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Μαθηματική Ανάλυση Ι

ΦΥΛΛΑΔΙΟ 6 ΑΠΑΝΤΗΣΕΙΣ

΄Ασκηση 1. ΄Εστω f : [a, b] → R ολοκληρώσιμη συνάρτηση. Δείξτε ότι υπάρχει ακολουθία διαμερίσεων (Pn)

του [a, b] τέτοια ώστε lim
n→∞

L(f, Pn) = lim
n→∞

U(f, Pn) =

∫ b

a

f(x) dx.

Λύση. Από το Κριτήριο Riemann για κάθε ϵ > 0 υπάρχει διαμέριση P του [a, b] με U(f, P )−L(f, P ) < ϵ.

΄Αρα για “ϵ =
1

n
” μπορούμε να βρούμε μια διαμέριση Pn του [a, b] με

U(f, Pn)− L(f, Pn) <
1

n

για κάθε n ∈ N. Επιπλέον, από τον ορισμό του ολοκληρώματος, έχουμε

L(f, Pn) ≤
∫ b

a

f(x) dx ≤ U(f, Pn)

για κάθε n ∈ N. Συνεπώς,

0 ≤
∫ b

a

f(x) dx− L(f, Pn) ≤ U(f, Pn)− L(f, Pn) <
1

n

Από το Κριτήριο των Ισοσυγκλινουσών ακολουθιών έπεται ότι lim
n→∞

L(f, Pn) =

∫ b

a

f(x) dx και lim
n→∞

U(f, Pn) =

lim
n→∞

(U(f, Pn)− L(f, Pn)) + lim
n→∞

L(f, Pn) = lim
n→∞

L(f, Pn) =

∫ b

a

f(x) dx.

΄Ασκηση 2. ΄Εστω f : [a, b] → R ολοκληρώσιμη με f(x) ≥ 0 για κάθε x ∈ [a, b]. Αν f(q) = 0 για κάθε q

ρητό στο [a, b] δείξτε ότι

∫ b

a

f(x) dx = 0.

Λύση. Επειδή η f είναι ολοκληρώσιμη το ολοκλήρωμα
∫ b

a
f(x) dx είναι ίσο με το κάτω ολοκλήρωμα∫ b

a
f(x) dx που εξ ορισμού είναι το supremum του συνόλου όλων των κάτω αθροισμάτων της f . Τώρα, κάθε

κάτω άθροισμα της f είναι ίσο με το 0. Πράγματι, έστω P = {a = x0 < · · · < xn = b} μια διαμέριση του [a, b].
Τότε L(f, P ) =

∑n
i=1 mi∆xi όπου mi = inf{f(x) : x ∈ [xi−1, xi]}. Από την πυκνότητα των ρητών σε κάθε

[xi−1, xi] υπάρχουν άπειροι ρητοί και άρα mi = 0 για όλα τα i = 1, . . . , n. Συνοψίζοντας,∫ b

a

f(x) dx =

∫ b

a

f(x) dx = sup{L(f, p) : P διαμέριση του [a, b]} = sup{0} = 0

΄Ασκηση 3. (α) ΄Εστω f : [a, b] → R. Αν f(x) = 0 για όλα τα x ∈ [a, b] εκτός από ένα σημείο δείξτε ότι η f

είναι ολοκληρώσιμη και
∫ b

a
f(x) dx = 0.

(β) Γενικεύστε για συναρτήσεις f : [a, b] → R για τις οποίες f(x) = 0 για όλα τα x ∈ [a, b] εκτός από ένα
πεπερασμένο πλήθος σημείων.

(γ) ΄Εστω f : [a, b] → R ολοκληρώσιμη συνάρτηση. Αν g : [a, b] → R με g(x) = f(x) για όλα τα x ∈ [a, b]
εκτός από ένα πεπερασμένο πλήθος σημείων δείξτε ότι η g είναι ολοκληρώσιμη και έχει το ίδιο ολοκλήρωμα με
την f .



Λύση. (α) ΄Εστω c το μοναδικό σημείο στο [a, b] με f(c) ̸= 0. Ας υποθέσουμε ότι c ∈ (a, b) και f(c) > 0.
Παρατηρούμε ότι σε κάθε υποδιάστημα I του [a, b],

inf{f(x) : x ∈ I} = min{f(x) : x ∈ I} = 0

Αυτό συνεπάγεται ότι για κάθε διαμέριση P του [a, b], είναι L(f, P ) = 0. ΄Αρα∫ b

a

f(x) dx = sup{L(f, P ) : P διαμέριση του [a, b]} == sup{0} = 0 (1)

Επίσης σε κάθε υποδιάστημα I του [a, b], η f είναι παντού μηδέν εκτός και αν c ∈ I. ΄Αρα για κάθε διαμέριση
P = {a = x0 < x1 < · · · < xn = b} του [a, b] το c θα ανήκει ή σε ένα ή το πολύ σε δύο διαδοχικά διαστήματα
της μορφής [xi−1, xi]. Συνεπώς

0 ≤ U(f, P ) ≤ 2f(c)λ(P )

όπου λ(P ) = max{xi−xi−1 : 1 ≤ i ≤ n} είναι η λεπτότητα της P . ΄Αρα επιλέγοντας διαμερίσεις P με λ(P ) → 0
βλέπουμε ότι ∫ b

a

f(x) dx = inf{U(f, P ) : P διαμέριση του [a, b]} = 0 (2)

Από τις (1) και (2) έπεται ότι η f είναι ολοκληρώσιμη και

∫ b

a

f(x) dx = 0.

