a list of eligible objects and classes - then bypass the

record.

Existence filtering is a good way to update an existing set of objects from a database,
reading only those records which correspond to existing objects.

For example, assume that there are two objects in the Rules Element's working memory
- car_1 and car_2, and that the CARS table contains ten records for car_1 thru
car_10. In order to fill in the property slots of car_1 and car_2, all of the CAR records
could be retrieved, but this would have the undesirable side affect of creating objects
for car_3, car_4, etc. By using existence filtering, ONLY the fields from the car_1
and car_2 records could be retrieved, and the rest of the records bypassed (since no
objects exist to hold the record's fields).

Existence filtering can work on two levels--it can test to see if the object exists anywhere
in the Rules Element's working memory, or it can test to see if an object is the member
of an In list.
Language Reference 3 - 45

Chapter Database Integration Topics3
Check Memory

To test for object existence in all of the Rules Element's working memory, the Create
Objects box must NOT be checked in the Retrieve window. If this box is not checked
and the In field is empty, then the Rules Element will look through all of its working
memory for a matching object.

Check In List

The In list field can be used to restrict the search for a matching object to a specific set
of object names and/or class specifications. Both object names and class specifications
can appear in the In List.

Object names are used "as-is" by the Rules Element. The Rules Element compares the
object name generated for the record to the object names in the list. If it's in the list, the
record is considered to have passed the existence test.

Specify a class name by enclosing it in angle brackets. For example, to match the objects
in car_class against the generated object name, <car_class> should be specified
in the In list.

Actually, <class_name> is an existential pattern matching operation with no test,
therefore all objects currently in the pattern matching list are used. If this is the first
time the particular <class_name> specification appears in the LHS or RHS of the rule,
then all the objects in the class will be used. However, if previous pattern matching
operations had trimmed the list, then only those objects remaining in the list are
matched against.

Using the In List in this fashion is useful for limiting the records retrieved using a piece
of data which is "known" to the Rules Element, but is not contained in the database
being retrieved from.

For example, assume that the objects in the class car_class have a property Color,
which does NOT have a corresponding field in the CARS database. Also, there are ten
car_class objects (car_1, car_2, car_3, etc), and only two of them -- car_1 and
car_5--have a Color slot of Red.

To retrieve ONLY the records for Red cars would be difficult since the CARS database
has no Color field to use as a reference. However, using pattern matching,
<car_class> can be trimmed to contain only car_1 and car_5, and existence
filtering used to limit the records retrieved to only those objects left in the list. To do
this, include a statement like the following in the LHS or RHS of the rule which issues
the Retrieve:

= <car_class>.Color "Red"

This will cause <car_class> to yield only car_1 and car_5 the next time it is
referenced in the LHS or RHS of the rule. By including <car_class> in the In list,
records would only be retrieved for the objects in the list: car_1 or car_5.
3 - 46 Language Reference

Existence Filtering Operations
Specification
To use existence filtering, one or more of the following must be done when filling in the
Retrieve window:
■ Make sure the Create Objects box is NOT checked.
■ To further restrict the search for an object, specify an In list of object and/or class

specifications in the In field.

Do NOT check the Create Objects box and include names in the In field. This can have
undesirable side effects such as creating "ghost" objects which are attached to no classes
and have no properties.

Ensure Create Objects Box is NOT Checked

Checking the Create Objects box tells the Rules Element NOT to use existence filtering.
This means that if the Rules Element does NOT find an object to match the generated
object name, the Rules Element will create an object to hold the record’s contents.

If Create Objects is NOT checked and nothing is specified in the In List (the In field in
the Retrieve window), then the Rules Element will look at all objects in its working
memory for a matching object.

Specifying an In List

To limit the search for a matching object to a specific set of objects, specify a list of object
names and/or class names in the In field of the Retrieve window, separated by
commas. The class names are specified as <class_name>, which is actually an
existential pattern matching operation. Remember that if <class_name> has been
used previously in the LHS or RHS of the rule, only those objects which passed the
pattern matching operation will be in the list when it is used by the Retrieve operation.

Related Topics
Database Editor Windows Debugging Operations
Arguments Overview In Filtering List
Existence Filtering Example In List
Grouped Retrieve Create Object
Language Reference 3 - 47

Chapter Database Integration Topics3
Field Name Specification

Usage
To specify the field names to be retrieved or written, you fill in their names in the left
hand side of the Fields and Properties List - the double column list box at the bottom
of the Database Editor window. A field name may be specified more than once in the
list.

Usually, the field name is specified as a simple name (such as DB_MODEL, DB_PRICE,
etc.), but additional information may be included for some databases including field
width or context names. Some relational databases allow you to specify an expression
like DB_PRICE*2 or substr(DB_MODEL, 1, 7) as a field name.

Related Topics
Fields List
Retrieving from Databases
Writing to Databases
Object Names In Retrieve Operations
Database Editor Windows

For precise information on what is allowed for a given database type, look up your
database type.
3 - 48 Language Reference

Fields List - (@FIELDS)
Fields List - (@FIELDS)

Usage
The fields list can be specified in all types of transactions, except when using
spreadsheet files (NXP, SYLK and WKS). This list is edited under the heading
Database Fields, in the left side of the double list box at the bottom of the retrieve
and write dialog windows and is used to specify the mapping between database fields
and property slots of Rules Element objects.

Additional information may be associated with each field name: in the case of data
files, field width; in the case of some relational databases field names may be
expressions . The precise syntax of field names is specific to a particular database and
is described in more detail under specific database types.

In text knowledge bases, the field list is saved as a list of quoted strings. The formal
syntax is:

@FIELDS=list of quoted_strings

Note: : When editing the fields list do not add double quotes. They
will be inserted automatically by the Rules Element.

Related Topics
Databases
Database Editor Windows
Arguments Overview
Retrieving from Databases
Writing to Databases

For precise information on what is allowed for a given database type, look up your
database type.
Language Reference 3 - 49

Chapter Database Integration Topics3
File Retrieves - @F(...)

Usage
Recall that the Rules Element's @F(filename) syntax allows to you provide the name of
a file that is to be read into the Rules Element at that location. In the Rules Element's
database interface, you can take advantageous of this syntax in the BEGIN statement.

For example, you could have a BEGIN statement like:

@BEGIN= "@F(myfile.sql)";

that could contain some specific SQL statements pertaining to this operation. The file
could contain a specific start string to allow a read/write transaction, or it could also
contain SQL statements specific to dropping/creating tables and deleting records for
example. Many of the examples provided with the Rules Element take advantage of
this technique for dropping and creating tables. This allows the knowledge base to be
relatively independent of the particular database interface, and the external file
contains the SQL specific to the database being used (SQL implementations do vary
from vendor to vendor). Some of the specific database administration and
maintenance operations possible in the BEGIN statement are found under the Begin
topic.

Note that you could combine @F and @V for additional flexibility by specifying
something like: @F(@V(slot)), which would let you choose the file dynamically.

Related Topics
Database Editor Windows Interpretations @V(...)
Begin Dynamic Values
Beginning Database Operations
3 - 50 Language Reference

Formats
Formats

General
Formats are used to describe how the values contained in the database cells are
mapped into the values of the Rules Element slots. These formats can be attached to
properties or to individual slots.

Usually the mapping of values is straight-forward. For example, textual information
is usually stored as character strings in the database and is transferred without
modifications to Rules Element string slots. The mapping is less obvious in the case of
dates, where different databases use different formats for representing dates. Local
conventions may also affect the representation of dates.

Formats are described in more detail in Chapter One, “Application Development
Features”, but the most important points are:
■ The first or the first two formats specify how the values will be formatted for

output. They define how values will be written to the database.
■ All the formats may be used to interpret input values. The Rules Element tries to

scan the incoming strings according to every format specified until a match is
found. If the external string does not match any format, a warning message is
displayed in the transcript and the slot is set to NOTKNOWN.

■ If you start a format description with an exclamation mark (!), then the format will
be ignored for database transactions.

Specific database type topics contain additional information on various formats that
are required for specific databases to be able to properly retrieve various database
datatypes into Rules Element slots. The following examples illustrate the important
role formats can play in database transactions.

Example 1 Boolean format

Format = @N="*";@U="?";1;0;T;F;

In this case, a NOTKNOWN value will be written as an asterisk (*), an UNKNOWN
value as a question mark (?), a TRUE value as a 1, and a FALSE value as a 0. A cell
containing the single letter T will be interpreted as a TRUE value in a Retrieve
operation, but the database cell will be updated with a 1 or 0 in a Write operation.

This format allows you to store boolean values in a single character field. An eight
character field is required if you do not specify any format, because any NOTKNOWN
values are written as the NOTKNOWN keyword.

With this format, values will also be displayed as single characters in the Object
Network, reports, etc. You can avoid this and reserve single characters for database
operations. If a format description starts with an exclamation mark (!), then the format
Language Reference 3 - 51

Chapter Database Integration Topics3
will be ignored for database transactions. To keep the ability to store single characters
in database cells, but display values as True and False, the above format could be
changed to:

Format = !@N="NOTKNOWN";!@U="UNKNOWN";@N="*";@U="?";!True;!False;1;0;

Example 2 Integer format

Format = d*;

This format can be used when your data is stored as floating point data in the database,
but you want to retrieve it in an integer Rules Element slot. The decimal part of the
database data will be ignored (the value is truncated, not rounded to the nearest
integer).

If you don't specify this integer format and your database data is formatted as floating
point numbers, the Rules Element will not be able to interpret the database data and
will set the slot values to NOTKNOWN. Of course, this problem can also be avoided
by using the float datatype of the Rules Element.

Related Topics
Debugging Operations
String to Numeric Conversion
Retrieving from Databases
Writing to Databases
3 - 52 Language Reference

Forwarding Strategy - (@FWRD)
Forwarding Strategy - (@FWRD)

Purpose
The forward strategy setting is only used in retrieve operations. It specifies whether
the passing of values to property slots during retrieve operations will cause the system
to place hypotheses on the Rules Element agenda for evaluation

This setting is specified with the three check buttons Always Forward, Current
Forward and Do Not Forward in the Retrieve dialog window. The corresponding
values in text knowledge bases are as follows:

Always Forward @FWRD=TRUE;

Do Not Forward @FWRD=FALSE;

Current Forward @FWRD string not specified

Always Forward specifies that database retrieves which affect the slot values of the
LHS conditions of any rule will always cause those rules to be placed on the agenda for
evaluation. Do Not Forward specifies that database retrieves will never cause rules to
be placed on the agenda. Current Forward specifies that the forwarding strategy in
effect when the retrieve is executed will be used to determine whether rules are placed
on the agenda.

Related Topics
Database Editor Windows
Retrieving from Databases
Arguments Overview
Language Reference 3 - 53

Chapter Database Integration Topics3
Grouped Retrieve

General
Grouped retrieval can be used with both flat-file databases and relational databases.

A grouped retrieve operation reads multiple records in one operation. As the Rules
Element processes each record, its fields are read into slots. All of the fields from a
given record are read into the same object's slots--"transforming" the record-field
relationship into an object-property relationship.

A typical use of Grouped retrieve is to propagate a Rules Element class with objects
created from records in a database. The objects can then be used in the Rules Element
rules just as any other objects would be. Another use of grouped retrieve is to update
a set of objects from data in a database. In this case, only the records are retrieved
which have corresponding objects in the Rules Element's working memory.

For example, a grouped retrieval could be used to read all the records from the CARS
database into the Rules Element working memory, creating an object for each record
and attaching it to the cars_class class.

Grouped retrieves don't require supporting logic in other rules to retrieve the records.
However, the appropriate class and object definitions must exist so that the Rules
Element has a model for transforming the records and fields into objects and slots
(object.property combinations).

Specification
Grouped retrieves are recognized by the absence of a Cursor slot in the Retrieve
window.

A grouped retrieve does not have to retrieve all the records from the database--in fact
this is usually VERY undesirable since an object will probably need to be created for
each record in the database. To limit the records retrieved, a query can be included to
filter the records read. For relational databases, you can use any query accepted by the
database manager (usually an ANSI SQL statement), for flat-file databases, you can use
the Rules Element's SQL-like query language to filter the records.

A grouped retrieve can either update existing objects, or create new objects and attach
them to one or more classes.

Another technique for filtering records to be retrieved is to qualify them based on
whether or not a corresponding object already exists to hold the record's fields. The
search for an existing object can be thru all of the Rules Element's working memory, or
confined to a specific list of objects and classes.
3 - 54 Language Reference

Grouped Retrieve
Fields
To build a grouped retrieve, complete the Retrieve screen in the Database Editor
window as follows.
■ Specify Retrieve as the operator in the LHS or RHS of the rule.
■ As the first operand of the Retrieve, specify the database access string if a relational

database is being accessed. If a flat file database such as NXPDB or DBASE III is
being accessed, specify the file name. See the Access String Specification topic for
more information.

■ In the database Retrieve window, click on the appropriate selection in the
Database Type field for the database being retrieved from.

■ The Begin field should contain whatever is appropriate for your database. See the
Beginning Database Operations topic for more information.

■ For a relational database, specify the table name to be accessed in the Query field.
If you want to limit the records retrieved by the retrieve, you can also include a
SQL query (for relational databases) or a Rules Element SQL-like query (for flat file
databases). See the Query Retrieve Operations topic for more information on the
Query field.

■ The End field should contain whatever is appropriate for your database to end a
transaction.

■ The Name field is used to construct the slot names (object.property combinations)
into which the record fields will be read. The slot names are built dynamically
using data from the record. See the Slot Specification for Retrieves topic for more
information.

■ The Cursor MUST be left empty
■ The In field is used to specify a list of objects (and/or their classes) in which the

object selected to hold the record's fields must exist in order for the record to be
processed. See the Existence Filtering Operations topic for more information.

■ If objects are to be created dynamically as the records are retrieved, the Link to
field should contain the name(s) of the classes to which the new objects should be
linked. The Create Record option must be selected if objects are to be created
dynamically. The In field must not be used in this case to avoid creation of objects
outside of the specified list.

■ In the Database Fields column, specify the names of the database fields to be
retrieved. In the corresponding Object Properties column entries, specify the
property slots into which the fields should be retrieved. See the Slot Specification
for Retrieves topic for more information.

Related Topics
Object Names In Retrieve Operations Query Retrieve Operations
Database Editor Windows Slot Specification for Retrieves
Retrieving from Databases Link To
Language Reference 3 - 55

Chapter Database Integration Topics3
Name Field Name Specification
In Filtering List Existence Filtering Operations

Also, look up individual arguments and your database type for more detailed
information.
3 - 56 Language Reference

Grouped Write
Grouped Write

General
Grouped writes can be used with both flat-file databases and relational databases.

A grouped write will write multiple object's slots in one operation. All of the slots
written to a given record come from the same object, transforming the Rules Element's
object-property relationship to a record-field relationship in the database.

A typical use of grouped write is to write an entire class of objects out to a database.
It's also possible to write out every object in a list, or every object in a list of classes, to
the database.

For example, a grouped retrieval could be used to write all the objects from the
cars_class into the CARS table, creating a row for each object in the cars_class.
As each object is written, the appropriate slots (object.property combinations) from the
objects are written into the columns of the new rows.

Grouped writes don't require supporting logic in other rules to write the records.

Specification
Grouped writes are recognized by the Cursor field being left empty in the database
write window.

A grouped write does not have to write all the objects in the Rules Element's working
memory to the database. The In field allows an In list of objects and/or classes to be
specified which will be written to the database. The class specifications are actually
existential pattern matching operations, which allows even finer filtering of the objects
if desired.

To even further limit which records are updated or written, a WHERE clause may be
included in the Query field to select which records will be updated based on their
contents.

Finally, which objects are ultimately written can be controlled by whether or not a
record already exists to represent it. If the record doesn't exist, a record can be created
to hold it.

Fields
To build a grouped write, complete the Write screen in the Database Editor window as
follows.
■ Specify Write as the operator
■ As the first operand of the Write, specify the database access string if a relational

database is being accessed. If a flat file database is being accessed, specify the file
Language Reference 3 - 57

Chapter Database Integration Topics3
name. See the Access String Specification topic for more information.
■ In the database Write window, click on the appropriate selection in the Database

Type field for the database being written to.
■ The Begin field should contain whatever is appropriate for your database. See the

Beginning Database Operations topic for more information.
■ For a relational database, specify the table name to be accessed in the Query field.

If you want to limit the records updated by the write, you can also include a SQL
query (for relational databases) or a Rules Element SQL-like query (for flat file
databases) in this field. See the Query Write Operations topic for more information
on filling in the Query field.

■ The End field should contain whatever is appropriate for your database to end a
transaction. For almost all relational databases, either "COMMIT" or "COMMIT
RELEASE" should be specified. See the Ending Database Operations topic for
more information.

■ The Name field is used to construct record "keys" by which the objects will be
correlated with records in the database. The keys are built dynamically using the
object name. See Writing by Key under the Record Specification for Writes topic
for more information.

■ The Cursor field MUST be left empty
■ The In field is used to specify a list of objects and/or classes which will be written

to the database. See the Slot Specification for Writes topic for more information.
■ If records are to be added and it is not known whether a corresponding record

exists to hold an object, then the Create New Record box should be checked.
■ If records are to be added and it is known in advance that no corresponding record

exists to hold an object, then the Insert Only box should be checked.
■ In the Rules Element Properties column, specify the property slots which are to be

written to the fields in the database. In the database fields column, specify the
corresponding field which is to receive each property slot. See the Slot
Specification for Writes topic for more information.

Related Topics
Writing to Databases In Filtering List
Name Field Name Specification
Slot Specification for Writes Record Specification for Writes
Beginning Database Operations Ending Database Operations
Create New Record Query Write Operations
Insert Only

Also, look up individual arguments and your database type for more detailed
information.
3 - 58 Language Reference

If Change Retrieves
If Change Retrieves

Usage
A retrieve is mostly useful in "if change" actions as a side affect. For example, a slot's
change of value could be a "hint" that other data will be needed, and a retrieve in its If
Change actions could be use to retrieve that data. Of course, this is a rather indirect
approach - it may be more appropriate to include the retrieve in the RHS of a rule or an
order of sources.

Remember that all statements in an if change action are ALWAYS executed, so no
matter what the results of the retrieve, execution of the If Change will continue with
the next statement.

When the Rules Element begins a retrieve operation, it gets the database access string
from the first argument of the retrieve statement.

Related Topics
Arguments Overview Retrieve Operator
Access String Atomic Retrieve
Sequential Retrieve Group Retrieve
Left-Hand Side Retrieves Right-Hand Side Retrieves
Order of Sources Retrieves Retrieving from Databases
Language Reference 3 - 59

Chapter Database Integration Topics3
If Change Writes

Usage
Using a Write in a slot's If Change action is very interesting, since it allows an
application to immediately reflect a slot's change of value in an external database. This
can include the original database that the slot's value was retrieved from, thus changes
to a data item can be instantly reflected in the original data source. If the database is
shared among multiple users, the change would be reflected to all users when the
Rules Element updated the slot's value.

In the car inventory example, a Write could be included in the if change actions for the
car's "price" property. If, during the course of the inferencing, the price of a car
changed, the write in the if change action would update that car's price in its inventory
record. Any subsequent retrieves from the file or database would reflect the new car's
price.

This technique has applications anywhere multiple users share data. It has the
capability of allowing multiple users to share the results of the Rules Element's
inferencing actions since changes to all data - including hypotheses - can be reflected
in an external database.

Again, ALL statements in an if change action are always executed, so no matter what
the result of the Write, the if change actions will continue executing.

When the Rules Element begins a write operation, it gets the database access string
from the first argument of the write statement.

Related Topics
Arguments Overview Write Operator
Access String Atomic Write
Sequential Write Group Write
Left-Hand Side Writes Right-Hand Side Writes
Order of Sources Writes Writing to Databases
3 - 60 Language Reference

In List - (@ATOMS)
In List - (@ATOMS)

Usage
The In argument can be specified in grouped retrieve and write operations. It specifies
the list of objects or slots to be processed by the transaction. Interpretations and pattern
matching constructs can be included in the In list. The items in the list must be
separated by commas. In text knowledge bases the formal syntax of the In list is:

@ATOMS=list of generic_atoms;

Examples:
■ valve1; only the object valve1 will be processed.
■ valve1.state; only the object valve1 will be processed and only its property

slot state will be retrieved or written.
■ \theTank\.fluid; only one slot will be processed. The string \theTank\ will

be interpreted to yield the object to be processed.
■ <sensors>; all the objects in the list <sensors> will be processed. This pattern

matching list will be a subset of the objects in the class sensors if it results from
the evaluation of one or more conditions in the rule in which the Retrieve or Write
statement appears.

■ valve1, \theTank\.fluid, <sensors>; all the objects and slots previously
described will be processed.

Specification
For grouped write operations, the Rules Element takes a group of objects and writes
the same property slots from each object to the database. The group of objects is
specified in the In list, which can contain lists of object names or class specifications.
The properties are specified in the Fields and Properties list in the write window.

Both object and class names may be used in the same operation.

When object names are specified, they are passed to the Rules Element directly. For
example, if the In list contained “car_1, car_2, car_3”, then the objects car_1,
car_2 and car_3 are passed to the Rules Element.

A class name is passed to the Rules Element database interface by enclosing it in angle
brackets. For example, to pass all the objects in car_class to the database interface,
<car_class> should be specified in the In list.

Actually, specifying <class_name> is an existential pattern matching operation with
no "test", therefore all objects currently in the pattern matching list will be passed to the
database interface. If this is the first time the particular <class_name> specification
appears in the LHS or RHS of the rule, then all the objects in the class will be passed.
Language Reference 3 - 61

Chapter Database Integration Topics3
However, if previous pattern matching operations had "trimmed" the list, then only
those objects remaining in the list will be passed.

For example, assume that the class car_class contains three objects - car_1, car_2,
and car_3, and these objects have the string property Sportive. Also, assume that
only car_2’s Sportive property contains a value of Yes.

In a rule where the LHS contains only a Write operation with an In list of
<car_class>, ALL of the objects will be passed to the Rules Element, and car_1,
car_2, and car_3 will be written.

If the LHS has a statement like the following preceding the write:

= <car_class>.Sportive"True"

Then ONLY car_2 will be passed to the database interface. This is because the pattern
match will have trimmed the list <car_class> to only those objects with a Sportive
property of Yes.

This capability is much like being able to do a query across the objects in the Rules
Element's working memory and passing only those objects which meet the query
criteria to the Rules Element.

How to Specify a List of Object or Class Names

The objects or classes (or, more precisely, the existential pattern matching lists) are
passed to the Rules Element in the In field of the database Write window. The
3 - 62 Language Reference

In List - (@ATOMS)
following example shows how the class <car_class> would be passed to the
database interface in a grouped write operation:

Figure 3-6 Writing All the Objects in "car_class"

Related Topics
Database Editor Windows Existence Filtering Operations
Arguments Overview Grouped Write
Sequential Write Grouped Retrieve
Sequential Retrieve Interpretations @V(...)
Dynamic Values
Language Reference 3 - 63

Chapter Database Integration Topics3
INFORMIX

The Rules Element INFORMIX database interface is only available on certain Unix
platforms, and is not currently available under other operating systems (i.e. Mac, PC,
Mainframe, VAX/VMS).

INFORMIX-Online is the relational database product of Informix Software, Inc. The
query language of INFORMIX is the standard SQL (Structured Query Language)
language. This section assumes familiarity with the SQL language and the INFORMIX
product.

The Rules Element INFORMIX interface is available as a separate package. An
installation guide is provided with the software. It contains all the information
required to configure the system and install the database interface.

The basic logic controlling the transactions has been described in the Retrieve and
Write topics in this chapter. This part will explain how the SQL queries are
constructed.

Database Access String
As explained in the Access String topic in this chapter, the first argument of the
Retrieve or Write operators contains the information required to establish the
connection with the database. In order to connect with the Informix database server,
you must specify the database name and optionally the name of the server on which
you wish to use it. The syntax takes the form:

"DatabaseName@servername"

For more information, please consult your database administrator or refer to the
section “Database Name” in the INFORMIX Guide to SQL Reference December 1991
included in your INFORMIX 5 distribution.

On the PC several additional connection parameters are optional.

"DatabaseName@servername username password host service protocol"

For example,

"customerdb@hyperion scott tiger jupiter sqlexec tcp-ip"

Each parameter must be delimited by a blank space.

Note: Entering the username, password, host, service, and protocol parameters in your
connection string may have no effect on establishing the connection. Consult your
database adminstrator to determine whether your database configuration uses these
optional parameters.

You cannot be connected to several databases simultaneously. You can nevertheless
close a connection by issuing a RELEASE statement (see End string description below)
and open a connection to another database afterwards.
3 - 64 Language Reference

INFORMIX
Query Syntax

Begin and End Strings

In these strings, you can specify any valid SQL statement which will be sent to the
DBMS server. If you want to send several SQL statements, you must separate them by
a semi-colon character (;).

The Rules Element recognizes the special words COMMIT, ROLLBACK, and
RELEASE in the End statement because they need to be processed differently by the
INFORMIX connection module. If COMMIT is encountered, the Rules Element
commits the current transaction. If ROLLBACK is encountered the transaction is rolled
back and if RELEASE is found, the Rules Element closes the connection with the
database.

Usually, in the case of a Write transaction, the Begin statement contains a BEGIN
WORK and the End statement contains a COMMIT WORK. A COMMIT will generally
be translated to COMMIT WORK. Note that a RELEASE or ROLLBACK assumes a
BEGIN WORK has been done. If this is not the case, INFORMIX will generate a
warning. You should not be concerned if you see this. You are most likely to encounter
this warning after selecting the Restart Session option (which does a ROLLBACK).

Query String

The query string contains one or several table names followed by an optional where
clause.

Let us take an example. Our database contains two tables:
■ employees with the fields emp_id, name, dept_id, salary and bonus.
■ departments with the fields dept_id, name, budget.

You can retrieve all the employee records with the following query:

@QUERY= "employees";

Note: In the Database Editor, you should not enclose your string in
double quotes. You should type only the word “employees.”

You can express complex queries such as:

(a) @QUERY= "employees where salary > 3000";

(b) @QUERY= "employees, departments where salary > 3000 and employee.dept_id =
department.dept_id";

In the second case (b), the query will join the two tables employees and departments.

The query string is not sent as is to the DBMS server (it is not a valid SQL statement).
The actual SQL query is built in the following way:
■ If a Name is specified (grouped queries), the Rules Element extracts the field1 and

the optional field2...field5 information from the Name.
■ Then the Rules Element builds the SELECT statement:
Language Reference 3 - 65

Chapter Database Integration Topics3
SELECT field1, field2,...field5, list_of_fields FROM query_string

where list_of_fields is the list of fields specified in the left part of the double list box of
the Database Editor (@FIELDS).

The resulting string would be the string used with the INFORMIX isql utility. isql
displays the results of the query on the terminal but the Rules Element needs to assign
the retrieved values to some internal variables. Let us consider our example query
string (b). If the name slot of our Database Editor contains 'emp_'!emp_id!, and the
fields list contains the three properties name, employees.dept_id and salary, then the
following string will be sent to the INFORMIX server:

SELECT emp_id, name, employees.dept_id, salary FROM employees, departments WHERE
salary > 3000 and employee.dept_id = department.dept_id

You must fully specify field names which are present in more than one relation. In our
example, dept_id must be prefixed by a table name (even if the two tables contain the
same value for this field as a result of our join operation).

You can use the full power of the SQL language and specify expressions instead of field
names (i.e. write salary + bonus instead of salary) as long as the SQL string which will
be generated is a valid SELECT statement.

Writing Parameterized Queries

You can use either the @V(obj.prop) syntax or the query argument box to parameterize
your queries. If you use the query argument box, then you should specify the
parameters to be supplied to INFORMIX as "?". The previous example can be
transformed as follows:

@QUERY= "employees, departments where salary > @V(@SELF.amount) and
employee.dept_id = department.dept_id";

or

@QUERY= "employees, departments where salary > ? and employee.dept_id =
department.dept_id"; @ARGS= SELF.amount;

Note: SELF and interpretations are allowed in the right part of the
fields/properties list box (@SLOTS) in the case of sequential or
atomic queries (grouped queries use a list of properties, not
slots). SELF is allowed only if the query is placed in methods.

Update and Insert Statements

UPDATE and INSERT statements are constructed in a similar way. INSERT
statements are generated only if the Create New Record option is selected and will
concern only the objects specified in the In list which do not already have a matching
record in the database.

