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Υποδείξεις για τις Ασκήσεις – Φυλλάδιο 1

1. ΄Εστω X μη κενό σύνολο, A μια σ-άλγεβρα υποσυνόλων του X και B ⊂ X τέτοιο ώστε B /∈ A. Αποδείξτε

ότι η σ-άλγεβρα που παράγεται από την οικογένεια συνόλων A∪{B} είναι η οικογένεια όλων των συνόλων της

μορφής (A1 ∩B) ∪ (A2 \B) όπου A1, A2 ∈ A.

Υπόδειξη: Ορίζουμε F = {(A1 ∩ B) ∪ (A2 \ B) : A1, A2 ∈ A}. Θα δείξουμε ότι η F είναι σ-άλγεβρα.
Παρατηρούμε ότι αν A ∈ A τότε A = (A ∩ B) ∪ (A \ B), άρα A ∈ F . Επίσης, B = (X ∩ B) ∪ (∅ \ B), άρα
B ∈ F . Αυτό σημαίνει ότι A ∪ {B} ⊆ F , άρα

σ(A ∪ {B}) ⊆ F .

Από την άλλη πλευρά, είναι φανερό ότι αν A1, A2 ∈ A τότε (A1 ∩B) ∪ (A2 \B) ∈ σ(A ∪ {B}), άρα

F ⊆ σ(A ∪ {B})

και έπεται το ζητούμενο.

Μένει να δείξουμε ότι η F είναι σ-άλγεβρα:

1. X = (X ∩B) ∪ (X \B) και αφού X ∈ A έπεται ότι X ∈ F .

2. ΄Εστω E ∈ F . Τότε, υπάρχουν A1, A2 ∈ A τέτοια ώστε E = (A1 ∩B) ∪ (A2 \B). Γράφουμε

X \ E = (A1 ∩B)c ∩ (A2 ∩Bc)c = (Ac
1 ∪Bc) ∩ (Ac

2 ∪B)

= [(Ac
1 ∩Bc) ∪ (Ac

1 ∩B)] ∩ [(Ac
2 ∩B) ∪ (Ac

2 \B)]

= [(Ac
1 \B) ∩ (Ac

2 \B)] ∪ [(Ac
1 ∩B) ∩ (Ac

2 ∩B)]

= ((Ac
1 ∩Ac

2) \B) ∪ ((Ac
1 ∩Ac

2) ∩B) ∈ F .

3. ΄Εστω En = (A1n ∩B) ∪ (A2n \B) ∈ F , όπου A1n, A2n ∈ A. Τότε,

∞⋃
n=1

En =

( ∞⋃
n=1

(A1n ∩B)

)
∪

( ∞⋃
n=1

(A2n \B)

)
=

[( ∞⋃
n=1

A1n

)
∩B

]
∪

[( ∞⋃
n=1

A2n

)
\B

]
∈ F ,

διότι
⋃∞

n=1A1n ∈ A και
⋃∞

n=1A2n ∈ A.

2. ΄Εστω n > 2. Θεωρούμε την οικογένεια An όλων των υποσυνόλων E του Z που έχουν την εξής ιδιότητα:

«Αν για κάποιον k ∈ Z υπάρχει s ∈ {0, 1, . . . , n − 1} τέτοιος ώστε (kn + s) ∈ E, τότε για κάθε

m ∈ {0, 1, . . . , n− 1} ισχύει ότι (kn+m) ∈ E.»

Αποδείξτε ότι η An είναι σ-άλγεβρα.

Υπόδειξη: Δείχνουμε πρώτα ότι Z ∈ An. ΄Εστω k ∈ Z. Τότε, υπάρχει s ∈ {0, 1, . . . , n − 1} τέτοιος ώστε

(kn+ s) ∈ Z (οποιοσδήποτε s μας κάνει) και για κάθε m ∈ {0, 1, . . . , n− 1} ισχύει ότι (kn+m) ∈ Z.
΄Εστω E ∈ An. Υποθέτουμε ότι Z \E /∈ An και θα καταλήξουμε σε άτοπο. Πράγματι, αν Z \E /∈ An, τότε

υπάρχουν k ∈ Z και s ∈ {0, 1, . . . , n−1} ώστε (kn+s) ∈ Z\E αλλά δεν ισχύει ότι για κάθεm ∈ {0, 1, . . . , n−1}
έχουμε (kn+m) ∈ Z \E. ΄Ομως τότε, υπάρχει m0 ∈ {0, 1, . . . , n− 1} τέτοιος ώστε (kn+m0) ∈ E, και αφού

E ∈ An έπεται ότι για κάθε m ∈ {0, 1, . . . , n− 1} ισχύει ότι (kn+m) ∈ E. Ειδικότερα, kn+ s ∈ E, το οποίο

είναι άτοπο.