(β) ΄Εστω f : [a, b] → R, n ∈ N και έστω c1 < · · · < cn ∈ [a, b] τέτοια ώστε f(x) ̸= 0 αν και μόνο αν x ̸= ci
για κάποιο i = 1, . . . , n. Για κάθε 1 ≤ i ≤ n, έστω fi : [a, b] → R με

fi(x) =

{
0 αν x ̸= ci

f(ci) αν x = ci

Από το (α) ερώτημα έχουμε
∫ b

a
fi(x) dx = 0 για κάθε 1 ≤ i ≤ n. Παρατηρούμε επίσης ότι f = f1 + ...+ fn και

άρα από την γραμμικότητα του Ολοκληρώματος∫ b

a

f(x) dx =

∫ b

a

(f1 + ...+ fn)(x) dx =

∫ b

a

f1(x) dx+ ...+

∫ b

a

fn(x) dx = 0

(γ) Θέτουμε h = f − g. Τότε η h είναι παντού μηδέν εκτός από ένα πεπερασμένο πλήθος σημείων. ΄Αρα

από το (β) η h είναι ολοκληρώσιμη και
∫ b

a
h = 0 Επειδή g = f − h από την γραμμικότητα του Ολοκληρώματος

έχουμε ότι η g είναι ολοκληρώσιμη και∫ b

a

g(x) dx =

∫ b

a

(f(x)− h(x)) dx =

∫ b

a

f(x) dx−
∫ b

a

h(x) dx =

∫ b

a

f(x) dx

΄Ασκηση 4. Αποδείξτε την ακόλουθη ισχυροποίηση του Θεμελιώδους Θεωρήματος του Ολοκληρωτικού Λο-

γισμού: ΄Εστω f : [a, b] → R ολοκληρώσιμη συνάρτηση και έστω x0 ∈ [a, b]. Αν το limx→x0
f(x) υ-

πάρχει και είναι πραγματικός αριθμός τότε η συνάρτηση F (x) =
∫ x

a
f(t) dt είναι παραγωγίσιμη στο x0 και

F ′(x0) = limx→x0 f(x).

Λύση. ΄Εστω limx→x0
f(x) = ℓ ∈ R. Θέτουμε g : [a, b] → R με g(x) = f(x) αν x ̸= x0 και g(x0) = ℓ. Η

g είναι συνεχής στο x0 και διαφέρει από την f το πολύ σε ένα σημείο. Από την ΄Ασκηση 3 παραπάνω, η g είναι

ολοκληρώσιμη και επιπλέον για κάθε x ∈ [a, b],

∫ x

a

g(t) dt =

∫ x

a

f(t) dt. ΄Αρα αν θέσουμε G(x) =

∫ x

a

g(t) dt

τότε G(x) = F (x), για κάθε x ∈ [a, b]. Επειδή η g είναι συνεχής στο x0, από το Θεμελιώδες Θεώρημα του

Ολοκληρωτικού Λογισμού έχουμε ότι η G(x) είναι παραγωγίσιμη στο x0 με G
′(x0) = g(x0) = ℓ και αφού

F (x) = G(x) για κάθε x ∈ [a, b] έπεται ότι F ′(x0) = ℓ.
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΄Ασκηση 5. ΄Εστω f : [a, b] → R ολοκληρώσιμη συνάρτηση με
∫ b

a

f(x) dx ̸= 0. (α) Δείξτε ότι για κάθε

λ ∈ (0, 1) υπάρχει ξ ∈ (a, b) με

∫ ξ

a

f(x) dx = λ

∫ b

a

f(x) dx. (β) Δείξτε ότι υπάρχει ξ ∈ (a, b) με
∫ ξ

a
f(t) dt =∫ b

ξ
f(t) dt.

Λύση. (α) Από το Θεμελιώδες Θεώρημα του Ολοκληρωτικού Λογισμού έχουμε ότι η συνάρτηση F (x) =∫ x

a

f(t) dt είναι συνεχής με F (a) = 0 και F (b) =
∫ b

a
f(t) dt. ΄Εστω ότι F (b) > 0 (αν F (b) < 0 εργαζόμαστε

ομοίως) και έστω λ ∈ (0, 1). Τότε 0 < λF (b) < F (b) και άρα από το Θεώρημα Ενδιάμεσων Τιμών, υπάρχει

ξ ∈ (a, b) με F (ξ) = λF (b) ⇔
∫ ξ

a

f(x) dx = λ

∫ b

a

f(x) dx.

(β) Από το (α) για λ = 1/2 υπάρχει υπάρχει ξ ∈ (a, b) με
∫ ξ

a
f(t) dt =

1

2

∫ b

a
f(t) dt. ΄Αρα από την

Προσθετικότητα του ολοκληρώματος∫ b

ξ

f(t) dt =

∫ b

a

f(t) dt−
∫ ξ

a

f(t) dt =
1

2

∫ b

a

f(t) dt =

∫ ξ

a

f(t) dt

΄Ασκηση 6. ΄Εστω f : [a, b] → R συνεχής και έστω F (x) =

∫ x

a

f(x) dx για κάθε x ∈ [a, b]. Δείξτε τα εξής:

(α) Η F είναι σταθερή αν και μόνο αν f(x) = 0 για κάθε x ∈ [a, b].

(β) Η F είναι αύξουσα (αντίστοιχα φθίνουσα) αν και μόνο αν f(x) ≥ 0 (αντ. f(x) ≤ 0) για κάθε x ∈ [a, b].

Λύση. (α) Η F είναι σταθερή συνάρτηση αν και μόνο αν F ′(x) = 0 ⇔ f(x) = 0 για κάθε x ∈ [a, b].
(β) Η F είναι αύξουσα αν και μόνο αν F ′(x) ≥ 0 ⇔ f(x) ≥ 0 για κάθε x ∈ [a, b]. Αντίστοιχα, η F είναι

φθίνουσα αν και μόνο αν F ′(x) ≤ 0 ⇔ f(x) ≤ 0 για κάθε x ∈ [a, b]..

΄Ασκηση 7. ΄Εστω f : [a, b] → R συνεχής. Αν
∫ b

a

f2(x) dx = 0 δείξτε ότι f = 0.