The UPDATE statement is generated as follows:
3 - 66 Language Reference

INFORMIX
UPDATE tables_from_query_string SET list_of_fields/values WHERE [field1 =
value_of_field1 [AND field2 = value_of_field2]...] [AND]
[where_clause_from_query_string]

The square brackets indicate optional strings. The field values are passed in a special
descriptor area, but their places are identified with "?". Let us take our example (a) and
suppose that the salary field needs to be updated and that the Name cell contains
'emp'!emp_id!. The resulting SQL statement will be:

UPDATE employees SET salary = ? WHERE emp_id = ? and salary > 3000

Note: In that example, the last part of the statement (and salary >
3000) is probably useless.

The INSERT statement is built from the following model:

INSERT INTO table_from_query_string ([field1,][field2, ...] list_of_fields) VALUES
([value_of_field1,][value_of_field2,] ...)

Our update example becomes:

INSERT INTO employees (emp_id, salary) VALUES (?, ?)

The INSERT statement is limited to the first table specified in the query string. You can
insert records only into real tables, not into views.

Sequential Queries

In the current implementation, you cannot have more than three active queries
simultaneously. You are limited to three active sequential queries or one grouped or
atomic query when two sequential queries are pending.

Sequential Write operations are not implemented. You can easily replace a sequential
write by an atomic write.

Error Reporting
The Rules Element will report any SQL error message generated by INFORMIX in the
transcript window (if this window is write enabled). It will also generate error
messages if it encounters problems while building the SQL strings. You can consult the
various INFORMIX manuals for a detailed explanation of the messages.

Retrieve Datatype Mapping
The following table indicates how various INFORMIX datatypes may (or may not) be
retrieved into various Rules Element datatypes. The Rules Element datatypes are
listed (underlined) across the top; the INFORMIX datatypes are listed in the column to
the left. A "Y" means that the operation works with no additional effort or concerns. A
Language Reference 3 - 67

Chapter Database Integration Topics3
number means that the operation is possible, but you should see the notes that appear
below the table for additional details. A "--" means that the operation is not possible.

The following notes correspond to the table shown above.

Notes:

1. Conversion from integer to float will automatically take place.

2. If the string contains the proper numeric type requested, it will be copied into the
Rules Element property. Otherwise, formats will be required.

3. Informix requires a special Rules Element format be defined in order to retrieve
this into a date property. Since the standard INFORMIX date format is
"mm/dd/yyyy", a Rules Element format that will accept this format is
'm"/"d"/"yyyy'. This method makes the Rules Element conform to the INFORMIX
time format (note that information concerning hours / minutes / seconds is not
available).

4. If the string contains a valid date, the Rules Element will take it if provided in the
default Rules Element date format ('Mmm dd yyyy hh:mm:ss;mm dd yy
hh:mm:ss;Mmm dd yyyy;mm dd yy;'). If in some other format, a format may be
attached to the property to allow its acceptance (e.g. a format of 'mm"/"dd"/"yy'
would accept "12/25/90").

5. Formats may be applied to treat most datatypes as booleans, though the most
obvious / preferred datatypes for this purpose are strings and integers. A default
property has been defined so that any string of the form "True" or "False"
(case-insensitive) will be converted to the appropriate Rules Element boolean. For
example, if you have integers that are "0" for "False" and "1" for "True", you could
assign a format of 'True;False;1;0;' (which make it print out as True/False, even
though it comes in as 1/0). In another example, a Rules Element boolean could be

Integer Float Boolean String Date

integer Y 1 5 Y --

smallint Y 1 5 Y --

float -- Y 5 Y --

real -- Y 5 Y --

char(n) 2 2 5 Y 4

varchar(n) 2 2 5 Y 4

date -- -- 5 Y 3

long -- -- -- -- --

rowid -- -- -- -- --

raw(n) -- -- -- -- --
3 - 68 Language Reference

INFORMIX
used to indicate all people born in 1990 by reading date fields from the database
using the format: 'True;False;*"/"*"/"1990;*'.

6. The INFORMIX money type returns a dollar sign ("$") that must be accounted for
with a Rules Element format statement. A format that will allow loading
INFORMIX money into a Rules Element float is '"$"0.0d'. To load INFORMIX
money into a Rules Element integer, you should use '"$"d*' (note that this will
truncate the decimal/cents portion of the field).

7. It is possible to do a "non-standard" retrieve from the various INFORMIX
datatypes into a Rules Element date slot. However it requires use of the Rules
Element formats, and typically results in a peculiar mapping from INFORMIX
type to the Rules Element type. This mapping, while possible, is not a preferred
way to read integer or floating data from the database, or to load a Rules Element
date slot. For reference, formats that could be used are 'yyyy' or 'm"."yy', to load
from an integer or float field, respectively.

8. This is possible, but is not a preferred way to read a date from INFORMIX or load
a Rules Element float or integer, and does result in loss of information. However,
you might need to read an INFORMIX date, and put the year directly into a Rules
Element float. You could do such a thing with the following format: '*"/"*"/"0.0d'.
The desired field could equally well have been the month or day. To load an
integer with the year, you could use '*"/"*"/"d'.

9. In order to load any kind of INFORMIX floating point number into a Rules
Element integer, you must specify a format that will result in truncation of the
decimal portion of the number. A format that will work is: 'd*'. Note that you do
have to worry about overflow, since a Rules Element integer is a 32 bit signed
quantity, and floating point numbers can be larger than this.

Write Datatype Mapping
The following table indicates how various INFORMIX datatypes may (or may not) be
written into from various Rules Element datatypes. The Rules Element datatypes are
listed (underlined) across the top; the INFORMIX datatypes are listed in the column to
the left. A "Y" means that the operation works with no additional effort or concerns. A
number means that the operation is possible, but you should see the notes that appear
below the table for additional details. A "--" means that the operation is not possible.

Integer Float Boolean String Date

Y 5 4 3 --

Y 5 4 3 --

Y Y 4 3 --

Y Y 4 3 --
Language Reference 3 - 69

Chapter Database Integration Topics3
The following notes correspond to the table shown above.

Notes:

1. A special Rules Element format must be defined in order to write into an
INFORMIX date field. The standard INFORMIX date format is "mm/dd/yyyy".
A Rules Element format that will generate this format is 'mm"/"dd"/"yyyy'. This
method makes the Rules Element conform to the default INFORMIX time format
(this date format does not support the hours / minutes / seconds fields).

2. If the string contains a valid date, INFORMIX will take it if provided in the
standard INFORMIX date format (see note 1).

3. If the string contains the proper numeric type requested, it will be copied into the
Informix field. See also note 7.

4. Formats must be applied to treat booleans as non-string INFORMIX datatypes.
For example, you could write into an integer field if you use a boolean format of
'1;0;True;False' (which accepts True/False, though prints out as 1/0). The most
obvious candidates to use for storing booleans are string and integer datatypes.
(Strings will directly receive True/False with the default Rules Element format).

5. Floats will be truncated, as necessary, when stored in integer fields. See also note
7.

6. This requires the use of special formats, and is not a preferred or recommended
way to store values into the specific INFORMIX fields. For example, one would
almost never use Rules Element dates to hold INFORMIX integers, or vice versa.
It could be done, but might place restrictions on the values that may be stored.

7. Overflow is possible in certain cases if the input field is larger than the database
datatype supports (e.g. storing a Rules Element integer into an INFORMIX
smallint). It is also possible to lose precision by, for example, storing the Rules
Element integers or floats (double precision) into INFORMIX smallfloats (single
precision).

Notes
The main differences between INFORMIX and the screen captures documented in
Appendix A, “Database Integration Examples” are as follows:

Y Y Y Y Y

Y Y Y Y Y

-- -- 4 2 1

-- -- -- -- --

-- -- -- -- --
3 - 70 Language Reference

INFORMIX
■ You must remember to specify INFORMIX in the Database Editor window (or in
the TKB, @TYPE=INFORMIX).

■ You must specify parameterized queries as "?", rather than ":val".

Related Topics
Databases
Retrieving from Databases
Writing to Databases
Language Reference 3 - 71

Chapter Database Integration Topics3
INGRES

INGRES is the relational database product of INGRES Corporation. The query
language of INGRES is the standard SQL (Structured Query Language) language. This
section assumes familiarity with the SQL language and the INGRES product.

The Rules Element INGRES database interface is available as a separate package. An
installation guide is provided with the software. It contains all the information
required to configure the system and install the database interface.

The basic logic controlling the transactions has been described under the Retrieve and
Write topics in this chapter. This part will explain how the SQL queries are
constructed.

Database Access String
As explained under the Access String topic, the first argument of the Retrieve or Write
operators contains the information required to establish the connection with the
database. In order to connect with the INGRES database server, you must specify the
virtual node, database name, and the user name:

"virtualnode database username options"

For example,

"sun10 iidbdb scott"

Each parameter must be delimited by a blank space. You should consult your database
administrator or Ingres manuals for the exact information about the connection
parameters.

You cannot be connected to several accounts simultaneously. You can, however, close
a connection by issuing a RELEASE statement (see End string description below) and
open a connection to another account afterwards.

Query Syntax

Begin and End strings

In these strings, you can specify any valid SQL statement which will be sent to the
DBMS server. If you want to send several SQL statements, you must separate them by
a semi-colon character (;).

The Rules Element recognizes the special words COMMIT, ROLLBACK, and
RELEASE in the End statement because they need to be processed differently by the
INGRES connection module. If COMMIT is encountered, the Rules Element commits
the current transaction. If ROLLBACK is encountered the transaction is rolled back
3 - 72 Language Reference

INGRES
and if RELEASE is found, the Rules Element closes the connection with the database
via the DISCONNECT statement.

Usually, the Begin statement is left empty and the End statement contains a COMMIT
in the case of a Write transaction. You could alternatively specify ROLLBACK if you
wish to undo the effects of your current transaction:

@END= "commit";

@END= "rollback";

By default, the Rules Element does a ROLLBACK when a Restart Session is done.

If the Rules Element is able to communicate with the INGRES database server, but
INGRES is unable to open the table (typically because it is locked by some other
user/application), the Rules Element will wait until access is allowed. It is possible to
use special syntax in the BEGIN field to cause INGRES to give up after a specified time.
The syntax for this is, for the first query, to specify:

@BEGIN= "set lockmode session where timeout = n";

where "n" is the number of seconds you are willing to wait while trying to establish the
connection to the INGRES database.

It is also possible to use the BEGIN field to tell INGRES that you wish to automatically
do a COMMIT following each transaction:

@BEGIN= "set autocommit on";

Query string

The query string contains one or several table names followed by an optional where
clause.

Let us take an example. Our database contains two tables:
■ employees with the fields emp_id, name, dept_id, salary and bonus.
■ departments with the fields dept_id, name, budget.

You can retrieve all the employee records with the following query:

@QUERY= "employees";

Note: In the Database Editor, you should not enclose your string in
double quotes. You should type only the word employees.

You can express complex queries such as:

(a) @QUERY= "employees where salary > 3000";

(b) @QUERY= "employees, departments where salary > 3000 and employee.dept_id =
department.dept_id";

In the second case (b), the query will join the two tables employees and departments.

The query string is not sent as is to the DBMS server (it is not a valid SQL statement).
The actual SQL query is built in the following way:
■ If a Name is specified (grouped queries), the Rules Element extracts the field1 and
Language Reference 3 - 73

Chapter Database Integration Topics3
the optional field2...field5 information from the Name.
■ Then the Rules Element builds the SELECT statement:

SELECT field1, field2,...,field5, list_of_fields FROM query_string

where list_of_fields is the list of fields specified in the left part of the double list box of
the Database Editor (@FIELDS).

The resulting string would be the string used with the SQL utility. SQL displays the
results of the query on the terminal but the Rules Element needs to assign the retrieved
values to some internal variables. Let us consider our example query string (b). If the
name slot of our Database Editor contains 'emp_'!emp_id!, and the fields list contains
the three properties name, employees.dept_id and salary, then the following string will
be sent to the INGRES server:

SELECT emp_id, name, employees.dept_id, salary FROM employees,
departments WHERE salary > 3000 and employee.dept_id =
department.dept_id

You must fully specify field names which are present in more than one relation. In our
example, dept_id must be prefixed by a table name (even if the two tables contain the
same value for this field as a result of our join operation).

You can use the full power of the SQL language and specify expressions instead of field
names (i.e. write salary + bonus instead of salary) as long as the SQL string which will
be generated is a valid SELECT statement. The INGRES SQL Reference Manual
provides detailed information on SQL.

Writing parameterized queries

You can use either the @V(obj.prop) special syntax or the query argument box to
parameterize your queries. Our previous example can be transformed as follows:

@QUERY= "employees, departments where salary > @V(@SELF.amount) and
employee.dept_id = department.dept_id";

or

@QUERY= "employees, departments where salary > :v1 and employee.dept_id =
department.dept_id";@ARGS= SELF.amount;

Note: SELF and interpretations are allowed in the right part of the
fields/properties list box (@SLOTS) in the case of sequential or
atomic queries (grouped queries use a list of properties, not
slots). SELF is allowed only if the query is placed in methods.

Update and Insert statements

UPDATE and INSERT statements are constructed in a similar way. INSERT
statements are generated only if the Create New Record option is selected and will
concern only the objects specified in the In list which do not already have a matching
record in the database.
3 - 74 Language Reference

INGRES
The UPDATE statement is generated as follows:

UPDATE tables_from_query_string SET list_of_fields/values WHERE
[field1 = value_of_field1 [AND field2 = value_of_field2]...] [AND]
[where_clause_from_query_string]

The square brackets indicate optional strings. Let us take our example (a) and suppose
that the salary field needs to be updated and that the Name cell contains 'emp'!emp_id!.
The resulting SQL statement will be:

UPDATE employees SET salary = 5000 WHERE emp_id = '104' and salary >
3000

Note: In this example, the new salary information and the emp_id is
obtained from the object identified by the Name field (e.g.
'emp104'). Also, the last part of the statement (and salary >
3000) is probably useless.

The INSERT statement is built from the following model:

INSERT INTO table_from_query_string ([field1,][field2, ...] list_of_fields) VALUES
([val1,][val2,] ...)

Our update example becomes:

INSERT INTO employees (emp_id, salary) VALUES ('105', 6500)

The INSERT statement is limited to the first table specified in the query string. You can
insert records only into real tables, not into views.

Sequential queries

In the current implementation, you cannot have more than three active queries
simultaneously. You are limited to three active sequential queries or one grouped or
atomic query when two sequential queries are pending.

Sequential writes are not implemented. You can easily replace a sequential write by an
atomic write.

Error Reporting
The Rules Element will report any SQL error message generated by INGRES in the
transcript window (if this window is write enabled). It will also generate error
messages if it encounters problems while building the SQL strings. You can also
consult the appropriate INGRES manuals for a detailed explanation of the INGRES
messages.

Retrieve Datatype Mapping
The following table indicates how various INGRES datatypes may (or may not) be
retrieved into various Rules Element datatypes. The Rules Element datatypes are
listed (underlined) across the top; the INGRES datatypes are listed in the column to the
Language Reference 3 - 75

Chapter Database Integration Topics3
left. A "Y" means that the operation works with no additional effort or concerns. A
number means that the operation is possible, but you should see the notes that appear
below the table for additional details. A "--" means that the operation is not possible.

The following notes correspond to the table shown above.

Notes:

1. Conversion from an integer value to a float will take place.

2. If the string contains the requested numeric type, it will be copied into the Rules
Element property.

3. A special Rules Element format must be defined in order to retrieve this field into
a date property. A format that should work is 'd"-"mmm"-"yyyy" "h":"mm":"ss'.

4. If the string contains a valid date, the Rules Element will take it if provided in the
default Rules Element date format ('Mmm dd yyyy hh:mm:ss;mm dd yy
hh:mm:ss;Mmm dd yyyy;mm dd yy;'). If in some other format, a format may be
attached to the property to allow its acceptance (e.g. a format of 'mm"/"dd"/"yy'
would accept a string containing "12/25/90").

5. Formats may be applied to treat most datatype as booleans. By default, the Rules
Element will convert any string of the form "True" or "False" (case-insensitive) to
the appropriate Rules Element boolean. The most obvious field types to read into
booleans are the various strings and integers. For example, if you have integers
that are "0" for "False" and "1" for "True", you could assign a format of
'!True;!False;1;0;' (which makes the Rules Element print it out as True/False, even
though it comes in as 1/0).

6. A special the Rules Element format is needed to accept this, which ends up
discarding the floating point portion (there will be problems if an exponent is
present). For example, you could use the following format: 'd*;'.

Integer Float Boolean String Date

Y 5 4 3 --

Y 5 4 3 --

Y Y 4 3 --

Y Y 4 3 --

Y Y Y Y Y

Y Y Y Y Y

-- -- 4 2 1

-- -- -- -- --

-- -- -- -- --
3 - 76 Language Reference

INGRES
Write Datatype Mapping
The following table indicates how various INGRES datatypes may (or may not) be
written into from various Rules Element datatypes. The Rules Element datatypes are
listed (underlined) across the top; the INGRES datatypes are listed in the column to the
left. A "Y" means that the operation works with no additional effort or concerns. A
number means that the operation is possible, but you should see the notes that appear
below the table for additional details. A "--" means that the operation is not possible.

Note that the Rules Element INGRES database interface needs to make extensive use
of the "{I}" syntax for integer database field names in the Name field and the Fields list.
This instructs the database interface to not treat this as a string, but rather as a numeric
field (e.g. integer).

The following notes correspond to the table shown above.

Notes

1. Datatype conversion, as appropriate and if possible, will take place. For example,
a Rules Element integer can be placed into an INGRES integer1 (8 bits), but it must
have a value in the allowed range. If the number overflows the fieldwidth,
INGRES will not always generate an error, and the value written is not always
predictable.

2. There are no "cents" passed in. The integer is treated as an integer number of
dollars ("$").

Integer Float Boolean String Date

int Y 1 1,4,5 1,5 1,4,5

smallint 1 1 1,4,5 1,5 1,4,5

tinyint 1 1 1,4,5 1,5 1,4,5

float 1 Y 1,4,5 1,5 1,4,5

char(n) -- -- Y Y Y

varchar(n) -- -- Y Y Y

bit 3 3 1,4,5 1,5 1,4,5

money 2 -- -- 1,5 1,4,5

date -- -- 4 1,5 Y

text -- -- -- -- --

binary(n) -- -- -- -- --

varbinary(n) -- -- -- -- --

image -- -- -- -- --

timestamp -- -- -- -- --
Language Reference 3 - 77

Chapter Database Integration Topics3
3. Formats must be applied to treat booleans or dates as various INGRES datatypes.
For example, you could write a boolean into an integer field if you use a boolean
format of '1;0;True;False' (which accepts True/False, though prints out as 1/0).
The most obvious candidates to use for storing booleans are the various string and
integer formats. (Strings will directly receive True/False with the default Rules
Element format).

4. Since this INGRES field needs to be entered without quotes, but the Rules Element,
by default, will put quotes around the field values, the "{I}" prefix syntax must be
used for the database field name to indicate that this is a numeric-like field and the
Rules Element should not provide quotes.

5. You must be sure to specify a date field that INGRES will accept. Otherwise, with
certain platforms and INGRES versions, the database server has been known to
crash. A format that is acceptable is: 'd"-"mmm"-"yyyy" "h":"mm":"ss'.

6. Typically not used in this manner, but possible if the integer contains, for example,
"mmddyy" (a valid INGRES date input format).

Notes

The main difference between INGRES and the screen captures documented in
Appendix A, “Database Integration Examples” are as follows:

1. You must remember to specify INGRES in the Database Editor window (or in the
TKB, @TYPE=INGRES).

2. When writing numeric fields, you must use the "{I}" syntax to let the database
interface know that it must not provide quotes around the database field being
sent from the Rules Element. For example (e.g. ex02ing.tkb):

3. @FIELDS= "{I}DB_PRICE","DB_MODEL_DATE","DB_SPORTIVE";

4. In all of the examples where you are going to retrieve from a table, the INGRES
interface is generally exactly the same as the standard examples.

Related Topics
Databases
Retrieving from Databases
Writing to Databases
3 - 78 Language Reference

Insert Only - (@FILL)
Insert Only - (@FILL)

Usage
Insert Only specifies that a new record be created automatically without first
performing an update to existing records. This can be useful when you know in
advance that none of the records being written from the Rules Element currently exist
in the database. Duplicate records may result if an insert is performed and the record
already exists. However, using the Insert Only setting instead of the Create New
Record setting produces a significant performance boost since there is no update to
perform before inserting the new records.

In the write dialog screen this setting can be specified by clicking in the Insert Only
check box. In a text format knowledge base it will appear as:

@FILL=INSERT;

When Insert Only is selected, do not select Create New Record or New File since these
settings are mutually exclusive.

Related Topics
Grouped Write Arguments Overview
Database Editor Windows Create New Record
Writing to Databases New File
Language Reference 3 - 79

Chapter Database Integration Topics3
Interpretations - @V(...)

Usage
The Rules Element allows you to use the syntax @V(obj.prop) (or equivalently
@V(slot)) for more flexibility in parameterizing your knowledge base. This syntax also
proves to be very useful with the Rules Element database interface.

As a reminder, you can parameterize your query using a :val syntax and specifying a
Query Arguments list as in:

@QUERY= 'CARS WHERE MODEL = :val1 AND PRICE < :val2'; @ARGS= car.model,car.price ;

where the values found in the Rules Element slots car.model and car.price will
be used to select the appropriate record from the database. For example, car.model
could be a string slot containing a model name like FORD, and car.price could be an
integer slot containing a price like 12500. There is an implicit issue with quotes in the
resulting query statement generated and sent to the database sever. Some query
implementations are indifferent to quotes, while others want quotes only in selected
areas. Where quotes matter, the Rules Element will typically provide (or not provide)
quotes based on the Rules Element property type (not the database type).

It is also possible for you to use @V to parameterize this query, as in:

@QUERY= 'CARS WHERE MODEL="@V(car.model)" AND PRICE < @V(car.price)';

With @V you do not provide the slots in the @ARGS keyword area. It is important to
note that the Rules Element does not provide the quotes around the @V that will be
required by most databases. Therefore, you should remember to provide the quotes
when dealing with database fields like strings, but typically leave them off when
dealing with numeric fields.

The choice of one method or the other is largely based on personal preference. Using
@V allows you to generate a query that looks more like the normal query that would
be generated (e.g. from an interactive SQL interface), and you do not have to remember
about @ARGS and :val. In addition, @V gives you control over where quotes are
provided and where they are not. The drawback to @V is that the slot referenced is not
"compiled", so if an invalid slot is provided, it is not detected until you actually run the
application.

Another interesting way to use the @V syntax is as the 1st argument to the Retrieve or
Write: the database access string. In this case, your rule would look something like:

RETRIEVE "@V(SLOT)" [second_argument(s)]

There are two advantages to using @V here. The main one is that a password is
frequently involved in providing access to a database. Using @V means that this
information does not have to be hard-coded in the knowledge base itself (which could
raise security issues). The password / access string would still have to be provided by
3 - 80 Language Reference

Interpretations - @V(...)
the slot, but it could be filled by doing something more acceptable (e.g. prompting the
user). The other advantage is that this mechanism would allow you to totally switch
your database access strings to make a more portable application. You could provide
an ORACLE string on one system, and a SYBASE string on another. Unfortunately the
entire query cannot be totally parameterized. For example, the @TYPE=database_type
field must be fully specified in the knowledge base.

Note that @V can also be used in the BEGIN and END statements in the Retrieve or
Write operation, with many of the same advantages listed above. For example, you
could have an END statement like:

@END= "@V(commit)";

where you could have the slot commit contain "commit" for most databases, but
"commit transaction" for SYBASE. A similar technique could be applied to the BEGIN
statement. The BEGIN statement can provide a lot more generic database access (e.g.
creating/dropping tables, deleting records, etc). See the Begin topic for details.

Related Topics
Dynamic Values Filename Retrieves @F(...)
Beginning Database Operations Begin
Ending Database Operations End
Retrieve Operation Write Operator
Access String Specification
Language Reference 3 - 81

Chapter Database Integration Topics3
Left-Hand Side Retrieves

Usage
In the left hand side (LHS) of a rule or method, a retrieve statement is used to fetch data
(or facts) relevant to the current rule or chain of reasoning being followed. For
example, if the Rules Element is evaluating a set of rules for determining the evaluation
of a car dealer's inventory, a retrieve could be used in the LHS of a rule to get all of the
car inventory records.

Remember that a retrieve will still return "True" even if no records are fetched. A
retrieve ONLY returns "False" when an error occurs.

Depending on the type of retrieve, different strategies can be used to determine if any
records were retrieved. For sequential and atomic retrieves, the cursor will be set to a
negative value when no records are returned.

For grouped retrieves, there is no direct way to tell how many records were retrieved.
If the records were retrieved into a previously empty class, the Length function can be
used to determine how many objects are in the class after the retrieve.

When the Rules Element begins a retrieve operation, it gets the database access string
from the first argument of the write statement.

Related Topics
Arguments Overview Retrieve Operator
Access String Atomic Retrieve
Sequential Retrieve Group Retrieve
Right-Hand Side Retrieves If Change Retrieves
Order of Sources Retrieves Retrieving from Databases
3 - 82 Language Reference

Left-Hand Side Writes
Left-Hand Side Writes

Usage
Write operations are used less often on the left hand side of a rule or method, largely
because a Write isn't an action normally taken when testing for a condition or
hypothesis.

Like a retrieve, a write only returns "False" if the write fails. You cannot, for example,
test to see if a write added or updated any records by testing to see if the write returned
"true" or "false". Since a write doesn't affect the objects which are written, it's not
possible to use indirect means to see which objects were written, and which weren't.

When the Rules Element begins a write operation, it gets the database access string
from the first argument of the retrieve statement.

Related Topics
Arguments Overview Write Operator
Access String Atomic Write
Sequential Write Group Write
Right-Hand Side Writes If Change Writes
Order of Sources Writes Writing to Databases
Language Reference 3 - 83

Chapter Database Integration Topics3
Link To - (@CREATE)

Usage
The Link To argument is only used in the context of grouped retrieves. It specifies a
list of classes or objects to which the objects dynamically created by the retrieve will be
linked. Interpretations and pattern matching constructs can be included in the Link To
list. The items in the list must be separated by commas. The formal syntax of the Link
To list is:

@CREATE=list of generic_classes or generic_objects;

Example:

@CREATE=|sensors|,new_object;

The objects dynamically created by the retrieve will be linked to the class sensors and
as sub-objects to the object new_object.

Related Topics
Database Editor Windows
Grouped Retrieves
Arguments Overview
3 - 84 Language Reference

Name - (@NAME)
Name - (@NAME)

Usage
The Name field is typically used in the context of grouped transactions. It describes the
mapping between Rules Element object names and database field names.

During grouped retrieves, the Name field specifies how database field values
(!fieldx!) and string constants ('rootx') are to be concatenated to yield names for
the dynamic objects created by the query.

During grouped writes, the Name field specifies how Rules Element object names are
to be parsed to yield unique database key values for the insert/update database
transaction.

Syntax
There are several valid syntactic forms for the Name string:

@NAME="!field1!"

@NAME="'root1'!field1!"

@NAME="!field1!'_'!field2!"

@NAME="'root1'!field1!'_'!field2!"

@NAME="'root1'!field1!'root2'!field2!"

...and so on up to a maximum of five root/field combinations

When editing the Name field in the retrieve or write dialog screens, do not enclose the
entry in double quotes; the Rules Element will insert them automatically. Also,.do not
exceed the 255 character limit for slot names when specifying the Name string.

For example, if you want to use the second form described above, you type
'root1'!field1!. The rooti's are string constants and the fieldi's are field
names. When processing one record (in Retrieve or Write), the Rules Element will get
the values of fieldi as strings. Then it will sequentially go through the various
root/field combinations and concatenate the string rooti with the value of fieldi
(those which are not specified in the Name string are considered to be empty strings).
The result of this concatenation is the name or the object which is associated with the
record. Thus the fields are the "keys" which define the mapping between records
and objects.

Note: String constants must be delimited by single quotes
('rootx').