Αυτό αποδεικνύει ότι αν E ∈ An τότε Z \ E ∈ An.

Τέλος, δείχνουμε ότι η An είναι κλειστή ως προς αριθμήσιμες ενώσεις. ΄Εστω {Ej}∞j=1 ακολουθία συνόλων

στην An. Θα δείξουμε ότι
⋃∞

j=1Ej ∈ An. Ας υποθέσουμε ότι για κάποιον k ∈ Z υπάρχει s ∈ {0, 1, . . . , n− 1}



τέτοιος ώστε (kn + s) ∈
⋃∞

j=1. Τότε, υπάρχει j0 > 1 τέτοιος ώστε (kn + s) ∈ Ej0 . Αφού Ej0 ∈ A\, έχουμε
ότι για κάθε m ∈ {0, 1, . . . , n− 1} ισχύει ότι

(kn+m) ∈ Ej0 ⊆
∞⋃
j=1

Ej .

Αυτό αποδεικνύει ότι
⋃∞

j=1Ej ∈ An.

3. (α) ΄Εστω X μη κενό σύνολο και A1 ⊆ A2 ⊆ · · · ⊆ An ⊆ An+1 ⊆ · · · μια αύξουσα ακολουθία αλγεβρών

στο X. Αποδείξτε ότι η οικογένεια
⋃∞

n=1An είναι άλγεβρα στο X.

(β) ΄Εστω X μη κενό σύνολο και A1 ⊆ A2 ⊆ · · · ⊆ An ⊆ An+1 ⊆ · · · μια αύξουσα ακολουθία σ-αλγεβρών στο

X. Είναι σωστό ότι η οικογένεια
⋃∞

n=1An είναι σ-άλγεβρα στο X;

Υπόδειξη: (α) Θέτουμε A =
⋃∞

n=1An. Παρατηρούμε ότι ισχύουν τα εξής:

(i) Από την υπόθεση έχουμε ότι X ∈ An (και μάλιστα) για κάθε n > 1, άρα X ∈ A.

(ii) Αν F ∈ A, τότε υπάρχει m ∈ N ώστε F ∈ Am, και αφού η Am είναι άλγεβρα έχουμε X \ F ∈ Am, άρα

X \ F ∈
⋃∞

n=1An = A.

(iii) Αν F1, . . . , Fk ∈ A τότε υπάρχουν n1, . . . , nk ∈ N ώστε Fj ∈ Anj
για κάθε j = 1, . . . , k. Αν θέσουμε

N = max{n1, . . . , nk} τότε Anj ⊆ AN από την υπόθεση, άρα Fj ∈ AN για κάθε j = 1, . . . , k. Αφού η

AN είναι άλγεβρα, έπεται ότι F1 ∪ · · · ∪ Fk ∈ AN , άρα F1 ∪ · · · ∪ Fk ∈ A.

Από τα (i)–(iii) έπεται ότι η οικογένεια A είναι άλγεβρα.

(β) Δεν είναι απαραίτητα σωστό. Θεωρούμε το σύνολο X = N και τις εξής οικογένειες υποσυνόλων του N:

An = {B ⊆ N : B ⊆ {1, . . . , n} ή N \B ⊆ {1, . . . , n}}.