Λύση. ΄Εστω F (x) =
∫ x

a
f2(t) dt, x ∈ [a, b]. Από το Θεμελιώδες Θεώρημα του Ολοκληρωτικού Λογισμού

έχουμε ότι F ′(x) = f2(x) ≥ 0 για κάθε x ∈ [a, b] και άρα η F (x) είναι αύξουσα. Συνεπώς F (a) ≤ F (x) ≤
F (b) ⇔ 0 ≤ F (x) ≤

∫ b

a
f2(x) dx = 0 και άρα F (x) = 0 για κάθε x ∈ [a, b]. ΄Αρα f2(x) = F ′(x) = 0 ⇔ f(x) = 0

για κάθε x ∈ [a, b].

΄Ασκηση 8. (α) ΄Εστω h : [a, b] → R συνεχής με h(x) > 0 για κάθε x ∈ [a, b]. Δείξτε ότι

∫ b

a

h(x) dx > 0.

(β) ΄Εστω f, g : [a, b] → R συνεχείς με f(x) > g(x) για κάθε x ∈ [a, b]. Δείξτε ότι

∫ b

a

f(x) dx >

∫ b

a

g(x) dx.

Λύση. (α) Η h ως συνεχής σε κλειστό φραγμένο διάστημα λαμβάνει ελάχιστη τιμή. ΄Αρα υπάρχει x0 ∈ [a, b]
με h(x0) ≤ h(x), ∀x ∈ [a, b]. Επειδή η h λαμβάνει θετικές τιμές έχουμε h(x0) > 0. Τώρα από την ιδιότητα της
Μονοτονίας του Ολοκληρώματος,

h(x) ≥ h(x0) ⇒
∫ b

a

h(x) dx ≥
∫ b

a

h(x0) dx = h(x0)(b− a) > 0

(β) Θέτουμε h = f − g. Η h είναι συνεχής ως διαφορά συνεχών και h(x) = f(x) − g(x) > 0 για κάθε

x ∈ [a, b]. ΄Αρα από το προηγούμενο ερώτημα έχουμε

∫ b

a

h(x) dx > 0. Από την άλλη μεριά, λόγω της
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Γραμμικότητας του Ολοκληρώματος έχουμε

∫ b

a

h(x) dx =

∫ b

a

(f(x) − g(x)) dx =

∫ b

a

f(x) dx −
∫ b

a

g(x) dx.

Συνεπώς

∫ b

a

f(x) dx−
∫ b

a

g(x) dx > 0 ⇒
∫ b

a

f(x) dx >

∫ b

a

g(x).

΄Ασκηση 9. ΄Εστω f : [0, 1] → R συνεχής.

(α) ΄Εστω g : [0, 1] → R συνεχής τέτοια ώστε
∫ 1

0

f(x) dx =

∫ 1

0

g(x) dx. Δείξτε ότι υπάρχει ξ ∈ (0, 1)

τέτοιο ώστε f(ξ) = g(ξ).

(β) Αν

∫ 1

0

f(x) dx =
π

4
δείξτε ότι υπάρχει ξ ∈ (0, 1) τέτοιο ώστε f(ξ) =

1

ξ2 + 1
.

Λύση. (α) ΄Εχουμε∫ 1

0

f(x) dx =

∫ 1

0

g(x) dx ⇔
∫ 1

0

f(x) dx−
∫ 1

0

g(x) dx = 0 ⇔
∫ 1

0

(f(x)− g(x)) dx = 0

Θέτουμε h = f − g και H(x) =

∫ x

0

h(t) dt. Η h είναι συνεχής ως διαφορά συνεχών και άρα από το Θεμελιώδες

Θεώρημα του Ολοκληρωτικού Λογισμού, η H είναι παραγωγίσιμη με H ′(x) = h(x) για κάθε x ∈ [0, 1]. Επειδή
H(1) = H(0) = 0 από το Θεώρημα Rolle υπάρχει ξ ∈ (0, 1) τέτοιο ώστε H ′(ξ) = h(ξ) = f(ξ)− g(ξ) = 0.

(β) ΄Εχουμε

∫ 1

0

f(x) dx =
π

4
= arctan 1− arctan 0 =

∫ 1

0

1

x2 + 1
dx και το συμπέρασμα έπεται από το (α).

΄Ασκηση 10. Αποδείξτε ότι για κάθε f : [a, b] → R συνεχή και για κάθε n ∈ N υπάρχει F : I → R, n-φορές
παραγωγίσιμη συνάρτηση με F (n) = f (με F (n)(x) συμβολίζουμε την n-τάξης παράγωγο της F ).

Λύση. Για κάθε n ∈ N έστω P (n) η πρόταση:

Για κάθε f : [a, b] → R συνεχή υπάρχει F : I → R n-φορές παραγωγίσιμη συνάρτηση με F (n) = f

Θα δείξουμε ότι η P (n) ισχύει για κάθε n ∈ N. Για n = 1 η P (1) προκύπτει από το Θεμελιώδες Θεώρημα του
Ολοκληρωτικού Λογισμού (η συνάρτηση F (x) =

∫ x

a
f(x) dx ικανοποιεί την σχέση F ′ = f). ΄Εστω τώρα ότι η

P (n) ισχύει για κάποιο n ∈ N. Θα δείξουμε ότι τότε ισχύει και η P (n+ 1). ΄Εστω f : [a, b] → R συνεχής και
έστω F : [a, b] → R n-φορές παραγωγίσιμη με F (n) = f . Η συνάρτηση F ως παραγωγίσιμη είναι και συνεχής
και άρα (από την P (1) για “f = F”) υπάρχει G : [a, b] → R με G′ = F . ΄Αρα

f = F (n) = (G′)(n) = G(n+1)

και συνεπώς η P (n+ 1) ισχύει. Από την Αρχή της Μαθηματικής Επαγωγής η P (n) ισχύει για όλα τα n ∈ N.