Example 1:

@NAME="'sensor'!num_id!";

num_id (from database) object name
Language Reference 3 - 85

Chapter Database Integration Topics3
 1 sensor1
 2 sensor2
 3 sensor3

Example 2:

@NAME="'part_'!type!'_'!id!";

type (from database) id (from database) object name
new 1 part_new1
used 2 part_used2
old 3 part_old3

As the Name information is used to associate objects and records, the fields should be
chosen so that they provide a unique key in the database (no two records have the same
fields combination). Otherwise, there will not be a one to one mapping between objects
and records and information may be retrieved from one record, transferred to an object
and written back to many records by mistake. Providing additional information in the
Query field could reduce some of the ambiguity if the fields do not identify a unique
record, but you should be sure you understand the database contents if using this
approach.

Related Topics
Grouped Retrieve Grouped Write
Database Editor Windows Debugging Operations
Arguments Overview Object Names In Retrieve Operations
Record Specification for Writes

Also see the Grouped Retrieve/Write examples in Appendix A, “Database Integration
Examples” for further illustrations of the Name field.
3 - 86 Language Reference

New File - (@FILL)
New File - (@FILL)

Usage
The New File setting is only meaningful in the context of a grouped write to a flat-file
database. New File specifies whether a new spreadsheet file may be created during a
grouped write.

In the write dialog screen this setting can be specified by clicking in the New File check
box. In a text format knowledge base it will appear as:

@FILL=NEW;

When New File is selected, Create New Record is automatically implied. The Insert
Only setting is not compatible with either of these settings.

New File cannot be used to automatically create a table in a relational database during
a grouped write. Tables must be explicitly created, either in an external application, or
in the Begin or End fields in a retrieve or write operation. For flat-file databases, new
files will be created according to the format specified in the database type field. These
files can then be accessed by other applications like EXCEL, Lotus 1-2-3, or DBase III.

Related Topics
Grouped Write Arguments Overview
Database Editor Windows Create New Record
Writing to Databases Insert Only
Spreadsheets
Language Reference 3 - 87

Chapter Database Integration Topics3
NEXPERT Flat-File Formats

These custom Rules Element spreadsheet and database formats offer some advantages:
■ Simplicity and compatibility: the standard ascii data file can be used on any

platform, and simple custom programs can read or write in the same format.
■ Speed: the read and write access are much faster than with other data files (SYLK,

WKS, DBF3).
■ Readability: the data file can be edited outside the Rules Element with a text

editor, or even printed as a report.

They should be used instead of SYLK, WKS, or DBF3 if you do not plan to use your data
file outside the Rules Element with an application program (Excel, Lotus 1-2-3,
dBaseIII).

NXP File Format
Every slot is stored on a single line. Its name and value are written with the following
delimiters:

\obj.prop\="value"............

or:

\obj\="value"............

The second form is used to store obj.Value

The 12 dots represent 12 blank characters which are added when the cell is created, so
that the same cell can be updated later with a longer value without altering the line
length.

The file is terminated by a line of stars (*).

Example of a file with three slots:

\problem\="TRUE"
\sensor.pressure\="200.50"
\sensor.location\="blast_furnace"

Note: : The objects are sorted alphabetically.

The termination of each line is machine dependent: Carriage Return
and/or Line Feed.

The Rules Element will not attempt to move data when it replaces a
short string value with a longer one. New values will be truncated if
they are more than 12 characters longer than the original values. You
can use other tools (i.e. sed on UNIX) to extend the lines on an existing
NXP file.
3 - 88 Language Reference

NEXPERT Flat-File Formats
The NXP format can be demonstrated with the following rule. The result is more
interesting if you add this rule to an existing set of rules (i.e. primer.kb).

If Yes Write_NXP_file
Then hypo
And Write "test.nxp" @TYPE=NXP;@FILL=NEW(*)

(*) choose NXP in the database list and select the New File button in the Database
Editor.

This rule will create a file called test.nxp in your current directory. You can open
this file with a text editor to see all the slots of the knowledge base (except those which
are UNKNOWN) written line by line with their current values.

NXPDB File Format
The records are stored with the following format:

field1| field2| field3| field4|

 val11| val12| val13| val14|
 val21| val22| val23| val24|

...

The main characteristics of the NXPDB format are the following:
■ It is an ASCII file and thus can be ported from one machine to another (only the

End-Of-Line character may differ).
■ All the lines have the same length (fixed length record). This length is computed

when the file is created by adding the field widths (including separators).
■ The first two lines are the file header and describe the fields of the table. The first

line contains all the field names separated by vertical bars. It also defines the
widths of the fields. The second line is filled with stars (*).

■ The last line of stars indicates the end of the file. Any record written after it will be
ignored.

■ Every line between the second and the last line represents a record. The values are
right-aligned in the columns, followed by vertical bars.

The NXPDB format can be demonstrated with the following rule. The result is more
interesting if you add this rule to an existing set of rules (eg. primer.kb).

If Yes Write_NXPDB_file
Then hypo
And Write "test.nxp" @TYPE=NXPDB;@FILL=NEW;(*)

(*) choose NXPDB in the database list and select the New File button in the Database
Editor.

This rule will create a file test.nxp in the current directory. You can open this file to see
all the objects and classes of the knowledge base written line by line in records. The
two first fields are Name and Value (30 characters long), followed by the list of
properties of the knowledge base. Each object name is written, but only KNOWN
Language Reference 3 - 89

Chapter Database Integration Topics3
values are pasted. The lines may become very long and difficult to read if your
knowledge base contains many properties (especially if your text editor wraps lines).
This NXPDB file contains a complete dump of the object base.

Specifying Field Widths
NXPDB uses fixed width records and fields. The default field widths depend on the
data type of the property:

boolean Max(10, length of the field name)

integer, float Max(15, length of the field name)

string, date, time Max(30, length of the field name)

special property Value Max(30, length of the field name)

You can override these default values and specify field widths on a property by
property basis. The field width information can be edited in the left part of the double
list box of the Write Editor (list of fields, @FIELDS keyword). You specify the field
width as a number between parentheses after the name of the field. This feature allows
you to customize the layout of your NXPDB files so they can be edited easily or printed
as reports. You must carefully choose your field widths because the Rules Element will
truncate the strings to fit in the space that you have reserved for them. If a string is
larger than its field, it will be truncated and some information will be lost. This may be
harmless if you want to use the NXPDB file only as a report but problems will arise if
the contents of the file are retrieved afterwards.

Examples

List of Fields List of Properties Notes
Job(15) Position (a)
Salary(10) Salary (b)
SS_Number(10) SS_Number (b)
Married(5) MaritalStatus (c)

(a) The Job field has a maximum width of 15 characters (default is 30 for string, date
and time). Your job descriptions must be less than 15 characters wide.

(b) The Salary and SS_Number fields have a maximum width of 10 characters
(default is 15 for integer and float). You must take into account the formatting
information associated with the property to compute the field width. For example, the
Salary property may be formatted as $ 3000 or 3000 dollars.

(c) The default width for booleans is 10 characters. Five is sufficient for TRUE and
FALSE. One character will be enough if your boolean format is "T";"F"; (and if you are
also using a 1 letter format for UNKNOWN and NOTKNOWN values).
3 - 90 Language Reference

NEXPERT Flat-File Formats
Notes

The Rules Element will never truncate the field names written in the header of the file.
If a field name contains 8 letters and if you specified a field width of 5 characters for it,
the Rules Element will use 8 as field width.

Field names are also used in the Name specification (@NAME) which defines the
mapping between records and objects ('root1'!field1!'root2'!field2!). You can also
specify a field width for field1 and field2 (i.e. 'emp_'!emp_name(12)!).

UNKNOWN and NOTKNOWN values are written as UNKNOWN (if Write Unknown
is selected) and NOTKNOWN unless you have specified a special format for them (i.e.
@N=*; @U=?;). So, your fields should be at least 8 characters wide if you expect
NOTKNOWN or UNKNOWN values and you have not defined a custom format.

Related Topics
Spreadsheets Writing to Databases
Database Editor Windows Retrieving from Databases
Arguments Overview
Language Reference 3 - 91

Chapter Database Integration Topics3
Object Names In Retrieve Operations

Explicit Object Names
In the simplest case, the Retrieve operation explicitly states which slots (object.property
combinations) will receive which fields from the database records. This means that no
matter what the records or fields contain, the fields will always be mapped to the same
slots.

For example, a Retrieve could be coded such that as a car record is retrieved, the fields
would be pasted into the slots MyCar.Name, MyCar.Price, and MyCar.Model.
These are explicit names: EVERY car's record will be pasted into the MyCar object's
Name, Price, and Model properties.

Explicit names are used when records are retrieved one by one, as in an atomic or
sequential retrieval. With explicit names, a knowledge base will typically retrieve a
record, process the slots, and (possibly) go on to retrieve the next record into the same
slots.

Explicit names cannot be used with grouped retrieval, since many records are retrieved
at once, and each succeeding record's fields would be written over the previous fields
in the slots (since only one set of slots can be specified), and all but the last record's
fields would be lost.

When a Retrieve operation uses explicit names, it is possible to split a record's fields
across several objects by merely specifying slot names (object.property combinations)
which are in different objects. For example, a car record's fields could be retrieved into
MyCar.Price, YourCar.Model, and TheirCar.Model_Date. However, as
discussed before, this is probably only useful in specialized applications since the
relationship of the fields is no longer reflected in the Rules Element's object
representation.

Constructed Object Names
It's also possible to use data from the record itself to construct the name of the object
which will receive the record's fields. All or a portion of the name can be built using
the actual data in one or more of the record's fields. If desired, constant strings can be
interspersed with the field data when forming the object name.

Take, for example, a car inventory database containing a field DB_MODEL and
DB_CAR_NAME for each car. In this inventory there are four cars whose DB_MODEL
fields contain TOYOTA, HONDA, BMW, and MERCEDES.

These records could be retrieved into four different objects by using the DB_MODEL
field used to build the name of each object. Thus, the records could be retrieved into
the objects named TOYOTA, HONDA, BMW, and MERCEDES. In this case, the object names
3 - 92 Language Reference

Object Names In Retrieve Operations
are built directly from the database field DB_MODEL. The object name is later combined
with the property names to form "object.property" combinations - slot names - to
receive the record's field values.

As the Rules Element forms the name for each object, it looks in its working memory
for an object with the same name. If the object is found, the Rules Element will update
its slots with the fields from the record. If the object is NOT found, the Rules Element
can either skip the record, or create a new object for the record.

It is important that the fields and constants used to form the object names result in
unique names. If not, the data retrieved into some objects may be lost as later records
generate the same object name, and overlay the earlier data. For example, if there were
two HONDA records in the car inventory, the data from the second HONDA record
retrieved would overlay the first record's data.

To avoid this, include at least one field in the object name whose value will be unique,
or combine two or more fields to form a unique value. For example, the previous case
could be made unique by using the DB_CAR_NAME field for the object name, or
combining the DB_MODEL and DB_CAR_NAME to form the name.

Grouped Retrieve operations MUST use data from the record to construct the object
names. A grouped retrieve typically fetches more than one record at once, and the
Rules Element must have a way to build multiple object names as the records are
retrieved.

Constructing Object Names
You provide the model for constructing the object names in the Name field of the
Retrieve window. It is specified as a series of constants (or "roots") and/or field names
to be used in constructing the object names. The root fields should be enclosed in single
quotes, and the field names in exclamation points ("!"). For example, to specify that the
field "DB_MODEL" is to be used as the object name, you would specify "!DB_MODEL!"
in the name field.

To combine the "make" field with the constant CAR_, you would specify:

'CAR_'!DB_MODEL!

 Even more complex constructs are possible: to combine the DB_MODEL and
DB_CAR_NAME field with two roots, you might specify:

'CAR_'!DB_MODEL!'_NAME_IS'!DB_CAR_NAME!

It's important to remember that the Name field is composed of field names, not
property names. The field names specified must be present in the records being
retrieved, otherwise an error will occur.

Field names which occur in the Name field may be repeated in the Fields and
Properties list.
Language Reference 3 - 93

Chapter Database Integration Topics3
Related Topics
Grouped Retrieve Cursor Slot Specification
Access String Slot Specification for Retrieves
Query Retrieve Operations Database Editor Windows
Retrieving from Databases Name
3 - 94 Language Reference

ORACLE
ORACLE

ORACLE is the relational database product of ORACLE Corporation. The query
language of ORACLE is the standard SQL (Structured Query Language) language.
This section assumes familiarity with the SQL language and the ORACLE product.

The Rules Element ORACLE database interface is available as a separate package. An
installation guide is provided with the software. It contains all the information
required to configure the system and install the database interface.

The basic logic controlling the transactions has been described under the Retrieve and
Write topics in this chapter. This part will explain how the SQL queries are
constructed.

Database Access String
As explained under the Access String topic in this chapter, the first argument of the
Retrieve or Write operators contains the information required to establish the
connection with the database. In order to connect with the Oracle 7 database server,
you must specify the account name and the password.

The syntax is the standard Oracle 7 syntax:

"username password host usefixed"

For example:

"scott tiger t:hyperion:HYPERIONSID"

Each parameter must be delimited by a blank space. The host name follows any syntax
supported by SQL*Net. Consult your database administrator or Oracle manual for the
exact information.

On the PC, Oracle users with SQL*Net 2.0 must provide the full network information;
aliases are not supported. On other platforms, aliases are supported.

Note: The “usefixed” parameter controls whether the Oracle 7 CHAR (Type 96) is
supported. The default is set to True in order to map fixed and variable length character
types as required by Oracle 7. You must set this parameter to False for any connection
that you establish to Oracle 6.

You cannot be connected to several accounts simultaneously. You can nevertheless
close a connection by issuing a RELEASE statement (see End string description below)
and open a connection to another account afterwards.
Language Reference 3 - 95

Chapter Database Integration Topics3
Query Syntax

Begin and End Strings

In these strings, you can specify any valid SQL statement which will be sent to the
DBMS server. If you want to send several SQL statements, you must separate them by
a semi-colon character (;).

The Rules Element recognizes the special words COMMIT, ROLLBACK, and
RELEASE in the End statement because they need to be processed differently by the
ORACLE connection module. If COMMIT is encountered, the Rules Element commits
the current transaction. If ROLLBACK is encountered the transaction is rolled back
and if RELEASE is found, the Rules Element closes the connection with the database.

Usually, the Begin statement is left empty and the End statement contains a COMMIT
in the case of a Write transaction.

Query String

The query string contains one or several table names followed by an optional where
clause.

Let us take an example. Our database contains two tables:
■ employees with the fields emp_id, name, dept_id, salary and bonus.
■ departments with the fields dept_id, name, budget.

You can retrieve all the employee records with the following query:

@QUERY= "employees";

Note: In the Database Editor, you should not enclose your string in
double quotes. You should type only the word employees.

You can express complex queries such as:

(a) @QUERY= "employees where salary > 3000";

(b) @QUERY= "employees, departments where salary > 3000 and employee.dept_id =
department.dept_id";

In the second case (b), the query will join the two tables employees and departments.

The query string is not sent as is to the DBMS server (it is not a valid SQL statement).
The actual SQL query is built in the following way:
■ If a Name is specified (grouped queries), the Rules Element extracts the field1 and

the optional field2...field5 information from the Name.
■ Then the Rules Element builds the SELECT statement:

SELECT field1, field2,...field5, list_of_fields FROM query_string

where list_of_fields is the list of fields specified in the left part of the double list box of
the Database Editor (@FIELDS).
3 - 96 Language Reference

ORACLE
The resulting string would be the string used with the SQL*Plus utility. SQL*Plus
displays the results of the query on the terminal but the Rules Element needs to assign
the retrieved values to some internal variables. In fact, the Rules Element inserts an
INTO clause before the FROM clause to describe where the values should be returned
(see the Pro*C manual for details). Let us consider our example query string (b). If the
name slot of our Database Editor contains 'emp_'!emp_id!, and the fields list contains
the three properties name, employees.dept_id and salary, then the following string will
be sent to the ORACLE server:

SELECT emp_id, name, employees.dept_id, salary INTO :nxp1, :nxp2, :nxp3, :nxp4 FROM
employees, departments WHERE salary > 3000 and employee.dept_id =department.dept_id

The :nxp1, :nxp2 variable syntax is the standard SQL syntax. If you write
parameterized queries (see section below), you should choose variable names which
do not conflict with these names.

You must fully specify field names which are present in more than one relation. In our
example, dept_id must be prefixed by a table name (even if the two tables contain the
same value for this field as a result of our join operation).

You can use the full power of the SQL language and specify expressions instead of field
names (i.e. write salary + bonus instead of salary) as long as the SQL string which will
be generated is a valid SELECT statement. The SQL*Plus User's Guide provides
detailed information on SQL.

Writing Parameterized Queries

You can use either the @V(obj.prop) special syntax or the query argument box to
parameterize your queries. Our previous example can be transformed as follows:

@QUERY= "employees, departments where salary > @V(@SELF.amount) and
employee.dept_id = department.dept_id";

or

@QUERY= "employees, departments where salary > :v1 and employee.dept_id =
department.dept_id";@ARGS= SELF.amount;

Note: SELF and interpretations are allowed in the right part of the
fields/properties list box (@SLOTS) in the case of sequential or
atomic queries (grouped queries use a list of properties, not
slots). SELF is allowed only if the query is placed in methods.

Update and Insert Statements

UPDATE and INSERT statements are constructed in a similar way. INSERT
statements are generated only if the Create New Record option is selected and will
concern only the objects specified in the In list which do not already have a matching
record in the database.

The UPDATE statement is generated as follows:
Language Reference 3 - 97

Chapter Database Integration Topics3
UPDATE tables_from_query_string SET list_of_fields/values WHERE [field1 =
value_of_field1 [AND field2 = value_of_field2]...] [AND]
[where_clause_from_query_string]

The square brackets indicate optional strings. Let us take our example (a) and suppose
that the salary field needs to be updated and that the Name cell contains 'emp'!emp_id!.
The resulting SQL statement will be:

UPDATE employees SET salary = :nxp1 WHERE emp_id = :nxpr1 and salary > 3000

 In that example, the last part of the statement (and salary > 3000) is probably useless.

The INSERT statement is built from the following model:

INSERT INTO table_from_query_string ([field1,][field2, ...] list_of_fields) VALUES
([:nxpv1,][:nxpv2,] :nxpvi ...)

Our update example becomes:

INSERT INTO employees (emp_id, salary) VALUES (:nxpv1, :nxpv2)

The INSERT statement is limited to the first table specified in the query string. You can
insert records only into real tables, not into views.

Sequential Queries

In the current implementation, you cannot have more than three active queries
simultaneously. You are limited to three active sequential queries or one grouped or
atomic query when two sequential queries are pending.

Sequential Write operations are not implemented. You can easily replace a sequential
write by an atomic write.

Error Reporting
The Rules Element will report any SQL error message generated by ORACLE in the
transcript window (if this window is write enabled). It will also generate error
messages if it encounters problems while building the SQL strings. You can consult the
ORACLE Error Messages and Code manual for a detailed explanation of the ORACLE
messages.

Retrieve Datatype Mapping
The following table indicates how various ORACLE datatypes may (or may not) be
retrieved into various Rules Element datatypes. The Rules Element datatypes are
listed (underlined) across the top; the ORACLE datatypes are listed in the column to
the left. A "Y" means that the operation works with no additional effort or concerns. A
3 - 98 Language Reference

ORACLE
number means that the operation is possible, but you should see the notes that appear
below the table for additional details. A "--" means that the operation is not possible.

Notes

1. Conversion, as appropriate and if possible, will take place.

2. If the string contains the proper numeric type requested, it will be copied into the
Rules Element property.

3. .Oracle requires a special Rules Element format be defined in order to retrieve this
into a date property. The "Standard ORACLE DATE" format is "DD-MON-YY" (in
Oracle terms). A Rules Element format that will accept this format is
'dd"-"mmm"-"yy'. This method makes the Rules Element conform to the Oracle
time format (costing loss of information in the hours/minutes/seconds fields). An
alternative is to make Oracle conform to the Rules Element format. To do this
requires the user specify an Oracle conversion format. What you should realize is
that the retrieve request passes the fieldname listed in the FIELD box on exactly as
typed. The database will use this in its retrieve. Since Oracle permits a conversion
function in the retrieve, you could have entered:
TO_CHAR(date_fieldname,'MON DD YYYY HH24:MI:SS') ... where
"date_fieldname" is the name of the date field being retrieved. This will cause the
returned date field to be in a form that is directly accepted by the Rules Element
(plus it provides the additional time information).

4. If the string contains a valid date, the Rules Element will take it if provided in the
default Rules Element date format ('Mmm dd yyyy hh:mm:ss;mm dd yy
hh:mm:ss;Mmm dd yyyy;mm dd yy;'). If in some other format, a format may be

Integer Float Boolean String Date

signed word 1 1 1,2 1 1,2

signed longword
(scale)

Y 1 1,2 1 1,2

signed longword (no
scale)

Y 1 1,2 1 1,2

signed quadword Y 1 1,2 1 1,2

f_floating 1 1 1,2 1 1,2

g_floating 1 1 1,2 1 1,2

text Y Y Y Y Y

varying string Y Y Y Y Y

date 4 -- 1,2 1 3

segmented string -- -- -- -- --
Language Reference 3 - 99

Chapter Database Integration Topics3
attached to the property to allow its acceptance (e.g. a format of 'mm"/"dd"/"yy'
would accept "12/25/90").

5. Formats may be applied to treat most datatypes as booleans. A default property
has been defined so that any string of the form "True" or "False" (case-insensitive)
will be converted to the appropriate Rules Element boolean. For example, if you
have integers that are "0" for "False" and "1" for "True", you could assign a format
of 'True;False;1;0;' (which make it print out as True/False, even though it comes in
as 1/0). The most obvious candidates to use for booleans are the various strings
and the various integers.

Write Datatype Mapping
The following table indicates how various ORACLE datatypes may (or may not) be
written into from various Rules Element datatypes. The Rules Element datatypes are
listed (underlined) across the top; the ORACLE datatypes are listed in the column to
the left. A "Y" means that the operation works with no additional effort or concerns. A
number means that the operation is possible, but you should see the notes that appear
below the table for additional details. A "--" means that the operation is not possible.

Notes

1. Oracle requires a special Rules Element format be defined in order to write into an
Oracle date field. The "Standard ORACLE DATE" format is "DD-MON-YY" (in
Oracle terms). A Rules Element format that will generate this format is
'dd"-"mmm"-"yy'. This method makes the Rules Element conform to the default
Oracle time format (costing loss of information in the hours/minutes/seconds
fields).

2. If the string contains a valid date, Oracle will take it if provided in the "Standard
ORACLE DATE" format (see note 1).

Integer Float Boolean String Date

Y 5 4 3 --

Y 5 4 3 --

Y Y 4 3 --

Y Y 4 3 --

Y Y Y Y Y

Y Y Y Y Y

-- -- 4 2 1

-- -- -- -- --

-- -- -- -- --
3 - 100 Language Reference

ORACLE
3. If the string contains the proper numeric type requested, it will be copied into the
Oracle field.

4. Formats must be applied to treat booleans as non-string Oracle datatypes. For
example, you could write into an integer field if you use a boolean format of
'1;0;True;False' (which accepts True/False, though prints out as 1/0). The most
obvious candidates to use for storing booleans are the various string and integer
formats. (Strings will directly receive True/False with the default Rules Element
format).

5. Conversion, as appropriate and if possible, will take place.

Notes
The main difference between ORACLE and the screen captures documented in
Appendix A, “Database Integration Examples” are as follows:

1. You must remember to specify ORACLE in the Database Editor window (or in the
TKB, @TYPE=ORACLE).

2. There are no differences between the ORACLE examples and the general/generic
database examples.

Related Topics
Databases
Retrieving from Databases
Writing to Databases
Language Reference 3 - 101

Chapter Database Integration Topics3
Order of Sources Retrieves

Usage
An Order of Sources method is an ideal place to use retrieve operations, especially
atomic retrieves. This allows you to fetch a slot's value from a database only when it is
needed (that is, when a slot is referenced and its value is UnKnown).

For example, using the car inventory example again, the car object could have a
property called dealer_name which is NOT included in the "cars" inventory
database, and thus remains unknown even if the object's inventory record is retrieved.
Including a retrieve operation in the dealer_name method's order of sources will
cause the retrieve to be executed ONLY if that slot is referenced.

Remember that no matter what the retrieve operation returns, the order of sources will
continue execution until a value has been found for the slot. Thus, if the retrieve fails
to get a value for the slot - due to an error OR a "no records found" condition - the order
of sources will continue execution with the next statement. The statements that follow
can pursue alternative sources for the slot's value - including executing additional
Retrieve statements.

This behavior can lend itself to very interesting implementations, especially in rich
database environments. In the simplest case, multiple Retrieve statements in an order
of sources can be used to search a hierarchy of files or databases for a slot’s value. This
hierarchy could reflect the preferred order of the retrieves since the Rules Element will
execute the order of sources top down. Therefore, the first retrieve could be from a
table or file with the most preferred data, the second in one with less confidence, and
so forth.

An even more interesting approach is possible in distributed database environments -
the first retrieve can attempt to access a remote file or database, such as a very large
database on a mainframe-type platform. If this fails - due to a communications failure
or other problems - subsequent retrieves in the order of sources can access a local,
"backup" file or database to satisfy the request. This technique is very useful in
applications like credit authorization - which need some data source to complete
successfully.

When the Rules Element begins a retrieve operation, it gets the database access string
from the first argument of the retrieve statement.

Related Topics
Arguments Overview Retrieve Operator
Access String Atomic Retrieve
Sequential Retrieve Group Retrieve
3 - 102 Language Reference

Order of Sources Retrieves
Left-Hand Side Retrieves Right-Hand Side Retrieves
If Change Retrieves Retrieving from Databases
Language Reference 3 - 103

Chapter Database Integration Topics3
Order of Sources Writes

Usage
The main use for a Write operation in a method’s Order of Sources is as a side affect of
the Rules Element inquiring as to a slot's value. One possible application of this could
be a specialized logging mechanism for making a record when a particular slot is
referenced.

Since a write can NEVER change a slot’s value from UnKnown, an order of sources will
ALWAYS continue execution after a write.

When the Rules Element begins a write operation, it gets the database access string
from the first argument of the write statement.

Related Topics
Arguments Overview Write Operator
Access String Atomic Write
Sequential Write Group Write
Left-Hand Side Writes Right-Hand Side Writes
If Change Writes Writing to Databases
3 - 104 Language Reference

Properties List - (@PROPS)
Properties List - (@PROPS)

Usage
The properties list can be specified in all types of transactions except operations on
spreadsheet files. This list is edited in the right part of the double list box at the bottom
of the Database Editor windows.

In the case of a grouped transaction, the list is a list of properties (separated by
commas), and it is prefixed by the @PROPS keyword.

@PROPS=list of properties;

This is very similar to the Slots List (@SLOTS) as described for that topic.

Related Topics
Database Editor Windows Slots List
Arguments Overview Retrieving from Databases
Language Reference 3 - 105

Chapter Database Integration Topics3
Query (@QUERY)

Usage
The query string contains the record selection statement which will be sent to the Rules
Element and/or the DBMS server. The query statements use the query language
provided by the underlying database architecture:
■ SQL if using most relational databases
■ the Rules Element Query Language if using a flat file

With most relational databases, the query string is a substring of the select statement
which would be written in SQL with the appropriate SQL user-interface.

The Rules Element Query Language used with flat files appears under the Query
Language topic.

The formal syntax of the query statement is:

@QUERY=quoted_string;

When you edit the query string with the database editor, you should not enclose it in
double quotes. They will be automatically inserted by the Rules Element.

The special constructs @V(obj.prop), @SELF, and @PROP are allowed in the query
statement.

If the query string is an interpreted slot (@V(obj.prop)) to yield a formatted date, it
must be preceded by the DATE function: DATE(@V(obj.prop)).

Related Topics
Database Editor Windows Arguments Overview
Query Retrieve Operations Query Language
Query Arguments Query Example (Sequential Retrieve)
Query Write Operations

Specific database operations and database topics provide more details and examples
on how to use the query statement.
3 - 106 Language Reference

Query Language
Query Language

This section describes how to use the Rules Element Query Language. You can use the
Query Language to query flat-file databases such as Lotus files, NXPDB files, or Excel
files. Without the Query Language, you cannot limit the records like you can with
relational databases that have their own query languages. The Query Language is
based on SQL's Select statement, and you can use it in the Query field of the Retrieve
or Write window.

