#### Υπολογιστικές Μέθοδοι Ανάλυσης Υπογείων Έργων Δ.Π.Μ.Σ. «Σ.Κ.Υ.Ε.» – «Δ.Σ.Α.Κ.»



#### ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΛΟΓΙΣΜΙΚΟ PHASE 2.8 (ROCSCIENCE) "ΟΛΟΜΕΤΩΠΗ ΔΙΑΝΟΙΞΗ ΚΥΚΛΙΚΗΣ ΣΗΡΑΓΓΑΣ»

ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ - ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ

# Δεδομένα

Κυκλική σήραγγα διαμέτρου D=8m διανοίγεται σε βάθος 40m από την επιφάνεια του εδάφους (ύψος από στέψη σήραγγας). Η διάνοιξη θα είναι ολομέτωπη, ενώ η προσωρινή υποστήριξη περιλαμβάνει εκτοξευόμενο σκυρόδεμα C20/25 πάχους 20cm με μέτρο ελαστικότητας νωπού σκυροδέματος E=15 GPa και αγκύρια ολόσωμης πάκτωσης Φ20 μήκους L=5m από χάλυβα S 500 σε κάνναβο 1.5 x 1.5m.

Η γεωτεχνική έκθεση έδωσε τα ακόλουθα αποτελέσματα:

- ✓ γ= 23 kN/m<sup>3</sup>
- ✓ c= 320 KPa
- ✓ φ= 30°
- ✓ δ= (1/4)φ= 7.5°
- 🗸 E= 350 Mpa
- $\checkmark K_o = 0.6$

Η ανάλυση θα γίνει με το κριτήριο αστοχίας Mohr Coulomb. Θεωρούμε αποτόνωση 65%.

- Θα πρέπει τα περιμετρικά όρια του μοντέλου να έχουν απόσταση τουλάχιστον 5-6 D για αποφυγή boundary effect.
- •Αυτό δεν ισχύει για το άνω όριο που είναι η επιφάνεια του εδάφους και ορίζεται στο πραγματικό ύψος.
- •Θα πρέπει ο άξονας της σήραγγας για λογούς ευκολίας να βρίσκεται στο σημείο (0,0).
- •Με βάση της ανωτέρω παραδοχές:
  - ✓ Άνω όριο: +40m
  - Πλευρικά όρια: 48m (6xD) έκαστο από άξονα σήραγγας
  - ✓ Κάτω όριο: -48m (6xD)

Συνεπώς τα περιμετρικά όρια του μοντέλου θα ορίζονται από τα σημεία:

- 1. (48,40)
- 2. (48,-48)
- 3. (-48,-48)
- **4**. (-48,40)

- **1.** Boundaries → Add External
- **2.** Γράφουμε τις συντεταγμένες κάτω δεξιά και μετά από κάθε μια ENTER
- 3. Το ίδιο για όλες τις συντεταγμένες





ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ - ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ

- **1.** Boundaries → Add Excavation
- 2. Κάτω δεξιά πατάμε i για κύκλο



- 3. Ορίζουμε ακτίνα κύκλου (δεύτερη επιλογή) και Enter
- 4. Ορίζουμε κέντρο κύκλου (0,0) και Enter

| Circle Options                                                                                            | ? ×          |
|-----------------------------------------------------------------------------------------------------------|--------------|
| Circle definition method<br><u>C</u> enter and point on circle<br>Center and radius. <u>R</u> adius is: 4 | OK<br>Cancel |
| Circle to polyline conversion method                                                                      |              |
| ● <u>N</u> umber of segments: 40                                                                          |              |
| ○ Approximate segment length: 0.1                                                                         |              |
|                                                                                                           |              |



ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ - ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ

## Στάδιο 2° – Στάδια Προσομοίωσης

•Συνολικά χρειαζόμαστε τρία (3) στάδια:

- 1. 1° Στάδιο: Γεωστατικό Πεδίο (Geostatic)
- 2. 2° Στάδιο: Αποτόνωση (Deconfinement)
- 3. 3° Στάδιο: Τοποθέτηση Υποστήριξης (Support)

Προσοχή: Εάν η σήραγγα διανοίγεται σε περισσότερες φάσεις, τότε τα στάδια 2 και 3 επαναλαμβάνονται για τις άλλες φάσεις!!!