΄Ασκηση 11. ΄Εστω f : [0, 1] → R συνεχής με f(0) = 1. Υπολογίστε τα όρια lim
n→+∞

∫ 1/n

0

f(t) dt και

lim
n→+∞

(
n

∫ 1/n

0

f(t) dt

)
.

Λύση. Η συνάρτηση F (x) =

∫ x

0

f(t) dt είναι παραγωγίσιμη (άρα και συνεχής) με F ′(x) = f(x) για

κάθε x ∈ [0, 1]. Συνεπώς limx→0 F (x) = F (0) = 0 και limx→0
F (x)− F (0)

x
= F ′(0) = f(0). Από

την Αρχή Μεταφοράς έχουμε ότι για κάθε xn ∈ (0, 1] με xn → 0 ισχύει ότι limn→+∞ F (xn) = F (0) και

limn→+∞
F (xn)− F (0)

xn
= F ′(0) = f(0). Ειδικότερα αν xn =

1

n
έχουμε

lim
n→+∞

∫ 1/n

0

f(x) dx = lim
n→+∞

F

(
1

n

)
= F (0) = 0
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και

lim
n→+∞

(
n

∫ 1

1/n

f(t) dt

)
= lim

n→+∞

F (
1

n
)− F (0)

1

n

= F ′(0) = f(0) = 2

΄Ασκηση 12. Υπολογίστε το όριο lim
n→∞

(
nn

n!

∫ n!/nn

0

arctan
(
et

2
)

dt

)
.

Λύση. Η ακολουθία an =
n!

nn
συγκλίνει στο μηδέν. Πράγματι,

n!

nn
=

1 · 2 . . . (n− 1) · n
n · n . . . n · n

=
1

n
· 2
n
· · · · · n− 1

n
· n
n
≤ 1

n
· 1 · 1 . . . 1 =

1

n

και άρα 0 ≤ n!

nn
≤ 1

n
για κάθε n ∈ N. Από το Θεώρημα των Ισοσυγκλινουσών Ακολουθιών έπεται ότι

lim
n→∞

n!

nn
= 0.

Θέτουμε f(t) = arctan
(
et

2
)
, F (x) =

∫ x

0

f(t) dt για κάθε t ∈ [0, 1] και xn =
n!

nn
. Από το Θεμελιώδες

Θεώρημα του Ολοκληρωτικού Λογισμού, η F είναι παραγωγίσιμη με F ′ = f και όπως δείξαμε xn → 0. ΄Αρα

lim
n→∞

(
nn

n!

∫ n!/nn

0

f(t) dt

)
= lim

n→∞

F (xn)

xn
= lim

n→∞

F (xn)− F (0)

xn − 0
= F ′(0) = f(0) = arctan 1 =

π

4

Η ισότητα lim
n→∞

F (xn)− F (0)

xn − 0
= F ′(0) οφείλεται στην Αρχή Μεταφοράς για όρια. Πράγματι, έχουμε F ′(0) =

lim
x→0

F (x)− F (0)

x− 0
και από την Αρχή Μεταφοράς αυτό είναι ισοδύναμο με το ότι για κάθε ακολουθία (xn) με

xn ̸= 0 και xn → 0 ισχύει ότι lim
n→∞

F (xn)− F (0)

xn − 0
= F ′(0).

΄Ασκηση 13. (α) ΄Εστω f : [a, b] → R συνεχής συνάρτηση. Ορίζουμε G : [a, b] → R με τύπο

G(x) =

∫ b

x

f(t) dt

για κάθε x ∈ [a, b] (αν x = b θέτουμε G(b) =

∫ b

b

f(x) dx = 0). Δείξτε ότι G′(x) = −f(x) για κάθε x ∈ [a, b].

(β) ΄Εστω f : [0, 1] → R συνεχής συνάρτηση με f(0) = 1 και

∫ 1

0

f(x) dx = 0. Δείξτε ότι

lim
n→+∞

∫ 1

1/n

f(t) dt = 0 και lim
n→+∞

(
n

∫ 1

1/n

f(t) dt

)
= −1

Λύση. (α) Από την Προσθετικότητα του Ολοκληρώματος έχουμε

∫ b

a

f(t) dt =

∫ x

a

f(t) dt +

∫ b

x

f(t) dt.

΄Αρα, θέτοντας c =

∫ b

a

f(t) dt και F (x) =

∫ x

a

f(t) dt παίρνουμε c = F (x) +G(x). Συνεπώς G(x) = c−F (x).

Από το Θεμελιώδες Θεώρημα του Ολοκληρωτικού Λογισμού έχουμε ότι F ′(x) = f(x) για κάθε x ∈ [a, b] και
άρα G′(x) = (c− F )′(x) = −F ′(x) = −f(x).
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(β) Από το (α) η συνάρτηση G(x) =

∫ 1

x

f(t) dt είναι παραγωγίσιμη (άρα και συνεχής) με G′(x) = −f(x) για

κάθε x ∈ [0, 1]. Συνεπώς limx→0 G(x) = G(0) =
∫ 1

0
f(x) dx = 0 και limx→0

G(x)−G(0)

x
= G′(0) = −f(0).

Από την Αρχή Μεταφοράς έχουμε ότι για κάθε xn ∈ (0, 1] με xn → 0 ισχύει ότι limn→+∞ G(xn) = G(0) και

limn→+∞
G(xn)−G(0)

xn
= G′(0) = −f(0). ΄Αρα για xn =

1

n
έχουμε

lim
n→+∞

∫ 1

1/n

f(x) dx = lim
n→+∞

G

(
1

n

)
= G(0) =

∫ 1

0

f(x) dx = 0

και

lim
n→+∞

(
n

∫ 1

1/n

f(t) dt

)
= lim

n→+∞

G(
1

n
)−G(0)

1

n

= G′(0) = −f(0)

΄Ασκηση 14. Αποδείξτε ότι lim
n→∞

(
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

n+ n

)
= ln 2.

