Functional Analysis I

(Problem sheet 5)

Exercise 1. Let X be a normed space. Show that for any $x \in X$ there exists $f \in X^*$, such that $f(x) = ||x||^2$ and ||f|| = ||x||.

Exercise 2. Let X be a normed space and Y be a proper closed linear subspace of X. If $x_0 \notin Y$ show that there exists $f \in X^*$, such that

$$||f|| = \frac{1}{d(x_0, Y)}, f(x_0) = 1 \text{ and } f(y) = 0, \text{ for all } y \in Y.$$

Exercise 3. Let M be a subset of the nornmed space X. Show that $x_0 \in X$ belongs to the set $\overline{\langle M \rangle}$ if and only if $f(x_0) = 0$, for all $f \in X^*$, such that $f|_M = 0$.

Exercise 4. Let X be a normed space and Y be a closed linear subspace of X. We say that $z \in X$ is orthogonal to Y, and write $z \perp Y$, if $\operatorname{dist}(z,Y) = \|z\|$. Show that $z \perp Y$ if and only if there exists $0 \neq f \in X^*$ such that $f|_Y = 0$ and $|f(z)| = \|f\| \|z\|$. Moreover show that if $Y \neq X$ and $x_0 \notin Y$, then $y_0 \in Y$ is the nearest point of Y to x (i.e. $0 < \operatorname{dist}(x_0,Y) = \|x_0 - y_0\|$) if and only if $x_0 - y_0 \perp Y$.

Exercise 5. Let X be a normed space, Y be a linear subspace of X and

$$F = \{ f \in X^* : ||f|| \le 1, f|_Y = 0 \} .$$

Prove that:

(i) For any $x \in X$

$$\operatorname{dist}(x,Y) = \sup_{f \in F} |f(x)|.$$

(ii)

$$\overline{Y} = \bigcap_{f \in F} \ker f.$$

(Hint: use exercise 2.)