Είναι σαφές ότι A1 ⊆ A2 ⊆ · · · ⊆ An ⊆ An+1 ⊆ · · · και μπορείτε να ελέγξετε ότι κάθε An είναι σ-άλγεβρα.
Οι δύο πρώτες ιδιότητες ελέγχονται άμεσα και για την τρίτη θεωρήστε Bk ∈ An, k > 1 και διακρίνετε δύο

περιπτώσεις: αν όλα τα Bk ⊆ {1, . . . , n} τότε
⋃∞

k=1Bk ⊆ {1, . . . , n}, ενώ αν υπάρχειm ώστε N\Bm ⊆ {1, . . . n}
τότε (

⋃∞
k=1Bk)

c
=
⋂∞

k=1B
c
k ⊆ Bc

m ⊆ {1, . . . , n}. Και στις δύο περιπτώσεις έπεται ότι
⋃∞

k=1Bk ∈ An.

Τώρα, παρατηρήστε ότι

∞⋃
n=1

An = {B ⊆ N : B πεπερασμένο ή N \B πεπερασμένο}.

Αυτή όμως η οικογένεια, ας την πούμε A, δεν είναι σ-άλγεβρα. Το σύνολο {2n : n ∈ N} δεν ανήκει στην A,
είναι όμως αριθμήσιμη ένωση μονοσυνόλων και όλα τα μονοσύνολα φυσικών ανήκουν στην A.

4. (α) ΄Εστω {An}∞n=1 η ακολουθία υποσυνόλων του R που ορίζεται ως εξής: An =
(
− 1

n , 1
)
αν ο n είναι

περιττός και An =
(
−1, 1

n

)
αν ο n είναι άρτιος. Να βρείτε τα σύνολα lim infnAn και lim supnAn.

(β) ΄Εστω (X,A) μετρήσιμος χώρος και {An}∞n=1 ακολουθία συνόλων στην A. Αν f και g είναι οι δείκτριες

συναρτήσεις των συνόλων lim infnAn και lim supnAn αντίστοιχα, αποδείξτε ότι για κάθε x ∈ X ισχύει ότι

f(x) = lim inf
n→∞

χAn(x) και g(x) = lim sup
n→∞

χAn(x).

Υπόδειξη: (α) Παρατηρούμε αρχικά ότι An ⊆ (−1, 1) για κάθε n ∈ N, άρα lim supnAn ⊆ (−1, 1). Θα δείξουμε

ότι ισχύει ισότητα. Πράγματι, αν x ∈ [0, 1) τότε x ∈ A2k−1 για κάθε k ∈ N, δηλαδή το x ανήκει σε άπειρα An,

άρα x ∈ lim supnAn. Αυτό δείχνει ότι [0, 1) ⊆ lim supnAn. Ομοίως, αν x ∈ (−1, 0] τότε x ∈ A2k για κάθε

k ∈ N, δηλαδή το x ανήκει σε άπειρα An, άρα x ∈ lim supnAn. Αυτό δείχνει ότι (−1, 0] ⊆ lim supnAn, και

τελικά (−1, 1) ⊆ lim supnAn.



Δείχνουμε τώρα ότι lim infnAn = {0}. Αρχικά, 0 ∈ An για κάθε n ∈ N, άρα 0 ∈ lim infnAn. ΄Εστω x > 0.
Τότε, υπάρχει k0 ∈ N τέτοιος ώστε

1
2k0

< x. Για κάθε k > k0 έχουμε
1
2k < x, άρα x /∈ A2k. Υπάρχουν λοιπόν

άπειροι φυσικοί n τέτοιοι ώστε x /∈ A)n, το οποίο σημαίνει ότι x /∈ lim infnAn. ΄Ομοια δείχνουμε ότι αν x < 0
τότε x /∈ lim infnAn, και συνδυάζοντας τα παραπάνω βλέπουμε ότι lim infnAn = {0}.
(β) Δείχνουμε μόνο τον πρώτο ισχυρισμό. ΄Εχουμε f(x) = 1 ή f(x) = 0. ΄Εχουμε f(x) = 1 αν και μόνο αν

x ∈ lim infnAn, δηλαδή αν και μόνο αν το x ανήκει σε όλα τελικά τα An, δηλαδή αν και μόνο αν η ακολουθία

χAn(x) είναι τελικά σταθερή και ίση με 1, ή ισοδύναμα lim infn χAn(x) = 1 (για την ισοδυναμία, παρατηρήστε ότι

αν lim infn χAn(x) = 1 τότε όλοι τελικά οι χAn(x) είναι μεγαλύτεροι από 1/2 –εξηγήστε γιατί– άρα χAn(x) = 1
τελικά).

