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Μαθηματική Ανάλυση Ι

ΦΥΛΛΑΔΙΟ 5- ΑΠΑΝΤΗΣΕΙΣ

΄Ασκηση 1. Δείξτε ότι το lim
x→+∞

sinx δεν υπάρχει.

Λύση. Αρκεί να βρούμε δύο ακολουθίες (xn) και (x
′
n) τέτοιες ώστε limn→∞ xn = limn→∞ x′

n = +∞ ενώ
limn→∞ f(xn) ̸= limn→∞ f(x′

n). ΄Εστω xn = 2πn και x′
n = 2πn +

π

2
για κάθε n ∈ N. Τότε limn→∞ xn =

limn→∞ x′
n = +∞ αλλά limn→∞ sin(xn) = 0 και limn→∞ sin(x′

n) = 1.

΄Ασκηση 2. (α) ΄Εστω f : R → R συνεχής συνάρτηση. Αν lim
x→+∞

f(x) = +∞ και lim
x→−∞

f(x) = −∞
δείξτε ότι η f είναι επί. Ομοίως δείξτε ότι το ίδιο συμβαίνει αν lim

x→+∞
f(x) = −∞ και lim

x→−∞
f(x) = +∞.

(β) Δείξτε ότι κάθε πολυώνυμο περιττού βαθμού έχει μια τουλάχιστον πραγματική ρίζα.

Λύση. (α) ΄Εστω ότι υπήρχε y0 ∈ R τέτοιο ώστε f(x) ̸= y0 για κάθε x ∈ R. Τότε λόγω συνέχειας της
f από το Θεώρημα Ενδιάμεσων Τιμών θα είχαμε ότι είτε (1) f(x) < y0 για όλα τα x ∈ R, είτε (2) f(x) > y0
για όλα τα x ∈ R. Αν συμβαίνει το (1) σημαίνει ότι η f είναι άνω φραγμένη και άρα δεν μπορεί να ισχύει ότι
lim

x→+∞
f(x) = +∞ ή lim

x→−∞
f(x) = +∞. Ομοίως αν ισχύει το (2) σημαίνει ότι η f είναι κάτω φραγμένη και

συνεπώς δεν μπορεί να ισχύει ότι lim
x→−∞

f(x) = −∞ ή lim
x→+∞

f(x) = −∞. ΄Αρα και στις δύο περιπτώσεις
καταλήγουμε σε άτοπο. ΄Αρα για κάθε y ∈ R υπάρχει x ∈ R τέτοιο ώστε f(x) = y, δηλαδή η f είναι επί.

(β) ΄Εστω p(x) = anx
n + · · ·+ a1x+ a0 πολυώνυμο όπου an ̸= 0 και n περιττός. Υποθέτουμε ότι an > 0

(αν an < 0 η απόδειξη είναι παρόμοια). Τότε

lim
x→+∞

p(x) = lim
x→+∞

(anx
n) · lim

x→+∞

(
1 +

an−1

x
+ · · ·+ a1

xn−1
+

a0
xn

)
= lim

x→+∞
(anx

n) = +∞

και αντίστοιχα

lim
x→−∞

p(x) = −∞

Συνεπώς η p(x) ικανοποιεί τις υποθέσεις του ερωτήματος (α) και άρα είναι επί. Ειδικότερα, υπάρχει x0 ∈ R με
p(x0) = 0.

΄Ασκηση 3. ΄Εστω (a, b) ένα ανοικτό μη κενό διάστημα του R. Βρείτε μια συνάρτηση f : (a, b) → R 1-1 και
επί και τέτοια ώστε η f και η f−1

είναι παραγωγίσιμες.

Λύση. ΄Εστω f(x) =
1

a− x
+

1

b− x
για κάθε x ∈ (a, b). Επειδή f ′(x) =

1

(a− x)2
+

1

(b− x)2
> 0 έχουμε

ότι η f είναι γνησίως αύξουσα. Επιπλέον, παρατηρούμε ότι limx→a+ ϕ(x) = −∞ και limx→b− ϕ(x) = +∞. ΄Αρα
από το Θεώρημα Ενδιάμεσων τιμών η f είναι επί. Από το Θεώρημα της παραγώγου της αντίστροφης συνάρτησης
η f−1

είναι παραγωγίσιμη.