An example of using the Query Language to limit records you retrieve from or write to
flat-file databases is given, followed by a description of the structure of the language.
This section contains the following topics:
■ Example of a query
■ Structure of a query
■ Values
■ Operators: Arithmetic, Relational, Boolean, and Others
■ Functions: SUM, MIN, MAX, and Others
■ Using Dynamic Values
■ Wildcards
■ Two Kinds of Errors.

Example of a Query
If you are familiar with other query languages, this query language is a subset because
the Rules Element constructs the full query from other information you supply in the
Retrieve or Write window. Using SQL terminology, the Rules Element's Query
Language consists of the WHERE clause such as shown in this example:

select serial_number, price, color from cars where price between 12000
and 15000 or color like "red"

Specify the fields you are selecting, such as serial_number, price, and color, in the
Database Fields field.

Instead of specifying a table, such as cars in the above example, specify the filename of
the database you are using when you select the Retrieve or Write operators.

Specify the where clause in the Query field of the Retrieve or Write window using the
Rules Element's Query Language that is described in this section.

The structure of the Rules Element's Query Language is summarized in the next
section.

Structure of a Query
This summarizes how to construct a query using the Rules Element's Query Language:
Language Reference 3 - 107

Chapter Database Integration Topics3
search_criteria

or

search_criteria boolean_operator search_criteria

where search_criteria is:

expression relational_operator expression

or

expression in x : y

or

expression between x and y

or

expression in [x1, x2, x3]

expression is a field name, or field names with arithmetic operators.

boolean_operators and relational_operators are described in the section
Operators: Arithmetic, Relational, Boolean, and Others.

x, y, x1, x2, and x3 are values, which are described in the section Values.

Values
Values can be strings, numbers, booleans, dates, or times. Here are examples of each:

Strings "red"
"Miata"

Numbers 15000
1990
19.90

Booleans True
1
False
0

Dates DATE(1990, 6, 15)
DATE(1990, 12, 25)

Times TIME(10, 45, 0)
TIME(22, 30, 0)

Use values when you are selecting fields from the database based on their value. For
example, this query retrieves all records where the price is less than $15,000 and the car
has been sold:

price < 15000 and sold = True

This example selects all records where the date the car was made is later than
December 1, 1989:
3 - 108 Language Reference

Query Language
model_date > DATE(1989, 12, 1)

This example selects all records where the time field is less than 1:15 p.m. or the car is
in stock:

time_stamp < TIME(13,15,0) or in_stock = 1

Operators: Arithmetic, Relational, Boolean, and Others
Operators perform an action on values. These are examples of operators:

*

/

<

>

=

and

or

contains

Operators are arithmetic, relational, boolean, or other. The next four sections describe
the types of operators.

Arithmetic Operators: +, -, *, /

Use arithmetic operators to do arithmetic on values. This table lists the arithmetic
operators and their descriptions:

Arithmetic Operators Description

+ Addition

- Subtraction

* Multiplication

/ Division

Examples:

This query finds cars that generated a commission of more than $1,200:

(price * (commission_rate/100)) > 1200

This query finds cars that, if prices were raised 8 percent, will cost more than $18,000:

(price * 1.08) > 18000
Language Reference 3 - 109

Chapter Database Integration Topics3
Relational Operators: =, <, In, Contains, and Like

Relational operators compare the value of expressions. This table lists the relational
operators and their descriptions:

Relational Operators Description

= == eq Equal to

!= /= ne Not equal to

< lt Less than

<= le Less than or equal to

> gt Greater than

>= ge Greater than or equal to

? like contains String contains a pattern

Using not:

You can use the modifier not with like, contains, and ? to negate the search query. For
example, this query looks for all cars which were not sold in California:

city_and_state not contains "California"

Examples:

This query finds cars that cost more than 15000:

price > 15000

This query finds all cars that are not Volkswagens:

model != "Volkswagen"

These queries finds salespeople whose name contains "John":

salesperson contains "John"

salesperson like "John"

salesperson ? "John"

Boolean Operators: And's, Or's, and Xor's

These boolean operators take two operands and form an expression that evaluates to
true or false. For example, this is an expression that contains the boolean operator and:

(price < 15000) and (color = "red")

The first operand of and is (price < 15000), and the second operand is (color =
"red").

This table lists the boolean operators and their descriptions:

Boolean Operators Description

and & Both operands being evaluated must be true for the
whole expression to be true.
3 - 110 Language Reference

Query Language
or | Either operand or both operands being evaluated must
be true for the whole expression to be true.

xor # Either operand must be true but not both for the whole
expression to be true (exclusive-or).

Examples:

This query finds cars that satisfy both of these criteria:
■ sold by salesperson "Jan"
■ cost more than or equal to $21,000

(salesperson like "Jan") and (price ge 21000)

This query finds cars that satisfy one of these criteria:
■ sold by salesperson "Jan"
■ sold by salesperson "Kris"

(salesperson ? "Jan") | (salesperson ? "Kris")

This query finds all cars that are not Volkswagens or Mazdas:

(model = "Volkswagen") xor (model = "Mazda")

Other Operators: In, Between

Use these operators to evaluate whether an expression is in a range of values or a list
of values. The values can be strings, numbers, dates, or times. For example, this query
evaluates whether price is greater than $10,000 and less than $15,000:

price between 10000 and 15000

This table lists the other operators and their descriptions:

Other Operators Description

value between x and y Evaluates whether value is greater than x and less than
y.

value in x : y Evaluates whether value is greater than or equal to x
and less than or equal to y.

value in [x1, x2, x3] Evaluates whether value is one of the values listed in
brackets.

Using not:

You can use the modifier not with in and betwe
n to negate the search query. For example, this query looks for all cars with a price not
in the range of $13,000 and $18,000:

price not between 13000 and 18000

This query finds cars that are not Mazdas, Hondas, or Volkswagens:

make not in ["Mazda", "Honda", "Volkswagen"]

Examples:
Language Reference 3 - 111

Chapter Database Integration Topics3
This query finds cars that were sold after January 1, 1990 and before June 30, 1990:

sold_date between DATE(1990, 1, 1) and DATE(1990, 6, 30)

This query finds cars that cost more than $15,000 and less than $15,100:

price between 15000 : 15100

This query finds all cars sold by Alex, Jan, or Kris:

salesperson in ["Alex", "Jan", "Kris"]

Functions: SUM, MIN, MAX, and Others
You can use functions in your query to a relational database (not supported on other
database types). This table lists the functions available in the Rules Element's Query
Language and the descriptions of the functions.

Function Description

AVG(expression) Compute the average value of all values described by
expression.

COUNT(fieldname) Counts the total number of occurrences of fieldname.

MAX(expression) Computes the largest value of all the values described
by expression.

MIN(expression) Computes the smallest value of all the values described
by expression.

SUM(expression) Computes the total of all the values described by expres-
sion.

Expressions are names of fields, or names of fields with arithmetic operators.

Examples:

This query selects all the cars that cost more than the average price of all the cars:

price > AVG(price)

Dynamic Values
You can use the current value of the property slot of an object in your query. For
example, this query finds the value of MyFavoriteColor.value, blue, and uses it to
retrieve all the records that describe a blue car:

color contains “@V(MyFavoriteColor.value)”

This query finds the value of CurrentCity.value, San Francisco, and uses it to find all
records where the car was shipped to San Francisco:

shipped_city like “@V(CurrentCity.value)”

☞ For NXPDB, SYLKDB, DBF3, and WKSDB use field names that are in the
query, in the Database Fields column, or in the properties list of the Retrieve
3 - 112 Language Reference

Query Language
or Write statement. When the @V contains a character value, it must be
enclosed in quotes.

Wildcards
You can use wildcards with strings. Wildcards allow you to specify a pattern to match
when doing the query. The Rules Element's Query Language has two wildcards:

? Replaces one character.

* Replaces any string.

Examples:

This query finds all records that have an address in California:

city_and_state contains "*, California"

This query finds all records that have a 4-character serial number that ends in 0:

serial_number = "???0"

Two Kinds of Errors
When the Rules Element finds an error in the query, such as a misspelling, no records
are retrieved. Two errors are:
■ Syntax
■ Incompatible types

The Rules Element writes error messages to the transcript window. This is an example
of a syntax error, because contains is misspelled:

city_and_state contains "*, New York"

If you try and compare incompatible types, such as numbers and strings, the Rules
Element generates an error message. This is an example of incompatible types because
the field serial_number is a string:

serial_number > 2350

Related Topics
Query Retrieve Operations
Query Arguments
Query
Language Reference 3 - 113

Chapter Database Integration Topics3
Query Field in Retrieve Operations

This section discusses how to build the Query field for retrieve operations. The Query
allows you to filter incoming records based on the actual data in the record's fields.
Two kinds of queries can be used with the Rules Element:
■ For relational databases such as Oracle, INGRES, and Sybase, any ANSI-standard

SQL query supported by the database may be used. See the appropriate database
topic for details.

■ For non-relational databases, the Rules Element's own SQL-like query language
can be used to filter records. See the Query Language topic for more details.

Query Field
When retrieving records from a relational database such as INGRES, Sybase, Oracle, or
SQL/DS, the query is handled by the central database manager or server. Therefore,
the query can use whatever implementation of the ANSI SQL standard is supported by
the particular database being used.

Keep in mind that using specialized features of a given database will mean that the
Retrieve may have to be changed if another database type is used. Generally, if the
query uses only those features defined by the ANSI SQL standard, it will be portable
across most, if not all, relational database products.

The first thing in the query field must be the table name(s) to be accessed by the retrieve
operation. The names can be in any format legal for the database being accessed. This
flexibility is important for databases such as SQL/DS which allow you to specify
remote table names in a special format. The Rules Element will use the table names
"as-is" as it constructs the SQL "SELECT" statement.

If ALL records are to be retrieved, then nothing except the table name should be
specified in the Query field.

The second part of the query field is the "WHERE" clause to be included in the SQL
"SELECT" statement, and MUST be preceded by the word "WHERE". It is also
included "as-is" in the "SELECT" statement constructed by the database interface.

For example, to retrieve only the records from the CARS table in which the
DB_SPORTIVE column contains YES, the query field would contain the following:

CARS WHERE DB_SPORTIVE = 'YES'

More complex queries can be specified, such as:

CARS WHERE DB_SPORTIVE = 'YES' AND DB_PRICE > 10000

to retrieve only those records in which the DB_SPORTIVE field is YES and the
DB_PRICE field is greater than 10000.
3 - 114 Language Reference

Query Field in Retrieve Operations
Schematically, the "SELECT" statement built by the Rules Element will look something
like this:

SELECT field_names FROM table_names WHERE query...

where:
■ field_names are the fields specified in the "fields and columns" list
■ table_names are the names preceding the word WHERE in the Query field
■ Query is the string after the word WHERE in the query field.

The query field is also where a SQL join operation is built. A "join" takes the data from
two or more tables and unifies them into a single "result" table based on the "WHERE"
clause in the SQL statement. The Rules Element sees the result of a join just as it would
rows from a single table.

When coding a join in the query field, it's important to remember that the field names
are copied "as-is" from the Fields and Properties list into the SQL select statement. In
a join, it may not be sufficient to just code a simple field name, since there could be
ambiguity in which table fields come from. Consider the following query:

CARS, DEALERS WHERE CARS.DB_MODEL = DEALERS.DB_MODEL

If DB_MODEL is specified in the fields and properties list, there will be ambiguity since
the database manager will not know which table - CARS or DEALERS - to retrieve the
field DB_MODEL from. To avoid this problem, DB_MODEL should be specified as
CARS.DB_MODEL or DEALERS.DB_MODEL.

Example
The Query - composed of the table names to be accessed and optionally followed by
the word "WHERE" and a SQL query clause - is specified in the Query field of the
database Retrieve window. The query should NOT be enclosed in quotes. The
Language Reference 3 - 115

Chapter Database Integration Topics3
following example shows how to retrieve only those records from the CARS table
where the Sportive field contains YES:

Figure 3-7 Using the Query Field to Retrieve Selected Records

Related Topics
Database Editor Windows Arguments Overview
Query Language Query Example (Sequential Retrieve)
Query Arguments Query Write Operations
Query

Specific database operations and database topics provide more details and examples
on how to use the query statement.
3 - 116 Language Reference

Query Field in Write Operations
Query Field in Write Operations

This section discusses how to build the Query field for write operations. The Query
field supplies another level of criteria determining which records will be written by
writing to only those records whose fields contain certain values. Two kinds of queries
can be used with the Rules Element:
■ For relational databases such as Oracle, INGRES, and Sybase, any ANSI-standard

SQL query supported by the database may be used. See the appropriate database
topic for details.

■ For non-relational databases, the Rules Element's own SQL-like query language
can be used to filter records. Look up the Query Language topic for more detail.

Query Field
The Query field is used in atomic and grouped write operations. In the case of atomic
writes, the query is used to uniquely identify the record(s) to be updated by the write.
See the Atomic Write Operations topic for more information on this.

Using queries with grouped write operations is useful when not all the information
necessary to identify a record is available in the Rules Element's working memory.
Recall that the Name field uses the object name to identify records in the database, but
it may be that this is not sufficient to limit the records written to the database.

For example, assume that there are three car objects - car_1, car_2, and car_3 - and
each object has the properties Model, Model_Date, Price, and Sportive. Assume
that the Price properties have been updated to reflect a sale, but, due to a special
promotion, only red cars will be marked down, and therefore only the red car's
database records should be updated.

If the car objects had a Color property, then an existential pattern matching operation
could be used to select only those objects with a Color property of red to be written.
In this example, however, there is no Color to do the pattern matching on.

Remember that the Name field constructs a record "key" based on the object name and
compares it to selected record fields. There's no way to use the Name field to check for
red cars in the database.

However, by including a SQL or SQL-like query in the Query field, you can limit the
database records updated to those which have Red in the DB_COLOR field (assuming,
of course, that there is a DB_COLOR field in the database), by using a query like this:

WHERE DB_COLOR = 'RED'

This causes the Rules Element to consider ONLY those records which have a
DB_COLOR field of RED. Note that the conditions specified in the Query are "anded"
with any conditions imposed by the Name field. For example, recall that if the Name
Language Reference 3 - 117

Chapter Database Integration Topics3
field is specified as !DB_CAR_NAME!, then the following "WHERE" clause would be
generated as the object "car_1" was written:

WHERE DB_CAR_NAME = 'car_1'

Combining this with the query example above, the generated "WHERE" clause would
look like this:

WHERE DB_CAR_NAME = 'car_1' AND DB_COLOR = 'RED'

This has the affect of updating car_1's record ONLY if car_1 is red.

Caution must be exercised when the Create New Record box is checked in the Write
window and a query is specified in the Query field. In this case, if no record is found
to match the Query and Name criteria, the Rules Element will add a record to the
database for the object. However, since, in this example, there's no Color property in
the cars objects, the DB_COLOR field can't be filled in when the record is written. This
could generate records whose contents are illogical or invalid.

Specifying Queries for Relational Databases

When writing records to a relational database such as INGRES, Sybase, Oracle, or
SQL/DS, the query is handled by the central database manager or server. Therefore,
the query can use whatever implementation of the ANSI SQL standard is supported by
the particular database being used.

Keep in mind that using specialized features of a given database will mean that the
write operation may have to be changed if another database type is used. Generally, if
the query uses only those features defined by the ANSI SQL standard, it will be
portable across most, if not all, relational database products.

The first thing in the query field must be the table name to be written by the write
operation. The name can be in any format legal for the database being accessed.

If no query criteria are to be applied during the write, then nothing except the table
name should be specified in the Query field.

The second part of the query field is the "WHERE" clause to be included in the SQL
UPDATE statement, and MUST be preceded by the word "WHERE". It is also included
"as-is" in the UPDATE statement constructed by the Rules Element.

For example, to write only the records from the CARS table in which the DB_SPORTIVE
column contains YES, the query field would contain the following:

CARS WHERE DB_SPORTIVE = 'YES'

More complex queries can be specified, such as:

CARS WHERE DB_SPORTIVE = 'YES' AND DB_PRICE > 10000

to write only those records in which the DB_SPORTIVE field is YES and the DB_PRICE
field is greater than 10000.
3 - 118 Language Reference

Query Field in Write Operations
Schematically, the UPDATE statement built by the Rules Element will look something
like this:

UPDATE table_name WHERE name_column = object_name AND query SET field_name =
slot_value, field_name = slot_value, ...

where:
■ table_name is the names preceding the word WHERE in the Query field
■ column_name is one of the column names specified in the Name field between

exclamation points (!).
■ object_name is the object name (or portion thereof) extracted to be matched

against column_name
■ query is the string after the word "WHERE" in the query field.
■ field_name and slot_value are the "Field and Property" pairs specified in the

Write window.

It is NOT possible to use a join operation during a write.

Example
The Query - composed of the table name to be accessed and optionally followed by the
word "WHERE" and a SQL query clause - is specified in the Query field of the database
Write window. The query should NOT be enclosed in quotes. The following example
Language Reference 3 - 119

Chapter Database Integration Topics3
shows how to write only those records from the CARS table where the DB_SPORTIVE
field contains YES:

Figure 3-8 Using a Query in a Write Operation

Related Topics
Database Editor Windows Arguments Overview
Query Retrieve Operations Query Language
Query Arguments Query

Specific database operations and database topics provide more details and examples
on how to use the query statement.
3 - 120 Language Reference

Record Specification for Writes
Record Specification for Writes

After the Rules Element selects the slots (object.property combinations) to be written,
it writes them out to records (actually, fields within records) in the database. This
section discusses how the Rules Element determines which records will receive the
data.

Writing by Position
During sequential operations, the Rules Element stores its current position (in the
database) in the cursor slot specified in the retrieve or write window. When a
sequential write is issued, it writes the record at the position stored in the cursor.

Thus, the logic in the knowledge base determines which records will be written during
a sequential write operation. For example, if the knowledge base issues a sequential
write after each read to the database, it will effectively update every record in the
database:
■ For the first retrieve, the Rules Element will fetch record #1 in the database, and

leave the cursor positioned at the beginning of the first record.
■ When the sequential write is issued (using the cursor), it will overwrite record #1,

and position the cursor at record #2.
■ The next retrieve will fetch record #2, and leave the cursor positioned at the

beginning of the record.

How to Write by Position
Write by position is supported ONLY for sequential write operations. Remember that
sequential write is NOT supported for most relational databases such as Oracle,
Sybase, and INGRES. To specify write by position, you:
■ Specify a cursor name in the Cursor field of the Write window.
■ Ensure that the cursor value is 0 for the first sequential retrieve or write operation.
■ Ensure that the cursor is set to the position where you would like the next record

written when the Write is issued.

Specifying a cursor name

You specify the cursor name as a slot name (object.property combination) in the Cursor
field of the database write window. This slot must be an "Integer" type.

Ensuring the cursor value is 0 for the first sequential operation

When the Rules Element begins a write operation in which a cursor is specified, it first
checks the value of the cursor to determine the type of operation. If the value is 0, it's
Language Reference 3 - 121

Chapter Database Integration Topics3
assumed to be the first sequential read or write; if it's nonzero, it's assumed to hold the
position of the next record to be accessed.

It's very important to ensure that the cursor has the appropriate value before the write
is issued. Failure to set the cursor properly can result in the Rules Element issuing an
atomic write instead of a sequential write, or encountering errors during the write
operation.

Ensuring the cursor is set to the record position for subsequent operations

When attempting to add records to a database, or replace existing records, you must
ensure that the sequential write is properly coordinated with read operations to ensure
that the cursor is set to the proper value. This is done by specifying the same slot name
for both the retrieve and write operations.

Writing by Key
During a grouped write, the Rules Element takes the selected objects (actually, object's
slots) and writes them to the database in a single operation. To determine which
objects will be written to which records, the Rules Element builds a record "key" to
identify the record(s) which will receive the object's slots.

The record key is built by taking the object name and comparing it to the appropriate
fields in the database records. Records whose field values match the key (or keys) are
considered to be a match for the object, and its slots will be written to those records. If
no matches are found, a record can optionally be created.

How the object name is compared to the field(s) is very flexible: all of the name can be
compared to a single field, part of the name can be compared to a single field, parts of
the name can be compared to multiple fields, and so forth.

Simple Keys

As a simple example, assume that there are four objects to be written whose names are
HONDA, PINTO, TOYOTA, and BMW. The database records contain a field called
DB_MODEL which will be considered the "key" for this write operation. As each object
is written, the Rules Element searches the database for a record where the value of the
field DB_MODEL matches the object's name. Thus, the HONDA object's slots will be
written to the record with the DB_MODEL field of HONDA the CHEVROLET object will be
3 - 122 Language Reference

Record Specification for Writes
written to the record whose model field contains CHEVROLET, and so forth. Figure 3-9
illustrates this example

Figure 3-9 Using an Explicit Field Name as the Record Key

Complex Keys

As a more complex example, assume the object names are CAR_TOYOTA and
CAR_HONDA, but the DB_MODEL fields still contain TOYOTA and HONDA. It's possible to
split the object names into two parts: the constant CAR_, and the model name, and have
only the model name matched against the DB_MODEL field in the records.

The object name can also be matched across multiple fields. In this case, assume that
that object names are composed of the car's model, a constant, and the car's name:
HONDA_is_car_1, TOYOTA_is_car_2, and so forth. The name can be divided into
three parts: the model, a constant ("_is_"), and the car name. The model and the name
Language Reference 3 - 123

Chapter Database Integration Topics3
can then be used as "keys", and matched against the DB_MODEL and DB_CAR_NAME
fields in the database. Figure3-10 illustrates this example.

Figure 3-10 Using a Constructed Field Name as the Record Key

Summary

When writing to relational databases such as INGRES, Sybase, Oracle, and Informix,
the Rules Element builds a SQL "UPDATE ... WHERE ..." statement to update the
proper rows using the "key" values. Using the simplest car inventory example above,
SQL statements like the following would be built:

UPDATE CARS SET ... WHERE DB_MODEL = 'HONDA'

UPDATE CARS SET ... WHERE DB_MODEL = 'CHEVROLET'

For the case where two columns are used as "key" fields:

UPDATE CARS SET ... WHERE DB_MODEL = 'HONDA' AND DB_CAR_NAME = 'car_1'

UPDATE CARS SET ... WHERE DB_MODEL = 'CHEVROLET' AND DB_CAR_NAME = 'car_2'

Note that any additional WHERE clauses specified in the Query field of the Write
window will be appended to these WHERE clauses.

In most cases, there will be a one-to-one correspondence between objects and records
in the database. In the case of the cars example, the key would be constructed so that
one car object would be written to exactly one database record. If the car database
contained only four records - one of each car model - then the simple scheme of
3 - 124 Language Reference

Record Specification for Writes
mapping the DB_MODEL field directly to the object name would suffice. However,
realistically, the DB_MODEL field may not be enough to uniquely identify the records,
and a more complex scheme - such as using the model and car name - may be
necessary.

It's also possible to have one object written to MANY records. This is done by
constructing a key which is not unique to one record. In this case, the object's
properties will be written to all records whose field value(s) match the key. For
example, in a realistic car inventory, many records would have the same value in the
DB_MODEL field. If the object names were mapped directly to the DB_MODEL field, then
each object would be written to multiple records. Thus all of the records for HONDA cars
would be updated by the object named HONDA, and so forth. This technique is useful
for updating a group of records.

For example, if all the cars of the model TOYOTA were moved to a new location, this
type of key could be used to update all the records in a single operation. Obviously,
this type of write should specify only the properties and fields which are to be set the
same in all records. Writing out properties which are not common to all records - such
as DB_CAR_NAME - would not be desirable since the DB_CAR_NAME in all records
would receive the same value!

How to Build Record Keys
When filling in the Write window, you build record keys from the object name by
specifying how the Rules Element is to construct the record’s name, or key fields from
the object name.

You provide the model for constructing the record key(s) in the Name field of the Write
window. It is specified as a series of constants (or "roots") and/or field names. The
Name field tells the Rules Element how to break up the object name into separate parts
to build the record's key, and what fields in the record will be matched against what
parts of the key.

The root fields should be enclosed in single quotes, and the field names in exclamation
points (“!”). For example, to specify that the entire object name is to be matched against
the field name model (thus making model the key field), you would code the Name as
!model!.

If the object names were prefixed by the constant CAR_, but only the portion of the
name following the constant was to be matched against the database field DB_MODEL,
you would code the Name field as 'CAR_'!DB_MODEL!.

Multiple fields can be used as record keys: if the object names were composed of the
car's model, a constant _SERIAL_, and the car's name, then the Name field would be
specified as !DB_MODEL!'_SERIAL_'!DB_CAR_NAME!. In this example, the record
fields DB_MODEL and DB_CAR_NAME are the record "keys".

When specifying a Name field which combines constants and/or multiple fields, it is
very important that the Name field is unambiguous. For example, a Name field of
Language Reference 3 - 125

Chapter Database Integration Topics3
!DB_DEALER!!DB_CAR_NAME! is ambiguous, since the Rules Element has no way of
telling which part of the object name is to go in the DB_DEALER field and which is to
go into the DB_CAR_NAME field.

The Name field must also be accurate: If Name is specified as 'A_CAR_'!DB_MODEL!,
and the object names are all of the form CAR_model, then the Rules Element won’t be
able to match any of the object names against the Name field, and no records will be
written. See the Slot Specification for Writes topic for more information on this.

Remember that the Name field is composed of field names, not property names. The
field names specified must be present in the records being retrieved, otherwise an error
will occur.

Field names which occur in the name field must NOT be repeated in the Fields and
Properties list. The field names specified in the Name field are the record’s "key", or
name, and cannot be changed in the same operation in which they are used to identify
the record.

Figure 3-11 Filling in the Name Field

Related Topics
Arguments Overview Create New Records
Name Slot Specification for Writes
3 - 126 Language Reference

Records Filtering
Records Filtering

General
In most transactions, the Retrieve or Write operation does not process all the records
stored in the database, but only processes a limited subset. The records are filtered by
the transaction. There are two ways by which records can be filtered:
■ Records can be filtered by a selection criteria expressed in the Query statement

(@QUERY). For example, a query may retrieve only the employee records which
have a salary greater than $4000. This type of filtering is possible only if a query
language is available. For relational databases, this query language is typically
SQL. For flat database files, you can use the Rules Element Query Language.

■ Records can be filtered by the fact that they match a set of existing objects or slots
in the working memory of the Rules Element. For example, a query may retrieve
the salary from the employee records for which there is already an employee object
(an instance of the employees class) in the Rules Element object base. This type of
filtering is controlled by the In List (@ATOMS) and the slots/properties lists
(@SLOTS/@PROPS). This type of filtering can be performed only if the Create
Object setting (@FILL=NEW;) is disabled.

Related Topics
Query In List
Create Objects Arguments Overview
Query Language
Language Reference 3 - 127

Chapter Database Integration Topics3
Retrieve Operator

The Retrieve operator is used in rules and methods to read information from a
database or spreadsheet.

Operands
The Retrieve operator takes two operands:
■ The first operand is either a string constant or an interpretation to a string constant

specifying the name of the file containing the database to be queried or the login
name/access string for a DBMS.

■ The second operand consists of a series of arguments defining the specific retrieval
operation to be performed.

Arguments
The second operand may include the following arguments:

@TYPE Type of database (creator software and file format)

@BEGIN Command string for opening transaction

@END Command string for closing transaction

@QUERY Command string for querying database

@ERROR Slot name to trap database error message

@ARGS Argument list for query command

@ATOMS List of objects or properties affected

@NAME Correspondence between records and objects

@FIELDS List of field names to retrieve from

@PROPS List of properties to retrieve to

@SLOTS List of slots to retrieve to

@FILL Create new objects

@CREATE Classes or parents to link new objects to

@UNKNOWN Retrieve UNKNOWN values

@FWRD Forward retrieved values

@CURSOR Current position for sequential retrieval

When entering a Retrieve action in the Rule Editor or Method Editor, clicking in the
space for the second operand displays the Database Editor window for specifying the
retrieval arguments interactively, rather than by explicitly typing them in as listed
above.
3 - 128 Language Reference

Retrieve Operator
Note: It is valid to have an empty second operand. When this occurs,
the Rules Element will determine the type of database from the
filename extension specified in the first argument, and will
default to the SYLK type if no extension is specified. Only
simple spreadsheet files can be accessed in this case. This
operating mode has been maintained to ensure compatibility
with earlier versions of the Rules Element.

Effect
The requested information is retrieved from the specified database to the Rules
Elementthe Rules Element knowledge base for further processing.