Επίσης, έχουμε f(x) = 0 αν και μόνο αν x /∈ lim infnAn, δηλαδή αν και μόνο αν x /∈ An για άπειρους

δείκτες n, δηλαδή αν και μόνο αν πάρχει υπακολουθία χAkn
(x) σταθερή και ίση με 0, το οποίο συνεπάγεται ότι

lim infn χAn(x) = 0. Αντίστροφα, παρατηρήστε ότι αν lim infn χAn(x) = 0 τότε υπάρχουν άπειροι χAn(x) που

είναι μικρότεροι από 1/2 –εξηγήστε γιατί– άρα χAn(x) = 0 για άπειρους δείξτες n, άρα ΄x /∈ An για άπειρους

δείξτες n, άρα x /∈ lim infnAn, το οποίο σημαίνει ότι f(x) = 0.

5. (α) Δώστε παράδειγμα απεικόνισης µ : P(N)→ [0,+∞] που είναι πεπερασμένα προσθετικό μέτρο αλλά δεν

είναι (αριθμήσιμα προσθετικό) μέτρο.

(β) ΄Εστω (X,A) μετρήσιμος χώρος και ν : A → [0,+∞] πεπερασμένα προσθετικό μέτρο. Αν το ν είναι επίσης

αριθμήσιμα υποπροσθετικό, αποδείξτε ότι το ν είναι μέτρο.

Υπόδειξη: (α) Δοκιμάστε µ(A) = 0 αν το A είναι πεπερασμένο και µ(A) =∞ αν το A είναι άπειρο σύνολο.

(β) Από την πεπερασμένη προσθετικότητα του ν έπεται ότι είναι και μονότονο: αν E,F ∈ A και E ⊆ F τότε

ν(E) 6 ν(F ).
΄Εστω {Ak}∞k=1 ακολουθία ξένων συνόλων στην A. Για κάθε n ∈ N έχουμε

n∑
k=1

ν(Ak) = ν
( n⋃

k=1

Ak

)
6 ν

( ∞⋃
k=1

Ak

)
.

΄Επεται ότι

∞∑
k=1

ν(Ak) 6 ν
( ∞⋃

k=1

Ak

)
. Η αντίστροφη ανισότητα ισχύει αφού το ν έχει υποτεθεί αριθμήσιμα

υποπροσθετικό. ΄Αρα, ν
( ∞⋃

k=1

Ak

)
=

∞∑
k=1

ν(Ak). ΄Επεται ότι το ν είναι μέτρο.

6. (α) ΄Εστω (X,A, µ) χώρος μέτρου και A,B,C ∈ A τέτοια ώστε:

A ⊆ C, B ⊆ C, µ(A) = µ(C) <∞.

Αποδείξτε ότι µ(A ∩B) = µ(B).

(β) ΄Εστω (X,A, µ) ένας πλήρης χώρος μέτρου και έστω A,B ⊆ X. Αν A ∈ A και µ(A4B) = 0, αποδείξτε
ότι B ∈ A και µ(B) = µ(A).

Υπόδειξη: (α) Από τις A ⊆ C και µ(A) = µ(C) <∞ βλέπουμε ότι

µ(A) = µ(C) = µ(A ∪ (C \A)) = µ(A) + µ(C \A),

άρα µ(C \ A) = 0. Τότε, από την B ⊆ C έχουμε ότι B \ A ⊆ C \ A, άρα µ(B \ A) 6 µ(C \ A) = 0, δηλαδή
µ(B \A) = 0. Τώρα,

µ(A ∩B) 6 µ(B) = µ((A ∩B) ∪ (B \A)) = µ(A ∩B) + µ(B \A) = µ(A ∩B),

και έπεται ότι µ(A ∩B) = µ(B).



(β) ΄Εχουμε A \B ⊆ A4B και B \A ⊆ A4B. Αφού ο (X,A, µ) είναι πλήρης χώρος μέτρου και µ(A4B) = 0,
έπεται ότι A \ B,B \ A ∈ A και µ(A \ B) = µ(B \ A) = 0. Τότε, A ∩ B = A \ (A \ B) ∈ A και B =
(A ∩B) ∪ (B \A) ∈ A. Επίσης,

µ(B) = µ(A ∩B) + µ(B \A) = µ(A ∩B) = µ(A ∩B) + µ(A \B) = µ(A).