΄Ασκηση 4. ΄Εστω I διάστημα του R και f : I → R παραγωγίσιμη συνάρτηση. Δείξτε ότι η f δεν είναι
μονότονη συνάρτηση αν και μόνο αν υπάρχουν x1, x2 ∈ I με f ′(x1) · f ′(x2) < 0.

Λύση. Η f δεν είναι αύξουσα και άρα μπορούμε να βρούμε a < b στο I με f(a) > f(b). Ομοίως, η f
δεν είναι φθίνουσα και άρα υπάρχουν c < d στο I με f(c) < f(d). Από το Θεώρημα Μέσης Τιμής υπάρχουν

x1 ∈ (a, b) και x2 ∈ (c, d) με f ′(x1) =
f(b)− f(a)

b− a
< 0 και f ′(x2) =

f(d)− f(c)

d− c
> 0, οπότε f ′(x1)·f ′(x2) < 0.

Αντίστροφα, έστω ότι υπάρχουν x1, x2 ∈ I με f ′(x1) · f ′(x2) < 0. ΄Οπως γνωρίζουμε αν μια παραγωγίσιμη
συνάρτηση f είναι αύξουσα τότε f ′(x) ≥ 0 για όλα τα x ∈ I και αντίστοιχα αν είναι φθίνουσα τότε f ′(x) ≤ 0
για όλα τα x ∈ I. ΄Αρα αν η f ήταν μονότονη τότε θα είχαμε f ′(x1)f

′(x2) ≥ 0 για κάθε x1, x2 ∈ I, άτοπο.
Συνεπώς η f δεν είναι μονότονη.



΄Ασκηση 5. (α) Αν f : R → R παραγωγίσιμη με f ′(x) ̸= 0 για κάθε x ∈ R δείξτε ότι η f είναι γνησίως
μονότονη. (β) Ισχύει το αντίστροφο ?

Λύση. (α) (α΄ τρόπος) Από το Θεώρημα Μέσης Τιμής έχουμε ότι η f είναι 1−1. Πράγματι, έστω x1 ̸= x2.

Τότε, από το Θεώρημα Μέσης Τιμής, υπάρχει ξ μεταξύ των x1, x2 με
f(x1)− f(x2)

x1 − x2
= f ′(ξ) και άρα, αφού

f ′(ξ) ̸= 0 έπεται ότι f(x1) ̸= f(x2). ΄Αρα η f είναι γνησίως μονότονη ως συνεχής και 1− 1.
(β΄ τρόπος) Από το Θεώρημα Darboux έχουμε ότι η f ′

διατηρεί πρόσημο. ΄Αρα είτε f ′(x) > 0 για όλα τα
x ∈ R οπότε η f είναι γνησίως αύξουσα είτε f ′(x) < 0 για όλα τα x ∈ R οπότε η f είναι γνησίως φθίνουσα.
(β) Το αντίστροφο δεν ισχύει. Πχ. η f(x) = x3

είναι γνησίως μονότονη αλλά f ′(0) = 0.

΄Ασκηση 6. ΄Εστω f : R → R παραγωγίσιμη. Αν η f ′
είναι μη σταθερή συνάρτηση δείξτε ότι λαμβάνει και

ρητές και άρρητες τιμές.

Λύση. Αφού η f ′
είναι μη σταθερή υπάρχουν x1 ̸= x2 ∈ R με f ′(x1) ̸= f ′(x2). ΄Εστω a = f ′(x1) και

b = f ′(x2). Από Θεώρημα Darboux η f ′
έχει την ιδιότητα των ενδιάμεσων τιμών, δηλαδή η f ′

λαμβάνει όλες

τις τιμές μεταξύ των a και b. Από την πυκνότητα των αρρήτων στο R μεταξύ των a και b υπάρχουν (άπειροι)
ρητοί και (άπειροι) άρρητοι και άρα η f ′

λαμβάνει (άπειρες) ρητές και (άπειρες) άρρητες τιμές.

΄Ασκηση 7. Βρείτε όλες τις παραγωγίσιμες συναρτήσεις f : R → R με την ιδιότητα f ′(x) ∈ N για κάθε x ∈ R.

