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1. ΄Εστω X 6= ∅ και ϕ : P(X) → [0,+∞] εξωτερικό μέτρο. Αποδείξτε ότι αν {An}∞n=1 είναι μια ακολουθία

ξένων ανά δύο ϕ-μετρήσιμων συνόλων, τότε για κάθε E ⊆ X ισχύει ότι

ϕ

(
E ∩

( ∞⋃
n=1

An

))
=

∞∑
n=1

ϕ(E ∩An).

Υπόδειξη: Αν A,B είναι ξένα ϕ-μετρήσιμα σύνολα και E ⊆ X, τότε

ϕ(E ∩ (A ∪B)) = ϕ(E ∩ (A ∪B) ∩A) + ϕ(E ∩ (A ∪B) ∩Ac)

= ϕ(E ∩A) + ϕ(E ∩B).

Με επαγωγή έπεται ότι

ϕ

(
E ∩

(
N⋃

n=1

An

))
=

N∑
n=1

ϕ(E ∩An)

για ξένα ανά δύο ϕ-μετρήσιμα σύνολα A1, A2, . . . , AN και κάθε E ⊆ X.
΄Εστω {An}∞n=1 μια ακολουθία ξένων ανά δύο ϕ-μετρήσιμων συνόλων, και έστω E ⊆ X. Για κάθε N ∈ N

έχουμε

N∑
n=1

ϕ(E ∩An) 6 ϕ

(
E ∩

(
N⋃

n=1

An

))
6 ϕ

(
E ∩

( ∞⋃
n=1

An

))
,

όπου η ανισότητα ισχύει λόγω της μονοτονίας του εξωτερικού μέτρου. Αφήνοντας το N → ∞ συμπεραίνουμε
ότι

∞∑
n=1

ϕ(E ∩An) 6 ϕ

(
E ∩

( ∞⋃
n=1

An

))
,

Η αντίστροφη ανισότητα προκύπτει από την υποπροσθετικότητα του εξωτερικού μέτρου:

ϕ

(
E ∩

( ∞⋃
n=1

An

))
= ϕ

( ∞⋃
n=1

(E ∩An)

)
6
∞∑

n=1

ϕ(E ∩An).

2. (α) ΄Εστω ϕ : P(X)→ [0,+∞] ένα εξωτερικό μέτρο στο μη κενό σύνολο X, και έστω A ⊆ X. Αποδείξτε ότι
το A είναι ϕ-μετρήσιμο αν και μόνο αν για κάθε B ⊆ A και κάθε C ⊆ X \A ισχύει ότι ϕ(B∪C) = ϕ(B)+ϕ(C).

(β) ΄Εστω ϕ1, ϕ2 : P(X)→ [0,+∞] εξωτερικά μέτρα στο μη κενό σύνολο X. Αποδείξτε ότι η ϕ = max{ϕ1, ϕ2}
είναι επίσης εξωτερικό μέτρο.

Υπόδειξη: (α) (=⇒) Από τις B ⊆ A και C ⊆ Ac
έπεται ότι

(B ∪ C) ∩A = (B ∩A) ∪ (C ∩A) = B, (B ∪ C) ∩Ac = (B ∩Ac) ∪ (C ∩Ac) = C.

Εφόσον το A είναι ϕ-μετρήσιμο,

ϕ(B ∪ C) = ϕ((B ∪ C) ∩A) + ϕ((B ∪ C) ∩Ac) = ϕ(B) + ϕ(C).

(⇐=) ΄Εστω E ⊆ X. Θέτουμε B = E ∩ A ⊆ A και C = E ∩ Ac ⊆ Ac
. Τότε, E = B ∪ C. Εφαρμόζοντας την

υπόθεση για τα B και C βλέπουμε ότι

ϕ(E) = ϕ(B ∪ C) = ϕ(B) + ϕ(C) = ϕ(E ∩A) + ϕ(E ∩Ac).