## Στάδιο 2° – Στάδια Προσομοίωσης

- **1.** Analysis  $\rightarrow$  Project Settings  $\rightarrow$  Stages
- **2.** Number of Stages  $\rightarrow$  3
- 3. Ονομάζουμε τα στάδια

| Project Settings                                                                        |                                                                                                 | ? ×                                                                                               |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| General<br>Stages<br>Stress Analysis<br>Groundwater<br>Statistics<br>Strength Reduction | Stages           #         Name           1         Geostatic           2         Deconfinement | Number of Stages                                                                                  |
| Project Summary                                                                         | 3 Support                                                                                       | Edit Stages  Insert Before  Insert After  Clean Delete Stage(s)  Inserted stages are shown in red |
|                                                                                         |                                                                                                 | OK Cancel                                                                                         |

## Στάδιο 3° – Εκσκαφή

Η εκσκαφή της σήραγγας θα πραγματοποιηθεί στο στάδιο της αποτόνωσης (Deconfinement) προσοχή να είμαι σε αυτό τα στάδιο!!!

- **1.** Properties → Assign Properties
- 2. Επιλέγω το Excavate
- 3. Επιλέγω το εσωτερικό της σήραγγας



Στάδιο 3° – Mesh

- **1.** Mesh → Mesh Setup
- 2. Ορίζουμε ανάλογα το πρόβλημα το είδος , μέγεθος και πυκνότητα των στοιχείων.
- **3.** Discretize
- 4. Mesh



#### Στάδιο 4° – Γεωυλικό

- **1.** Properties  $\rightarrow$  Define Materials
- 2. Initial element loading: Field Stress & Body Force
- **3.** Unit Weight: 0.023 MN/ $m^3$
- 4. Young Modulus: 350 MPa
- 5. Failure Criterion: Mohr Coulomb
- 6. Material Type: Plastic
- 7. Tensile Strength: 0
- 8. Frig Angle: 30
- 9. Cohesion: 0.32 Mpa
- **10.** Dilation Angle: 7.5
- Προσοχή: οι ίδιες τιμές και για residual

| Define Material Properties | ? ×                                                                              |
|----------------------------|----------------------------------------------------------------------------------|
|                            |                                                                                  |
| Material 1                 | Material 1                                                                       |
| Material 2                 |                                                                                  |
| Material 3                 | Name: Material 1 Material Color:                                                 |
| Material 4                 |                                                                                  |
| Material S                 | Initial Element Loading: Field Stress & Body Force V Unit Weight: (MN/m3): 0.023 |
| Material 6                 | Elastic Droportion                                                               |
| Material 7                 |                                                                                  |
| Material O                 | Elastic Lype: Isotropic V Poisson's Ratio: 0.3                                   |
| Material 10                | Yound's Modulus (MPa): 350 Yound's Modulus (resid) (MPa): 20000                  |
| Material 11                |                                                                                  |
| Material 12                | E1 (MPa): 20000 E2 (MPa): 20000 Ez (MPa): 20000                                  |
| Material 13                |                                                                                  |
| Material 14                | v12; 0.2 v1z; 0.2 v2z; 0.2                                                       |
| Material 15                |                                                                                  |
| Material 16                | Strength Parameters                                                              |
| Material 17                | a the an in the Carlant in 1/4 1/20 Matriel Trans at a                           |
| Material 18                | Failure Criterion: Monr Coulomb V Material Type: Plastic V                       |
| Material 19                |                                                                                  |
| Material 20                | Tensile Strength (peak) (MPa): 0 Dilation Angle (deg): 7.5                       |
| Material 21                |                                                                                  |
| Material 22                | Fric, Angle (peak) (deg):                                                        |
| Material 23                | Cohesion (peak) (MPa): 0.32 Cohesion (resid) (MPa): 0.32                         |
| Material 24                |                                                                                  |
| Material 25                | Tensile Strength (resid) (MPa):                                                  |
| Material 26                |                                                                                  |
| Material 27                | Stage Properties Datum Dependent Unsaturated Shear Strength                      |
| Material 28                | Define Factors Define Properties Phi b: 0 Air Entry (MPa): 0                     |
|                            |                                                                                  |
| Copy To Statistics,        | Show only properties used in model OK Cancel                                     |