7. ΄Εστω (X,A) μετρήσιμος χώρος και D οικογένεια μέτρων στην A με την εξής ιδιότητα: αν µ1, µ2 ∈ D τότε

υπάρχει µ3 ∈ D τέτοιο ώστε µ3 > max{µ1, µ2}. Ορίζουμε

ν(A) = sup{µ(A) : µ ∈ D}, A ∈ A.

Αποδείξτε ότι το ν είναι μέτρο στην A.

Υπόδειξη: Από τον ορισμό του ν ελέγχουμε εύκολα ότι ν(∅) = 0 και ότι το ν είναι μονότονο: αν A,B ∈ A και

A ⊆ B τότε µ(A) 6 µ(B)ν(B) για κάθε µ ∈ D, άρα

ν(A) = sup{µ(A) : µ ∈ D} 6 ν(B).

΄Εστω (An)
∞
n=1 ακολουθία ξένων ανά δύο συνόλων στην A. Για κάθε µ ∈ D έχουμε

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An) 6
∞∑

n=1

ν(An),

και παίρνοντας supremum ως προς µ ∈ D βλέπουμε ότι

ν

( ∞⋃
n=1

An

)
= sup

{
µ

( ∞⋃
n=1

An

)
: µ ∈ D

}
6
∞∑

n=1

ν(An).

Για την αντίστροφη ανισότητα μπορούμε να υποθέσουμε ότι ν (
⋃∞

n=1An) < ∞. Τότε, λόγω μονοτονίας του

ν, έχουμε ν(An) < ∞ για κάθε n ∈ N. Σταθεροποιούμε N ∈ N και για τυχόν ε > 0 βρίσκουμε µn ∈ D,
1 6 n 6 N , ώστε µn(An) > ν(An) − ε/N . Από την υπόθεση της άσκησης έπεται ότι υπάρχει µ ∈ D τέτοιο

ώστε µ > max{µ1, . . . , µN}. Τότε,

N∑
n=1

ν(An)− ε <
N∑

n=1

µn(An) 6
N∑

n=1

µ(An) = µ

(
N⋃

n=1

An

)
6 ν

(
N⋃

n=1

An

)
6 ν

( ∞⋃
n=1

An

)
.

Αφού το ε > 0 ήταν τυχόν, έπεται ότι
∑N

n=1 ν(An) 6 ν (
⋃∞

n=1An), και αφήνοντας το N →∞ παίρνουμε

∞∑
n=1

ν(An) = lim
N→∞

N∑
n=1

ν(An) 6 ν

( ∞⋃
n=1

An

)
.

Αφού το ν είναι αριθμήσιμα προσθετικό, είναι μέτρο στην A.

8. ΄Εστω (X,A, µ) χώρος μέτρου και {An}∞n=1 ακολουθία συνόλων στην A τέτοια ώστε µ(An) → 0 και
∞∑

n=1
µ(An+1 \An) < +∞. Αποδείξτε ότι µ (lim supAn) = 0.

Υπόδειξη: Παρατηρούμε ότι, για κάθε N ∈ N ισχύει ότι

∞⋃
n=N

An = AN ∪

( ∞⋃
n=N+1

(An \An−1)

)
.



Πράγματι, αν x ∈
⋃∞

n=N An τότε είτε x ∈ AN ή υπάρχει ο ελάχιστος n > N ώστε x ∈ An και τότε x ∈
An \ An−1. Αυτό δείχνει τον εγκλεισμό ⊆, ενώ ο αντίστροφος εγκλεισμός ελέγχεται εύκολα. ΄Επεται ότι

µ (
⋃∞

n=N An) 6 µ(AN ) +
∑∞

n=N+1 µ(An \An−1).