Λύση. Από τον Ορισμό του ολοκληρώματος μέσω αθροισμάτων Riemann γνωρίζουμε ότι αν f : [0, 1] → R
ολοκληρώσιμη τότε ∫ 1

0

f(x) dx = lim
n→∞

f
(
1
n

)
+ f

(
2
n

)
+ · · ·+ f (1)

n

΄Αρα για την συνάρτηση f(x) =
1

1 + x
παίρνουμε

lim
n→∞

(
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

n+ n

)
= lim

n→∞

1

n

(
1

1 + 1
n

+
1

1 + 2
n

+ · · ·+ 1

1 + n
n

)
= lim

n→∞

f
(
1
n

)
+ f

(
2
n

)
+ · · ·+ f

(
n
n

)
n

=

∫ 1

0

f(x) dx =

∫ 1

0

1

1 + x
dx = ln 2.

΄Ασκηση 15. ΄Εστω G : (1,+∞) → R με G(x) =

∫ √
ln x

0

et
2

dt, για κάθε x > 1. Δείξτε ότι η G είναι

παραγωγίσιμη και βρείτε τον τύπο της G′
.

Λύση. Αν F (x) =
∫ x

0
et

2

dt, x > 0 και ϕ(x) =
√
lnx, x > 1, τότε G(x) = F (ϕ(x)). Συνεπώς η G είναι

παραγωγίσιμη ως σύνθεση παραγωγίσιμων συναρτήσεων, αφού F ′(x) = ex
2

και ϕ′(x) =
1

2
√
lnx

· 1
x
. Από τον

Κανόνα Αλυσίδας έχουμε

G′(x) = F ′(ϕ(x))ϕ′(x) = eln x · 1

2
√
lnx

· 1
x
=

1

2
√
lnx

.

΄Ασκηση 16. ΄Εστω f : [a, b] → R συνεχής και h1, h2 : [a, b] → [a, b] παραγωγίσιμες τέτοιες ώστε h1(x) <

h2(x) για κάθε x ∈ I. Ορίζουμε την συνάρτηση H : I → R με τύπο H(x) =

∫ h2(x)

h1(x)

f(t) dt, για κάθε x ∈ I.

Βρείτε την H ′(x) για κάθε x ∈ I.

Λύση. Από την Προσθετικότητα του Ολοκληρώματος έχουμε ότι∫ h2(x)

h1(x)

f(t) dt =

∫ h2(x)

a

f(t) dt−
∫ h1(x)

a

f(t) dt (3)
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για κάθε x ∈ [a, b]. Από το Θεμελιώδες Θεώρημα του Ολοκληρωτικού Λογισμού η συνάρτηση F (x) =
∫ x

a
f(t) dt

είναι παραγωγίσιμη με F ′(x) = f(x) για κάθε x ∈ [a, b]. Παρατηρούμε ότι∫ h2(x)

a

f(t) dt = F (h2(x)) και ομοίως

∫ h1(x)

a

f(t) dt = F (h1(x))

΄Αρα, αντικαθιστώντας στην (3) παίρνουμε

H(x) = F (h2(x))− F (h2(x) = (F ◦ h2)(x)− (F ◦ h1)(x)

και άρα από τον Κανόνα Αλυσίδας, H ′(x) = f ′(h2(x))h
′
2(x)− f ′(h1(x))h

′
1(x).

΄Ασκηση 17. ΄Εστω f, g : [a, b] → R συνεχείς συναρτήσεις με g(x) ̸= 0 για κάθε x ∈ (a, b). Δείξτε τα εξής:

(α)
∫ b

a
g(x) dx ̸= 0 και (β) υπάρχει ξ ∈ (a, b) τέτοιο ώστε∫ b

a
f(x) dx∫ b

a
g(x) dx

=
f(ξ)

g(ξ)

Λύση. Θέτουμε F (x) =

∫ x

a

f(t) dt και G(x) =

∫ x

a

g(t) dt για κάθε x ∈ [a, b]. Από το Θεμελιώδες

Θεώρημα του Ολοκληρωτικού Λογισμού έχουμε ότι οι συναρτήσεις F (x) και G(x) είναι παραγωγίσιμες με
F ′(x) = f(x) και G′(x) = g(x) για κάθε x ∈ [a, b].

(α) Αν
∫ b

a
g(x) dx ̸= 0 τότε G(b) =

∫ b

a

g(x) dx = 0 = G(a) και άρα από το Θεώρημα Rolle θα υπήρχε

ξ ∈ (a, b) με G′(ξ) = g(ξ) = 0, άτοπο αφού g(x) ̸= 0 για κάθε x ∈ (a, b).

(β) Από το Θεώρημα Μέσης Τιμής του Cauchy έχουμε ότι υπάρχει ξ ∈ (a, b) τέτοιο ώστε

F (b)− F (a)

G(b)−G(a)
=

F ′(ξ)

G′(ξ)
⇔
∫ b

a
f(x) dx∫ b

a
g(x) dx

=
f(ξ)

g(ξ)

΄Ασκηση 18. ΄Εστω f, g : [a, b] → R συνεχείς συναρτήσεις με g(x) ̸= 0 για κάθε x ∈ (a, b). Δείξτε τα εξής:

(α) Για κάθε c ∈ (a, b),

∫ b

c

g(t) dt ̸= 0. (β) Υπάρχει ξ ∈ (a, b) τέτοιο ώστε

∫ ξ

a
f(t) dt∫ b

ξ
g(t) dt

=
f(ξ)

g(ξ)
.

Λύση. (α) ΄Εστω ότι για κάποιο c ∈ (a, b), είχαμε
∫ b

c
g(t) dt = 0. Θεωρούμε την συνάρτηση Q(x) =∫ x

c

g(t) dt, x ∈ [c, b]. Τότε Q(c) = Q(b) = 0 και άρα από το Θεώρημα Rolle θα υπήρχε ξ ∈ (c, b) και άρα

ξ ∈ (a, b) με Q′(ξ) = g(ξ) = 0, άτοπο.