Αφού το E ⊆ X ήταν τυχόν, έπεται ότι το A είναι ϕ-μετρήσιμο.
(β) Θα χρησιμοποιήσουμε την παρατήρηση ότι αν a1 6 b1 και a2 6 b2 τότε max{a1, a2} 6 max{b1, b2}.
Αρχικά παρατηρούμε ότι ϕ(∅) = max{ϕ1(∅), ϕ2(∅)} = 0, διότι ϕ1(∅) = ϕ2(∅) = 0.
Για τη μονοτονία, αν A ⊆ B ⊆ X έχουμε ότι ϕ1(A) 6 ϕ2(B) και ϕ2(A) 6 ϕ2(B), οπότε η αρχική

παρατήρηση μας δίνει

ϕ(A) = max{ϕ1(A), ϕ2(A)} 6 max{ϕ1(B), ϕ2(B)} = ϕ(B).

Για την αριθμήσιμη υποπροσθετικότητα, αν {An}∞n=1 είναι μια ακολουθία υποσυνόλων του X έχουμε ότι

ϕi

( ∞⋃
n=1

An

)
6
∞∑

n=1

ϕi(An) 6
∞∑

n=1

ϕ(An) i = 1, 2.

Τότε, πάλι από την παρατήρηση,

ϕ

( ∞⋃
n=1

An

)
= max

{
ϕ1

( ∞⋃
n=1

An

)
, ϕ2

( ∞⋃
n=1

An

)}
6 max

{ ∞∑
n=1

ϕ1(An),

∞∑
n=1

ϕ2(An)

}
6
∞∑

n=1

ϕ(An).

3. Λέμε ότι ένα E ⊆ R έχει σημείο συμπύκνωσης στο άπειρο αν για κάθε φραγμένο διάστημα [a, b] το σύνολο
E \ [a, b] είναι υπεραριθμήσιμο. Ορίζουμε ϕ : P(R)→ [0,∞] με ϕ(E) = 0 αν το E είναι αριθμήσιμο, ϕ(E) = 1
αν το E είναι υπεραριθμήσιμο και δεν έχει σημείο συμπύκνωσης στο άπειρο, και ϕ(E) = +∞ αν το E έχει
σημείο συμπύκνωσης στο άπειρο. Αποδείξτε ότι η ϕ είναι εξωτερικό μέτρο στο R και ότι ένα A ⊆ R είναι
ϕ-μετρήσιμο αν και μόνο αν το A ή το R \A είναι αριθμήσιμο.

Υπόδειξη: Δείχνουμε πρώτα ότι η ϕ είναι εξωτερικό μέτρο. Αρχικά, το κενό σύνολο ∅ είναι αριθμήσιμο, άρα
ϕ(∅) = 0 από τον ορισμό της ϕ.
΄Εστω E ⊆ F ⊆ R. Διακρίνουμε τρείς περιπτώσεις:

1. Αν το F είναι αριθμήσιμο, τότε και το E είναι αριθμήσιμο, άρα ϕ(E) = 0 = ϕ(F ).

2. Αν το F έχει σημείο συμπύκνωσης στο άπειρο, άρα ϕ(F ) = +∞ > ϕ(E) για οποιοδήποτε E ⊆ R.

3. Αν το F είναι υπεραριθμήσιμο και δεν έχει σημείο συμπύκνωσης στο άπειρο, τότε ϕ(F ) = 1 και υπάρχει
φραγμένο διάστημα [a, b] τέτοιο ώστε το F \ [a, b] να είναι αριθμήσιμο. Τότε, το E \ [a, b] είναι επίσης
αριθμήσιμο, άρα το E δεν έχει σημείο συμπύκνωσης στο άπειρο, δηλαδή ϕ(E) = 0 ή ϕ(E) = 1. Σε κάθε
περίπτωση, ϕ(E) 6 ϕ(F ).

΄Ετσι, έχουμε αποδείξει τη μονοτονία της ϕ.
΄Εστω τώρα {En}∞n=1 ακολουθία υποσυνόλων του R. Για να δείξουμε ότι

ϕ

( ∞⋃
n=1

En

)
6
∞∑

n=1

ϕ(En),

μπορούμε να υποθέσουμε ότι το δεξιό μέλος είναι πεπερασμένο. Τότε, κανένα En δεν έχει σημείο συμπύκνωσης

στο άπειρο, και επίσης το σύνολο M = {n ∈ N : En : υπεραριθμήσιμο} είναι πεπερασμένο. Χωρίς περιορισμό
της γενικότητας μπορούμε να υποθέσουμε ότι M 6= ∅ και M = {1, . . . , k}. Πράγματι, αν όλα τα En είναι