## Στάδιο 5° – Υποστήριξη (Εκτ. Σκυρόδεμα)

- **1.** Properties → Define Liners
- **2.** Liner Type  $\rightarrow$  Reinforced Concrete
- 3. Name: Shotcrete
- 4. Επιλεγμένο μόνο το Concrete
- 5. Thickness: 0.2m
- 6. Young Modulus: 15000 MPa
- 7. Poisson Ratio: 0.25
- 8. Compressive Strength: 20 (από C20/25)
- 9. Material Type: Elastic

| Shotcrete  | Shotcrete                   |                    |                                      |         |
|------------|-----------------------------|--------------------|--------------------------------------|---------|
| Liner 3    | Name: Shotcrete             | Color:             | Liner Type: Reinforced Concrete      |         |
| Liner 5    | Reinforcement               | Common Types 📫 🗃 🚽 |                                      |         |
| 🔲 Liner 6  |                             |                    |                                      |         |
| Liner 7    | I Spacing (m);              | 0.6                | I nickness (m):                      | 0.      |
| Liner 8    | Section Depth (m):          | 0.162              | Young's Modulus (MPa):               | 15000   |
| Liner 9    | Area (m2);                  | 0.00474            | Poisson Ratio:                       | 0.2     |
| Liner 11   | Moment of Inertia (m4):     | 2.22e-005          | Compressive Strength (MPa):          | 20      |
| Liner 12   | Vound's Modulus (MPa):      | 200000             | Tensile Strength (MPa):              |         |
| Liner 13   | roang s noadas (ni-a),      | 200000             | rensie suengur (mra).                | · · · · |
| Liner 14   | Poisson Ratio:              | 0.25               | Unit Weight (MN/m3):                 | 0.024   |
| Liner 15   | Compressive Strength (MPa): | 400                |                                      |         |
| Liner 17   | Tensile Strength (MPa):     | 400                | Material Type:      Elastic      Pla | astic   |
| Liner 18   | Weight (ka/m):              | 37.1               | Include Weight in Analysis           |         |
| Liner 19   | in origine (rigging)        |                    | Sliding Gap                          |         |
| Liner 21   |                             |                    |                                      | 5       |
| Liner 22   | Stage Concrete Properties   |                    | Strain at Locking;                   | 5       |
| Liner 23   | Define Factors              |                    |                                      |         |
| 🔲 Liner 24 | Denne Factors               |                    | Beam Element Formulation: Timoshen   | iko     |
| Iner 25    |                             |                    |                                      |         |

# Στάδιο 5° – Υποστήριξη (Εκτ. Σκυρόδεμα)

- **1.** Support → Add Liner
- 2. Liner Property→ Shotcrete
- Install at stage: 3 (Προσοχή: Το στάδιο της υποστήριξης – Support)
- 4. Enter
- Επιλεγώ όλη την περιφέρεια της σήραγγας
- 6. Enter





## Στάδιο 5° – Υποστήριξη (Αγκύρια)

- **1.** Properties  $\rightarrow$  Define Bolts
- Bolt Type → Fully Bonded (ολόσωμης πάκτωσης)
- 3. Name: Fully Bonded
- 4. Bolt Diameter: 20mm
- 5. Bolt Modulus: 200000MPa
- 6. Tensile Capacity: 0.157 MN (προκύπτει για χάλυβα S500)
- 7. Out of plane Spacing: 2 (κάνναβος 2x2)

