Dynamics and Equilibria

Algorithmic Game Theory '23

ΑΛΜΑ, ΣΗΜΜΥ

Dynamics and Equilibria

3 No-regret Dynamics (and swap-regret Dynamics)

Algorithmic Game Theory '23

Dynamics and Equilibria

æ

< ∃ >

2) Best Repsonse Dynamics

3 No-regret Dynamics (and swap-regret Dynamics)

Algorithmic Game Theory '23

Dynamics and Equilibria

A B > A B >

æ

Pure Nash equilibrium (PNE). Strategy profile *s* on pure strategies where no player has incentive to deviate:

$$\forall i \in N, s'_i \in S_i : c_i(s) \leq c_i(s'_i, s_{-i})$$

Mixed Nash equilibrium (MNE). Strategy profile *s* (mixed strategies allowed) where no player has incentive to deviate:

$$\forall i \in N, s'_i \in S_i : E[c_i(s)] \leq E[c_i(s'_i, s_{-i})]$$

Strong Nash equilibrium. Strategy profile *s* on pure strategies where in no deviating coalition one player in the coalition benefits without some other in the coalition losing. Correlated equilibrium (CorEq). Distribution σ on strategy profiles where no player has incentive to deviate from her (any) assigned pure strategy to any of her (pure) strategies if the others are playing according to the distribution:

 $\forall i \in N, s_i, s'_i \in S_i : E_{s \sim \sigma}[c_i(s)|s_i] \le E_{s \sim \sigma}[c_i(s'_i, s_{-i})|s_i]$

Interpretation:

- A central authority announces to the players a distribution over strategy profiles
- Then it draws a strategy profile according to that distribution and announces to every player her assigned strategy
- Given her strategy *s_i* the player has no incentive to deviate to an *s'_i* considering only the strategy profiles of the distribution where her strategy is *s_i*.

・ 回 ト ・ ヨ ト ・ ヨ ト

э

Correlated Equilibria

Correlated equilibrium (CorEq). Distribution σ on strategy profiles where no player has incentive to deviate from her (any) assingned strategy to any of her strategies if the others are playing according to the distribution:

 $\forall i \in \mathit{N}, s_i, s_i' \in \mathit{S}_i : \mathit{E}_{s \sim \sigma}[c_i(s)|s_i] \leq \mathit{E}_{s \sim \sigma}[c_i(s_i', s_{-i})|s_i]$

Example: Traffic lights (costs inside the array)

	stop	go
stop	1,1	1,0
go	0,1	5, 5

• Four profiles: {top,left} {top,right} {bottom,left} {bottom, right}.

• Correlated equilibrium: 1/2 to {top,right} 1/2 to {bottom,left}

(Pure Nash equilibria? Mixed Nash Equilibria?)

Coarse Correlated Equilibria

Coarse Correlated equilibrium (CCE). Distribution σ on strategy profiles where no player has incentive not to follow the central authority:

 $\forall i \in N, s'_i \in S_i : E_{s \sim \sigma}[c_i(s)] \leq E_{s \sim \sigma}[c_i(s'_i, s_{-i})]$

Connection to Correlated equilibria:

- Differing: Any player has no incentive not to follow the authority before seeing her assigned strategy.
- A Correlated equilibrium is Coarse Correlated since for all *s_i*:

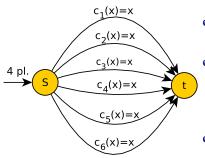
$$E_{s \sim \sigma}[c_i(s)|s_i] \leq E_{s \sim \sigma}[c_i(s'_i, s_{-i})|s_i]$$

and multiplying each with the "correct" probability will imply

$$sum_{s_i \in S_i} p_i E_{s \sim \sigma}[c_i(s)|s_i] \leq \sum_{s_i \in S_i} p_i E_{s \sim \sigma}[c_i(s'_i, s_{-i})|s_i]$$

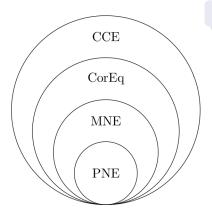
$$\Leftrightarrow E_{s \sim \sigma}[c_i(s)] \leq E_{s \sim \sigma}[c_i(s'_i, s_{-i})]$$

3



- PNE: Four players in any four edges
- MNE: Each player plays the uniform distribution
- CorEq: Uniform distribution over strategy profiles where two players share an edge and each of the other two has her own.
- CCE: As above but only for profiles that use either edges 1, 3 and 5 or 2, 4 and 6

Equilibria (Strict) Hierarchy



A MNE is a CorEq. Why?