αριθμήσιμα, τότε το ίδιο ισχύει για το
⋃∞

n=1En και η ανισότητα που θέλουμε να δείξουμε ισχύει ως ισότητα

0 = 0. Μπορούμε επίσης να αναδιατάξουμε τα σύνολα ώστε τα υπεραριθμήσιμα να είναι τα E1, . . . , Ek για

κάποιον k > 1. Τότε, τα Es, s > k είναι όλα αριθμήσιμα.
Για κάθε s = 1, . . . , k υπάρχει διάστημα [as, bs] τέτοιο ώστε το Es \ [as, bs] να είναι αριθμήσιμο. Αν ορίσουμε

a = min{a1, . . . , ak} και b = max{b1, . . . , bk} τότε το

∞⋃
s=1

Es \ [a, b] ⊆
k⋃

s=1

(Es \ [as, bs]) ∪
∞⋃

s=k+1

Es



είναι αριθμήσιμο, άρα το
⋃∞

s=1Es είναι υπεραριθμήσιμο σύνολο που δεν έχει σημείο συμπύκνωσης στο άπειρο.

΄Επεται ότι

ϕ

( ∞⋃
s=1

Es

)
= 1 6 k =

∞∑
s=1

ϕ(Es).

Αυτό αποδεικύει την υποπροσθετικότητα της ϕ, και έχουμε ότι η ϕ είναι εξωτερικό μέτρο.

Δείχνουμε τώρα ότι ένα A ⊆ R είναι ϕ-μετρήσιμο αν και μόνο αν το A ή το R \A είναι αριθμήσιμο.
(⇐=) Υποθέτουμε ότι το A είναι αριθμήσιμο. ΄Εστω E ⊆ R. Θα δείξουμε ότι

ϕ(E) = ϕ(E ∩A) + ϕ(E ∩Ac).

Το E ∩A είναι αριθμήσιμο, άρα ϕ(E ∩A) = 0. Πρέπει λοιπόν να δείξουμε ότι

ϕ(E) = ϕ(E ∩Ac).

Διακρίνουμε τρεις περιπτώσεις:

1. Αν το E είναι αριθμήσιμο, τότε το E ∩Ac
είναι επίσης αριθμήσιμο, άρα ϕ(E) = 0 = ϕ(E ∩Ac).

2. Αν το E είναι υπεραριθμήσιμο και δεν έχει σημείο συμπύκνωσης στο άπειρο, τότε το E ∩Ac = E \A είναι
επίσης υπεραριθμήσιμο (διότι το A είναι αριθμήσιμο) και ως υποσύνολο του E δεν έχει ούτε αυτό σημείο
συμπύκνωσης στο άπειρο. ΄Αρα, ϕ(E) = 1 = ϕ(E ∩ Ec).

3. Αν το E είναι υπεραριθμήσιμο και έχει σημείο συμπύκνωσης στο άπειρο, τότε για κάθε φραγμένο διάστημα
[a, b] το E \ [a, b] είναι υπεραριθμήσιμο, άρα το (E \A)\ [a, b] είναι επίσης υπεραριθμήσιμο (διότι το A είναι
αριθμήσιμο). ΄Αρα, το E \A έχει κι αυτό σημείο συμπύκνωσης στο άπειρο, και έπεται ότι ϕ(E) = +∞ =
ϕ(E ∩Ac).

΄Ομοια δουλεύουμε αν το Ac
είναι αριθμήσιμο, δείχνοντας ότι ϕ(E) = ϕ(E ∩A) για κάθε E ⊆ R.

(=⇒) Δείχνουμε ότι αν το A και το Ac
είναι υπεραριθμήσιμα σύνολα τότε το A δεν είναι ϕ-μετρήσιμο.

Θεωρώντας τις τομές A ∩ [−n, n] και Ac ∩ [−n, n] βλέπουμε εύκολα ότι υπάρχει N ∈ N τέτοιος ώστε το
A ∩ [−N,N ] και το Ac ∩ [−N,N ] να είναι υπεραριθμήσιμα σύνολα. Αφού το [−N,N ] και τα δύο αυτά σύνολα
είναι φραγμένα, δεν μπορούν να έχουν σημείο συμπύκνωσης στο άπειρο, άρα

ϕ([−N,N ]) = 1 6= 1 + 1 = ϕ([−N,N ] ∩A) + ϕ([−N,N ] ∩Ac).