Λύση. Αν η f ′
λαμβάνει δύο διαφορετικές τιμές, τότε θα λαμβάνει και τιμές εκτός του N αφού ικανοποιεί την

ιδιότητα των ενδιάμεσων τιμών (Θεώρημα Darboux). ΄Αρα αν f ′(x) ∈ N για κάθε x ∈ R θα πρέπει f ′(x) = n0

για κάποιο n0 ∈ N και για όλα τα x ∈ R. ΄Αρα f(x) = n0x+ c για κάθε x ∈ R.

΄Ασκηση 8. Δίνεται η συνάρτηση f : R → R με τύπο

f(x) =

{
x, αν x ≤ 0

x+ 1, αν x > 0

Δείξτε ότι δεν υπάρχει F : R → R με F ′ = f .

Λύση. Κάνοντας την γραφική παράσταση της f βλέπουμε ότι η f δεν ικανοποιεί την ιδιότητα των ενδιάμεσων
τιμών διότι f(x) ≤ 0, για x ≤ 0 και f(x) > 1 για x > 0. ΄Αρα, από Θεώρημα Darboux, δεν μπορεί η f να είναι
η παράγωγος κάποιας συνάρτησης.

΄Ασκηση 9. ΄Εστω f : R → R με την εξής ιδιότητα: Για κάθε x ∈ R υπάρχει δ > 0 τέτοιο ώστε η f είναι
σταθερή στο (x− δ, x+ δ). Δείξτε ότι η f είναι σταθερή συνάρτηση.

Λύση. ΄Εστω x0 ∈ R τυχαίο. ΄Εστω δ > 0 τέτοιο ώστε η f είναι σταθερή στο (x0 − δ, x0 + δ). Τότε
f(x)− f(x0)

x− x0
= 0 για κάθε x ∈ (x0 − δ, x0 + δ) και άρα f ′(x0) = 0. Επομένως η f είναι παραγωγίσιμη και

f ′(x) = 0 για κάθε x ∈ R. ΄Αρα η f είναι σταθερή.

΄Ασκηση 10. Δίνεται η συνάρτηση f(x) =

{
0 αν x ρητός

x2
αν x άρρητος

. Αποδείξτε ότι f ′(0) = 0.

Λύση. ΄Εστω (xn) ακολουθία με xn ̸= 0 και xn → 0. ΄Εστω n ∈ N. ΄Εχουμε

f(xn)− f(0)

xn − 0
=

0 αν xn ρητός

x2
n

xn
= xn αν xn άρρητος

Παρατηρούμε ότι και στις δύο περιπτώσεις έχουμε ότι

∣∣∣∣f(xn)− f(0)

xn − 0

∣∣∣∣ ≤ |xn| και άρα lim
n

f(xn)− f(0)

xn − 0
= 0.

Συνεπώς για κάθε ακολουθία (xn) με xn ̸= 0 και xn → 0 έχουμε ότι

lim
n

f(xn)− f(0)

xn − 0
= 0
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Από την Αρχή μεταφοράς για όρια έπεται ότι

f ′(0) = lim
x→0

f(x)− f(0)

x− 0
= 0

΄Ασκηση 11. ΄Εστω f : R → R και x0 ∈ R. ΄Εστω ότι η f είναι συνεχής στο x0 ∈ R και παραγωγίσιμη στο
R \ {x0}. Αν το limx→x0 f

′(x) υπάρχει (πεπερασμένο ή άπειρο) δείξτε ότι limx→x0 f
′(x) = f ′(x0).

Λύση. Από τον ορισμό της παραγώγου έχουμε f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0
. Λόγω συνέχειας της f στο

x0, limx→x0
(f(x)− f(x0)) = 0 και άρα το παραπάνω όριο είναι απροσδιοριστία της μορφής

0

0
. Από τον Κανόνα

de l’Hospital παίρνουμε

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0

(Η)
= lim

x→x0

(f(x)− f(x0))
′

(x− x0)′
= lim

x→x0

f ′(x)

1
= lim

x→x0

f ′(x)

΄Ασκηση 12. ΄Εστω f : R → R παραγωγίσιμη και x0 ∈ R. Δείξτε ότι τα επόμενα είναι ισοδύναμα:

1. Τα πλευρικά όρια limx→x+
0
f ′(x), limx→x−

0
f ′(x) υπάρχουν.

2. limx→x0
f ′(x) = f ′(x0).

3. Η f ′
είναι συνεχής στο x0.