•
$$E[c_i(s)] \leq E[c_i(s'_i, s_{-i})]$$

- Strategies on the support of s_i cost (on expectation) equal to *E*[c_i(s)]
- Authority's distribution implied by the MNE
- Any (pure) strategy *s_i* assigned to the player satisfies

 $E_{s \sim \sigma}[c_i(s)|s_i] \leq E_{s \sim \sigma}[c_i(s'_i, s_{-i})|s_i]$

2 Best Repsonse Dynamics

3 No-regret Dynamics (and swap-regret Dynamics)

Algorithmic Game Theory '23

Dynamics and Equilibria

4 3 4 3 4 3 4

æ

Congestion Games

- Potential function exists: $\Phi(f) = \sum_{e \in E} \sum_{i=1}^{f_e} c_e(i)$
- Best response dynamics may have poor convergence rates
- PLS complete to compute a pure Nash equilibrium in general
- Easy for Network CGs with a single source or sink
- What about weighted Congestion Games?

Max-Cut Game

- Potential function exists: $\Phi(S) = \{\{u, w\} \in E : u \in S, w \in V \setminus S\}$
- Best response dynamics converge quickly \Rightarrow efficient pure Nash equilibrium computation
- What about weighted Max-Cut?

Consider any finite potential game.

Best response dynamics converge to a minimizer of the potential.

- Consider the best response graph, a directed graph with all possible configurations as vertices
- An edge from one configuration points to another iff they differ in a single player's strategy who is in her best response in the destination-configuration
- Finite game implies finite number of vertices
- Existence of a potential implies no cycles
- Thus, bounded longest path ⇒ from every initial configuration, best response dynamics converge.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

2) Best Repsonse Dynamics

3 No-regret Dynamics (and swap-regret Dynamics)

Algorithmic Game Theory '23

Dynamics and Equilibria

æ

글 🖌 🔺 글 🕨

A single player, the Learner, having an action set $A = \{a_1, a_2, ..., a_n\}$ plays a game for T rounds. At time t:

- The Learner picks a distribution p^t on A as her mixed strategy.
- **2** An Adversary assigns a cost $c^t : A \to [0, 1]$ to the actions of A
- The Learner draws an action a^t accordig to her distribution and incurs cost c^t(a^t), yet she learns all the costs.

(informal) Goal:

Keep the Learner's cost as close to the optimal (in some sense)

But what can we hope for?

Learner needs randomized strategies

- Learner: deterministic action *a*^t
- Adversary: $c(a^t) = 1$ and c(a) = 0 for all $a \neq a^t$
- In *T* timesteps there is a $a \in A$ with $c^t(a) = 1$ at most $\frac{T}{n}$ times
- Learner pays T, Adversary pays at most T/n

Cannot vanish gap if optimal switches strategies

- Learner: $A = \{a_1, a_2\}$ and always for some $a_j : p^t(a_j) \ge \frac{1}{2}$
- Adversary: $c^t(a_j) = 1$ while $c^t(a_{j+1^*}) = 0$
- Optimal with switching strategies=0
- Learner's cost at least T/2

Regret Minimization

We focus on cases where the Learner

- uses randomized strategies and
- compares to fixed actions.

Regret with respect to action a:

$$\frac{1}{T} \Big[\sum_{i=1}^{T} c^{t}(\boldsymbol{a}^{t}) - \sum_{i=1}^{T} c^{t}(\boldsymbol{a}) \Big]$$

Goal: Vanishing Regret as $T \to \infty$, for all *a*

Good news: Simple algorithm with Regret= $O(\sqrt{\frac{\ln n}{T}})$, w.r.t. any *a*.