΄Επεται ότι το A δεν είναι ϕ-μετρήσιμο.

4. ΄Εστω µ ένα πεπερασμένο μέτρο στην B(R). Υποθέτουμε ότι για κάθε E ⊆ R με λ(E) = 0 ισχύει ότι
µ(E) = 0. Αποδείξτε ότι: για κάθε ε > 0 υπάρχει δ > 0 τέτοιο ώστε αν E ⊆ R και λ(E) < δ τότε µ(E) < ε.

Υπόδειξη: Με απαγωγή σε άτοπο. Υποθέτουμε ότι υπάρχει ε > 0 με την εξής ιδιότητα: για κάθε δ > 0 υπάρχει
E ∈ B(R) τέτοιο ώστε λ(E) < δ αλλά µ(E) > ε. Εφαρμόζοντας το παραπάνω με δn = 1/2n, n ∈ N, βρίσκουμε
ακολουθία {En}∞n=1 στην B(R) με

λ(En) <
1

2n
και µ(En) > ε για κάθε n ∈ N.

Ορίζουμε E = lim supEn. Εφόσον
∑∞

n=1 λ(En) < 1 < ∞, από το λήμμα Borel-Cantelli συμπεραίνουμε ότι
λ(E) = 0. ΄Αρα, µ(E) = 0. ΄Ομως,

µ(E) = µ(lim supEn) = µ

( ∞⋂
n=1

Fn

)
,



όπου Fn =
⋃∞

k=nEk, και παρατηρούμε ότι: µ(Fn) > µ(En) > ε για κάθε n ∈ N, η {Fn}∞n=1 είναι φθίνουσα,

και µ(F1) 6 µ(R) <∞. ΄Επεται ότι
µ(E) = lim

n→∞
µ(Fn) > ε > 0,

και έχουμε καταλήξει σε άτοπο.

5. ΄Εστω A ⊆ R. Αποδείξτε ότι το A είναι Lebesgue μετρήσιμο αν και μόνο αν για κάθε ε > 0 υπάρχουν
ανοικτά σύνολα U και V τέτοια ώστε A ⊆ U , U \A ⊆ V και λ(V ) < ε.

Υπόδειξη: Μπορούμε να υποθέσουμε ότι λ∗(A) <∞ (εξηγήστε γιατί).
(=⇒) Από την εξωτερική κανονικότητα του μέτρου Lebesgue, υπάρχει ανοικτό σύνολο U τέτοιο ώστε A ⊆ U

και

λ(U \A) = λ(U)− λ(A) < ε/2.

Το U \ A είναι επίσης μετρήσιμο, άρα, πάλι από την εξωτερική κανονικότητα του μέτρου Lebesgue, υπάρχει
ανοικτό σύνολο V τέτοιο ώστε U \A ⊆ V και λ(V ) < λ(U \A) + ε/2 < ε.

(⇐=) ΄Εστω E ⊆ R με λ∗(E) < +∞, και ε > 0. Επιλέγουμε ανοικτά σύνολα U και V τέτοια ώστε A ⊆ U ,
U \A ⊆ V και λ(V ) < ε.
Θεωρούμε τυχόν δ > 0 και ανοικτό σύνολο G τέτοιο ώστε λ(G) 6 λ∗(E) + δ. ΄Εχουμε

λ∗(E) + δ > λ(G) = λ(G ∩ U) + λ(G ∩ U c) > λ∗(E ∩ U) + λ∗(E ∩ U c),

και αφού το δ > 0 ήταν τυχόν,
λ∗(E) > λ∗(E ∩ U) + λ∗(E ∩ U c).

Από την E ∩Ac = (E ∩ U c) ∪ (E ∩ (U \A)) έχουμε

λ∗(E ∩Ac) 6 λ∗(E ∩ U c) + λ∗(E ∩ (U \A)) 6 λ∗(E ∩ U c) + λ(V ) < λ∗(E ∩ U c) + ε,

και από την E ∩A ⊆ E ∩ U έχουμε λ∗(E ∩A) 6 λ∗(E ∩ U). Συνδυάζοντας τα παραπάνω, βλέπουμε ότι

λ∗(E) > λ∗(E ∩A) + λ∗(E ∩Ac)− ε.