Result
When used in a condition on the left-hand side of a rule, the Retrieve operator
always produces a TRUE result, even if no records are retrieved satisfying the given
query. The only exception is if an error occurs while attempting to open the database
or transmit the query, in which case the result is FALSE.

Related Topics
Access String Left-Hand Side Retrieves
Access String Specification Right-Hand Side Retrieves
Arguments Overview Order of Sources Retrieves
Database Editor Window If Change Retrieves
Interpretations @V(...)

Look up the following topics in Chapter One, “Application Development Features” for
information related to the Retrieve operator.

Rules Classes
Methods Properties
Actions String Constants
Objects
Language Reference 3 - 129

Chapter Database Integration Topics3
Retrieve Unknown - (@UNKNOWN)

Usage
The Retrieve Unknown setting is meaningful in all types of transactions. It controls
whether or not UNKNOWN values should be retrieved by the transaction.

This setting is specified with the Retrieve Unknown check button in the Database
Editor windows. In the text form of the knowledge base, it is saved as:

@UNKNOWN=TRUE;

or

@UNKNOWN=FALSE;

Related Topics
Database Editor Windows
Retrieving from Databases
Arguments Overview
3 - 130 Language Reference

Retrieving from Databases
Retrieving from Databases

General
During most retrieve operations, the Rules Element selects a single object to receive
each record’s fields, and the fields are read into the object’s slots. Thus, the contents of
a record are represented by an object, and the fields in the record are represented by
the object's property slots. This has the affect of transforming the record-field
relationship into an object-property relationship in the Rules Element’s working
memory.

For example, take the case of a car inventory file. Each car is represented by a record
with the fields DB_MODEL, DB_MODEL_DATE, and DB_PRICE. In the knowledge base,
a car is represented by an object with the properties Model, Model_date, and Price.

Honda 15,000 Red

Honda

MyCar.Color

Red

MyCar

MyCar.Model

15,000

MyCar.Price
Language Reference 3 - 131

Chapter Database Integration Topics3
The Retrieve operation in the knowledge base specifies the mapping between the
record's fields and Rules Element properties

In this example, all of the fields from a car's record are mapped into one object's slots,
and thus a car's record is "transformed" into a car object.

Depending on the type of retrieval, records can be retrieved one by one and mapped
into the same object, or many records retrieved and mapped into many different
objects. In either case, as the records are retrieved, the Rules Element is capable of
either updating existing objects, or creating new objects to hold the records.

For example, the car records could be retrieved one by one into the same car object, or
many cars records could be retrieved at once into many different car objects.

With sequential and atomic retrieval, it's also possible to retrieve a record's fields into
slots belonging to two or more objects, in effect “scattering” a record’s contents across
several different objects.

DB_MODEL DB_MODEL_DATE DB_PRICE

MODEL

PRICE

MODEL_DATE
3 - 132 Language Reference

Retrieving from Databases
Of course, it’s not always necessary to retrieve all the records in the external file or
database. The Rules Element therefore provides several ways of filtering the records
which are actually read into its working memory.

This filtering occurs in three stages:
■ A SQL or SQL-like query can be used to select a subset of the records from the

database based on the data in the record fields themselves.
■ An object or object’s slots (object.property combinations) are selected to hold the

record’s fields.
■ Existence filtering determines if the selected object exists, and if it does, checks to

see if it exists in a specified list of objects or classes. If it doesn’t exist, or doesn’t
exist in the list, the record can either be bypassed or a new object created to hold it.

Related Topics
Databases Spreadsheets
Grouped Retrieve Sequential Retrieve
Atomic Retrieve Retrieve Operator
Query Retrieve Operations Existence Filtering Operations
Object Names In Retrieve Operations Slot Specification for Retrieves
String to Numeric Conversion Retrieve Unknown
Create Object Debugging Operations
Forwarding Strategy Formats
Language Reference 3 - 133

Chapter Database Integration Topics3
Return Errors

Like all Rules Element operations, retrieve and write return a "true" or "false" value
depending on the results of the operation.

Flat-Files
Retrieve and Write operations always return "true" unless an error occurs. For flat-file
type databases such as spreadsheets, NXPDB, NXP, and DBASE3 files, some of these
errors include:
■ The file could not be found
■ An operating system error occurred while opening the file
■ You don't have the authority to access the file
■ The file's format was invalid for the database type
■ Syntax error in the Query field

Relational Databases
For relational databases such as Oracle, Sybase, INGRES, Oracle, Informix, possible
errors include:
■ The account specified for the access was rejected by the database
■ The table name(s) specified in the Query argument was invalid
■ The syntax of the query was invalid for the database
■ A column name specified in the query did not exist
■ An operating system or database error occurred

It is especially important to note that for all database types, a "record not found"
condition is NOT considered an error, and therefore will not invalidate the condition
on the LHS of a rule. Thus, a retrieve or write can return "True" but NO records will
have been read or written. Examples of when this can occur include:
■ No records met the criteria of the Query argument
■ During a retrieve, no records could be mapped to existing object names and "fill"

was specified as "no", therefore no new objects could be created and no rows were
retrieved.

■ During a write, no objects could be mapped to existing records and "fill" was
specified as "no", therefore no new records could be created and no records were
written.

When designing your knowledge base, you should ensure that it can handle a
condition where no records are accessed, yet a "True" condition is returned by the
Retrieve or Write operation.
3 - 134 Language Reference

Return Errors
Related Topics
Databases Spreadsheets
Retrieve Operator Write Operator
Left-Hand Side Retrieves Query Argument
Left-Hand Side Writes Access String
Debugging Operations
Language Reference 3 - 135

Chapter Database Integration Topics3
Right-Hand Side Retrieves

Usage
A retrieve statement can also be used in the RHS of a rule or method, but here it's not
as useful because it's impossible to test if the Retrieve operation failed, and therefore if
there is any valid data to process.

When the Rules Element begins a retrieve operation, it gets the database access string
from the first argument of the retrieve statement.

Related Topics
Arguments Overview Retrieve Operator
Access String Atomic Retrieve
Sequential Retrieves Group Retrieve
Left-Hand Side Retrieves Atomic Retrieve Example
Retrieving from Databases
3 - 136 Language Reference

Right-Hand Side Writes
Right-Hand Side Writes

Usage
In the right hand side of a rule or method, a write statement is usually used to reflect
the consequence of a hypothesis being found "true" in a database. In the case of the car
inventory example, if the LHS of a rule determines that a car was sold, then the RHS of
the rule could contain a write statement to update the inventory.

Remember that even if the write fails due to an error and returns "False", the RHS will
continue execution until all RHS statements have been executed.

When the Rules Element begins a write operation, it gets the database access string
from the first argument of the write statement.

Related Topics
Arguments Overview Write Operator
Access String Atomic Write
Sequential Write Group Write
Left-Hand Side Writes If Change Writes
Order of Sources Writes Writing to Databases
Language Reference 3 - 137

Chapter Database Integration Topics3
Sequential Retrieve

General
Sequential retrieval can be used with both flat-file databases and relational databases
such as INGRES, Sybase, and Oracle.

The sequential retrieve operation reads the fields from multiple records, one record at
a time, into slots in the Rules Element's working memory. The slots (object.property
combinations) usually all belong to the same object, but it's also possible to read the
fields into slots belonging to two or more objects.

Typically, a knowledge base will use a sequential retrieval to read a record's fields, do
some reasoning over the record, "loop back" to retrieve another record, reason over it,
and so on. It's also possible to include a sequential write in this loop (for some database
types) to write out an updated copy of the record after each reasoning step.

For example, a sequential retrieval could be used to read each record from a "CARS"
database into an object's properties, compute a discounted price for the car, and write
out an updated record to the database. In this example, each record is processed
independently of the next one.

Sequential retrieves require that you provide the logic in your knowledge base to
"loop" thru the retrieve until all the records have been retrieved. One approach is to
create rules like the following:
■ Rule #1 tests the value of the cursor in the LHS to ensure that it's not negative.
■ If the cursor isn't negative, Rule #1 issues a Retrieve (in the LHS or RHS) to retrieve

the next record's fields into a fixed set of slots.
■ Subsequent rules process the slots.
■ When the record has been completely processed, the hypothesis of Rule #1 is reset,

forcing the next record to be retrieved.

The processing associated with the record can also include a sequential write (using the
same cursor slot), which will update the record just retrieved. Remember however,
that sequential writes are NOT supported for most database types.

Specification
Sequential retrieves are recognized by the fact that a Cursor slot is provided in the
database retrieve window, and it has a positive (0 is defined as a positive number)
value when the Retrieve is issued.

For relational databases, the cursor must be set to 0 for the first retrieve, and the Rules
Element set to an arbitrary positive number for subsequent retrieves. When all the
records have been retrieved, the cursor will be set to -1. The cursor's value must NOT
3 - 138 Language Reference

Sequential Retrieve
be changed by the knowledge base once the retrieve begins--doing so will cause errors
and/or unpredictable results.

For flat-file databases, the Rules Element will read the "Cursor+1"-th record in the
database. For example, if the cursor slot has a value of 23 when the retrieve is executed,
then the 24th will be retrieved.

A sequential retrieve does not necessarily have to retrieve all the records from the
database. It is possible to limit which records are retrieved by supplying a query with
the retrieve. For relational databases, you can use any query accepted by the database
manager (usually an ANSI SQL statement), for flat-file databases, you can use the
Rules Element Query Language to filter the records.

If no records meet the query criteria, then the cursor will be set to -1 on the first retrieve.

A sequential retrieve reads the record fields into specific slots which already exist when
the retrieve is issued.

Fields
To build a sequential retrieve, complete the Retrieve screen in the Database Editor
window as follows.
■ If the Retrieve is to a relational database such as Oracle, Sybase, or INGRES, ensure

that the Cursor slot specified in the Retrieve window is 0 before the first retrieve is
executed.

■ Usually, in the LHS of the rule issuing the Retrieve, a test is specified to ensure that
the Cursor slot has not gone negative, which indicates that the last record has been
retrieved.

■ Specify Retrieve as the operator in the LHS or RHS of the rule.
■ As the first operand of the Retrieve, specify the database access string if a relational

database is being accessed. If a flat file database such as NXPDB or DBASE III is
being accessed, specify the file name. See the Access String Specification Topic for
more information.

■ In the database Retrieve window, click on the appropriate selection in the
Database Type field for the database being retrieved from.

■ The Begin field should contain whatever is appropriate for your database. See the
Beginning Database Operations topic for more information. Flat-file databases use
this field to specify a range name, see the Begin topic for details.

■ For a relational database, specify the table name to be accessed in the Query field.
If you want to limit the records retrieved by the retrieve, you can also include a
SQL query (for relational databases) or a Rules Element SQL-like query (for flat file
databases) in this field. See the Query Retrieve Operations topic for more
information on filling in the Query field.

■ The End field should contain whatever is appropriate for your database to end a
transaction.
Language Reference 3 - 139

Chapter Database Integration Topics3
■ The slot names (object.property combinations) to receive each record’s fields are
specified explicitly. See the Slot Specification for Retrieves topic for more
information.

■ The Cursor field should contain the name of the slot to be used as the cursor for
this retrieve operation. This slot must be of the integer type, and MUST have a
value of 0 when the retrieve is issued from a relational database. The slot name
may be specified as "object.property" or just "object", which is shorthand for
"object.Value".

■ In the Database Fields column, specify the names of the database fields to be
retrieved. In the corresponding Object Properties column entries, specify the
property slots into which the fields should be retrieved. See the Slot Specification
for Retrieves topic for more information.

■ The Create Object option must be left unselected. Only grouped retrieves can be
used to create objects.

Related Topics
Cursor Slot Specification Query Retrieve Operations
Database Editor Windows Slot Specification for Retrieves
Object Names In Retrieve Operations Query Example
Sequential Retrieve Example Query Language

Also, look up individual arguments and your database type for more detailed
information.
3 - 140 Language Reference

Sequential Write
Sequential Write

General
Sequential Write operations can be used ONLY with flat-file databases such as NXPDB
and DBASE III. It can NOT be used with relational databases.

The Sequential write operation writes a set of slots into database fields one record at a
time. The slots (object.property combinations) usually all belong to the same object,
but it's also possible to write slots belonging to two or more objects to each record. Each
record is written from the same set of slots which are presumably updated in the logic
between the executions of the Write statement.

Typically, a knowledge base will use a sequential write to rewrite updated records
during a sequential read operation. For example, a knowledge base would use a
sequential read to reach a record, rules would reason over its contents, possibly change
some slot values, and a sequential write would replace the record in the database.

Sequential writes can also be used in a standalone fashion (not in conjunction with a
sequential retrieve), in which case the Cursor field is used to position the database to
the correct record before each write operation.

A sequential write requires that some logic be built around the write operations to
support them. The amount of logic required depends on whether the write is used in
conjunction with a sequential read.

If the sequential write is NOT used in conjunction with a sequential read, then the logic
in the knowledge base must set and maintain the cursor's value to correspond to the
record number to be written.

If the write is associated with a sequential read, then the read operations will take care
of setting and maintaining the cursor value once the retrieve begins. See the Sequential
Retrieve operations topic for more information.

Specification
Sequential writes are recognized by the fact that a Cursor slot is provided in the
database retrieve window, and it has a positive (0 is defined as a positive number)
value when the Write is issued.

The Rules Element will write the Cursor-th record in the database. For example, if the
cursor slot has a value of 23 when the write is executed, then record 23 will be written.

A sequential write cannot add records to a database, it can only update existing
records.
Language Reference 3 - 141

Chapter Database Integration Topics3
Fields
To build a sequential write, complete the Write screen in the Database Editor window
as follows.
■ Ensure that the cursor slot's value is a positive value (0 is considered positive)

before the write is issued.
■ Specify Write as the operator.
■ As the first operand of the Write specify the file name to be accessed. See the

Access String Specification topic for more information.
■ In the database Write window, click on the appropriate selection in the Database

Type field for the database being written. Remember that sequential writes can
NOT be used with most relational databases.

■ The Begin and Query fields should be left blank.
■ The End field should contain whatever is appropriate for your database to end a

transaction. For almost all relational databases, either "COMMIT" or "COMMIT
RELEASE" should be specified. See the Ending Database Operations topic for
more information.

■ The Name field may be left blank or may contain an explicit object name whose
property slots will be written to each record's fields. See the Slot Specification for
Writes topic for more information.

■ The Cursor field should contain the name of the slot to be used as the cursor for
this write operation. This slot must be of the integer type, and MUST have a
positive value when the retrieve is issued. The slot name may be specified as
"object.property" or just "object", which is shorthand for "object.Value".

■ The In and Link to fields should be left empty.
■ In the Rules Element Properties column, specify the property slots which are to be

written to the fields in the database. In the database fields column, specify the
corresponding field which is to receive each property slot. See the Slot
Specification for Writes topic for more information.

■ The Create New Record option must be left unselected. Only grouped writes can
be used to create records.

Related Topics
Cursor Slot Specification Sequential Retrieve

Also, look up individual arguments and your database type for more detailed
information.
3 - 142 Language Reference

Slot Specification for Retrieves
Slot Specification for Retrieves

As the Rules Element retrieves a record or records, it takes the data from the fields and
places it in the property slots of one or more objects. Usually, a given record's fields
are almost always read into a single object's slots - thus preserving the record and field
relationship as objects and properties.

Remember that property slots are identified as "object.property", where "object" is the
object name, and "property" is the property name. The property names are always
specified explicitly in the database Retrieve window (in the right hand side of the
Fields and Properties list). The object names can be determined in a number of ways,
including from the data in the records themselves. This section describes how object
names are built during Retrieve operations.

Using Explicit Object Names
There are two ways to specify the slots which will receive the fields from the records:
■ You explicitly state each "object.property" name in the right hand side of the fields

and properties list, opposite the corresponding field specification. The Name field
is left empty.

■ You list only the property name(s) in the right hand side of the double column list,
and specify the object name in the Name field. As the records are retrieved, the
Rules Element uses these fields together to form the slot names.

Both techniques are equally valid, and in almost all circumstances, there's no
advantage to using one technique over another. One exception is that listing the
"object.property" combinations explicitly allows you to split a record's fields among
two or more objects.

The following illustrations show how to use each of these techniques to retrieve the
fields DB_MODEL, DB_CAR_NAME, and DB_PRICE in object MyCar's Model, Name,
and Price properties.
Language Reference 3 - 143

Chapter Database Integration Topics3
Figure 3-12 Using Slot Names in Properties List

Figure 3-13 Using Property Names Only in the Properties List
3 - 144 Language Reference

Slot Specification for Retrieves
In the first example, we have listed the "target" slots MyCar.Model, MyCar.name, and
MyCar.Price explicitly in the right hand side of the fields and properties list, across
from their corresponding fields DB_CAR_NAME, DB_MODEL, and DB_PRICE.

The second example shown accomplishes the same thing, except that only the
properties are listed in the fields and properties list, and the object name - MyCar - is
listed explicitly in the Name field.

Using Constructed Object Names
Constructed object names are used only with grouped retrieve operations. To specify
the slots to receive the fields, you list only the property name(s) in the right hand side
of the double column list. As the records are retrieved, the Rules Element combines the
generated name for the object with these property names to form the actual slot names
to receive the records’ data.

The following illustration shows how to build object names from record data. The
object names are formed using the DB_MODEL and DB_CAR_NAME fields. The
fields DB_MODEL, DB_MODEL_DATE, and DB_PRICE are retrieved into the
property slots Model, Model_Date, and Price.

Figure 3-14 Building Slot Names from Record Data
Language Reference 3 - 145

Chapter Database Integration Topics3
Related Topics
Retrieving Databases
Name
Object Names In Retrieve Operations

Also see the Grouped Retrieve example in Appendix A, “Database Integration
Examples” for further illustrations of the Name field.
3 - 146 Language Reference

Slot Specification for Writes
Slot Specification for Writes

When a write operation is requested, the Rules Element first selects the slots
(object.property combinations) which are to be the source of the write operation. There
are two ways to specify the slots to be written:
■ As an explicit list of "object.property" combinations
■ As a list of object names or classes along with a list of properties to be written from

them.

This section describes these techniques in detail.

Using Explicit "Obj.Prop" Combinations
For sequential and atomic write operations, you specify a list of "object.property"
combinations to be written to each record. In this case, the fields are always written
from the same slots. Usually, all of the slots are from the same object, but it's also
possible to specify slots from two or more different objects.

With atomic write operations, the use of this technique is quite simple: the logic in the
knowledge base fills in the slots, and the slots are written to the fields in the database.
A slot name can be specified more than once in the list.

The slots to be written can be specified by listing them as explicit "object.property"
combinations, or by specifying the object name and listing the properties in the Fields
and Properties list. Both techniques are equally valid. If slots from two or more
different objects are to be written, the first technique must be used.
Language Reference 3 - 147

Chapter Database Integration Topics3
Specifying explicit object.property combinations
To specify explicit slot names, list them in the Properties column of the Fields and
Properties list , opposite the fields which the slots will be written to. The following
example shows how the slots in object MyCar could be written to the database:

Figure 3-15 Using Slot Names in the Properties List

Using "Obj.Prop" Combinations
There are two ways to specify the slot names:
■ As explicit "object.property" combinations.
■ As an object name and a list of properties.

Specifying an object name and list of properties
To use this technique, specify the object name (enclosed in single quotes) in the Name
field of the Write window, and the properties in the Properties column of the Fields and
3 - 148 Language Reference

Slot Specification for Writes
Properties list opposite the corresponding database fields. The following examples
show how to write MyCars’s slots to the database.

Figure 3-16 Using Property Names Only in Properties List

Related Topics
Name Writing to Databases
Record Specification for Writes Arguments Overview

Also see the Grouped Write example in Appendix A, “Database Integration Examples”
for further illustrations of the Name field.
Language Reference 3 - 149

Chapter Database Integration Topics3
Slots List - (@SLOTS)

General
The slots list can be specified in all types of transactions except operations on
spreadsheet files. This list is edited in the right part of the double list box at the bottom
of the Database Editor windows.

In the case of sequential or atomic transactions, the list is a list of slots (separated by
commas), and it is prefixed by the @SLOTS keyword.

@SLOTS=list of slots;

This is very similar to the Properties List (@PROPS) described for that topic.

Related Topics
Database Editor Windows Slot Specification for Writes
Arguments Overview Slot Specification for Retrieves
3 - 150 Language Reference

Spreadsheets
Spreadsheets

General
The spreadsheet files have formats associated with spreadsheet programs such as
Lotus 1-2-3, EXCEL, and the Rules Element's own spreadsheet format (also referred to
as "NXP"). In these formats, each spreadsheet cell is treated as a unique data item,
completely unrelated to other cells in the file.

In a spreadsheet, individual cells are usually addressed by row and column like "A1",
"C23", "KK16". This works well in the context of a user interface, but it is not very
convenient when it comes to identifying data items in a file. Not only is there no
"dictionary" of which cells represent which data items, there is the problem that
insertion of a row or column shifts the row-column coordinates of many other cells,
and invalidates any references to their old positions (inserting a column between
column "A" and "B" means that what was in position "B1" is now in "C1", etc);

Therefore, to use a spreadsheet file with the Rules Element database interface, the cells
which will be accessed from the Rules Element must have a Name or "definition"
attached to them. This Name is stored by the spreadsheet software with the
spreadsheet, and provides a consistent reference for a particular datum no matter how
its position changes.

Although the ability to read and write spreadsheet format files is useful for accessing
existing information from LOTUS 1-2-3 or EXCEL files, it is not so useful as an
application "database". The spreadsheet's simple nature makes it difficult to group
data together into logical entities. For example, there is no built in way to state that
"cells A1, A2, A3, and A4 represent CAR_1's price, model, model date, and sportiness",
and "cells B1, B2, B3, and B4 are CAR_2's price, model, model date... ", and so forth.

Related Topics
Retrieving from Databases Writing to Databases
Query Language WKS
SYLK Arguments Overview
Rules Element Flat-File Formats
Language Reference 3 - 151

Chapter Database Integration Topics3
SqlError - (@ERROR)

Usage
The database server that you initiate transactions with may generate error messages or
error numbers that you can trap at runtime. The SqlError field of the Database Editor
window lets you specify a slot that you create for this purpose. If an error occurs, the
message generated is stored as the value of the slot and the transaction is immediately
halted.

Your knowledge base might use an if change method to test the value of the error slot
each time its value changes. At runtime, if the database returns either an error number
(the slot should be of type Integer) or an error message (the slot should be of type
String), the transaction is immediately halted, and the inference engine automatically
sets a left-hand side Retrieve or Write condition to FALSE. If no error slot is specified,
error messages that are generated at runtime can be viewed in the Transcript window
that you enable.

In text knowledge bases, the field list is saved as a list of quoted strings. The formal
syntax is:

@ERROR=slot name

Note: If the slot name is specified in the Database Editor window, the
Rules Element automatically creates the slot for the knowledge
base.

Related Topics
Debugging Operations
Database Editor Windows
Arguments Overview
Retrieving from Databases
Writing to Databases

For precise information on what is allowed for a given database type, look up your
database type.
3 - 152 Language Reference

String to Numeric Conversion {x}
String to Numeric Conversion {x}

General
The "{x}" syntax is used with relational database queries to provide a "hint" to the Rules
Element as to the datatype of the corresponding database field.

Depending on the particular database interface being used and the current availability
of the database server and table(s) being accessed, the Rules Element has some, little,
or no knowledge of the datatypes of the fields being referenced (retrieved or written)
in the database table. In particular, the problem being addressed with this syntax is the
case where numeric field values are not being provided without the quotes typically
associated with strings. Some databases (e.g. ORACLE) will automatically do most
string to numeric conversion. Some of the Rules Element database interfaces (e.g.
SYBASE) have some understanding of the Rules Element property type and will
generally do the right thing with fields (quoting as appropriate). Other databases need
some help, though.

This syntax is used immediately before the database field name in the Field list or in
the Name field, with "x" set to be "S" for string, “F” for float, or "I" for integer (i.e.
numeric). Only a single character is permitted, and it must be exactly as specified (it is
case-sensitive). This syntax should only be used when, for example, use of the
Transcript indicates an inappropriate use of quotes by the Rules Element.

Example
As an example, suppose we are using the SYBASE database interface and have two
Rules Element properties of type string (str_money and str_int) that we wish to
write into two SYBASE fields of type money and int with field names of db_money and
db_int, respectively. For a normal transaction involving integers or strings, the
SYBASE database interface would not need the "{I}" syntax, but in this case we are
dealing with money (a type unknown to the Rules Element) and a string we are forcing
into an integer field. Using this syntax, the properties and fields lists would look like:

@PROPS= str_money,str_int;

@FIELDS= "{I}db_money","{I}db_int";

In a similar manner, staying with the SYBASE example, the db_int field may actually
be part of the object name derived from the Name field as in:

@NAME= "'root_'!{I}db_int!";

In this case, the Rules Element is obtaining the value of db_int from a string (part of
the object name) and would normally provide the value inside quotes, which SYBASE
would not accept. By using the "{I}" syntax again, we have forced a numeric handling.
Language Reference 3 - 153

Chapter Database Integration Topics3
In many cases, this additional syntax is not required, and it should only be used where
the Rules Element is obviously providing a form that the database server will not
accept. The database topics contain additional details for the various Rules Element
database interfaces on when and where this syntax is required.

Related Topics
Database Editor Windows
Formats
Arguments Overview
3 - 154 Language Reference

SYBASE
SYBASE

SYBASE is the relational database product of SYBASE, Inc. The query language of
SYBASE is the standard SQL (Structured Query Language) language. This section
assumes familiarity with the SQL language and the SYBASE product.

The Rules Element SYBASE database interface is available as a separate package. An
installation guide is provided with the software. It contains all the information
required to configure the system and install the database interface.

The basic logic controlling the transactions has been described under the Retrieve and
Write topics in this chapter. This part will explain how the SQL queries are
constructed.

Database Access String
As explained in the Access String topic in this chapter, the first argument of the
Retrieve or Write operators contains the information required to establish the
connection with the database. In order to connect with the SYBASE database server,
you must specify the user name and password with which to connect. You may
additionally be required to specify a server name and database. You may optionally
specify a host name and application name. The correct order for specifying these
connection parameters is as follows:

"username password hostname severname applicationname database"

You must not skip parameters within the connection string. If you need to, use a
dummy name to supply a connection parameter that is not used, but do not skip a
parameter or replace one by blanks. For example, the above connection parameters
might take the following connection string:

"scott tiger hyperion SYBASE_HYPERION MyApp customerdb"

In this example, the application name MyApp was supplied as a dummy placeholder.
Each parameter must be delimited by a blank space.

You cannot be connected to several accounts simultaneously. You can, however, close
a connection by issuing a RELEASE statement (see End string description below) and
open a connection to another account afterwards.

Query Syntax

Begin and End strings

In these strings, you can specify any valid SQL statement which will be sent to the
DBMS server. If you want to send several SQL statements, you must separate them by
a semi-colon character (;).
Language Reference 3 - 155

Chapter Database Integration Topics3
The Rules Element recognizes the special word RELEASE in the End statement because
it needs to be processed differently by the SYBASE connection module. If RELEASE is
found, the Rules Element closes the connection with the database.

Usually, the Begin statement is left empty for Retrieves. In the case of a Write,
however, the Begin statement must be of the form:

@BEGIN= "begin transaction transaction_name";

where transaction_name is a name of the user's choosing. Also, for a Write
operation, the End statement will typically be one of the following:

@END= "commit transaction";

@END= "rollback transaction";

depending on whether the actions performed during the transaction are to be kept or
discarded, respectively. By default, the Rules Element will do a rollback when a
Restart Session is done.

Another frequently used Begin statement is

@BEGIN= "use database_name";

to select a database other than from the default database area.

Query string

The query string contains one or several table names followed by an optional where
clause.

Let us take an example. Our database contains two tables:
■ employees with the fields emp_id, name, dept_id, salary and bonus.
■ departments with the fields dept_id, name, budget.

You can retrieve all the employee records with the following query:

@QUERY= "employees";

Note: In the Database Editor, you should not enclose your string in
double quotes. You should type only the word employees.

You can express complex queries such as:

(a) @QUERY= "employees where salary > 3000";

(b) @QUERY= "employees, departments where salary > 3000 and employee.dept_id =
department.dept_id";

In the second case (b), the query will join the two tables employees and departments.

