Functional Analysis I

1st week

Linear spaces, subspaces, basis and dimension of a linear space.

2nd week

Normed spaces, open and closed ball of a normed space. Open and closed sets of a normed space. Continuity of the norm and of addition/scalar multiplication. Convergent and Cauchy sequences. The definition of a Banach space. Examples of Banach spaces: \mathbb{R}^n , C([a,b)], l^p for $1 \leq p < \infty$.

3rd/4th week

Finite dimensional normed spaces. Equivalent norms. We proved that all norms on a finite dimensional space are equivalent and then that every finite dimensional space is a Banach space. We then proved that if for a subspace Y of a normed space X we have that $Y^{\circ} \neq \emptyset$, then Y = X. We concluded with the very important Theorem that the dimension of a Banach space is either finite or uncountable. Bounded linear operators.

5th week

Main properties of bounded linear operators. Examples: the Voltera integral operator and the right shift. The norm of a bounded linear operator.

6th week

We gave the definition of codimension of a subspace and we proved that the codimension of the kernel of a linear functional is 1. The separability of finite dimensional spaces, of c_{00} and of l^p , for $1 \le p < \infty$. The non-separability of l^{∞} .

7th week

We stated the Hahn-Banach Theorem and proved some of its corollaries.

8th week

Using the corollaries of the Hahn-Banach theorem we proved that if X^* is separable, then X is separable and that X is finite dimensional if and only if its closed unit ball is compact. We begun the proof of the Hahn-Banach theorem.

9th week

We finished the proof of the Hahn-Banach theorm. We showed the X may be embedded to its second dual. We also showed that if p > 1, then $(l^p)^* = l^q$ for all $\frac{1}{p} + \frac{1}{q} = 1$ and hence that if p > 1, then l^p is reflexive.