Αφού το ε > 0 ήταν τυχόν, έπεται ότι

λ∗(E) > λ∗(E ∩A) + λ∗(E ∩Ac),

και από γνωστή παρατήρηση αυτό είναι αρκετό για να συμπεράνουμε ότι το A είναι Lebesgue μετρήσιμο.

6. Κατασκευάστε ένα ανοικτό σύνολο U ⊂ [0, 1] με τις εξής ιδιότητες:

(α) Το U είναι πυκνό στο [0, 1].

(β) λ(U) < 1.

(γ) Για κάθε ανοικτό διάστημα (a, b) ⊂ [0, 1] ισχύει ότι λ(U ∩ (a, b)) > 0.

Υπόδειξη: Ορίζουμε D = Q∩(0, 1) = {qn : n ∈ N} μια αρίθμηση των ρητών του (0, 1). Για κάθε n ∈ N ορίζουμε
δn = 1/2n+2

και In = (qn − δn, qn + δn) ∩ [0, 1]. Κάθε In είναι ανοικτό στο [0, 1] και λ(In) 6 2δn = 1/2n+1

για κάθε n ∈ N. Θεωρούμε το σύνολο

U =

∞⋃
n=1

In.

Το U είναι πυκνό στο [0, 1] διότι D ⊆ U και D = [0, 1], άρα U = [0, 1].



Για το μέτρο του U , από την υποπροσθετικότητα του λ έχουμε

λ(U) 6
∞∑

n=1

λ(In) 6
∞∑

n=1

1

2n+1
=

1

2
< 1.

Τέλος, έστω (a, b) ⊂ [0, 1] ανοικτό διάστημα. Υπάρχει qn ∈ D ∩ (a, b). Τότε,

(qn − δ, qn + δ) ⊆ In ∩ (a, b),

όπου δ = min{δn, qn − a, b− qn} > 0. ΄Αρα, λ(U ∩ (a, b)) > λ(In ∩ (a, b)) > 2δ > 0.

7. ΄Εστω A ⊆ R2 Lebesgue μετρήσιμο υποσύνολο του R2
. Αποδείξτε ότι

λ2(A) = inf

{ ∞∑
i=1

α(Bn) : A ⊆
∞⋃

n=1

Bn

}

όπου το infimum παίρνεται πάνω από όλες τις αριθμήσιμες καλύψεις του A από ανοικτούς δίσκους {Bn}∞n=1 και

α(B) = πr2 για έναν δίσκο ακτίνας r. Συμπεράνατε ότι: αν T είναι ορθογώνιος μετασχηματισμός του R2
τότε

λ2(A) = λ2(T (A)).

Υπόδειξη: Μπορούμε να υποθέσουμε ότι το A είναι φραγμένο, και άρα λ(A) < +∞. ΄Εστω ε > 0. Από την
εξωτερική κανονικότητα του μέτρου Lebesgue, υπάρχει φραγμένο ανοικτό σύνολο G τέτοιο ώστε A ⊆ G και
λ(G) < λ(A) + ε. Θα δείξουμε ότι

G = N ∪

( ∞⋃
n=1

Dn

)
όπου {Dn}∞n=1 ακολουθία ξένων ανοικτών δίσκων και λ(N) = 0. Αυτό μπορεί να γίνει ως εξής. Γνωρίζουμε
ότι το G γράφεται ως αριθμήσιμη ένωση G =

⋃∞
k=1 Ik, όπου κάθε Ik είναι δυαδικό ημιανοικτό τετράγωνο

(Λήμμα 4.2.3). Θεωρούμε τον ανοικτό δίσκο Rk που εγγράφεται στο Ik. Αν ak είναι το μήκος της ακμής του
Ik τότε η ακτίνα του Rk είναι ak/2, δηλαδή

λ(Rk) = πa2k/4 = (π/4)λ(Ik).