The query string is not sent as is to the DBMS server (it is not a valid SQL statement).
The actual SQL query is built in the following way:
■ If a Name is specified (grouped queries), the Rules Element extracts the field1 and

the optional field2...field5 information from the Name (see Name topic for details).
■ Then the Rules Element builds the SELECT statement:
3 - 156 Language Reference

SYBASE
SELECT field1, field2,...,field5, list_of_fields FROM query_string
where list_of_fields is the list of fields specified in the left part of the double list box of
the Database Editor (@FIELDS).

The resulting string would be the string used with the "isql" program. SQL displays
the results of the query on the terminal but the Rules Element needs to assign the
retrieved values to some internal variables. Let us consider our example query string
(b). If the name slot of our Database Editor contains 'emp_'!emp_id!, and the fields list
contains the three properties name, employees.dept_id and salary, then the following
string will be sent to the SYBASE server:

SELECT emp_id, name, employees.dept_id, salary FROM employees, departments WHERE
salary > 3000 and employee.dept_id = department.dept_id

You must fully specify field names which are present in more than one relation. In our
example, dept_id must be prefixed by a table name (even if the two tables contain the
same value for this field as a result of our join operation).

You can use the full power of the SQL language and specify expressions instead of field
names (i.e. write salary + bonus instead of salary) as long as the SQL string which will
be generated is a valid SELECT statement. The Transact-SQL User's Guide and the
Transact-SQL Commands Reference manual provide detailed information on SQL.

Writing parameterized queries

You can use either the @V(obj.prop) special syntax or the query argument box to
parameterize your queries. Our previous example can be transformed as follows:

@QUERY= "employees, departments where salary > @V(@SELF.amount) and
employee.dept_id = department.dept_id";

or

@QUERY= "employees, departments where salary > :v1 and employee.dept_id =
department.dept_id";

@ARGS= SELF.amount;

Note: SELF and interpretations are allowed in the right part of the
fields/properties list box (@SLOTS) in the case of sequential or
atomic queries (grouped queries use a list of properties, not
slots). SELF is allowed only if the query is placed in methods.

Update and Insert statements

UPDATE and INSERT statements are constructed in a similar way. INSERT
statements are generated only if the Create New Record option is selected and will
concern only the objects specified in the In list which do not already have a matching
record in the database.

The UPDATE statement is generated as follows:
Language Reference 3 - 157

Chapter Database Integration Topics3
UPDATE tables_from_query_string SET list_of_fields/values WHERE [field1 =
value_of_field1 [AND field2 = value_of_field2]...] [AND]
[where_clause_from_query_string]

The square brackets indicate optional strings. Let us take our example (a) and suppose
that the salary field needs to be updated and that the Name cell contains 'emp'!emp_id!.
The resulting SQL statement will be:

UPDATE employees SET salary = 5000 WHERE emp_id = '104' and salary > 3000

Note: In this example, the new salary information and the emp_id is
obtained from the object identified by the Name field (e.g.
'emp104'). Also, the last part of the statement (and salary >
3000) is probably useless.

The INSERT statement is built from the following model:

INSERT INTO table_from_query_string ([field1,][field2, ...] list_of_fields) VALUES
([val1,][val2,] ...)

Our update example becomes:

INSERT INTO employees (emp_id, salary) VALUES ('105', 6500)

The INSERT statement is limited to the first table specified in the query string. You can
insert records only into real tables, not into views.

Sequential queries

In the current implementation, you are not limited in the number of active sequential
queries you have at any time.

Sequential writes are not implemented. You can easily replace a sequential write by an
atomic write.

Error Reporting
The Rules Element will report any SQL error message generated by SYBASE in the
transcript window (if this window is write enabled). It will also generate error
messages if it encounters problems while building the SQL strings. You can consult the
SYBASE System Administration Guide for a detailed explanation of the SYBASE
messages. Additional error messages are explained in the Open Client DB-Library
Reference Manual.

Retrieve Datatype Mapping
The following table indicates how various SYBASE datatypes may (or may not) be
retrieved into various Rules Element datatypes. The Rules Element datatypes are
listed (underlined) across the top; the SYBASE datatypes are listed in the column to the
left. A "Y" means that the operation works with no additional effort or concerns. A
3 - 158 Language Reference

SYBASE
number means that the operation is possible, but you should see the notes that appear
below the table for additional details. A "--" means that the operation is not possible.

Notes

1. Conversion from an integer value to a float will take place.

2. If the string contains the proper numeric type requested, it will be copied into the
Rules Element property.

3. SYBASE puts an "AM" or "PM" stamp on times retrieved from the database,
requiring a special Rules Element format be defined in order to retrieve this into a
date property. A format that should work is 'AMmm" "*d" "yyyy" "h":"mm*P'. The
first wildcard match is for single or double date returns (with one or two blanks).
The last "*" is dependent on your version of SYBASE which may or may not return
seconds (you could add ':ss' to get them) and thousandths of seconds (which the
Rules Element won't accept).

4. If the string contains a valid date, the Rules Element will take it if provided in the
default Rules Element date format ('Mmm dd yyyy hh:mm:ss;mm dd yy
hh:mm:ss;Mmm dd yyyy;mm dd yy;'). If in some other format, a format may be
attached to the property to allow its acceptance (e.g. a format of 'mm"/"dd"/"yy'
would accept "12/25/90").

5. Formats may be applied to treat most datatype as booleans. A default property has
been defined so that any string of the form "True" or "False" (case-insensitive) will
be converted to the appropriate Rules Element boolean. For example, if you have
integers that are "0" for "False" and "1" for "True", you could assign a format of
'True;False;1;0;' (which make it print out as True/False, even though it comes in as

Integer Float Boolean String Date

integer (not scaled) Y 5 4 3 6

integer (scaled) Y 5 4 3 6

smallint 7 5 4 3 6

quadword Y 5 4 3 6

tinyint 7 5 4 3 6

real Y 8 4 3 6

double precision Y 8 4 3 6

char(n) Y Y Y Y Y

varchar(n) Y Y Y Y Y

date 6 6 4 2 1
Language Reference 3 - 159

Chapter Database Integration Topics3
1/0). The most obvious candidates to use for booleans are the various strings, the
various integers, and "bit".

Write Datatype Mapping
The following table indicates how various SYBASE datatypes may (or may not) be
written into from various Rules Element datatypes. The Rules Element datatypes are
listed (underlined) across the top; the SYBASE datatypes are listed in the column to the
left. A "Y" means that the operation works with no additional effort or concerns. A
number means that the operation is possible, but you should see the notes that appear
below the table for additional details. A "--" means that the operation is not possible.

The Rules Element SYBASE database interface needs to use the "{I}" syntax for integer
database field names in the Name field. This instructs the Rules Element to not treat
this as a string, but rather as a numeric field (e.g. integer).

Notes

1. Datatype conversion, as appropriate and if possible, will take place. For example,
a Rules Element integer can be placed into a SYBASE tinyint (8 bits), but it must
have a value in the allowed range or SYBASE will generate an error and the entire
write operation will fail.

2. There are no "cents" passed in. The integer is treated as an integer number of
dollars ("$").

Integer Float Boolean String Date

int Y 1 1,4,5 1,5 1,4,5

smallint 1 1 1,4,5 1,5 1,4,5

tinyint 1 1 1,4,5 1,5 1,4,5

float 1 Y 1,4,5 1,5 1,4,5

char(n) -- -- Y Y Y

varchar(n) -- -- Y Y Y

bit 3 3 1,4,5 1,5 1,4,5

money 2 -- -- 1,5 1,4,5

date -- -- 4 1,5 Y

text -- -- -- -- --

binary(n) -- -- -- -- --

varbinary(n) -- -- -- -- --

image -- -- -- -- --

timestamp -- -- -- -- --
3 - 160 Language Reference

SYBASE
3. A Rules Element integer or float value of "0" will be "0" in the bit field; any other
number will be stored as a "1".

4. Formats must be applied to treat booleans as non-string SYBASE datatypes. For
example, you could write into an integer field if you use a boolean format of
'1;0;True;False' (which accepts True/False, though prints out as 1/0). The most
obvious candidates to use for storing booleans are the various string and integer
formats. (Strings will directly receive True/False with the default Rules Element
format).

5. Since this SYBASE field needs to be entered without quotes, but the Rules Element,
by default will put quotes around non-numeric fields, the "{I}" prefix syntax must
be used for the database field name to indicate that this is a numeric-like field and
should not have quotes provided by the Rules Element.

Notes
The main difference between SYBASE and the screen captures documented in
Appendix A, “Database Integration Examples” are as follows:

1. You must remember to specify SYBASE in the Database Editor window (or in the
TKB, @TYPE=SYBASE).

2. In all of the examples where you are going to write to a table, you must specify a
BEGIN statement that starts a "named" transaction, and an END statement that, for
example, commits the transaction. This syntax is slightly different from the
standard examples. For example (e.g. ex01syb.tkb):

@BEGIN= "begin transaction write_table";

@END= "commit transaction";

3. In all of the examples where you are going to retrieve from a table, the SYBASE
interface is generally exactly the same as the standard examples.

Related Topics
Databases
Retrieving from Databases
Writing to Databases
Language Reference 3 - 161

Chapter Database Integration Topics3
SYLK

SYLK is a standard data format used by several commercial spreadsheet software
packages, including Excel on the Macintosh and the IBM-PC. The maximum number
of fields which can be contained in a SYLK data file is 10,000.

SYLK
When the SYLK type is specified, the data file is processed as a spreadsheet by the
Rules Element. As explained previously, each cell of the spreadsheet containing a
value must be named with a unique corresponding slot name obj.prop. In Excel this is
done with the Define Name command in the Formula menu.

Example: to modify an existing spreadsheet so that it contains the slot value
Expenses.Total, select the cell where you want to put the value and enter the string
Expenses.Total in the Define Name dialog. You can repeat the operation for other cells
and other slot names. The unnamed cells of the spreadsheet will be ignored by the
Rules Element during a Retrieve or Write. The Rules Element may or may not
dynamically create new objects when it encounters a named cell (see the Create Object
topic for details).

When you create a new SYLK file, the Rules Element automatically names the cells
with the corresponding slot names. New cells are created in the first column of the
spreadsheet, but you can modify the layout of the spreadsheet later, provided you keep
the correct cell names.

SYLKDB
SYLKDB is used when the Excel spreadsheet file (or a portion of it) is treated as a
database. The Excel documentation describes how to select a set of rows and columns
(a range) and define it as a database with the Set Database command. In this case, cells
are not named individually, but the selected range constitutes a database: rows are
records and columns are fields.

This format is more functional than the NXP format for storing structured objects and
their slots. You can specify a database name in the Begin (@BEGIN) statement of your
query. The Rules Element will search for this database name in the spreadsheet file,
and will use the range associated with this database name to locate the records and
fields. If you leave the Begin statement empty, the Rules Element will use the word
Database as the database name.

You can have several databases in a single spreadsheet file. You can define them with
different names in Excel and access them as separate tables from the Rules Element
(you must use the Begin statement to identify your database range).
3 - 162 Language Reference

SYLK
Related Topics
Spreadsheets Retrieving from Databases
Writing to Databases Query Language
Begin
Language Reference 3 - 163

Chapter Database Integration Topics3
WKS

Description
WKS and WKSDB are used to query and update files which follow the WKS format
defined by the Lotus 1-2-3 program on the IBM-PC.

Descriptions of SYLK and SYLKDB hold in the case of WKS and WKSDB. The main
points are:
■ WKS is a spreadsheet format. The cells must be named in Lotus 1-2-3 to be

accessible by the Rules Element.
■ WKSDB is a Lotus 1-2-3 spreadsheet viewed as a database. You must select a

database range in Lotus 1-2-3, and assign a name to it. You must specify the
database name in the Begin statement of your transaction.

Note: Transfer of data files between the VAX and PC's (in both
directions) should not cause any special problem except in the
case of WKS files. In the current version, WKS files created on
the VAX (with a RHS Write) can be read on the VAX but not on
the PC if they contain numeric data (because of differences in
the floating point format), and files created on the PC cannot be
read on the VAX because of RMS file format incompatibilities
(you cannot transfer them with Kermit-32 because the records
are too long; if you transfer them with the VAXmate PC Server,
you create RMS files with unterminated records which cannot
be converted properly by the CONVERT VMS utility).

Related Topics
Spreadsheets Retrieving from Databases
Writing to Databases Query Language
SYLK Begin
3 - 164 Language Reference

Write Operator
Write Operator

The Write operator is used in rules and methods to write information to a database.

Operands
The Write operator takes two operands:
■ The first operand is either a quoted string constant or an interpretation evaluating

to a string constant specifying the name of the file containing the database to be
updated or the login name/password for a DBMS.

■ The second operand consists of a series of arguments defining the specific update
operation to be performed.

Arguments
The second operand may include the following arguments:

@TYPE Type of database (creator software and file format)

@BEGIN Command string for opening transaction

@END Command string for closing transaction

@QUERY Command string for updating database

@ERROR Slot name to trap database error message

@ARGS Argument list for update command

@ATOMS List of objects or properties affected

@NAME Correspondence between objects and records

@FIELDS List of field names to update

@PROPS List of properties to update from

@SLOTS List of slots to update from

@FILL Create new records or files

@UNKNOWN Write UNKNOWN values

@CURSOR Current position for sequential update

Note: It is valid to have an empty second operand. When this occurs,
the Rules Element will determine the type of database from the
filename extension specified in the first argument, and will
default to the SYLK type if no extension is specified. Only
simple spreadsheet files can be accessed in this case. This
operating mode has been maintained to ensure compatibility
with earlier versions of the Rules Element.
Language Reference 3 - 165

Chapter Database Integration Topics3
When entering a Write action in the Rule Editor or Method Editor, clicking in the
space for the second operand displays the Database Editor dialog box for specifying the
update arguments interactively, rather than by explicitly typing them in as listed
above.

Effect
The designated information is written to the specified database from the Rules Element
knowledge base.

Related Topics
Access String Left-Hand Side Writes
Access String Specification Right-Hand Side Writes
Arguments Overview Order of Sources Writes
Database Editor Window If Change Writes
Interpretations @V(...)

Look up the following topics in the Chapter One, “Application Development Features”
for information related to the Write operator.

Rules Classes
Methods Properties
Actions String Constants
Objects
3 - 166 Language Reference

Write Unknown - (@UNKNOWN)
Write Unknown - (@UNKNOWN)

Usage
The Write Unknown setting is meaningful in all types of transactions. It controls
whether or not UNKNOWN values should be written by the transaction.

This setting is specified with the Write Unknown check button in the Database Editor
windows. In the text form of the knowledge base, it is saved as:

@UNKNOWN=TRUE;

or

@UNKNOWN=FALSE;

Related Topics
Database Editor Windows Writing to Databases
Arguments Overview
Language Reference 3 - 167

Chapter Database Integration Topics3
Writing to Databases

General
During write operations, the database takes slots and writes them out to the fields in a
database record. In most cases, all of the slots are from the same object, thus
transforming the Rules Element’s object-property relationship into a record-field
relationship in the database.

For example, take the case of a car inventory file. Each car is represented by a record
with the fields DB_MODEL, DB_MODEL_DATE, and DB_PRICE. In the knowledge base,
a car is represented by an object with the properties Model, Model_date, and Price.

Honda 1 5 , 0 0 0 Red

Honda

MyCar.Color

Red

M y C a r

MyCar.Model

1 5 , 0 0 0

MyCar.Price
3 - 168 Language Reference

Writing to Databases
The Write operation in the knowledge base specifies the mapping between the Rules
Element properties and the record's fields:

Each car object's Name, Price, Model, Model_date, and Sportive property slots
could be written into a car record's DB_CAR_NAME, DB_PRICE, DB_MODEL,
DB_MODEL_DATE, and DB_SPORTIVE fields, respectively. This effectively
"transforms" each car object into a car record.

In specialized cases, it's also possible to write the slots from different objects into a
record's fields.

Depending on the type of write operation, records can be written one by one from the
same slots (with logic in the knowledge base updating the slots before each write), or
multiple objects can be written in one operation to many records. During the write, the
Rules Element can either update existing records or create new ones.

In most applications, it's not necessary to write all of the slots (object.property
combinations) in the Rules Element's working memory to the database. The Rules

DB_MODEL DB_MODEL_DATE DB_PRICE

MODEL

PRICE

MODEL_DATE
Language Reference 3 - 169

Chapter Database Integration Topics3
Element therefore provides several ways of filtering the slots which are actually
written from its working memory to the database.

Filtering occurs in several stages:
■ A list of slot, object, or class names are provided to the database interface to

initially represent the slots to be written. For atomic and sequential writes, the
slots are named explicitly; for grouped writes a list of objects or classes is provided
from which the slots will be written.

■ For grouped writes, existence filtering can be used to determine if a record already
exists in the database for the corresponding object. The correlation between a
record and an object is established by building a record "key" using the object's
name.

Related Topics
Databases Spreadsheets
Grouped Write Sequential Write
Atomic Write Write Operator
Query Write Operations Slot Specification for Writes
Write Unknown Create New Record
Debugging Operations Record Specification for Writes
3 - 170 Language Reference

Appendix
A Database Integration Examples A

This appendix provides examples of the various ways to use the Intelligent Rules
Element database interface.

Example 1 - Grouped Write

Description
In this example data from the slots of two objects is written to the database in a single
operation. Each object is written as an individual record. Although this example is
oriented towards relational databases, it is also applicable to flat-file databases.

This example uses the following objects and records:
■ The class |cars_class| contains two objects: Newcar_1 and Newcar_2.

Values have been assigned to their property slots using the InitValue operator
in the Order of Sources field.

■ Each object has the properties Model, Model_date, Price and Sportive.
■ The table CARS contains the columns DB_CAR_NAME, DB_MODEL,

DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE.
■ There are no rows in the table where the column DB_CAR_NAME contains the

value Newcar_1 or Newcar_2.
Language Reference A - 1

Appendix Database Integration ExamplesA
Operation
Figure A-1 shows the rule which will invoke the grouped write

Figure A-1 Rule Invoking a Grouped Write

The rule shown above is evaluated as follows:
■ The LHS of the rule will always be true.
■ The first statement of the RHS (Assign db_access_string...) will prompt the

user for the database access string. Look up your database type in Chapter
Three, “Database Integration Topics” for details.

■ The LoadKB, Assign DropTable, and UnloadKB statements will drop, recreate
and reload the CARS table in the database. This will ensure that the CARS table
is reset to its initial state each time the example is run.

■ A Write operation will be invoked. The argument @V(db_access_string)
A - 2 Language Reference

Example 1 - Grouped Write
will be evaluated to yield the user-specified database access string.

Figure A-2 Write Screen for a Grouped Write

Figure A-2 shows the database interface write screen:
■ The object names Newcar_1 and Newcar_2 will be used as keys in the update

query.
■ The database will try to update those records where the column

DB_CAR_NAME contains the values Newcar_1 or Newcar_2. Since there are
no rows in the table which satisfy this criteria and Create New Record has been
selected, two rows will be inserted into the table CARS using the object names as
keys.

■ For each of the two objects, the values in property slots Model, Model_date,
Price and Sportive will be written to the columns DB_MODEL,
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE, respectively.

■ If all of the rows are written successfully, a Commit will be passed to the
database.

Reference
Field descriptions for this Write operation follow.
Language Reference A - 3

Appendix Database Integration ExamplesA
Database Type

An Oracle database is being used in this example.

Begin

For most databases this field is to be left blank for grouped write operations. Some
databases, such as Sybase, require a statement here. Look up your database type in
Chapter Three, “Database Integration Topics” for details.

Query

This field specifies the database table to which the records are to be written (in this
example the table CARS). For flat-file databases this field must be left blank .

End

For Oracle and most other relational databases, this field should contain a Commit
statement to make the changes to the table permanent if all rows are written
successfully. Look up your database type in Chapter Three, “Database Integration
Topics” for details.

Name

This field indicates that the object names are to be used as keys in the
DB_CAR_NAME field.

In

Specifying a value of <|class_cars|> indicates that the Rules Element is to write all
of the objects in the class |class_cars| to the database.

Cursor

This field must be left blank to indicate a grouped write.

Database Fields / Rules Properties

These columns specify that the values in the property slots Model, Model_date,
Price and Sportive are to be written to the columns DB_MODEL,
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE respectively. Although in this
example all of the object's property slots are to be written out, this does not
necessarily have to be the case.

Create New Record

This is selected to indicate that a new row should be inserted into the table if the
update query generated by the Name field fails.Related Topics
A - 4 Language Reference

Example 2 - Grouped Write with a Complex Name
Grouped Write Cursor Slot Specification
Access String Slot Specification for Writes
Query Write Operations Database Editor Windows

Also, look up individual arguments and your database type for more detailed
information.

Example 2 - Grouped Write with a Complex Name

Description
In this example data from the slots of two objects is written to the database in a single
operation. Each object is written as an individual record. Unlike the previous
example where the object names could be used in the database as a single-column
key to uniquely identify a record, in this example the object names must be parsed
into two strings and compared with two database columns in order to determine
which records to update. Although this example is oriented towards relational
databases, it is also applicable to flat-file databases.

This example uses the following objects and records:
■ The class |cars_class| contains two objects: Newcar_1_A_Lexus and

Newcar_2_A_Infiniti . Values have been assigned to their property slots
using the InitValue operator in the Order of Sources field.

■ Each object has the properties Model, Model_date, Price and Sportive.
■ The table CARS contains the columns DB_CAR_NAME, DB_MODEL,

DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE.
■ There are no rows in the table where the columns DB_CAR_NAME and

DB_MODEL contain the values car_1 and Lexus, or car_2 and In f in i t i .
Language Reference A - 5

Appendix Database Integration ExamplesA
Operation
Figure A-3 shows the rule which will invoke the grouped write.

Figure A-3 Rule Invoking a Grouped Write

The rule shown above is evaluated as follows:
■ The LHS of the rule will always be true.
■ The first statement of the RHS (Assign db_access_string...) will prompt the

user for the database access string. Look up your database type for the exact
syntax.

■ The LoadKB, Assign DropTable, and UnloadKB statements will drop, recreate
and reload the CARS table in the database. This will ensure that the CARS table
is reset to its initial state each time the example is run.

■ A Write operation will be invoked. The argument @V(db_access_string)
A - 6 Language Reference

Example 2 - Grouped Write with a Complex Name
will be evaluated to yield the user-specified database access string.

Figure A-4 Write Screen for a Grouped Write Using Name

Figure A-4 shows the Rules Element Write screen:
■ The object names will be parsed to yield the values which will be used as keys in

the update query. The object Newcar_1_A_Lexus will yield the values car_1
and Lexus, and the object Newcar_2_A_Infiniti will yield the values car_2
and In f in i t i .

■ The database will try to update those records where the columns
DB_CAR_NAME and DB_MODEL contain the values car_1 and Lexus, or
car_2 and In f in i t i . Since there are no rows in the table which satisfy this
criteria and Create New Record has been selected, two rows will be inserted into
the table CARS using the parsed values as keys.

■ For each of the two objects, the values in property slots Model_date, Price and
Sportive will be written to the columns DB_MODEL_DATE, DB_PRICE and
DB_SPORTIVE, respectively.

■ If all of the rows are written successfully, a Commit will be passed to the
database.

Reference
Field descriptions for this Write operation follow.
Language Reference A - 7

Appendix Database Integration ExamplesA
Database Type

An Oracle database is being used in this example.

Begin

For most databases this field is to be left blank for grouped write operations. Some
databases, such as Sybase, require a statement here. Look up your database type for
the exact syntax.

Query

This field specifies the database table to which the records are to be written (in this
example the table CARS). For flat-file databases this field must be left blank . Look
up your database type for the exact syntax.

End

For Oracle and most other relational databases, this field should contain a Commit
statement to make the changes to the table permanent if all rows are written
successfully. Look up your database type for the exact syntax.

Name

This field indicates how the object names are to be parsed and in which database
columns they will be used as keys. In this example,
'New'!DB_CAR_NAME!'_A_'!DB_MODEL! specifies that the write query is to
search for records where the column DB_CAR_NAME contains the substring
delimited by New and _A_ and where the column DB_MODEL contains the
substring which begins after _A_.

In

Specifying a value of <|class_cars|> indicates that the Rules Element is to write all
of the objects in the class |class_cars| to the database.

Cursor

This field must be left blank to indicate a grouped write.

Database Fields / Rules Properties

These columns specify that the values in the property slots Model_date, Price and
Sportive are to be written to the columns DB_MODEL_DATE, DB_PRICE and
DB_SPORTIVE respectively. Although in this example all of the object's property
slots are to be written out, this does not necessarily have to be the case.
A - 8 Language Reference

Example 3 - Atomic Write
Create New Record

This is selected to indicate that a new row should be inserted into the table if the
update query generated by the Name field fails.

Related Topics
Grouped Write Writing to Databases
Access String Slot Specification for Write
Query Write Operations Database Editor Windows
Record Specification for Writes

Also, look up individual arguments and your database type for more detailed
information.

Example 3 - Atomic Write

Description
In this example one record in a database is updated with the data from the slots of a
single object. Although this example is oriented towards relational databases, it is
also applicable to flat-file databases.

This example uses the following objects and records:
■ The class |cars_class| contains one object: MyCar. Values have been assigned

to its property slots using the InitValue operator in the Order of Sources field.
■ The object MyCar has the properties Model, Model_date, Price and Sportive.
■ The object dummy_object has a single property, dummy_cursor.
■ The table CARS contains the columns DB_CAR_NAME, DB_MODEL,

DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE.
■ The table CARS contains ten records, each of which can be uniquely identified by

the values car_1 , car_2 , car_3,... in the field DB_CAR_NAME.
Language Reference A - 9

Appendix Database Integration ExamplesA
Operation
Figure A-5 shows the rule which will invoke the atomic write.

Figure A-5 Rule Invoking an Atomic Write

The rule shown above is evaluated as follows:
■ The LHS of the rule will always be true.
■ The first statement of the RHS (Assign db_access_string...) will prompt the

user for the database access string. Look up your database type in Chapter
Three, “Database Integration Topics” for details.

■ The LoadKB, Assign DropTable, and UnloadKB statements will drop, recreate
and reload the CARS table in the database. This will ensure that the CARS table
is reset to its initial state each time the example is run.

■ Reset dummy_object.dummy_cursor will set the value of
dummy_object.dummy_cursor to UNKNOWN. This will signal the Rules
Element that an atomic write will be performed.

■ A Write operation will be invoked. The argument @V(db_access_string)
A - 10 Language Reference

Example 3 - Atomic Write
will be evaluated to yield the user-specified database access string.

Figure A-6 Write Screen for an Atomic Write

Figure A-6 shows the Rules Element Write screen:
■ Data from the slots MyCar.Model, MyCar.Model_date, MyCar.Price and

MyCar.Sportive will update the fields DB_MODEL, DB_MODEL_DATE,
DB_PRICE and DB_SPORTIVE in the record where DB_CAR_NAME is car_1.

■ If the row is written successfully, a Commit will be passed to the database.

Reference
Field descriptions for this Write operation follow.

Database Type

An Oracle database is being used in this example.

Begin

For most databases this field should be left blank for atomic write operations. Some
databases, such as Sybase, require a statement here. Look up your database type in
Chapter Three, “Database Integration Topics” for details.
Language Reference A - 11

Appendix Database Integration ExamplesA
Query

This field specifies which database table is to be updated (in this example the table
CARS), and the criteria to be used to select the record to be updated (where
DB_NAME like...).

End

For Oracle and most other relational databases, this field should contain a Commit
statement to make the changes to the table permanent, if the row is updated
successfully. Look up your database type in Chapter Three, “Database Integration
Topics” for details.

Name

This field must be empty for atomic writes. Object names are stated explicitly in the
Database Fields / Rules Properties list.

In

This field must be empty for atomic writes.

Cursor

This field specifies the name of an integer property slot (in this example
dummy_object.dummy_cursor) which, in order to specify an atomic write, MUST
contain the value UNKNOWN.

Database Fields / Rules Properties

These columns specify that the values in the property slots Model, Model_date,
Price and Sportive of the object MyCar are to be written to the columns
DB_MODEL, DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE.

Create New Record

This must NOT be selected. New records cannot be added to the database with
atomic or sequential writes.Related Topics

Atomic Write Cursor Slot Specification
Access String Slot Specification for Writes
Query Write Operations Database Editor Windows

Also, look up individual arguments and your database type for more detailed
information.
A - 12 Language Reference

Example 4 - Grouped Retrieve
Example 4 - Grouped Retrieve

Description
In this example data from multiple records in the database is retrieved into the
property slots of a group of objects in a single operation. Although this example is
oriented towards relational databases, it is also applicable to flat-file databases.

