

Functional Analysis I

(Problem sheet 7)

Exercise 1. Show that the inner product

$$\langle \cdot, \cdot \rangle : H \times H \rightarrow \mathbb{R}$$

is continuous.

Exercise 2. Let H be an inner product space. Show that if for a sequence (x_n) we have that $\lim \|x_n\| = \|x\|$ and $\lim \langle x_n, x \rangle = \langle x, x \rangle$, then

$$\lim x_n = x.$$

Exercise 3. Show that

$$Y = \{x = (x_n) \in l^2 : x_{2n} = 0, n \in \mathbb{N}\}$$

is a closed subspace of l^2 and find Y^\perp .

Exercise 4. Let M, N be closed subspaces of the Hilbert space H and suppose that $M \perp N$. Show that the set

$$M + N = \{x + y : x \in M, y \in N\}$$

is also a closed subspace of H .

Exercise 5. Let $\{e_1, e_2, \dots, e_n\}$ be an orthonormal set in the Hilbert space H . Show that

$$\|x - \sum_{k=1}^n \lambda_k e_k\| \geq \|x - \sum_{k=1}^n \langle x, e_k \rangle e_k\|,$$

for all $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{R}$.

Exercise 6. Find the first three functions that we get after applying the Gram-Schmidt method on the set $\{x^n : n = 0, 1, \dots\}$ of $C[-1, 1]$ with $\|\cdot\|_2$. In the sequel find numbers α, β and γ that minimize the quantity

$$\int_{-1}^1 |x^4 - \alpha - \beta x - \gamma x^2|^2 dx.$$

Exercise 7. Let $\{e_n\}$ be an orthonormal basis in the Hilbert space H . Show that

$$\langle x, y \rangle = \sum_{n=1}^{\infty} \langle x, e_n \rangle \langle y, e_n \rangle,$$

for all $x, y \in H$.