΄Αρα η f ′
είναι ασυνεχής σε ένα σημείο x0 αν και μόνο αν ένα τουλάχιστον από τα πλευρικά όρια limx→x+

0
f ′(x),

limx→x−
0
f ′(x) δεν υπάρχει. Ισοδύναμα, οι ασυνέχειες της f ′

είναι όλες γ′
είδους.

Λύση. (1)⇒ (2): Επειδή η f είναι παραγωγίσιμη στο x0, υπάρχει το lim
x→x0

f(x)− f(x0)

x− x0
= f ′(x0) και άρα

lim
x→x+

0

f(x)− f(x0)

x− x0
= lim

x→x−
0

f(x)− f(x0)

x− x0
= f ′(x0) (1)

Επειδή η f είναι συνεχής (ως παραγωγίσιμη) έχουμε ότι limx→x+
0
(f(x)− f(x0)) = limx→x−

0
(f(x)− f(x0)) = 0

και άρα τα παραπάνω πλευρικά όρια είναι απροσδιοριστίες της μορφής
0

0
. ΄Αρα, αν υποθέσουμε ότι τα όρια

limx→x+
0
f ′(x), limx→x−

0
f ′(x) υπάρχουν, από κανόνα de l’ Hospital, έχουμε

lim
x→x+

0

f(x)− f(x0)

x− x0

(Η)
= lim

x→x+
0

(f(x)− f(x0))
′

(x− x0)′
= lim

x→x+
0

f ′(x)

1
= lim

x→x+
0

f ′(x) (2)

και ομοίως

lim
x→x−

0

f(x)− f(x0)

x− x0

(Η)
= lim

x→x−
0

(f(x)− f(x0))
′

(x− x0)′
= lim

x→x−
0

f ′(x)

1
= lim

x→x−
0

f ′(x) (3)

Από τις (1)-(3) παίρνουμε ότι

lim
x→x+

0

f ′(x) = lim
x→x−

0

f ′(x) = f ′(x0)

(2)⇒ (3): Αφού limx→x0 f
′(x) = f ′(x0) η f

′
είναι συνεχής στο x0.

(3)⇒ (1): Αφού η f ′
είναι συνεχής στο x0 έχουμε ότι limx→x+

0
f ′(x) = f ′(x0) και limx→x−

0
f ′(x) = f ′(x0).

΄Ασκηση 13. Δίνεται η συνάρτηση f(x) = x2 sin

(
1

x

)
, αν x ̸= 0 και f(0) = 0. Δείξτε ότι (α) η f είναι

παραγωγίσιμη (β) το όριο limx→0 f
′(x) δεν υπάρχει.
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Λύση. Για κάθε x ̸= 0 έχουμε f ′(x) = 2x sin

(
1

x

)
+ x2

(
cos

(
1

x

))(
− 1

x2

)
= 2x sin

(
1

x

)
− cos

(
1

x

)
.

Επίσης για x = 0 έχουμε

f ′(0) = lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

x2 sin

(
1

x

)
x

= lim
x→0

x sin

(
1

x

)
= 0

(από Θεώρημα Παρεμβολής, αφού −x ≤ x sin

(
1

x

)
≤ x). Τέλος, για να διαπιστώσουμε ότι το όριο

lim
x→0

f ′(x) = lim
x→0

(
2x sin

(
1

x

)
− cos

(
1

x

))
δεν υπάρχει, μπορούμε να χρησιμοποιήσουμε την Αρχή Μεταφοράς θεωρώντας τις ακολουθίες xn =

1

2nπ
και

yn =
1

2nπ + π
. ΄Εχουμε xn, yn ̸= 0, limn→∞ xn = limn→∞ yn = 0 και limn→∞ f ′(xn) ̸= limn→∞ f ′(yn) αφού

f(xn) = −1 και f(yn) = 1 για κάθε n ∈ N.
΄Ασκηση 14. ΄Εστω f : R → R παραγωγίσιμη συνάρτηση και έστω x0 ∈ R τέτοιο ώστε η f ′′(x0) υπάρχει.
Δείξτε ότι

lim
x→0

f(x0 + x) + f(x0 − x)− 2f(x0)

x2
= f ′′(x0) (4)