This example uses the following objects and records:
■ Initially, the class |cars_class| contains no objects. Objects in |cars_class|

will have the properties Model, Model_date, Price and Sportive.
■ The table CARS contains the columns DB_CAR_NAME, DB_MODEL,

DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE.
■ The table CARS contains ten records, each of which can be uniquely identified by

the values car_1 , car_2 , car_3,... in the field DB_CAR_NAME.

Operation
Figure A-7 shows the rule which will invoke the grouped retrieve.

Figure A-7 Rule Invoking a Grouped Retrieve
Language Reference A - 13

Appendix Database Integration ExamplesA
The rule shown above is evaluated as follows:
■ The LHS of the rule is always true.
■ The first statement of the RHS (Assign db_access_string...) will prompt the

user for the database access string. Look up your database type in Chapter
Three, “Database Integration Topics” for details.

■ The LoadKB, Assign DropTable, and UnloadKB statements will drop, recreate
and reload the CARS table in the database. This will ensure that the CARS table
is reset to its initial state each time the example is run.

■ A Retrieve operation will be invoked. The argument @V(db_access_string)
will be evaluated to yield the user-specified database access string.

Figure A-8 Retrieve Screen for a Grouped Retrieve

Figure A-8 shows the Rules Element Retrieve screen:
■ As each record in the table CARS is retrieved, the Rules Element will search the

knowledge base for an object whose name matches the current value of the field
DB_CAR_NAME. Since no object will be found, a dynamic object with this name
will be created and linked to the class |car_class|.

■ As each object is created values from the database fields DB_MODEL,
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE will be passed to the
property slots Model, Model_date, Price and Sportive.
A - 14 Language Reference

Example 4 - Grouped Retrieve
Reference
Field descriptions for this Retrieve operation follow.

Database Type

An Oracle database is being used in this example.

Begin

For most databases this field should be left blank for grouped retrieve operations.
Some databases require a statement here. Look up your database type in Chapter
Three, “Database Integration Topics” for details.

Query

This field specifies from which table records are to be retrieved. This field can also
contain a where clause to limit the records to be retrieved.

End

For most relational databases, this field should be left blank. Some databases may
require a statement here. Look up your database type in Chapter Three, “Database
Integration Topics” for details.

Name

This field specifies that for each record retrieved from the database the value of the
field DB_CAR_NAME is to be used to build the object name in which the database
values will be stored.

In

This field specifies the list of objects and/or classes to be searched to determine if an
object exists whose name matches the value specified by the Name field. If this field
is left blank, as in this example, then all of the objects in the knowledge base will be
searched.

Cursor

This field must be empty for grouped retrieves.

Link To

This field specifies the class to which new objects created by the retrieve are to be
linked. In this example, new objects will be linked to the class |cars_class|.
Language Reference A - 15

Appendix Database Integration ExamplesA
Database Fields / Rules Properties

These columns specify that data from the columns DB_MODEL,
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE are to be passed to the
property slots Model, Model_date, Price and Sportive .

Create New Record

This is selected to indicate that if an object with a name specified by the Name field
doesn't already exist, it is to be created. If this is not selected, data will only be
retrieved into objects which already exist in the knowledge base.

Current Forward

This is selected to indicate that the retrieval of any data into property slots will place
hypotheses on the agenda according to the current RHS forward-chaining strategy.

Related Topics
Grouped Retrieve Cursor Slot Specification
Access String Slot Specification for Retrieves
Object Name Specification Query Retrieve Operations
Database Editor Windows

Also, look up individual arguments and your database type for more detailed
information.

Example 5 - Grouped Retrieve with a Complex Name

Description
This is an example of a grouped retrieve in which field values from two table
columns are combined with a constant string to form the object names. Although this
example is oriented towards relational databases, it is also applicable to flat-file
databases.

This example uses the following objects and records:
■ Initially, the class |cars_class| contains no objects. Objects in |cars_class|

will have the properties Model, Model_date, Price and Sportive.
■ The table CARS contains the columns DB_CAR_NAME, DB_MODEL,

DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE.
■ The table CARS contains ten records, each of which can be uniquely identified by

the values car_1 , car_2 , car_3,... in the field DB_CAR_NAME.
■ The table CARS contains ten records, each of which can be uniquely identified by
A - 16 Language Reference

Example 5 - Grouped Retrieve with a Complex Name
the values car_1 , car_2 , car_3,... in the column DB_CAR_NAME. The
column DB_MODEL contains values like Toyota, Honda and BMW.

Operation
Figure A-9 shows the rule which will invoke the grouped retrieve.

Figure A-9 Rule Invoking a Grouped Retrieve

The rule shown above is evaluated as follows:
■ The LHS of the rule is always true.
■ The first statement of the RHS (Assign db_access_string...) will prompt the

user for the database access string. Look up your database type for the exact
syntax.

■ The LoadKB, Assign DropTable, and UnloadKB statements will drop, recreate
and reload the CARS table in the database. This will ensure that the CARS table
is reset to its initial state each time the example is run.

■ A Retrieve operation will be invoked. The argument @V(db_access_string)
Language Reference A - 17

Appendix Database Integration ExamplesA
will be evaluated to yield the user-specified database access string.

Figure A-10 Retrieve Screen for a Grouped Retrieve Using Name

Figure A-10 shows the Rules Element Retrieve screen:
■ As each record in the table CARS is retrieved, the Rules Element will combine the

value of the field DB_CAR_NAME with the string _A_ and the value of the field
DB_MODEL to create an object name. The Rules Element will then search the
knowledge base for an object with this name. Since no object will be found, a
dynamic object with this name will be created and linked to the class
|car_class|.

■ As each object is created values from the database fields DB_MODEL_DATE,
DB_PRICE and DB_SPORTIVE will be passed to the property slots
Model_date, Price and Sportive.

Reference
Field descriptions for this Retrieve operation follow.

Database Type

An Oracle database is being used in this example.
A - 18 Language Reference

Example 5 - Grouped Retrieve with a Complex Name
Begin

For most databases this field should be left blank for grouped retrieve operations.
Some databases require a statement here. Look up your database type for the exact
syntax.

Query

This field specifies from which table records are to be retrieved. This field can also
contain a where clause to limit the records to be retrieved.

End

For most relational databases, this field should be left blank. Some databases may
require a statement here. Look up your database type for the exact syntax.

Name

This field specifies that for each record retrieved from the database the value of the
field DB_CAR_NAME, the string _A_ and the value of the field DB_MODEL will be
combined to form the object name in which the database values will be stored.

In

This field specifies the objects and/or classes of objects to be searched to determine
if an object exists whose name matches the value of the database field(s) specified in
the Name field. If this field is left blank, as in this example, then all of the objects in
the knowledge base will be searched.

Cursor

This field must be empty for grouped retrieves.

Link To

This field specifies the class to which new objects created by the retrieve are to be
linked. In this example, new objects will be linked to the class |cars_class|.

Database Fields / Rules Properties

These columns specify that data from the columns DB_MODEL_DATE, DB_PRICE
and DB_SPORTIVE are to be passed to the property slots Model_date, Price and
Sportive.

Create New Record

This is selected to indicate that if an object with a name specified by the Name field
doesn't already exist, it is to be created. If this is not selected, data will only be
Language Reference A - 19

Appendix Database Integration ExamplesA
retrieved into objects which already exist in the knowledge base, and any other
records ignored.

Current Forward

This is selected to indicate that the retrieval of any data into property slots will place
hypotheses on the agenda according to the RHS forward-chaining strategy currently
in effect.

Related Topics
Grouped Retrieve Cursor Slot Specification
Access String Slot Specification for Retrieves
Object Name Specification Query Retrieve Operations
Database Editor Windows

Also, look up individual arguments and your database type for more detailed
information.

Example 6 - Grouped Retrieve with Existence Filtering

Description
This is an example of a grouped retrieve in which database values are only passed to
those objects specified by the In field which already exist in the knowledge base.
Although this example is oriented towards relational databases, it is also applicable
to flat-file databases.

This example uses the following objects and records:
■ The class |cars_class| contains two objects, car_1 and car_2 . These objects

have the properties Model, Model_date, Price and Sportive Initially, all of
these property slots are set to UNKNOWN for both objects.

■ The table CARS contains the columns DB_CAR_NAME, DB_MODEL,
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE.

■ The table CARS contains ten records, each of which can be uniquely identified by
the values car_1 , car_2 , car_3,... in the field DB_CAR_NAME.
A - 20 Language Reference

Example 6 - Grouped Retrieve with Existence Filtering
Operation
Figure A-11 shows the rule which will invoke the grouped retrieve.

Figure A-11 Rule Invoking a Grouped Retrieve

The rule shown above is evaluated as follows:
■ The LHS of the rule is always true.
■ The first statement of the RHS (Assign db_access_string...) will prompt the

user for the database access string. Look up your database type for details on
how to specify this for other DBMSs.

■ The LoadKB, Assign DropTable, and UnloadKB statements will drop, recreate
and reload the CARS table in the database. This will ensure that the CARS table
is reset to its initial state each time the example is run.

■ A Retrieve operation will be invoked. The argument @V(db_access_string)
Language Reference A - 21

Appendix Database Integration ExamplesA
will be evaluated to yield the user-specified database access string.

Figure A-12 Retrieve Screen for a Grouped Retrieve Using In Field

Figure A-12 shows the Rules Element retrieve screen:
■ As each record in the table CARS is retrieved, the Rules Element will search the

objects in the class <|cars_class|> (as specified by the In field) for an object
whose name matches the current value of the field DB_CAR_NAME.

■ Only two records will have values in the field DB_CAR_NAME which match the
name of an object in the class <|cars_class|>.

■ For the two objects car_1 and car_2, the values from the database fields
DB_MODEL, DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE will be
passed to the property slots Model, Model_date, Price and Sportive. Data
from other records retrieved will be ignored.

Reference
Field descriptions for this Retrieve operation follow.

Database Type

An Oracle database is being used in this example.
A - 22 Language Reference

Example 6 - Grouped Retrieve with Existence Filtering
Begin

For most databases this field should be left blank for grouped retrieve operations.
Some databases require a statement here. Look up your database type for details.

Query

This field specifies from which table records are to be retrieved. This field can also
contain a where clause to limit the records to be retrieved.

End

For most relational databases, this field should be left blank. Some databases may
require a statement here. Look up your database type for the exact syntax for your
database.

Name

This field specifies that for each record retrieved, the Rules Element is to search for
objects whose name matches the value of the field DB_CAR_NAME.

In

This field specifies the list of objects and/or classes of objects to be searched to
determine if an object exists whose name matches the value specified by the Name
field. In this example, data will only be passed to existing objects in the class
<|cars_class|>.

Cursor

This field must be empty for grouped retrieves.

Link To

Since no objects are to be created by this retrieve, this field is left empty.

Database Fields / Rules Properties

These columns specify that data from the columns DB_MODEL,
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE are to be passed to the
property slots Model, Model_date, Price and Sportive .

Create New Record

Since this is not selected, data will only be retrieved into objects which already exist
in the knowledge base. Any other records will be ignored.
Language Reference A - 23

Appendix Database Integration ExamplesA
Current Forward

This is selected to indicate that the retrieval of any data into property slots will place
hypotheses on the agenda according to the current RHS forward-chaining strategy.

Related Topics
Grouped Retrieve Cursor Slot Specification
Access String Slot Specification for Retrieves
Object Name Specification Query Retrieve Operations
Database Editor Windows Existence Filtering Operations

Also, look up individual arguments and your database type for more detailed
information.

Example 7 - Grouped Retrieve with Content Filtering

Description
This is an example of a grouped retrieve in which the records retrieved are limited
by a database query. Although this example is oriented towards relational
databases, it is also applicable to flat-file databases.

This example uses the following objects and records:
■ Initially, the class |cars_class| contains no objects. Objects in |cars_class|

will have the properties Model, Model_date, Price and Sportive.
■ The table CARS contains the columns DB_CAR_NAME, DB_MODEL,

DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE.
■ The table CARS contains ten records, each of which can be uniquely identified by

the values car_1 , car_2 , car_3,... in the field DB_CAR_NAME. Five records
have a Sportive field with a value of Yes: car_1, car_4, car_5, car_7 and
car_8.
A - 24 Language Reference

Example 7 - Grouped Retrieve with Content Filtering
Operation
Figure A-13 shows the rule which will invoke the grouped retrieve.

Figure A-13 Rule Invoking a Grouped Retrieve

The rule shown above is evaluated as follows:
■ The LHS of the rule is always true.
■ The first statement of the RHS (Assign db_access_string...) will prompt the

user for the database access string. Look up your database type for information
on how to specify this for other DBMSs.

■ The LoadKB, Assign DropTable, and UnloadKB statements will drop, recreate
and reload the CARS table in the database. This will ensure that the CARS table
is reset to its initial state each time the example is run.

■ A Retrieve operation will be invoked. The argument @V(db_access_string)
Language Reference A - 25

Appendix Database Integration ExamplesA
will be evaluated to yield the user-specified database access string.

Figure A-14 Retrieve Screen for a Grouped Retrieve Using Link To

Figure A-14 shows the Rules Element retrieve screen:
■ Since the SQL query CARS where DB_SPORTIVE = 'Yes' has been specified,

the DBMS will return only those records which satisfy this condition.
■ As each record in the table CARS is retrieved, the Rules Element will search the

knowledge base for an object whose name matches the current value of the field
DB_CAR_NAME. Since no object will be found, a dynamic object with this name
will be created and linked to the class |car_class|.

■ As each object is created values from the database fields DB_MODEL,
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE will be passed to the
property slots Model, Model_date, Price and Sportive.

Reference
Field descriptions for this Retrieve operation follow.

Database Type

An Oracle database is being used in this example.
A - 26 Language Reference

Example 7 - Grouped Retrieve with Content Filtering
Begin

For most databases this field should be left blank for grouped retrieve operations.
Some databases require a statement here. Look up your database type for details.

Query

This field specifies from which table records are to be retrieved and the criteria to be
used to select the desired records. In this example, only records which have a Yes
value in the field DB_SPORTIVE will be retrieved.

End

For most relational databases, this field should be left blank. Some databases may
require a statement here. Look up your database type for the exact syntax for your
database.

Name

This field specifies that for each record retrieved from the database the value of the
field DB_CAR_NAME is to be used to build the object name in which the database
values will be stored.

In

This field specifies the list of objects and/or classes to be searched to determine if an
object exists whose name matches the value specified by the Name field. If this field
is left blank, as in this example, then all of the objects in the knowledge base will be
searched.

Cursor

This field must be empty for grouped retrieves.

Link To

This field specifies the class to which new objects created by the retrieve are to be
linked. In this example, new objects will be linked to the class |cars_class|.

Database Fields / Rules Properties

These columns specify that data from the columns DB_MODEL,
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE are to be passed to the
property slots Model, Model_date, Price and Sportive .
Language Reference A - 27

Appendix Database Integration ExamplesA
Create New Record

This is selected to indicate that if an object with a name specified by the Name field
doesn't already exist, it is to be created. If this is not selected, data will only be
retrieved into objects which already exist in the knowledge base.

Current Forward

This is selected to indicate that the retrieval of any data into property slots will place
hypotheses on the agenda according to the current RHS forward-chaining strategy.

Related Topics
Grouped Retrieve Query Retrieve Operations
Database Editor Windows Slot Specification for Retrieves
Object Name Specification

Also, look up individual arguments and your database type for more detailed
information.

Example 8 - Atomic Retrieve

Description
In this example the property slots of a single object are passed values from a single
database record. Although this example is oriented towards relational databases, it
is also applicable to flat-file databases.

This example uses the following objects and records:
■ The class |cars_class| contains one object: MyCar. It has the properties Model,

Model_date, Price and Sportive.
■ The object dummy_object has a single property, dummy_cursor.
■ The table CARS contains the columns DB_CAR_NAME, DB_MODEL,

DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE.
■ The table CARS contains ten records, each of which can be uniquely identified by

the values car_1 , car_2 , car_3,... in the field DB_CAR_NAME.
A - 28 Language Reference

Example 8 - Atomic Retrieve
Operation
Figure A-15 shows the rule which will invoke the atomic retrieve

Figure A-15 Rule Invoking an Atomic Retrieve

The rule shown above is evaluated as follows:
■ The LHS of the rule is always true.
■ The first statement of the RHS (Assign db_access_string...) will prompt

the user for the database access string. Look up your database type for
information on how to specify this for other DBMSs.

■ The LoadKB, Assign DropTable, and UnloadKB statements will drop,
recreate and reload the CARS table in the database. This will ensure that the
CARS table is reset to its initial state each time the example is run.

■ Reset dummy_object.dummy_cursor will set the value of
dummy_object.dummy_cursor to UNKNOWN. This will signal the Rules
Element that an atomic retrieve will be performed.

■ A Retrieve operation will be invoked. The argument @V(db_access_string)
Language Reference A - 29

Appendix Database Integration ExamplesA
will be evaluated to yield the user-specified database access string

Figure A-16 Retrieve Screen for an Atomic Retrieve

Figure A-16 shows the Rules Element retrieve screen:
■ Since the SQL query CARS where DB_CAR_NAME = 'car_1' has been

specified, the DBMS will return the record which satisfies this condition.
■ The values from the database fields DB_MODEL, DB_MODEL_DATE,

DB_PRICE and DB_SPORTIVE will be passed to the property slots Model,
Model_date, Price and Sportive of the object MyCar.

Reference
Field descriptions for this Retrieve operation follow.

Database Type

An Oracle database is being used in this example.

Begin

For most databases this field should be left blank for atomic retrieve operations.
Some databases require a statement here. Look up your database type for details.
A - 30 Language Reference

Example 8 - Atomic Retrieve
Query

This field specifies from which table records are to be retrieved and the criteria to be
used to select the desired records. In this example, only the record which has the
value car_1 in the field DB_CAR_NAME will be retrieved. If, for an atomic retrieve,
the query specified returns more than one record, only the first one will be used; all
of the others will be ignored.

End

For most relational databases, this field should be left blank. Some databases may
require a statement here. Look up your database type for details.

Name

This field must be empty for atomic retrieves. Object names are stated explicitly in
the Database Fields / Rules Properties list.

In

This field is left empty.

Cursor

This field specifies the name of an integer property slot (in this example
dummy_object.dummy_cursor) which, in order to specify an atomic retrieve,
MUST contain the value UNKNOWN. Upon successful completion of the retrieve, the
cursor will be set to 1. It must be reset to UNKNOWN, before another atomic retrieve
can be performed.

Link To

This field is left empty.

Database Fields / Rules Properties

These columns specify that data from the columns DB_MODEL,
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE are to be passed to the
property slots Model, Model_date, Price and Sportive of the object MyCar.

Current Forward

This is selected to indicate that the retrieval of any data into property slots will place
hypotheses on the agenda according to the current RHS forward-chaining strategy.
Language Reference A - 31

Appendix Database Integration ExamplesA
Related Topics
Atomic Retrieve Cursor Slot Specification
Database Editor Windows Slot Specification for Retrieves
Object Name Specification Query Retrieve Operations
Retrieving from Databases

Also, look up individual arguments and your database type for more detailed
information.

Example 9 - Sequential Retrieve

Description
In this example data from multiple database records is passed to the property slots
of a single object one record at a time. The retrieve is invoked once for each record
in the table. Although this example is oriented towards relational databases, it is also
applicable to flat-file databases.

This example uses the following objects and records:
■ The class |cars_class| contains one object: MyCar. It has the properties Model,

Model_date, Price and Sportive.
■ The object dummy_object has a single property, dummy_cursor.
■ The table CARS contains the columns DB_CAR_NAME, DB_MODEL,

DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE.
■ The table CARS contains ten records, each of which can be uniquely identified by

the values car_1 , car_2 , car_3,... in the field DB_CAR_NAME.Operation
A - 32 Language Reference

Example 9 - Sequential Retrieve
Figure A-17 shows the rule which will invoke the sequential retrieve.

Figure A-17 Rule Initializing a Sequential Retrieve

The rule shown above is evaluated as follows:
■ The LHS of the rule is always true.
■ The first statement of the RHS (Assign db_access_string...) will prompt the

user for the database access string. Look up your database type in Chapter
Three, “Database Integration Topics” for details.

■ The LoadKB, Assign DropTable, and UnloadKB statements will drop, recreate
and reload the CARS table in the database. This will ensure that the CARS table
is reset to its initial state each time the example is run.

■ Assign dummy_object.dummy_cursor 0 will set the value of
dummy_object.dummy_cursor to zero. This will signal the Rules Element
that a sequential retrieve will be performed.

■ The "Assign ReadTable ReadTable" will invoke the rule which will perform the
Language Reference A - 33

Appendix Database Integration ExamplesA
sequential retrieve.

Figure A-18 Rule Invoking a Sequential Retrieve

FigureA-18 shows the rule which will invoke the sequential retrieve. It is evaluated
as follows:
■ The LHS tests to see if the value of dummy_object.dummy_cursor is greater

than or equal to 0. This will be true until the Retrieve fetches the last record, at
which point it will be set to -1. At that point, the test will fail and execution will
end.

■ The second statement of the LHS will invoke the retrieve.
■ Reset ReadTable will cause this rule to be re-executed. This, in turn, will re-test

the cursor's value, and re-execute the Retrieve until all records have been
retrieved.

Note that each time the Retrieve is invoked, it overlays the property slots with the
data from the current record. In a real knowledge base, there would undoubtedly be
A - 34 Language Reference

Example 9 - Sequential Retrieve
some intermediate processing of the slots before the hypothesis ReadTable is reset
and the next retrieve is issued.

Figure A-19 Retrieve Screen for a Sequential Retrieve

Figure A-19 hows the Rules Element retrieve screen:
■ The DBMS will retrieve all of the records in the table CARS one record at a time.
■ Each time the retrieve is invoked, the values from the database fields

DB_MODEL, DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE of the
current record will be passed to the property slots Model, Model_date, Price
and Sportive of the object MyCar.

Reference
Field descriptions for this Retrieve operation follow.

Database Type

An Oracle database is being used in this example.
Language Reference A - 35

Appendix Database Integration ExamplesA
Begin

For most databases this field should be left blank for sequential retrieve operations.
Some databases require a statement here. Look up your database type in Chapter
Three, “Database Integration Topics” for details.

Query

This field specifies from which table records are to be retrieved and the criteria to be
used to select the desired records. In this example, all of the records in the table CARS
will be retrieved.

End

For most other relational databases, this field should be left blank. Some databases
may require a statement here. Look up your database type in Chapter Three,
“Database Integration Topics” for details.

Name

This field must be empty for sequential retrieves. Object names are stated explicitly
in the Database Fields / Rules Properties list.

In

This field is left empty.

Cursor

This field specifies the name of an integer property slot (in this example
dummy_object.dummy_cursor) which, in order to specify a sequential retrieve,
MUST contain the value 0 before the retrieve is invoked for the first time. Each time
a record is successfully retrieved, the cursor will be set to 1. When all records have
been retrieved, or, if an error has occurred, the cursor will be set to -1.

Link To

This field is left empty.

Database Fields / Rules Properties

These columns specify that data from the columns DB_MODEL,
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE are to be passed to the
property slots Model, Model_date, Price and Sportive of the object MyCar.
A - 36 Language Reference

Example 10 - Sequential Retrieve with a Parameterized Query
Current Forward

This is selected to indicate that the retrieval of any data into property slots will place
hypotheses on the agenda according to the current RHS forward-chaining strategy.

Related Topics
Sequential Retrieve Cursor Slot Specification
Access String Slot Specification for Retrieves
Object Name Specification Query Retrieve Operations
Database Editor Windows

Also, look up individual arguments and your database type for more detailed
information.

Example 10 - Sequential Retrieve with a Parameterized Query

Description
In this example data from multiple database records is passed to the property slots
of a single object one record at a time. The retrieve is invoked once for each record
in the table. Unlike the previous example, this retrieve employs a query which
contains slot values as parameters. Although this example is oriented towards
relational databases, it is also applicable to flat-file databases.

This example uses the following objects and records:
■ The class |cars_class| contains one object: MyCar. It has the properties Model,

Model_date, Price and Sportive.
■ The object dummy_object has a single property, dummy_cursor.
■ The object ref_object has two properties, ref_price and ref_sportive. The

values 30000 and Yes have been assigned to the property slots using the
InitValue operator in the Order of Sources field.

■ The table CARS contains the columns DB_CAR_NAME, DB_MODEL,
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE.

■ The table CARS contains ten records, each of which can be uniquely identified by
the values car_1 , car_2 , car_3,... in the field DB_CAR_NAME.
Language Reference A - 37

Appendix Database Integration ExamplesA
Operation
Figure A- 20 shows the rule which will invoke the sequential retrieve.

Figure A-20 Rule Initializing a Parameterized Sequential Retrieve

The rule shown above is evaluated as follows:
■ The LHS of the rule is always true.
■ The first statement of the RHS (Assign db_access_string...) will prompt the

user for the database access string. Look up your database type in Chapter
Three, “Database Integration Topics” for details.

■ The LoadKB, Assign DropTable, and UnloadKB statements will drop, recreate
and reload the CARS table in the database. This will ensure that the CARS table
is reset to its initial state each time the example is run.

■ Assign dummy_object.dummy_cursor 0 will set the value of
dummy_object.dummy_cursor to zero. This will signal the Rules Element
that a sequential retrieve will be performed.

■ The "Assign ReadTable ReadTable" will invoke the rule which will perform the
A - 38 Language Reference

Example 10 - Sequential Retrieve with a Parameterized Query
sequential retrieve.

Figure A-21 Rule Invoking a Parameterized Sequential Retrieve

Figure A-21 shows the rule which will invoke the parameterized sequential retrieve.
It is evaluated as follows:
■ The LHS tests to see if the value of dummy_object.dummy_cursor is greater

than or equal to 0. This will be true until the Retrieve fetches the last record, at
which point it will be set to -1. At that point, the test will fail and execution will
end.

■ The second statement of the LHS will invoke the retrieve.
■ Reset ReadTable will cause this rule to be re-executed. This, in turn, will re-test

the cursor's value, and re-execute the Retrieve until all records have been
retrieved.

Note that each time the Retrieve is invoked, it overlays the property slots with the
data from the current record. In a real knowledge base, there would undoubtedly be
Language Reference A - 39

Appendix Database Integration ExamplesA
some intermediate processing of the slots before the hypothesis ReadTable is reset
and the next Retrieve is issued

Figure A-22 Retrieve Screen for a Sequential Retrieve Using Query

Figure A-22 shows the Rules Element retrieve screen:
■ The variables @V(ref_object.ref_price) and

@V(ref_object.ref_sportive) in the query will be replaced by the value of
the slots 30000 and Yes respectively. The four records in the table CARS which
satisfy this query will be passed to the object MyCar one record at a time.

■ Each time the retrieve is invoked, the values from the database fields
DB_MODEL, DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE of the
current record will be passed to the property slots Model, Model_date, Price
and Sportive of the object MyCar.

Reference
Field descriptions for this Retrieve operation follow.

Database Type

An Oracle database is being used in this example.
A - 40 Language Reference

Example 10 - Sequential Retrieve with a Parameterized Query
Begin

For most databases this field should be left blank for sequential retrieve operations.
Some databases require a statement here. Look up your database type in Chapter
Three, “Database Integration Topics” for details.

Query

This field specifies from which table records are to be retrieved and the criteria to be
used to select the desired records. Slot values can be used as query parameters; they
can be specified in the query as @v(object.property). Note that the interpretation
must be placed in single quotes if it has a value of type string. See the Query field of
Figure A-22 for examples.

End

For most other relational databases, this field should be left blank. Some databases
may require a statement here. Look up your database type in Chapter Three,
“Database Integration Topics” for details.

Name

This field must be empty for sequential retrieves. Object names are stated explicitly
in the Database Fields / Rules Properties list.

In

This field is left empty.

Cursor

This field specifies the name of an integer property slot (in this example
dummy_object.dummy_cursor) which, in order to specify a sequential retrieve,
MUST contain the value 0 before the retrieve is invoked for the first time. Each time
a record is successfully retrieved, the cursor will be set to 1. When all records have
been retrieved, or, if an error has occurred, the cursor will be set to -1.

Link To

This field is left empty.