Συνεπώς, η ένωση
⋃∞

k=1Rk έχει μέτρο ίσο με (π/4)λ(G). Θεωρούμε τώρα το G \
⋃∞

k=1Rk, το οποίο είναι

ανοικτό και έχει μέτρο 6 (1 − π/4)λ(G), και επαναλαμβάνουμε την ίδια διαδικασία. Στο δεύτερο βήμα, θα
ορίσουμε μια νέα ακολουθία ανοικτών δίσκων που περιέχονται στο G και το σύνολο που θα απομείνει θα έχει
μέτρο 6 (1−π/4)2λ(G). Μετά από άπειρα βήματα θα εξαντλήσουμε το G, με την εξαίρεση ενός συνόλου μέτρου
0 και των περιφερειών των δίσκων που θα έχουμε επιλέξει, που επίσης θα έχουν συνολικά μέτρο 0. Μαζεύοντας
όλους τους δίσκους (από όλα τα βήματα) σε μια ακολουθία {Dn}∞n=1, έχουμε τελικά ότι

G = N ∪

( ∞⋃
n=1

Dn

)

όπου λ(N) = 0.
Στη συνέχεια μπορούμε να καλύψουμε το N από μια άλλη ακολουθία {Cn}∞n=1 ανοικτών δίσκων με

∞∑
n=1

α(Cn) < ε

(εξηγήστε γιατί: βρείτε πρώτα ανοικτό U ⊃ N με λ(U) < ε/2, γράψτε το U ως αριθμήσιμη ένωση μη επικαλυ-
πτόμενων ημιανοικτών τετραγώνων και στη συνέχεια καλύψτε το U , άρα και το N , με τους περιγεγραμμένους



δίσκους αυτών των τετραγώνων). Φτιάχνοντας μια ακολουθία {Bn}∞n=1 που αποτελείται από όλους τους δίσκους

Dn και Cn μαζί, έχουμε A ⊆
⋃∞

n=1Bn και

∞∑
n=1

α(Bn) =

∞∑
n=1

α(Dn) +

∞∑
n=1

α(Cn) < λ(G) + ε < λ(A) + 2ε,

και αφού το ε > 0 ήταν τυχόν, έπεται το ζητούμενο.

8. ΄Εστω D πυκνό υποσύνολο του R. Αποδείξτε ότι αν το A ⊆ R είναι Lebesgue μετρήσιμο σύνολο και
λ(A4(A+ x)) = 0 για κάθε x ∈ D, τότε λ(A) = 0 ή λ(R \A) = 0.

Υπόδειξη: Με απαγωγή σε άτοπο. Υποθέτουμε ότι λ(A) > 0 και λ(Ac) > 0. Τότε, μπορούμε να βρούμε
συμπαγή σύνολα E ⊆ A και F ⊆ Ac

τέτοια ώστε λ(E) > 0 και λ(F ) > 0. Δείχνουμε ότι η συνάρτηση

g(x) = λ((E + x) ∩ F ) =

∫
R
χE(t− x)χF (t) dλ(t)

είναι συνεχής. Επίσης (απλή συνέπεια του θεωρήματος Fubini)∫
R
g(x) dλ(x) = λ(E)λ(F ) > 0.

΄Αρα, το σύνολο {x ∈ R : g(x) > 0} περιέχει κάποιο μη τετριμμένο διάστημα I. Αφού το D είναι πυκνό,
μπορούμε να επιλέξουμε x0 ∈ D ∩ I. Τότε,

λ
(
(E + x0) ∩ F

)
> 0.

΄Ομως, E ⊆ A και F ⊆ Ac
, άρα

(E + x0) ∩ F ⊆ (A+ x0) ∩Ac ⊆ A4(A+ x0),

δηλαδή

g(x0) = λ
(
A4(A+ x0)

)
> 0,

το οποίο είναι άτοπο, διότι x0 ∈ D.

9. Αποδείξτε ότι υπάρχει φθίνουσα ακολουθία {An}∞n=1 συνόλων An ⊂ [0, 1] τέτοια ώστε λ∗(An) = 1 για κάθε

n ∈ N και
∞⋂

n=1

An = ∅.