Λύση. Λόγω συνέχειας της f το όριο στην (4) είναι απροσδιοριστία της μορφής
0

0
. Εφαρμόζοντας τον

Κανόνα Hospital έχουμε:

lim
x→0

f(x0 + x) + f(x0 − x)− 2f(x0)

x2

(Η)
= lim

x→0

[f(x0 + x) + f(x0 − x)− 2f(x0)]
′

(x2)′

= lim
x→0

f ′(x0 + x)− f ′(x0 − x)

2x

Παρατηρούμε τώρα ότι

lim
x→0

f ′(x0 + x)− f ′(x0 − x)

2x
= lim

x→0

f ′(x0 + x)− f ′(x0) + f ′(x0)− f ′(x0 − x)

2x

=
1

2

(
lim
x→0

f ′(x0 + x)− f ′(x0)

x
+ lim

x→0

f ′(x0 − x)− f ′(x0)

−x

)
=

1

2
(f ′′(x0) + f ′′(x0)) = f ′′(x0)

΄Ασκηση 15. ΄Εστω f : R → R, τρείς φορές παραγωγίσιμη συνάρτηση. Αν lim
x→+∞

f
′′′
(x) = 12 δείξτε ότι

υπάρχει M > 0 τέτοιο ώστε x3 < f(x) < 3x3
για όλα τα x > M .

Λύση. Επειδή limx→+∞ x3 = limx→+∞ x2 = limx→+∞ x = +∞ μπορούμε να εφαρμόσουμε επαναληπτικά

τον κανόνα De l’Hospital για την συνάρτηση
f(x)

x3
ως εξής

lim
x→+∞

f(x)

x3

(Η)
= lim

x→+∞

f ′(x)

3x2

(Η)
= lim

x→+∞

f ′′(x)

6x

(Η)
= lim

x→+∞

f
′′′
(x)

6
= 2

΄Αρα lim
x→+∞

f(x)

x3
= 2, που εξ ορισμού του ορίου συνάρτησης στο +∞ σημαίνει ότι για κάθε ϵ > 0 υπάρχει

M > 0 τέτοιο ώστε

x > M ⇒
∣∣∣∣f(x)x3

− 2

∣∣∣∣ < ϵ ⇔ 2− ϵ <
f(x)

x3
< 2 + ϵ

Τώρα για ϵ = 1 έπεται το ζητούμενο.
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΄Ασκηση 16. ΄Εστω f : R → R δύο φορές παραγωγίσιμη συνάρτηση με την δεύτερη παράγωγο συνεχή στο

0. ΄Εστω ότι υπάρχει ακολουθία (xn) θετικών αριθμών με lim
n→+∞

xn = 0 και lim
n→+∞

f(xn)− xn

x2
n

= 1.

(i) Δείξτε ότι lim
n→+∞

f(xn)

xn
= 1 και lim

n→+∞
f(xn) = 0.

(ii) Υπολογίστε τις τιμές f(0) και f ′(0).
(iii) Χρησιμοποιώντας τον Τύπο Taylor υπολογίστε την f ′′(0).

Λύση. (i) ΄Εχουμε

f(xn)− xn

x2
n

=

f(xn)
xn

− 1

xn

⇒ f(xn)

xn
− 1 = xn · f(xn)− xn

x2
n

⇒ lim
n→+∞

(
f(xn)

xn
− 1

)
= lim

n→+∞
xn · lim

n→+∞

f(xn)− xn

x2
n

= 0

οπότε lim
n→+∞

f(xn)

xn
= 1. Επίσης, f(xn) =

f(xn)

xn
· xn και άρα με όμοιο τρόπο έπεται ότι lim

n→+∞
f(xn) = 0.

(ii) Επειδή xn → 0 από Αρχή Μεταφοράς,

f(0) = lim
n→+∞

f(xn) = 0

και

f ′(0) = lim
x→+∞

f(x)− f(0)

x− 0
= lim

n→+∞

f(xn)

xn
= 1

(iii) Από τον τύπο του Taylor (για x = xn και κέντρο a = 0) έχουμε ότι για κάθε n ∈ N υπάρχει ξn ∈ (0, xn)
τέτοιο ώστε

f(xn) = f(0) + f ′(0)xn +
f ′′(ξn)

2
x2
n = xn +

f ′′(ξn)

