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PAC Learning
Domain X , binary labels Y = {−1,+1},
hypothesis class H = {h : (h : X → Y)}
(Fixed unknown) distribution D over domain X
Labeled training data (x1, y1), . . . , (xm, ym) ∈ X × Y
The training set distributed according to D : S = (x1, . . . , xm) ∼ Dm

Realizability assumption: ∃f ∈ H that correctly determines the
labels of all x ∈ X , i.e., ∀xi ∈ X , yi = f (xi).

Loss of hypothesis h ∈ H: LD,f (h) = IPrx∼D[h(x) ̸= f (x)]
Class H is PAC learnable if for all ε, δ, there is # samples = mH(ε, δ)
and algorithm A so that for any m ≥ mH(ε, δ), D and f ,

IPrS∼Dm
[
LD,f (A(S)) ≤ ε

]
≥ 1 − δ

Empirical Risk Minimization (ERM): output any hypothesis h not
suffering any loss on S (recall realizability!)
VC dimension :

H shatters C ⊆ X if each of the 2|C| possible labelings of C can be
produced by some h ∈ H.
VC dimension of H = sup{|C| : H shatters C}
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Agnostic PAC Learning

Domain X , labels Y , hypothesis class H = {h : (h : X → Y)}
(Fixed unknown) distribution D over X × Y
Training set S = {(x1, y1), . . . , (xm, ym)} ∼ Dm

Loss of hypothesis h ∈ H: LD(h) = IPr(x,y)∼D[h(x) ̸= y]
Class H is agnostically PAC learnable if for all ε, δ, there is #samples
= mH(ε, δ) and algorithm A so that for any m ≥ mH(ε, δ) and D,

IPrS∼Dm

[
LD(A(S)) ≤ ε+min

f∈H
LD(f )

]
≥ 1 − δ

Empirical Risk Minimization (ERM): argminh∈H LS(h)
Uniform convergence: ERM on ε

2 -representative training sets

For finite hypothesis class H, ⌈ 2 ln(2|H|/δ)
ε2 ⌉ samples suffice for

ε
2 -representative training set.
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Online Learning: Setting

Two actions: H and L (binary classification).
On each day t = 1, . . . ,T:

1 Learner picks action it ∈ {H,L}
2 Adversary picks loss vector ℓt = (ℓH

t , ℓ
L
t ) ∈ [0, 1]2

3 Learner learns ℓt and incurs loss ℓit
t

Goal is to minimize regret (loss wrt. best fixed action in hindsight):

Regret(T) = sup
ℓ1,...,ℓT

(
T∑

t=1

ℓit
t − min

i∈{H,T}

T∑
t=1

ℓi
t

)

(Online learning) algorithm is no-regret if Regret(T)/T → 0 at T → ∞
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Online Learning: Follow the Leader

Follow the Leader (FTL):

it = arg min
i∈{H,L}

t−1∑
τ=1

ℓi
τ

Two obvious caveats with FTL:
1 Deterministic action choice, given the past (randomness always

helps against the unknown).
2 Action choices can be very unstable (different choice each day).

Lower bound : Any deterministic algorithm has linear, i.e., Ω(T),
regret.

Proof : loss for action it (chosen by the algorithm) = 1, and loss for
other action = 0.
Any deterministic algorithm incurs loss = T, while best action
incures loss ≤ T/2.
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Online Learning: Randomization

Two actions: H and L (binary classification).
On each day t = 1, . . . ,T:

1 Learner picks action H with probability pt (and L with
probability 1 − pt.

2 Adversary picks loss vector ℓt = (ℓH
t , ℓ

L
t ) ∈ [0, 1]2

3 Learner learns ℓt and incurs expected loss

f (pt; ℓt) = ptℓ
H
t + (1 − pt)ℓ

L
t

Goal is to minimize expected regret :

Exp-Regret(T) = sup
ℓ1,...,ℓT

(
T∑

t=1

f (pt; ℓt)− min
p∈[0,1]