Υπόδειξη: Στο [0, 1] θεωρούμε τη σχέση ισοδυναμίας x ∼ y αν και μόνο αν x−y ∈ Q, και στη συνέχεια ορίζουμε
N ⊂ [0, 1] που περιέχει ακριβώς ένα στοιχείο από κάθε κλάση ισοδυναμίας. Ορίζουμε επίσης T = [0, 1] \ N .
Μπορούμε να δείξουμε ότι λ∗(T ) = 1. Αν όχι, τότε υπάρχει μετρήσιμο A ⊇ T με λ(A) = λ∗(T ) < 1. Τότε το
B = [0, 1] \A είναι μετρήσιμο και λ(B) > 0. Από το λήμμα του Steinhaus, το B −B περιέχει διάστημα. ΄Ομως
B ⊆ N , άρα B −B ⊆ N −N . Αυτό οδηγεί σε άτοπο, διότι το N −N δεν περιέχει διάστημα.
Τώρα, θεωρούμε μια αρίθμηση {qn : n ∈ N} του Q∩[0, 1) και για κάθε n ∈ N ορίζουμε Nn = N+qn )mod 1).

Αυτό σημαίνει ότι Nn = ((N + qn) ∩ [0, 1]) ∪ (−1 + ((N + qn) \ [0, 1])). Τότε, Nn ⊂ [0, 1], τα Nn είναι ξένα,

[0, 1] =
⋃∞

n=1Nn, και αν θέσουμε Tn = [0, 1] \Nn ισχύει ότι λ
∗(Tn) = 1 για κάθε n ∈ N. Ορίζουμε

An =

∞⋃
k=n

Tk.

Η {An}∞n=1 είναι φθίνουσα ακολουθία υποσυνόλων του [0, 1] και έχουμε

λ∗(An) > λ∗(Tn) = 1,



άρα λ∗(An) = 1 για κάθε n ∈ N. ΄Ομως,
⋂∞

n=1An = ∅, διότι [0, 1] \
⋂∞

n=1An =
⋃∞

n=1Nn = [0, 1].

10. ΄Εστω E Lebesgue μετρήσιμο σύνολο στον Rk
με λk(E) < +∞, το οποίο έχει την ακόλουθη ιδιότητα: για

κάθε x ∈ E υπάρχει ρ(x) > 0 τέτοιος ώστε, για κάθε 0 < r < ρ(x),

λk(E ∩B(x, r)) >
1

2
λk(B(x, r)),

όπου B(x, r) είναι η ανοικτή μπάλα με κέντρο x και ακτίνα r. Αποδείξτε ότι: για κάθε ε > 0 υπάρχει μετρήσιμο
σύνολο F ⊆ E τέτοιο ώστε λk(E \ F ) 6 ε και υπάρχει t > 0, ανεξάρτητος από το x, τέτοιος ώστε, για κάθε
x ∈ F και για κάθε 0 < r 6 t,

λk(E ∩B(x, r)) >
1

2
λk(B(x, r)).

Ισχύει η προηγούμενη πρόταση αν λk(E) = +∞; Αιτιολογήστε την απάντησή σας.

Υπόδειξη: Για κάθε m > 1 θεωρούμε το σύνολο

Em =

{
x ∈ E : λk(E ∩B(x, t)) >

1

2
λk(B(x, r)) για κάθε r 6

1

m2

}
.

Τότε, η ακολουθία {Em}∞m=1 είναι αύξουσα και E =
⋃∞

m=1Em. ΄Εστω ε > 0. Από τη συνέχεια του μέτρου,
υπάρχει m ∈ N τέτοιος ώστε λk(Em) > λ(E)− ε, και αφού λ(E) <∞ έπεται ότι

λk(E \ Em) = λk(E)− λk(Em) 6 ε.

Θέτουμε F = Em. Τότε, F ⊆ E, λk(E \ F ) 6 ε, και αν θέσουμε t = 1/m2
τότε από τον ορισμό του Em

βλέπουμε ότι, για κάθε x ∈ F και για κάθε 0 < r 6 t,

λk(E ∩B(x, r)) >
1

2
λk(B(x, r)).

Η παραπάνω πρόταση δεν ισχύει απαραίτητα αν λk(E) = +∞. Στο R θεωρούμε το σύνολο

E =

∞⋃
k=3

[
k, k +

1

k

]
,

για το οποίο λ(E) = +∞. Για κάθε x ∈ E ∩ {x > k} έχουμε

λ
(
E ∩B(x, 3k )

)
<

1

2
λ
(
B(x, 3k )

)
και λ(E ∩ {x > k}) = +∞ για κάθε k > 3.