2
x2
n ⇒ f ′′(ξn) = 2

f(xn)− xn

x2
n

Αφού 0 < ξn < xn και xn → 0 από Θεώρημα Ισοσυγκλινουσών Ακολουθιών, έπεται ότι limn→+∞ ξn = 0. ΄Αρα,
αφού η f ′′

είναι συνεχής, από Αρχή Μεταφοράς,

f ′′(0) = lim
x→0

f ′′(x) = lim
n→+∞

f ′′(ξn) = 2 lim
n→+∞

f(xn)− xn

x2
n

= 2

΄Ασκηση 17. ΄Εστω f : R → R δύο φορές παραγωγίσιμη. Αν η f και η f ′′
είναι φραγμένες δείξτε ότι και η

f ′
είναι φραγμένη.

Λύση. ΄Εστω M0,M2 > 0 τέτοια ώστε |f(x)| ≤ M0 και |f ′′(x)| ≤ M2. Με χρήση του Τύπου Taylor θα
δείξουμε ότι

|f ′(x)| ≤ 2M0 +
M2

2

για κάθε x ∈ R. Πράγματι, έστω a ∈ R. Από τον Τύπο του Taylor έχουμε ότι για κάθε x ̸= a υπάρχει υπάρχει
ξ μεταξύ των a και x τέτοιο ώστε

f(x) = f(a) + f ′(a)(x− a) +
f ′′(ξ)

2
(x− a)2

΄Αρα για x = a+ 1 έχουμε ότι υπάρχει ξ ∈ (a, a+ 1) τέτοιο ώστε

f(a+ 1) = f(a) + f ′(a) +
f ′′(ξ)

2
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ισοδύναμα,

f ′(a) = f(a+ 1)− f(a)− f ′′(ξ)

2

Συνεπώς

|f ′(a)| ≤ |f(a+ 1)|+ |f(a)|+ |f ′′(ξ)|
2

≤ 2M0 +
M2

2
.

΄Ασκηση 18. ΄Εστω f : [0, 1] → R δύο φορές παραγωγίσιμη συνάρτηση με f(0) = 0, f ′(0) = 2 και f(1) = 1,

f ′(1) = 0. Δείξτε ότι υπάρχουν ξ1 ∈
(
0,

1

2

)
και ξ2 ∈

(
1

2
, 1

)
τέτοια ώστε f ′′(ξ1) = f ′′(ξ2).

Λύση. Απο τον τύπο Taylor έχουμε ότι για κάθε x, a ∈ [0, 1] με x ̸= a υπάρχει ξ γνήσια μεταξύ των a, x
τέτοιο ώστε

f(x) = f(a) +
f ′(a)

1!
· (x− a) +

f ′′(ξ)

2!
· (x− a)2. (5)

΄Εστω x = 1/2. Τότε για a = 0 έχουμε ότι υπάρχει ξ1 ∈ (0, 1/2) με

f(1/2) = f(0) +
f ′(0)

1!
· 1
2
+

f ′′(ξ1)

2!
·
(
1

2

)2

= 1 +
f ′′(ξ1)

8

Ομοίως για a = 1 υπάρχει ξ2 ∈ (1/2, 1)

f(1/2) = f(1) +
f ′(1)

1!
·
(
1

2
− 1

)
+

f ′′(ξ2)

2!
·
(
1

2
− 1

)2

= 1 +
f ′′(ξ2)

8

΄Αρα f(1/2) = 1 +
f ′′(ξ1)

8
= 1 +

f ′′(ξ2)

8
οπότε και f ′′(ξ1) = f ′′(ξ2).

΄Ασκηση 19. ΄Εστω f(x) = x + sinx cosx και g(x) = f(x)esin x
, x ∈ R. (α) Αποδείξτε ότι δεν υπάρχει το

όριο lim
x→+∞

f(x)

g(x)
. (β) Βρείτε το λάθος στην παρακάτω ¨απόδειξη¨: ΄Εχουμε f ′(x) = 1+cos2 x−sin2 x = 2 cos2 x

και

g′(x) = 2 cos2 xesin x + (x+ sinx cosx)esin x cosx = cosx · esin x(2 cosx+ x+ sinx cosx)

΄Αρα από τον κανόνα de l’ Hospital

lim
x→+∞

f(x)

g(x)
= lim

x→+∞

f ′(x)

g′(x)
= lim

x→+∞

2 cos2 x

cosx · esin x(2 cosx+ x+ sinx cosx)