| efine Bolt Properties |                                    | ? ×                          |
|-----------------------|------------------------------------|------------------------------|
| Fully Bonded          | Fully Bonded                       |                              |
| Bolt 3                | Name: Fully Bonded                 | Bolt Color:                  |
| Bolt 5                | Bolt Properties                    | Face Plates                  |
| Bolt 6                | Bolt Type: Fully Bonded            | Attached Face Plates         |
| Bolt 8                | Bolt Diameter (mm):                | 20 Add Pull-Out Force        |
| Bolt 9                | Bolt Modulus E (MPa): 2000         | 00 Force (MN); 0             |
| Bolt 11               | Tensile Capacity (MN):             | Constant Shear Stiffness     |
| Bolt 12<br>Bolt 13    | Residual Tensile Capacity (MN): 0. | 01 Stiffness (MN/m/m); 0     |
| Bolt 14               | Out-of-plane Spacing (m):          | 2 Add Bulges                 |
| Bolt 15<br>Bolt 16    |                                    | Define Bulges                |
| Bolt 17               |                                    | Bond Length                  |
| Bolt 18<br>Bolt 19    |                                    | OPercent of Length: 20       |
| Bolt 20               |                                    | Length (m): 1                |
| Bolt 21<br>Bolt 22    | Bolt Model                         | Secondary Bond Length Define |
| Bolt 23               |                                    |                              |
| Bolt 25               | Pre-Tensioning                     |                              |
| Bolt 26               | Pre-Tensioning Force (MIN):        |                              |
|                       |                                    |                              |
| Сору То               | Show only properties used in model | OK Cancel                    |

# Στάδιο 5° – Υποστήριξη (Αγκύρια)

- 1. Support → Add Bolt Pattern
- **2.** Orientation  $\rightarrow$  Normal to boundary
- 3. Bolt Length  $\rightarrow$  5m
- **4.** In plane Spacing: 2 (κάνναβος 2x2)
- Install at stage: 3 (Προσοχή: Το στάδιο της υποστήριξης Support)
- 6. Enter
- Επιλεγώ την περιοχή της σήραγγας που θέλω τα αγκύρια
- 8. Enter





#### Στάδιο 6° - Αποτόνωση

- **1.** Loading → Distributed Loads → Add Uniform Load
- 2. Orientation → Induces Stress
- 3. Stage Load
- 4. Stage Factor
- 5. Λαμβάνει υπόψιν το (1- λ) = 0.35
- 6. Ορίζω μόνο στο στάδιο της αποτόνωσης (Stage 2 Deconfinement)
- 7. Enter
- 8. Επιλεγώ όλη την περιφέρεια της σήραγγας
- 9. Enter



## Στάδιο 7° – Συνοριακές Συνθήκες

- **1.** Displacements → Free
- 2. Επιλέγω όλο το μοντέλο
- 3. Enter
- 4. Τοποθέτηση κυλίσεων
  - ✓ Displacements → Restrain X →
     Επιλεγώ τα πλευρικά όρια του
     μοντέλου → Enter
  - ✓ Displacements → Restrain Y →
     Επιλεγώ το κάτω όριο του μοντέλου
     → Enter



## Στάδιο 8° – Φόρτιση Μοντέλου

- **1.** Loading  $\rightarrow$  Field Stress
- 2. Field Stress Type: Gravity
- **3.** Επιλογή Use actual ground surface
- 4. Total stress ratio (in plane & out of plane): 0.6 (Ko=0.6)

| Field Stress Properties                                                                        |                 | ? ×                 |
|------------------------------------------------------------------------------------------------|-----------------|---------------------|
| Field Stress Type:     Gravity       VIse actual ground surface     Use effective stress ratio | le stress ratio | ОК                  |
| Ground Surface Elevation (m);                                                                  | 0               | Cancel              |
| Unit Weight of Overburden (MN/m3):                                                             | 0.027           |                     |
| Total Stress Ratio (horiz/vert in plane):                                                      | 0.6             |                     |
| Total Stress Ratio (horiz/vert out-of-plane):                                                  | 0.6             |                     |
| Locked-in horizontal stress (in plane) (MPa, Comp. +) :                                        | 0               | Statistics          |
| Locked-in horizontal stress (out-of-plane) (MPa, Comp. +) :                                    | 0               | <u>A</u> dvanced >> |