(β) Θεωρούμε την συνάρτηση H(x) = F (x) · G(x) όπου F (x) =

∫ x

a

f(t) dt και G(x) =

∫ b

x

g(t) dt για

κάθε x ∈ [a, b]. Από το Θεμελιώδες Θεώρημα του Ολοκληρωτικού Λογισμού οι F και G είναι παραγωγίσιμες
με F ′(x) = f(x) και G′(x) = −g(x) (δείτε ΄Ασκηση 13) για κάθε x ∈ [a, b]. Επομένως,

H ′(x) = (F (x)G(x))
′
= F ′(x)G(x) + F (x)G′(x) = f(x)

∫ b

x

g(t) dt− g(x)

∫ x

a

f(t) dt

Επίπλέον, H(a) = H(b) = 0. ΄Αρα, από το Θεώρημα Rolle υπάρχει ξ ∈ (a, b) με

H ′(ξ) = 0 ⇒ f(ξ)

∫ b

ξ

g(t) dt = g(ξ)

∫ ξ

a

f(t) dt = 0 (4)

Επειδή g(x) ̸= 0 για κάθε x ∈ (a, b) από το (α) ερώτημα έχουμε ότι

∫ b

ξ

g(t) dt ̸= 0. ΄Αρα διαιρώντας κατά μέλη

την (4) με g(ξ)
∫ b

ξ
g(t) dt παίρνουμε το ζητούμενο.

7



΄Ασκηση 19. ΄Εστω f : [a, b] → R συνεχής συνάρτηση. Αν f(a) = 0 και
∫ b

a
f(t) dt = 0 δείξτε ότι υπάρχει

ξ ∈ (a, b) τέτοιο ώστε ∫ ξ

a

f(t) dt = f(ξ) · (ξ − a)

(Υπόδειξη: Θεωρείστε την συνάρτηση ϕ : [a, b] → R με ϕ(a) = 0 και ϕ(x) =

∫ x

a
f(t) dt

x− a
για κάθε x ∈ (a, b].)

Λύση. ΄Εστω η συνάρτηση ϕ : [a, b] → R με ϕ(a) = f(a) και ϕ(x) =

∫ x

a
f(t) dt

x− a
για κάθε x ∈ (a, b]. ΄Εστω

επίσης F (x) =
∫ x

a
f(t) dt. Από το Θεμελιώδες Θεώρημα του Ολοκληρωτικού Λογισμού έχουμε ότι η F είναι

παραγωγίσιμη (και άρα και συνεχής) με F ′(x) = f(x) για κάθε x ∈ [0, 1].
(α) Η ϕ είναι συνεχής στο [a, b]: Πράγματι, για x ∈ (a, b], έχουμε ϕ(x) = F (x)/x − a, οπότε η ϕ είναι

συνεχής στο (a, b] ως πηλίκο συνεχών. Επιπλέον, είναι συνεχής και στο a αφού

lim
x→a

ϕ(x) = lim
x→a

F (x)

x− a
= lim

x→a

F (x)− F (a)

x− a
= F ′(a) = f(a) = ϕ(a)

(β) Η ϕ είναι παραγωγίσιμη στο (a, b): Πράγματι, έστω x ∈ (a, b). Τότε

ϕ′(x) =

(
F (x)

x− a

)′

=
F ′(x) · (x− a)− F (x) · (x− a)′

(x− a)2
=

(x− a)f(x)− F (x)

(x− a)2

(γ) ϕ(a) = ϕ(b) = 0: Πράγματι ϕ(a) = f(a) = 0 και ϕ(b) =
F (b)

b− a
=

∫ b

a
f(x) dx

b− a
= 0.

Από τα (α), (β), (γ) και το Θεώρημα Rolle υπάρχει ξ ∈ (a, b) με ϕ′(ξ) = 0. ΄Αρα

ϕ′(ξ) =
(ξ − a)f(ξ)− F (ξ)

(ξ − a)2
= 0 ⇔ f(ξ)

ξ − a
=

F (ξ)

(ξ − a)2
⇔ f(ξ) =

F (ξ)

ξ − a
⇔
∫ ξ

0

f(t) dt = f(ξ)(ξ − a)

΄Ασκηση 20. Υπολογίστε το όριο lim
x→0+

∫ x5

0
et

2

sin(t2) dt

x15
.

Λύση. Θέτουμε F (x) =
∫ x

0
et

2

sin(t2) dt. Από το Θεμελιώδες Θεώρημα του Ολοκληρωτικού Λογισμού,

έχουμε limx→0+ F (x) = F (0) = 0 και F ′(x) = ex
2

sin(x2). ΄Αρα το

lim
x→0+

∫ x5

0
et

2

sin(t2) dt

x15
= lim

x→0+

F (x5)

x15

είναι απροσδιόριστη μορφή
0
0 . Εφαρμόζωντας τον κανόνα de l’ Hospital και τον Κανόνα Αλυσίδας, παίρνουμε

lim
x→0+

∫ x5

0
et

2

sin(t2) dt

x15
= lim

x→0+

F (x5)

x15
= lim

x→0+

(
F (x5)

)′
(x15)

′

= lim
x→0+

F ′(x5) · (x5)′

15x14

= lim
x→0+

ex
10

sin(x10) · 5x4

15x14

=
1

3
lim

x→0+
ex

10

· lim
x→0+

sin(x10)

x10
=

1

3
· 1 · 1 =

1

3

΄Ασκηση 21. Υπολογίστε το ολοκλήρωμα

∫
1

x2 + 2x+ 5
dx.
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Λύση. ΄Εχουμε ∫
1

x2 + 2x+ 5
dx =

∫
1

x2 + 2x+ 1− 1 + 5

=

∫
1

(x+ 1)2 + 4

=
1

4

∫
1(

x+1
2

)2
+ 1

dx

t= x+1
2 , dt=dx/2

=
1

2

∫
1

t2 + 1
dt =

1

2
arctan t

=
1

2
arctan

(
x+ 1

2

)
.