΄Εστω ε > 0. Αφού µ(An)→ 0 και

∞∑
n=1

µ(An+1\An) < +∞, υπάρχειM ∈ N ώστε

∞∑
n=M+1

µ(An\An−1) < ε

και µ(AN ) < 1 για κάθε N > M . Τότε, για κάθε N > M έχουμε ότι µ (
⋃∞

n=N An) 6 µ(AN ) + ε < 1 + ε.
Αφήνοντας το N →∞ παίρνουμε

µ (lim supAn) = lim
N→∞

µ

( ∞⋃
n=N

An

)
6 lim

N→∞
µ(An) + ε = ε,

και αφού το ε > 0 ήταν τυχόν, έπεται το ζητούμενο.

9. ΄Εστω (X,A, µ) χώρος πιθανότητας και A1, . . . , An ∈ A. Αποδείξτε ότι

0 6
n∑

k=1

µ(Ak)− µ

(
n⋃

k=1

Ak

)
6

∑
16k<m6n

µ(Ak ∩Am).

Υπόδειξη: Με επαγωγή ως προς n. Αν n = 2 τότε παρατηρούμε ότι

µ(A1) + µ(A2) =
(
µ(A1 ∩A2) + µ(A1 \A2)

)
+
(
µ(A1 ∩A2) + µ(A2 \A1)

)
=
(
µ(A1 ∩A2) + µ(A1 \A2) + µ(A2 \A1)

)
+ µ(A1 ∩A2) = µ(A1 ∪A2) + µ(A1 ∩A2),

άρα το ζητούμενο ισχύει ως ισότητα (χρησιμοποιήσαμε το γεγονός ότι τα A1 ∩ A2, A1 και A2 είναι ξένα και η

ένωσή τους είναι το A1 ∪A2).

Για το επαγωγικό βήμα, εφαρμόζοντας το βήμα n = 2 για τα
⋃n

k=1Ak και An+1, γράφουμε

µ

(
n+1⋃
k=1

Ak

)
= µ

((
n⋃

k=1

Ak

)
∪An+1

)
= µ

(
n⋃

k=1

Ak

)
+ µ(An+1)− µ

((
n⋃

k=1

Ak

)
∩An+1

)

= µ

(
n⋃

k=1

Ak

)
+ µ(An+1)− µ

(
n⋃

k=1

(Ak ∩An+1)

)
,

Παρατηρήστε επίσης ότι

µ

(
n⋃

k=1

(Ak ∩An+1)

)
6

n∑
k=1

µ(Ak ∩An+1).

Χρησιμοποιώντας και την επαγωγική υπόθεση για τα A1, . . . , An, συμπεραίνουμε ότι

0 6
n+1∑
k=1

µ(Ak)− µ

(
n+1⋃
k=1

Ak

)
=

n+1∑
k=1

µ(Ak)− µ

(
n⋃

k=1

Ak

)
− µ(An+1) + µ

(
n⋃

k=1

(Ak ∩An+1)

)

=

n∑
k=1

µ(Ak)− µ

(
n⋃

k=1

Ak

)
+

n∑
k=1

µ(Ak ∩An+1)

6
∑

16k<m6n

µ(Ak ∩Am) +

n∑
k=1

µ(Ak ∩An+1)

=
∑

16k<m6n+1

µ(Ak ∩Am).



10. ΄Εστω (X,A, µ) χώρος πιθανότητας και {An}∞n=1 ακολουθία συνόλων στηνA, τέτοια ώστε µ(lim infnAn) >
0. Αποδείξτε ότι υπάρχει υπακολουθία {Akn

}∞n=1 της {An}∞n=1 τέτοια ώστε

µ

(
N⋂

n=1

Akn

)
> 0 για κάθε N ∈ N.

Υπόδειξη: Θέτουμε Bn =
⋂∞

k=nAk. Τότε, η {Bn}∞n=1 είναι αύξουσα ακολουθία συνόλων στην A και

lim
n→∞

µ(Bn) = µ

( ∞⋃
n=1

Bn

)
= µ

( ∞⋃
n=1

∞⋂
k=n

Ak

)
= µ

(
lim inf

n
An

)
> 0,

άρα υπάρχει m ∈ N τέτοιος ώστε µ(Bm) > 0. Αν ορίσουμε kn = m+ n− 1, τότε

N⋂
n=1

Akn =

n+N−1⋂
k=m

Ak ⊇
∞⋂

k=m

Ak = Bm,

άρα

µ

(
N⋂

n=1

Akn

)
> µ(Bm) > 0

για κάθε N ∈ N.