T∑
t=1

f (p; ℓt)

)

Randomization potentially allows for improved stability .
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Online Learning: (Randomized) Follow the Leader

Follow the Leader (FTL):

pt = arg min
p∈[0,1]

t−1∑
τ=1

f (p; ℓτ ) = arg min
p∈[0,1]

Ft−1(p)

Is randomized FTL really different from deterministic FTL?
For any loss sequence ℓ1, . . . , ℓT, FTL has:

Exp-RegretFTL(T) =
T∑

t=1

f (pt; ℓt)− min
p∈[0,1]

T∑
t=1

f (p; ℓt)︸ ︷︷ ︸
expected regret

≤
T∑

t=1

|pt − pt+1|︸ ︷︷ ︸
stability

For the analysis, we define Be the Leader (BTL):

p∗t = arg min
p∈[0,1]

t∑
τ=1

f (p; ℓτ ) = arg min
p∈[0,1]

Ft(p)
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Regret of FTL Against BTL
Lemma : For any loss sequence ℓ1, . . . , ℓT,

RegretFTL(T) ≤ RegretBTL(T) +
T∑

t=1

|pt − pt+1|︸ ︷︷ ︸
stability

T∑
t=1

f (pt; ℓt) =

T∑
t=1

f (p∗t ; ℓt) +

T∑
t=1

(
f (pt; ℓt)− f (p∗

t ; ℓt)
)

=

T∑
t=1

f (p∗t ; ℓt) +

T∑
t=1

(pt − p∗t )(ℓ
H
t − ℓL

t ) by dfn of f (pt; ℓt)

≤
T∑

t=1

f (p∗t ; ℓt) +
T∑

t=1

|pt − p∗
t | losses ℓt ∈ [0, 1]2

=

T∑
t=1

f (p∗t ; ℓt) +

T∑
t=1

|pt − pt+1| by dfn, p∗t = pt+1
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Regret of Be the Leader

Lemma : For any loss sequence ℓ1, . . . , ℓT, RegretBTL(T) ≤ 0

By induction on t, we show that for any t ≥ 1:

t∑
τ=1

f (p∗τ ; ℓt)︸ ︷︷ ︸
loss of BTL up to t

≤ min
p∈[0,1]

Ft(p)︸ ︷︷ ︸
loss of best fixed action up to t

= Ft(p∗t )︸ ︷︷ ︸
by definition of p∗t

t+1∑
τ=1

f (p∗τ ; ℓτ ) = f (p∗t+1; ℓt+1) +

t∑
τ=1

f (p∗
τ ; ℓτ )

≤ f (p∗t+1; ℓt+1) + min
p∈[0,1]

Ft(p) induction hypth.

≤ f (p∗t+1; ℓt+1) + Ft(p∗t+1) Ft(p∗t ) ≤ Ft(p∗
t+1)

= Ft+1(p∗t+1) by dfn of Ft+1(p)
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Convexity and Stability

1/η-strongly convex function f : S → IR wrt norm ∥ · ∥, if ∀ x, y ∈ S:

f (x) ≥ f (y) + ⟨∇f (y), x − y⟩+ 1
2η∥x − y∥2

Functions f , g : S → IR be 1/η-strongly convex wrt some norm ∥ · ∥
and h(x) = g(x)− f (x) be L-Lipschitz wrt ∥ · ∥.
Then, ∥x∗f − x∗

g∥ ≤ η · L, with x∗f , x∗g minimizers of f , g.
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Convexity and Stability

Functions f , g : [0, 1] → IR be 1/η-strongly convex and
h(x) = g(x)− f (x) be L-Lipschitz.
Then, |pf − pg| ≤ η · L, with pf , pg minimizers of f , g.
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Convexity Through Regularization

If cumulative loss Ft(·) was 1/η-strongly convex (for all t), stability
could be bounded as:

T∑
t=1

|pt − pt+1| ≤ η · T ,

because Ft(p)− Ft−1(p) = f (p; ℓt) is 1-Lipschitz (due to ℓt ∈ [0, 1]2).