Bad news: Regret is
$$\Omega\left(\sqrt{\frac{\ln n}{T}}\right)$$

Cosider a setting with action set $A = \{a_1, a_2\}$

- Adversary choses uniformly either (1,0) or (0,1) as $(c^t(a_1), c^t(a_2))$, at any t.
- Any action a_i at any t has expected cost $\frac{1}{2}$, independent of the Learner's choice

 \Rightarrow Learner's expected cost always equals $\frac{T}{2}$

- Assigning costs to a_1 and a_2 is like putting balls in 2 bins.
- After *T* balls: min bin is expected to have $\frac{T}{2} \Theta(\sqrt{T})$ \Rightarrow Optimal strategy's expected cost is $\frac{T}{2} - \Theta(\sqrt{T})$

Thus, Learner's cost-OPT= $\Theta(\sqrt{T}) \Rightarrow \textit{Regret} = \Theta(1/\sqrt{T})$

• • = • • = •

Multiplicative Weights Update

The Multiplicative Weights Update (MWU) algorithm maintains and updates weights for the actions

- Initially $w^1(a) = 1$ for al $a \in A$
- At time *t* play action a with probability

$$\frac{w^t(a)}{\sum_{a\in A} w^t(a)}$$

• For some ϵ , update the weights using

$$w^{t+1}(a) = w^t(a) \cdot (1-\epsilon)^{c^t(a)}$$

MWU has expected regret $O(\sqrt{\frac{\ln n}{T}})$ w.r.t. any $a \in A$.

Seen differently: MWU has expected regret w.r.t. any $a \in A$ at most $\epsilon > 0$ after $O\left(\frac{\ln n}{\epsilon^2}\right)$ iterations.

Consider a minimization game played repeatedly. Players act simultaneously and at time t = 1, 2, ..., T:

- Each player *i* uses a no-regret algorithm to decide on a mixed strategy *p*^t_i
- Each player *i* receives a vector c^t_i of expected costs for her pure strategies

Player *i* at time *t* has distribution p_i^t .

- Let σ^t be the probability distribution on strategy profiles implied by the p^t_i 's
- Let $\sigma = \frac{1}{T} \sum_{i=1}^{T} \sigma^{t}$ be their time averaged distribution

Distribution σ will serve as an approxiamte CCE

高 とう きょう くら とうしょう

Convergence to Approximate CCE

Distribution $\sigma = \frac{1}{T} \sum_{i=1}^{T} \sigma^t$ will serve as an approxiamte CCE

- For any ε > 0 there exist a large enough *T* so that the expected regret for all players is at most ε
- For the cost of σ :

$$E_{s\sim\sigma}[c_i(s)] = \frac{1}{T} \sum_{t=1}^{T} E_{s\sim\sigma^t}[c_i(s)]$$

• For the cost of any deviation s':

$$E_{s\sim\sigma}[c_i(s'_i, s_{-i})] = \frac{1}{T} \sum_{t=1}^{T} E_{s\sim\sigma^t}[c_i(s'_i, s_{-i})]$$

• Right Hand Sides differ by at most ϵ , thus:

$$E_{s\sim\sigma}[c_i(s)] \leq E_{s\sim\sigma}[c_i(s'_i, s_{-i})] + \epsilon$$

Swap-Regret Dynamics

Swap regret with respect to a function $\delta : A \rightarrow A$:

$$\frac{1}{T} \Big[\sum_{i=1}^{T} \boldsymbol{c}^{t}(\boldsymbol{a}^{t}) - \sum_{i=1}^{T} \boldsymbol{c}^{t}(\boldsymbol{\delta}(\boldsymbol{a}^{t})) \Big]$$

Goal: Vanishing swap Regret as $T \rightarrow \infty$, for all *a*

- Existence of no-regret algorithm implies existence of no swap regret algorithms
- No swap regret implies no regret: general vs constant functions δ

No swap-regret dynamics converge to approximate CorEq.

$$E_{s \sim \sigma}[c_i(s)] \leq E_{s \sim \sigma}[c_i(\delta(s'_i), s_{-i})] + \epsilon$$

(using notation from the no regret dynamics case)