= lim
x→+∞

2 cosx

esin x(2 cosx+ x+ sinx cosx)
= 0

Λύση. (α) ΄Εχουμε

lim
x→+∞

f(x)

g(x)
= lim

x→+∞

1

esin x

΄Αρα το όριο δεν υπάρχει αφού αν xn = 2nπ και x′
n = 2nπ +

π

2
έχουμε xn, x

′
n → +∞ αλλά

1

esin xn
→ 1

ενώ
1

esin x′
n
→ 1

e

(β) ΄Εχουμε

f ′(x) = 1 + cos2 x− sin2 x = 2 cos2 x
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και

g′(x) = cosx · esin x(2 cosx+ x+ sinx cosx)

΄Αρα η g′(x) = 0 για άπειρα x = 2nπ +
π

2
→ +∞ και συνεπώς ο κανόνας de l’ Hospital δεν εφαρμόζεται.

΄Ασκηση 20. (Αντίστροφο Θεώρημα Μέσης Τιμής) ΄Εστω f : R → R παραγωγίσιμη συνάρτηση και έστω
J = f ′(R) το σύνολο τιμών της f ′

. ΄Εστω ξ ∈ R με το f ′(ξ) εσωτερικό σημείο του J = f ′(R) (θυμίζουμε ότι
από το Θεώρημα Darboux το J = f ′(R) είναι διάστημα). Δείξτε ότι υπάρχουν x1 < x2 στο R τέτοια ώστε
f(x2)− f(x1)

x2 − x1
= f ′(ξ). Ισχύει το ίδιο αν το f ′(ξ) είναι άκρο του J ;

Λύση. ΄Εστω ότι το f ′(ξ) δεν είναι άκρο του J = f ′(R). Θέτουμε λ = f ′(ξ) και΄Αρα θα υπάρχουν a < b
με τις τιμές f ′(a) και f ′(b) εκατέρωθεν του λ. Ας υποθέσουμε ότι f ′(a) < λ < f ′(b) (αν f ′(b) < λ < f ′(a) η
απόδειξη είναι όμοια).

Ορίζουμε g : [a, b] → R με g(x) = f(x)− λx, για κάθε x ∈ [a, b]. Παρατηρούμε ότι για x1 ̸= x2,

g(x2)− g(x1)

x2 − x1
= 0 ⇔ f(x2)− f(x1)

x2 − x1
= λ

και άρα αρκεί να δείξουμε ότι υπάρχουν x1 < x2 στο [a, b] με g(x1) = g(x2).
Η g ως συνεχής στο [a, b] λαμβάνει ελάχιστη τιμή σε κάποιο c ∈ [a, b]. Αφού g′(a) < 0 < g′(b) έπεται

ότι c ̸= a, b (πράγματι, επειδή
g(x)− g(a)

x− a
< 0 υπάρχει δ > 0 τέτοιο ώστε για a < x < a + δ να ισχύει

g(x)− g(a)

x− a
< 0 ⇒ g(x) < g(a) και άρα c ̸= a. Ομοίως μπορούμε να δείξουμε ότι c ̸= b. ΄Αρα η ελάχιστη τιμή

της g λαμβάνεται σε ένα c ∈ (a, b). ΄Εστω η =
g(c) +m

2
, όπου m = min{g(a), g(b)}. Τότε g(c) < η < g(a)

και άρα από Θεώρημα Ενδιάμεσων Τιμών υπάρχει x1 ∈ (a, c) με g(x1) = η. Ομοίως g(c) < η < g(b) και άρα
υπάρχει x2 ∈ (c, b) με g(x2) = η. ΄Αρα υπάρχουν x1 < x2 στο (a, b) με g(x1) = g(x2).
Δεν ισχύει το ίδιο αν το f ′(ξ) είναι άκρο του J = f ′(R). Πχ. αν f(x) = x3

, x ∈ R τότε f ′(x) = 3x2
και

f ′(R) = [0,+∞). Για ξ = 0 δεν υπάρχουν x1 < x2 με f
′(0) =

f(x2)− f(x1)

x2 − x1
. Πράγματι, επειδή η f είναι

γνησίως αύξουσα έπεται ότι
f(x2)− f(x1)

x2 − x1
> 0 για κάθε x1 < x2 ενώ f ′(0) = 0.
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