΄Ασκηση 22. Υπολογίστε το ολοκλήρωμα

∫
1

x3 + x
dx

Λύση. ΄Εχουμε ∫
1

x3 + x
dx =

∫
1

x(x2 + 1)
dx

=

∫ (
1

x
− x

x2 + 1

)
dx

=

∫
1

x
dx−

∫
x

x2 + 1
dx

= ln |x| − 1

2
ln(x2 + 1)

΄Ασκηση 23. Υπολογίστε το ολοκλήρωμα

∫
x

x2 + 4x+ 5
dx.

Λύση. ΄Εχουμε

∫
x

x2 + 4x+ 5
dx =

∫
x

x2 + 4x+ 4 + 1
dx =

∫
x

(x+ 2)2 + 1
dx. Θέτουμε t = x+ 2 και

dt = dx. Οπότε

∫
x

x2 + 4x+ 5
dx =

∫
t− 2

t2 + 1
dt =

∫
t

t2 + 1
dt− 2

∫
1

t2 + 1
dt. Για το πρώτο ολοκλήρωμα

θέτουμε u = t2 + 1 και άρα du = 2tdt ⇒ tdt = du/2. Συνεπώς,

∫
t

t2 + 1
dt =

1

2

∫
1

u
du =

1

2
lnu =

1

2
ln(t2 +1) = ln

√
t2 + 1 = ln

√
(x+ 2)2 + 1. Για το δεύτερο έχουμε

∫
1

t2 + 1
dt = arctan t = arctan(x+2).

΄Αρα

∫
x

x2 + 4x+ 5
dx = ln

√
(x+ 2)2 + 1− 2 arctan(x+ 2).

΄Ασκηση 24. ΄Εστω f : [0, 1] → R συνεχής με f(0) = 0 και παραγωγίσιμη στο 0 με f ′(0) = 4. Δείξτε ότι
υπάρχει δ > 0 τέτοιο ώστε

x2 <

∫ x

0

f(t) dt < 3x2,

για κάθε x ∈ (0, δ).

Λύση. α΄ τρόπος: ΄Εστω G(x) =

∫ x

0
f(t) dt

x2
, x ∈ (0, 1]. Εφαρμόζοντας τον κανόνα de l’ Hopital έχουμε

lim
x→0+

G(x) = lim
x→0

∫ x

0
f(t) dt

x2

0
0= lim

x→0

(∫ x

0
f(t) dt

)′
(x2)

′ = lim
x→0

f(x)

2x
=

1

2
lim

x→0+

f(x)− f(0)

x− 0
=

1

2
f ′(0) = 2
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΄Αρα για κάθε ϵ > 0 υπάρχει δ > 0 τέτοιο ώστε

0 < x < δ ⇒ |G(x)− 2| < ϵ ⇒ 2− ϵ <

∫ x

0
f(t) dt

x2
< 2 + ϵ ⇒ (2− ϵ)x2 <

∫ x

0

f(t) dt < (2 + ϵ)x2

Το ζητούμενο τώρα έπεται για ϵ = 1.

β΄ τρόπος: ΄Εχουμε

f ′(0) = lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

f(x)

x
= 4

΄Αρα, όπως παραπάνω, για κάθε ϵ > 0 υπάρχει δ > 0 τέτοιο ώστε

0 < x < δ ⇒ 4− ϵ <
f(x)

x
< 4 + ϵ ⇒ (4− ϵ)x < f(x) < (4 + ϵ)x

Από την ιδιότητα μονοτονίας του ολοκληρώματος,

0 < t < x < δ ⇒ (4− ϵ)t < f(t) < (4 + ϵ)t ⇒ (4− ϵ)

∫ x

0

t dt <

∫ x

0

f(t) dt < (4 + ϵ)

∫ x

0

t dt

⇒ 4− ϵ

2
x2 <

∫ x

0

f(t) dt <
4 + ϵ

2
x2

και συνεπώς για ϵ = 2 έχουμε το ζητούμενο.

΄Ασκηση 25. Υπολογίστε το ολοκλήρωμα

∫
ex

e3x + e2x
dx.

Λύση. Θέτουμε y = ex, dy = exdx. ΄Εχουμε∫
ex

e3x + e2x
dx =

∫
1

y3 + y2
dy =

∫
1

y2(y + 1)
dy

Διασπάμε σε απλά κλάσματα και παίρνουμε

1

y2(y + 1)
=

A

y
+

B

y2
+

C

y + 1

Ay(y + 1) +B(y + 1) + Cy2 = 1

(A+ C)y2 + (A+B)y +B = 1

΄Αρα A+ C = 0, A+B = 0 και C = 1. Εύκολα βλέπουμε ότι B = 1, A = −1 και άρα

1

y2(y + 1)
= −1

y
+

1

y2
+

1

y + 1∫
1

y2(y + 1)
dy = −

∫
1

y
dy +

∫
1

y2
dy +

∫
1

y + 1
dy = − ln |y| − 1

y
+ ln |y + 1|

Οπότε ∫
ex

e3x + e2x
dx = − ln(ex)− 1

ex
+ ln(ex + 1) = −x− 1

ex
+ ln(ex + 1)

΄Ασκηση 26. ΄Εστω f : [a, b] → [c, d] γνησίως αύξουσα συνεχής και με συνεχή παράγωγο. Δείξτε ότι∫ d

c

f−1(x) dx = bd− ac−
∫ b

a

f(x) dx
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Λύση. Χρησιμοποιώντας την αντικατάσταση x = f(t), t ∈ [a, b] και ολοκλήρωση κατά μέρη, έχουμε∫ d

c

f−1(x) dx =

∫ b

a

f−1(f(t))f ′(t) dt =

∫ b

a

tf ′(t) dt

= [tf(t)]ba −
∫ b

a

t′f(t) dt

= bd− ac−
∫ b

a

f(t) dt

΄Ασκηση 27. ΄Εστω In =
∫ 2π

0
cosn x dx, n ≥ 0. Δείξτε ότι In =

n− 1

n
In−2 για κάθε n ≥ 2.