But our cumulative loss Ft(·) is not strongly convex!
Make it strongly convex through regularization !

F̃t(p) = Ft(p) + R(p)/η , where R(·) any 1-strongly convex function:
R(p) = p2/2
R(p) = p ln(p) + (1 − p) ln(1 − p)
R(p) = ln(

p
1−p )
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Follow / Be the Regularized Leader

Ft(p) =
∑t

τ=1 f (p; ℓτ ) and F̃t(p) =
∑t

τ=1 f (p; ℓτ ) + R(p)/η

FTRL: p̃t = argminp∈[0,1] F̃t−1(p)

BTRL: p̃∗t = argminp∈[0,1] F̃t(p)

Theorem :

RegretFTRL(T) ≤ η · T +
2maxp∈[0,1] |R(p)|

η

Let R∗ = maxp∈[0,1] |R(p)|.

Setting η =
√

2R∗/T, we get RegretFTRL(T) ≤ 2
√

2R∗T

Lower bound on RegretA(T) for any online (even randomized)
optimization algorithm A?
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Regret of FTRL Against BTRL

RegretFTRL(T) ≤ RegretBTRL(T) +
T∑

t=1

|p̃t − p̃t+1|

≤ RegretBTRL(T) + η · T

Proof : Second inequality from strong convexity, because p̃t, p̃t+1 are
minimizers of 1/η-strongly convex functions F̃t−1(p) and F̃t(p) with
difference ft(p) which is 1-Lipschitz.

RegretFTRL(T)− RegretBTRL(T) =
T∑

t=1

(f (p̃t; ℓt)− f (p̃∗t ; ℓt))

≤
T∑

t=1

|p̃t − p̃∗t |

= L
T∑

t=1

|p̃t − p̃t+1|
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Regret of Be the Regularized Leader

RegretBTRL(T) ≤
2 maxp∈[0,1] |R(p)|

η

Proof : Let ft(p) = f (p; ℓt) for brevity.
Let f0(p) = R(p)/η and p̃∗0 = argminp∈[0,1] R(p)/η.
Using induction on t, we show that for all t ≥ 1,

t∑
τ=0

fτ (p̃∗τ ) ≤ F̃t(p̃∗t ) (including fake action p̃∗0 at τ = 0)

Then, using the claim above,

T∑
t=0

ft(p̃∗
t ) ≤ min

p∈[0,1]

T∑
t=0

ft(p) ≤ max
p∈[0,1]

f0(p) + min
p∈[0,1]

T∑
t=1

ft(p)

Hence, by rearranging:

T∑
t=1

ft(p̃∗t )− min
p∈[0,1]

T∑
t=1

ft(p) ≤ max
p∈[0,1]

R(p)/η− min
p∈[0,1]

R(p)/η ≤ 2 max
p∈[0,1]

|R(p)|/η
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Regret of Follow the Regularized Leader

Theorem :

RegretFTRL(T) ≤ η · T +
2maxp∈[0,1] |R(p)|

η

Let R∗ = maxp∈[0,1] |R(p)|.

Setting η =
√

2R∗/T, we get RegretFTRL(T) ≤ 2
√

2R∗T

Multiplicative weight updates :
Negative entropy E−(p) = p ln(p) + (1 − p) ln(1 − p) is 1-strongly
convex wrt L1 norm.
Using E−(p) as regularizer, results in the following update rule
for expected loss f (pt; ℓt) = ptℓ

H
t + (1 − pt)ℓ

L
t :

pt+1 = pt · e−ηℓH
t ≈ pt(1 − ηℓH

t )

If ℓt ∈ [0, 1]2, setting η =
√

ln(2)/T, yields regret 2
√

T ln(2)
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