Database Fields / Rules Properties

These columns specify that data from the columns DB_MODEL,
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE are to be passed to the
property slots Model, Model_date, Price and Sportive of the object MyCar.
Language Reference A - 41

Appendix Database Integration ExamplesA
Current Forward

This is selected to indicate that the retrieval of any data into property slots will place
hypotheses on the agenda according to the current RHS forward-chaining strategy.

Related Topics
Sequential Retrieve Cursor Slot Specification
Access String Slot Specification for Retrieves
Object Name Specification Query Retrieve Operations
Database Editor Windows Retrieving from Databases

Also, look up individual arguments and your database type for more detailed
information.

Example 11 - Grouped Retrieve with a SQL Join

Description
This is an example of a grouped retrieve in which records are retrieved from more
than one database table use an SQL join query. Since a join is a concept which only
applies to relational databases, this example is not applicable to flat-file databases.

This example uses the following objects and records:
■ Initially, the class |cars_class| contains no objects. Objects in |cars_class|

will have the properties Model, Model_date, Price, Sportive and
Dealer_name.

■ The table CARS contains the columns DB_CAR_NAME, DB_MODEL,
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE.

■ The table CARS contains ten records, each of which can be uniquely identified by
the values car_1 , car_2 , car_3,... in the field DB_CAR_NAME.

■ The table DEALERS contains the columns DB_DEALER_NAME and
DB_DEALER_MODEL.

■ The table DEALERS contains eight records which relate dealer names and
models.
A - 42 Language Reference

Example 11 - Grouped Retrieve with a SQL Join
Operation
Figure A-23 shows the rule which will invoke the grouped retrieve

Figure A-23 Rule Invoking a Grouped Retrieve

The rule shown above is evaluated as follows:
■ The LHS of the rule is always true.
■ The first statement of the RHS (Assign db_access_string...) will prompt the

user for the database access string. Look up your database type in Chapter
Three, “Database Integration Topics” for details.

■ The LoadKB, Assign DropDEALERSTable, and UnloadKB statements will drop,
recreate and reload the DEALERS table in the database. This will ensure that the
DEALERS table is reset to its initial state each time the example is run.

■ The LoadKB, Assign DropTable, and UnloadKB statements will drop, recreate
and reload the CARS table in the database. This will ensure that the CARS table
is reset to its initial state each time the example is run.

■ A Retrieve operation will be invoked. The argument @V(db_access_string)
Language Reference A - 43

Appendix Database Integration ExamplesA
will be evaluated to yield the user-specified database access string

Figure A-24 Retrieve Screen for a Grouped Retrieve Using SQL Join

Figure A-24 shows the Rules Element Retrieve screen:
■ The query CARS, DEALERS where CARS.DB_MODEL =

DEALERS.DB_MODEL specifies that records from the tables CARS and
DEALERS which have common DB_MODEL values are to be combined into one
result table.

■ As each record in the table CARS is retrieved, the database interface will combine
the string my with the value of the field DB_CAR_NAME with the string _A_
and the value of the field DB_MODEL to create an object name. The database
interface will then search the knowledge base for an object with this name. Since
no object will be found, a dynamic object with this name will be created and
linked to the class |car_class|.

■ As each object is created values from the database fields DB_MODEL_DATE,
DB_PRICE and DB_SPORTIVE in the table CARS will be passed to the property
slots Model_date, Price and Sportive. Values from the database field
DB_DEALER_NAME in the table DEALERS will be passed to the property slot
Dealer_name.
A - 44 Language Reference

Example 11 - Grouped Retrieve with a SQL Join
Reference
Field descriptions for this Retrieve operation follow.

Database Type

An Oracle database is being used in this example.

Begin

For most databases this field should be left blank for grouped retrieve operations.
Some databases require a statement here. Look up your database type in Chapter
Three, “Database Integration Topics” for details.

Query

This field specifies from which table(s) records are to be retrieved. This field can also
contain a where clause to limit the records to be retrieved or to specify the criteria
used to join two or more tables into one result table.

End

For most relational databases, this field should be left blank. Some databases may
require a statement here. Look up your database type in Chapter Three, “Database
Integration Topics” for details.

Name

This field specifies that for each record retrieved from the database the string my, the
value of the field DB_CAR_NAME, the string _A_ and the value of the field
DB_MODEL will be combined to form the object name in which the database values
will be stored.

In

This field specifies the objects and/or classes of objects to be searched to determine
if an object exists whose name matches the value of the database field(s) specified in
the Name field. If this field is left blank, as in this example, then all of the objects in
the knowledge base will be searched.

Cursor

This field must be empty for grouped retrieves.

Link To

This field specifies the class to which new objects created by the retrieve are to be
linked. In this example, new objects will be linked to the class |cars_class|.
Language Reference A - 45

Appendix Database Integration ExamplesA
Database Fields / Rules Properties

These columns specify that data from the columns CARS.DB_MODEL_DATE,
CARS.DB_PRICE, CARS.DB_SPORTIVE and DEALERS.DB_DEALER_NAME are to
be passed to the property slots Model_date, Price, Sportive and Dealer_name.
Note that in order to avoid ambiguity the database field names must be prefixed by
the appropriate table name.

Create New Record

This is selected to indicate that if an object with a name specified by the Name field
doesn't already exist, it is to be created. If this is not selected, data will only be
retrieved into objects which already exist in the knowledge base, and any other
records ignored.

Current Forward

This is selected to indicate that the retrieval of any data into property slots will place
hypotheses on the agenda according to the RHS forward-chaining strategy currently
in effect.

Related Topics
Grouped Retrieve Database Editor Windows
Access String Slot Specification for Retrieves
Object Name Specification Query Retrieve Operations

Also, look up individual arguments and your database type for more detailed
information.;
A - 46 Language Reference

Index

Symbols
@ATOMS 3-61
@BEGIN 3-15
@CREATE 3-84
@CURSOR 3-22
@END 3-42
@F 3-50
@FIELDS 3-49
@FILL

ADD 3-18, 3-19
INSERT 3-79
NEW 3-87

@FWRD 3-53
@NAME 3-85
@PROP

access string 3-5
Begin field 3-15
End field 3-42
Query field 3-106

@PROPS 3-105
@QUERY 3-106
@SELF

access string 3-5
Begin field 3-15
End field 3-42
Query field 3-41

@SLOTS 3-150
@TYPE 3-31
@UNKNOWN 3-130, 3-167
@V

access string 3-5
Begin field 3-15
End field 3-42
Link To field 3-84
Query field 3-41

A
ABS function 1-1
access string

environment variables 3-4
interpretations 3-5
pathnames 3-4
specification 3-3
usage 3-2

accessing databases 3-2, 3-3–3-5
ACOS function 1-2
actions 1-3
AddFile command 2-33
agenda 1-6
Align Column command 2-32
Always Forward field 3-53
AND 1-20
API 3-24
application programming interface ii
application programming interface see API
arguments

keywords 3-30
overview 3-6–3-9

arithmetic operators 3-109
ASIN function 1-8
AskQuestion Operator 1-9
Assign operator 1-10
ATAN function 1-12
AtomExist Routine 2-15
atomic operations

atomic retrieves
example A-28–A-32
specification 3-10–3-11

atomic writes
example A-9–A-12
specification 3-12–3-14

cursor slot 3-20
explicit slots 3-92

AtomNameValue Routine 2-17
AVERAGE function 1-13

B
backward chaining 1-14
Backward operator 1-16
Begin field 3-15–3-17

retrieving files 3-50
beginning database operations 3-16
BOOL2STR function 1-18
boolean constants 1-19
boolean expressions 1-20
Language Reference Index - i

Index
boolean formats 1-22
Boolean operators 3-110–3-111

C
CEIL function 1-24
Center command 2-32
CHARFIND function 1-25
CharWrap command 2-32
classes 1-27
column 3-33
comment attribute 1-29
commit 3-39, 3-43
COMPARE function 1-30
comparison operators 1-32
ComputeMultiValue Routine 2-20
conditions 1-35
content filtering A-24
context links 1-37
context variable 3-49
ControlSession Routine 2-23
CopyFrame Routine 2-25
COS function 1-38
COSH function 1-39
Create New Record field 3-18, 3-118
Create Object field 3-19, 3-40, 3-47
CreateObject operator 1-40
CreateObjects Routine 2-27
CreateReport Routine 2-29
Current Forward field 3-53
Cursor field 3-22
cursor slot

atomic retrieves 3-10
atomic writes 3-12
error setting 3-21
sequential retrieves 3-138
sequential writes 3-121, 3-141
specification 3-20–3-21

D
DAL see data manipulation language
data manipulation language 3-16, 3-43
data types 1-42
data validation 1-43
database editor windows

arguments overview 3-6
description 3-28

database interface 3-23–3-27
databases

access 3-2, 3-3
accessing created files 3-87
basics 3-33, 3-131, 3-168
beginning operations 3-16
ending database operations 3-43
ending operations 3-43
format of data 3-51
grouped retrieve 3-54
grouped writes 3-57
multiple user 3-60
multiple-user 3-60
range names 3-15, 3-42
return errors 3-134
sequential retrieves 3-138
sequential writes 3-141
supported 3-31
unsupported 3-24
 see also flat-file databases, relational data-

bases
datatype

conversion 3-153
specifying 3-51

date 1-50, 3-51
Informix 3-70
Ingres 3-76
Oracle 3-68, 3-99, 3-100

Date command 2-33
date formats 1-46
DATE2FLOAT function 1-52
DATE2STR function 1-53
DAY function 1-54
dBase III 3-35
DBF3 3-35
debugging operations 3-37–3-40, 3-134
DeleteObject operator 1-55
Do Not Forward field 3-53
dynamic data exchange (DDE) 1-57
dynamic objects 1-62
dynamic values see @V, @SELF, @PROP

E
End field 3-39, 3-42–3-44
end of file 3-21
environment variables 3-4
Index - ii Language Reference

error messages
cursor slot setting 3-21
general 3-37
possible 3-134
trapping 3-38

error slot 3-38, 3-152
examples

atomic retrieve A-28
atomic writes A-9
database interface usage 3-25
existence filtering A-20
grouped retrieves A-13, A-16, A-24,

A-42
grouped writes A-1, A-5
sequential retrieves A-32, A-37

Excel see SYLK
execute library routines 1-66
Execute operator 1-63
execute routines 1-66
existence filtering

defined 3-45–3-47
example A-20

EXP function 1-69
expressions 1-70, 3-48

F
FALSE 1-19
field width 3-90
fields

defined 3-33
mapping from properties 3-168
mapping to properties 3-131
selection 3-85, 3-92
specification 3-48
width 3-49

Fields list 3-49
file creation 3-87
file retrieves 3-50
FileExist Routine 2-36
filtering records 3-61, 3-117
filtering retrieves 3-45, 3-114
FindListElem Routine 2-38
flat-file databases

access string 3-3
atomic retrieves 3-10
atomic writes 3-12
basics 3-151

last record retrieved 3-20
opening 3-32
query language 3-107–3-113
return errors 3-134
Rules Element formats 3-88
sequential retrieves 3-138
sequential writes 3-141
supported 3-31
SYLK format 3-162
terminology 3-33

FLOAT2DATE function 1-73
FLOAT2INT function 1-74
FLOAT2TIME function 1-76
floating point constants 1-77
floating point formats 1-78
FLOOR function 1-82
FOAT2STR function 1-75
Footer commands 2-31
format attribute 1-83
format errors 3-39
formats 1-84, 3-51–3-52
forward chaining 1-87, 1-184
forwarding strategy 3-53
functions 3-112

G
gates 1-184
GetListElem Routine 2-40
GetMultiValue Routine 2-43
GetRelatives Routine 2-45
grouped operations

cursor slot specification 3-20
naming objects 3-85, 3-93
naming records 3-85
record naming 3-125

grouped retrieves
creating new objects 3-19
errors 3-39
example A-13–A-16, A-16–A-20,

A-20–A-24, A-24–A-28, A-42–A-46
existence filtering 3-45
linking objects 3-84
specification 3-54–3-56

grouped writes
creating a file 3-87
creating new records 3-18
example A-1–A-4, A-5–A-9
Language Reference Index - iii

Index
inserting a record 3-79
object filtering 3-61
query operations 3-117
record selection 3-122
specification 3-57

H
Header commands 2-31
HOUR function 1-89
hypotheses 1-90

I
identifiers 1-91
If Change method 1-92, 3-59, 3-60
In List field 3-46, 3-47, 3-61–3-63
Include command 2-33
inference 1-95
inference priority 1-96
inference slot 1-98
inference strategy 1-99
Informix interface 3-64–3-70
Ingres operations 3-72–3-78
inheritability strategy 1-102
inheritance 1-105
inheritance priority 1-107
inheritance slot 1-108
inheritance strategy 1-110
InhMethod operator 1-113
InhValueDown operator 1-115
InhValueUp operator 1-116
Init Value attribute 1-117
Insert 3-79
Insert Only check box 3-79
INT2STR function 1-119
integer constants 1-120
integer conversion 3-153
integer formats 1-121
interfacing to databases 3-24
interpretations 1-124

access string 3-5
Begin field 3-15
End field 3-42
In List field 3-61
Query field 3-41

query language 3-112
usage 3-80

Interrupt operator 1-126

J
join example A-42
join operation 3-115
Journal Routine 2-48

K
key see record key
keywords 3-28
knowledge representation features i
KNOWN 1-19

L
LeftAlign command 2-32
LENGTH function 1-127
LHS conditions 3-82, 3-83
Link To field 3-84
LinkMultiValue Routine 2-50
LN function 1-128
LoadKB operator 1-129
LOG function 1-131
logical operators 2-34

M
Margin commands 2-31
MAX function 1-132
Member operator 1-134
Message Routine 2-52
meta-slots 1-135
Method Editor window

argument keywords 3-30
If Change method 3-59, 3-60
Order of Sources 3-102, 3-104

methods 1-137
MIN function 1-141
MINUTE function 1-143
MOD function 1-144
MONTH function 1-145
multiple retrieves 3-102, 3-138
Index - iv Language Reference

multiple user databases 3-60
multiple writes 3-141
multi-values 1-146

N
Name field 3-85

retrieve operations 3-39, 3-93
write operations 3-122

New File field 3-87
NewFile command 2-33
No operator 1-147
NoFormFeed command 2-33
NoInherit operator 1-148
NOT 1-20
NOTKNOWN 1-19
NotMember operator 1-149
NOW function 1-150
null string 3-3
NXP file format 3-88

O
object 1-151

as part of slot 3-92
creation 3-19
filtering 3-61
linking 3-84
naming 3-85, 3-92
updating 3-45

operators 3-109–3-112
OR 1-20
Oracle operations 3-4, 3-95–3-101
Order of Sources method 1-153, 3-102,
3-104

P
PageBreak commands 2-32
PageLength command 2-31
PageWidth command 2-31
Parse Routine 2-54
password see access string
pattern matching 3-61, 3-84
pattern matching filtering 3-46
PatternMatcher Routine 2-58

patterns 1-157
portability 3-24, 3-31, 3-118
POW function 1-161
priorities 1-43, 1-96, 1-107
private slots 1-197
PROD function 1-162
prompt line attribute 1-163
PropagateValue Routine 2-61
properties list 3-105
property 1-165
ProtoDB file format 3-89
public slots 1-197

Q
query

cannot be processed 3-21
errors 3-38
filtering example A-24, A-37
for flat-file databases 3-107–3-113
for relational databases 3-114–3-115
join operations 3-115

Query Arguments field 3-41
Query field

@V 3-80
arguments 3-41
atomic retrieves 3-10
atomic writes 3-12
flat-file databases 3-107
grouped writes 3-117
relational databases 3-114
sequential retrieves 3-139
statements 3-106
where clause 3-114, 3-118

Query Language
operators 3-109–??, 3-112

query language
example 3-107
functions 3-112
interpretations 3-112
operators 3-108–3-112
values 3-108
wildcards 3-113

question window attribute 1-167
quotes

around interpretations 3-80
in fields 3-38
Language Reference Index - v

Index
R
RAND function 1-169
RANDOM function 1-170
RANDOMMAX function 1-171
RANDOMSEED function 1-172
range name 3-15, 3-42
RankList Routine 2-64
RDB seerelational databases
record keys 3-122–3-123
record naming 3-85, 3-125
records

defined 3-33
filtering 3-45, 3-127
inserting only 3-79
mapping from objects 3-168
mapping to objects 3-131
position 3-20
retrieving multiple 3-54
writing 3-57, 3-121–??

relational databases
access string 3-4
atomic retrieves 3-10
atomic writes 3-12
beginning operations 3-16
context variable 3-49
cursor specification 3-20
datatype specification 3-153
ending operations 3-43
expressions in field names 3-48
field width 3-49
join operations 3-34
query operations 3-114–??, 3-115
return errors 3-134
sequential retrieves 3-138
stream number 3-20
supported 3-31
terminology 3-33

relational operators 3-110
reports

logical operators 2-34
reserved words 1-173
Reset operator 1-174
ResetFrame Routine 2-66
Retrieve operator 1-175, 3-128
retrieve operator

access string 3-2
arguments 3-6
null string 3-3

Retrieve window 3-28
retrieving

dates 3-51
field specification 3-48
files 3-50
forwarding data 3-53
general 3-131
in If Change method 3-59
in LHS conditions 3-82
in Order of Sources method 3-102
in RHS actions 3-136
join operations 3-115
methods 3-25
multiple records 3-54
multiple retrieves 3-102, 3-138
sequential records 3-138
single record 3-10
slot specification 3-143–3-146
to constructed slots 3-92
to existing objects 3-45
to explicit slots 3-92
unknown values 3-130
with queries 3-114–??, 3-116

return errors 3-134
RHS actions 3-136, 3-137
RightAlign command 2-32
rollback 3-39, 3-43
ROUND function 1-177
row 3-33
Rule Editor window

access string example 3-3
argument keywords 3-30
LHS conditions 3-82, 3-83
RHS actions 3-136, 3-137

rules 1-178
RunTimeValue operator 1-180

S
SECOND function 1-181
SELF 1-182
semantic gates 1-184
SendMessage operator 1-186
sequential operations

cursor slot 3-21, 3-121
explicit slots 3-92
retrieve example A-32–A-37,

A-37–A-42
retrieves 3-138
Index - vi Language Reference

writes 3-121, 3-141
Set Column command 2-32
SetMultiValue Routine 2-68
SetValue Routine 2-71
Show operator 1-191
SIGN function 1-194
sign-on see access string
SIN function 1-195
SINH function 1-196
slot list 3-150
slots 1-197

constructed names 3-92, 3-145, 3-148
constructed names example A-5
explicit name 3-92
explicit names 3-143, 3-147
for retrieves 3-143–3-146
for writes 3-147–3-149
value changes 3-60

spreadsheets see flat-file databases
SQL commit 3-43
SQL cursor number 3-20
SQL statements 3-16, 3-43, 3-50
SQL-like queries 3-107–3-113
SQRT function 1-200
STDEV function 1-201
STR2BOOL function 1-214
STR2DATE function 1-215
STR2FLOAT function 1-216
STR2INT function 1-218
STR2TIME function 1-220
strategy 1-202
Strategy operator 1-203
STRCAT function 1-206
stream number 3-20
STRFIND function 1-207
string constants 1-208
string formats 1-209
string to integer conversions 3-153
STRLEN function 1-211
STRLOWER function 1-212
strong link 1-184
STRUPPER function 1-213
SUBSTRING function 1-221
SUM function 1-223
Sybase

beginning database operations 3-16
ending database operations 3-43
operations 3-155–3-161

SYLK operations 3-162
SYLKDB operations 3-162
system attributes 1-135

T
table 3-33
Tabs command 2-32, 2-33
TAN function 1-225
TANH function 1-226
terminology 3-33
TestMultiValue Routine 2-73
text file

file commands 2-33
AddFile command 2-33
Include command 2-33
NewFile command 2-33
NoFormFeed command 2-33

screen layout commands 2-31
Footer commands 2-31
Header commands 2-31
LeftMargin command 2-31
PageBreak command 2-32
PageLength command 2-31
PageWidth command 2-31
RightMargin command 2-31

text commands 2-32
Align Column command 2-32
Center command 2-32
CharWrap command 2-32
Date command 2-33
LeftAlign command 2-32
RightAlign command 2-32
Set Column command 2-32
Tabs command 2-32, 2-33
WordWrap command 2-32

text formatting
commands (See also text file)

time 1-229
time formats 1-227
TIME2FLOAT function 1-231
TIME2STRING function 1-232
Transcript window 3-37
TRUE 1-19
Language Reference Index - vii

Index
U
Unify Routine 2-81
UNIX 3-4
Unix

Informix interface 3-64–3-70
UNKNOWN 1-19
unknown values

retrieving 3-130
writing 3-167

UnloadKB operator 1-233
updating records 3-57

V
value changes 3-60
Value property 1-236
VAR function 1-237
VAX issues 3-164
VMS 3-4

W
warning message 3-51
WEEKDAY function 1-238
where clause 3-114, 3-118
why attribute 1-239
wildcards 3-113
WKS operations 3-164
WordWrap command 2-32
Write operator 1-241, 3-165
write operator

access string 3-2
arguments 3-7
null string 3-3

Write window 3-28
WriteTo Routine 2-85
writing

by key 3-122
by position 3-121
creating a file 3-87
field specification 3-48
general 3-168
in If Change method 3-60
in LHS conditions 3-83
in Order of Sources method 3-104
in RHS actions 3-137

inserting a record 3-79
logging slot activity 3-104
multiple records 3-57
multiple writes 3-141
object specification 3-61
record specification 3-121–??
sequential records 3-141
single record 3-12
slot specification 3-147–3-149
unknown values 3-167
with queries 3-117–3-120

Y
YEAR function 1-243
YEARDAY function 1-244
Yes operator 1-245
Index - viii Language Reference

FrameMaker has detected one or more
PostScript errors in this document.
(TechPubs)
Please check your output.

	Language Reference
	Contents
	Preface
	Purpose of this Manual
	Description
	Audience
	How to Use this Manual
	Organization
	Related Manuals

	Application Development Features
	ABS Function
	ACOS Function
	Actions
	Agenda
	ASIN Function
	AskQuestion Operator
	Assign Operator
	ATAN Function
	AVERAGE Function
	Backward Chaining
	Backward Operator
	BOOL2STR Function
	Boolean Constants
	Boolean Expressions
	Boolean Formats
	CEIL Function
	CHARFIND Function
	Classes
	Comment Attribute
	COMPARE Function
	Comparison Operators
	Conditions
	Context Links
	COS Function
	COSH Function
	CreateObject Operator
	Data Types
	Data Validation Attribute
	Date Formats
	DATE Function
	DATE2FLOAT Function
	DATE2STR Function
	DAY Function
	DeleteObject Operator
	Dynamic Data Exchange
	Dynamic Objects
	Execute Operator
	Execute Routines
	EXP Function
	Expressions
	FLOAT2DATE Function
	FLOAT2INT Function
	FLOAT2STR Function
	FLOAT2TIME Function
	Floating Point Constants
	Floating Point Formats
	FLOOR Function
	Format Attribute
	Formats
	Forward Chaining
	HOUR Function
	Hypotheses
	Identifiers
	If Change Method
	Inference
	Inference Priority Attribute
	Inference Slot Attribute
	Inference Strategy
	Inheritability Strategy
	Inheritance
	Inheritance Priority Attribute
	Inheritance Slot Attribute
	Inheritance Strategy
	InhMethod Operator
	InhValueDown Operator
	InhValueUp Operator
	Init Value Attribute
	INT2STR Function
	Integer Constants
	Integer Formats
	Interpretations
	Interrupt Operator
	LENGTH Function
	LN Function
	LoadKB Operator
	LOG Function
	MAX Function
	Member Operator
	Meta-Slots
	Methods
	MIN Function
	MINUTE Function
	MOD Function
	MONTH Function
	Multi-Values
	No Operator
	NoInherit Operator
	NotMember Operator
	NOW Function
	Objects
	Order of Sources Method
	Patterns
	POW Function
	PROD Function
	Prompt Line Attribute
	Properties
	Question Window Attribute
	RAND Function
	RANDOM Function
	RANDOMMAX Function
	RANDOMSEED Function
	Reserved Words
	Reset Operator
	Retrieve Operator
	ROUND Function
	Rules
	RunTimeValue Operator
	SECOND Function
	SELF
	Semantic Gates
	SendMessage Operator
	Show Operator
	SIGN Function
	SIN Function
	SINH Function
	Slots
	SQRT Function
	STDEV Function
	Strategy
	Strategy Operator
	STRCAT Function
	STRFIND Function
	String Constants
	String Formats
	STRLEN Function
	STRLOWER Function
	STRUPPER Function
	STR2BOOL Function
	STR2DATE Function
	STR2FLOAT Function
	STR2INT Function
	STR2TIME Function
	SUBSTRING Function
	SUM Function
	TAN Function
	TANH Function
	Time Formats
	TIME Function
	TIME2FLOAT Function
	TIME2STR Function
	UnloadKB Operator
	Value Property
	VAR Function
	WEEKDAY Function
	Why Attribute
	Write Operator
	YEAR Function
	YEARDAY Function
	Yes Operator

	Execute Library Routines
	Execute Library Overview
	Using The Execute Library
	AtomExist Routine
	AtomNameValue Routine
	ComputeMultiValue Routine
	ControlSession Routine
	CopyFrame Routine
	CreateObjects Routine
	CreateReport Routine
	Formatting Commands
	Conditional Statements
	Include Command

	FileExist Routine
	FindListElem Routine
	GetListElem Routine
	GetMultiValue Routine
	GetRelatives Routine
	Journal Routine
	LinkMultiValue Routine
	Message Routine
	Parse Routine
	PatternMatcher Routine
	PropagateValue Routine
	RankList Routine
	ResetFrame Routine
	SetMultiValue Routine
	SetValue Routine
	TestMultiValue Routine
	Unify Routine
	WriteTo Routine

	Database Integration Topics
	Access String
	Access String Specification
	Arguments Overview
	Atomic Retrieve
	Atomic Write
	Begin - (@BEGIN)
	Beginning Database Operations
	Create New Record - (@FILL)
	Create Object - (@FILL)
	Cursor Slot Specification
	Cursor - (@CURSOR)
	Database Interface Concepts
	Database Editor Windows
	Database Type - (@TYPE)
	Databases
	DBF3
	Debugging Operations
	Dynamic Values
	End - (@END)
	Ending Database Operations
	Existence Filtering Operations
	Field Name Specification
	Fields List - (@FIELDS)
	File Retrieves - @F(...)
	Formats
	Forwarding Strategy - (@FWRD)
	Grouped Retrieve
	Grouped Write
	If Change Retrieves
	If Change Writes
	In List - (@ATOMS)
	INFORMIX
	INGRES
	Insert Only - (@FILL)
	Interpretations - @V(...)
	Left-Hand Side Retrieves
	Left-Hand Side Writes
	Link To - (@CREATE)
	Name - (@NAME)
	New File - (@FILL)
	NEXPERT Flat-File Formats
	Object Names In Retrieve Operations
	ORACLE
	Order of Sources Retrieves
	Order of Sources Writes
	Properties List - (@PROPS)
	Query (@QUERY)
	Query Language
	Query Field in Retrieve Operations
	Query Field in Write Operations
	Record Specification for Writes
	Records Filtering
	Retrieve Operator
	Retrieve Unknown - (@UNKNOWN)
	Retrieving from Databases
	Return Errors
	Right-Hand Side Retrieves
	Right-Hand Side Writes
	Sequential Retrieve
	Sequential Write
	Slot Specification for Retrieves
	Slot Specification for Writes
	Slots List - (@SLOTS)
	Spreadsheets
	SqlError - (@ERROR)
	String to Numeric Conversion {x}
	SYBASE
	SYLK
	WKS
	Write Operator
	Write Unknown - (@UNKNOWN)
	Writing to Databases

	Database Integration Examples
	Example 1 - Grouped Write
	Example 2 - Grouped Write with a Complex Name
	Example 3 - Atomic Write
	Example 4 - Grouped Retrieve
	Example 5 - Grouped Retrieve with a Complex Name
	Example 6 - Grouped Retrieve with Existence Filter...
	Example 7 - Grouped Retrieve with Content Filterin...
	Example 8 - Atomic Retrieve
	Example 9 - Sequential Retrieve
	Example 10 - Sequential Retrieve with a Parameteri...
	Example 11 - Grouped Retrieve with a SQL Join

	Index