Λύση. ΄Εχουμε I0 =
∫ 2π

0
dx = 2π και I1 =

∫ 2π

0
cosx dx =

∫ 2π

0
(sinx)′ dx = [sinx]2π0 = 0. Για κάθε n ≥ 2

έχουμε

In =

∫ 2π

0

cosn x dx =

∫ 2π

0

cosn−1 x(sinx)′ dx

= [cosn−1 x sinx]2π0 −
∫ 2π

0

(cosn−1 x)′ sinx dx

= −(n− 1)

∫ 2π

0

cosn−2 x(cosx)′ sinx dx

= (n− 1)

∫ 2π

0

cosn−2 x sin2 x dx

= (n− 1)

∫ 2π

0

cosn−2 x(1− cos2 x) dx

= (n− 1)

∫ 2π

0

cosn−2 x dx− (n− 1)

∫ 2π

0

cosn x dx

= (n− 1)In−2 − (n− 1)In

και άρα

In = (n− 1)In−2 − (n− 1)In ⇒ In =
n− 1

n
In−2

για κάθε n ≥ 2.

΄Ασκηση 28. Αν In =
1

(x2 + 1)n
dt δείξτε ότι

In+1 =

(
1− 1

2n

)
In +

1

2n
· t

(x2 + 1)n

για κάθε n ∈ N.

Λύση. ΄Εχουμε (arctanx)′ =
1

x2 + 1
και

(
1

(x2 + 1)n

)′

= −n(x2 + 1)n−12t

(x2 + 1)2n
= −2n · t

(x2 + 1)n+1
(5)
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΄Εχουμε ∫
1

(x2 + 1)n+1
dx =

x2 + 1− x2

(x2 + 1)n+1

=

∫
x2 + 1

(x2 + 1)n+1
dx−

∫
x2

(x2 + 1)n+1
dx

=

∫
1

(x2 + 1)n
dx−

∫
x2

(x2 + 1)n+1
dx

= In −
∫

x · x

(x2 + 1)n+1
dx

(5)

= In +
1

2n

∫
x ·
(

1

(x2 + 1)n

)′

dx

= In +
1

2n

(
x · 1

(x2 + 1)n
−
∫
(x)′ · 1

(x2 + 1)n
dx

)
= In +

1

2n

(
x

(x2 + 1)n
− In

)
=

(
1− 1

2n

)
In +

1

2n
· x

(x2 + 1)n
.

΄Ασκηση 29. Υπολογίστε το ολοκλήρωμα
∫ 1

0
arctan t dt.

Λύση. ∫ 1

0

arctan t dt =

∫ e

1

(t)′ arctan t dt =
π

4
−
∫ 1

0

t(arctan t)′ dt

= [t arctan t]
1
0 −

∫ 1

0

t · 1

t2 + 1
dt

(u=t2+1, du=2tdt)
=

π

4
− 1

2

∫ 2

1

1

u
du

=
π

4
− [lnu]

2
1

=
π

4
− ln 2

΄Ασκηση 30. (α) Δείξτε ότι

∫
cosh2 t dt =

cosh t sinh t+ t

2
.

(β) Δείξτε ότι ∫ √
1 + x2 dx =

x
√
1 + x2 + ln

(
x+

√
x2 + 1

)
2

.

(γ) Βρείτε το μήκος της καμπύλης της γραφικής παράστασης της f(x) = x2
, x ∈ [0, 1].

Λύση. (α) ΄Εχουμε

I =

∫
cosh2 t dt =

∫
cosh t(sinh t)′ dt = cosh t sinh t−

∫
(cosh t)′ sinh t dt

= cosh t sinh t−
∫

sinh2 t dt

= cosh t sinh t−
∫
(cosh2 t− 1) dt

= cosh t sinh t−
∫

cosh2 t dt+ t = cosh t sinh t+ t− I
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και άρα I =
cosh t sinh t+ t

2
.

(β) ΄Εχουμε

(coshu)2 − (sinhu)2 = 1

και άρα αφού coshu ≥ 1 > 0 για όλα τα u ∈ R έχουμε ότι

coshu =
√
1 + sinh2 u

Επίσης, η sinhx έχει αντίστροφη που δίνεται από τον τύπο

sinh−1 x = ln(x+
√
x2 + 1)

΄Αρα για u = sinh−1 x παίρνουμε

sinh
(
sinh−1 x

)
= x και cosh

(
sinh−1 x

)
=
√

1 + x2

Θέτοντας x = sinh t ⇔ t = sinh−1 x και άρα dx = (sinh t)′dt = cosh t dt παίρνουμε∫ √
1 + x2 dx =

∫ √
1 + sinh2 t cosh t dt =

∫
cosh2 t dt

=
1

2
(cosh t · sinh t+ t)

=
1

2

(
cosh

(
sinh−1 x

)
· sinh

(
sinh−1 x

)
+ sinh−1 x

)
=

1

2

(
cosh

(
sinh−1 x

)
· x+ sinh−1 x

)
=

1

2

(
x
√
1 + x2 + sinh−1 x

)
=

1

2

(
x
√
1 + x2 + ln

(
x+

√
x2 + 1

))
(γ) ΄Εχουμε

L =

∫ 1

0

√
1 + (f ′(x))

2
dx =

∫ 1

0

√
1 + 4x2 dx =

1

2

∫ 2

0

√
1 + y2 dy

όπου θέσαμε y = 2x και dy = 2dx. Από το (β) έχουμε∫ 2

0

√
1 + y2 dx =

1

2

[(
y
√
1 + y2 + ln

(
y +

√
y2 + 1

))]2
0

=
1

2

(
2
√
5 + ln

(
2 +

√
5
))

=
√
5 + ln

√
2 +

√
5
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