Functional Analysis I

(Solutions of problem sheet 3)

Exercise 1. Let X be a normed space.

(i) A subset C of X is called convex if for all $x, y \in C$ and $t \in [0, 1]$

$$tx + (1-t)y \in C$$
.

Show that B(0,1) is convex.

(ii) A convex subset C of X is called strictly convex if for all $x, y \in C$ and $t \in (0,1)$

$$tx + (1-t)y \in C^{\circ}.$$

Is the closed unit ball of $(\mathbb{R}^2, \|\cdot\|_{\infty})$ strictly convex?

Solution.

(i) If $x, y \in B(0, 1)$ and $t \in [0, 1]$, then

$$||tx + (1-t)|| \le t||x|| + (1-t)||y|| \le t+1-t=1$$

and hence B(0,1) is convex.

(ii) The closed unit ball of $(\mathbb{R}^2, \|\cdot\|_{\infty})$ is not strictly convex. Indeed if x = (1,0) y = (1,1), then $\|x\| = \|y\| = 1$ but

$$\|\frac{x+y}{2}\|_{\infty} = \|(1,\frac{1}{2})\|_{\infty} = 1$$

and thus $\frac{x+y}{2}$ does not belong to its interior.

Exercise 2. Let $g:[0,1] \to \mathbb{R}$ with g(x) > 0, for all $x \in [0,1]$. If $f \in C[0,1]$ we define

$$||f||_g = \sup_{x \in [0,1]} |f(x)|g(x).$$

- (i) Show that $\|\cdot\|_q$ is a norm on C[0,1].
- (ii) If $\inf_{x\in[0,1]}g(x)=m>0$ and $\sup_{x\in[0,1]}g(x)=<+\infty$, show that $\|\cdot\|_g$ is an equivalent to $\|\cdot\|_{\infty}$.

Solution.

(i) Obviously $||f||_g \ge 0$, for all $f \in C[0,1]$. Moreover if $||f||_g = 0$, then $\sup_{x \in [0,1]} |f(x)|g(x) = 0$ and hence |f(x)|g(x) = 0, for all $x \in [0,1]$ which by the hypothesis g(x) > 0 gives |f(x)| = 0, for all $x \in [0,1]$, i.e. f = 0. $||\lambda f||_g = \sup_{x \in [0,1]} |\lambda f(x)|g(x) = |\lambda| \sup_{x \in [0,1]} |f(x)|g(x) = |\lambda| ||f||_g$, for all

 $\lambda \in \mathbb{R}$ and all $f \in C[0,1]$. For all $f_1, f_2 \in C[0,1]$ we have that

$$||f_1 + f_2||_g \le \sup_{x \in [0,1]} (|f_1(x)| + |f_2(x)|)g(x)$$

$$\le \sup_{x \in [0,1]} |f_1(x)|g(x) + \sup_{x \in [0,1]} |f_2(x)|g(x)$$

$$= ||f_1||_g + ||f_2||_g.$$

(ii) We have that $m||f||_g \le ||f||_\infty \le M||f||_g$, $f \in C[0,1]$. Hence the two norms are equivalent.

Exercise 3. (i) Show that the unit sphere

 $S = \{x \in X : ||x|| = 1\}$

of a normed space is closed.

(ii) Show that the unit sphere of l^2 is not compact.

Solution.

- (i) The result follows immediately from the continuity of the norm and the fact that S is the inverse image of $\{1\}$.
- (ii) Consider the sequence (e_n) where $e_n = (0, ..., 0, 1, 0, ...)$ with 1 in the *n*-th position. Then for all $n \neq m$ we have that $||e_n|| = ||e_m|| = 1$ but $||e_n e_m|| = 1$. Hence (e_n) does not have any Cauchy subsequence.

This is characteristic of infinite dimensional spaces as it is well known that in finite dimensions every closed and bounded set is compact. \Box

Exercise 4. Let X be a normed space and Y a subspace of X with $Y \neq X$. Show that the set Y^c is dense in X.

Solution. Since $X=Y\cup Y^c$, it is enough to show that for all $x\in Y$ and $\varepsilon>0$ there exists $z\in Y^c$, such that $z\in B(x,\varepsilon)$. Since $Y\neq X$, using the Theorem that we proved in class Y has empty interior, hence

$$B(x,\varepsilon)\cap Y^c\neq\emptyset$$

and the result follows.

Exercise 5. Show that c_{00} cannot be a Banach space.

Solution. The elements $e_n = (0, ..., 0, 1, 0, ...)$ with 1 in the *n*-th position, n = 1, 2, 3, ..., are a countable basis of c_{00} and hence the latter cannot be a Banach space.

Exercise 6. Let $X = C^1([-1,1])$. Set $||f||_1 = ||f||_{\infty}$, $||f||_2 = ||f'||_{\infty}$ and $||f|| = ||f||_1 + ||f||_2$. Show that

- (i) $(X, \|\cdot\|_1)$ is a normed space but not a Banach space,
- (ii) $\|\cdot\|_2$ is not a norm on X,
- (iii) $(X, \|\cdot\|)$ is a Banach space.

Solution.

(i) If

$$f_n(x) = (x^2 + \frac{1}{n})^{\frac{1}{2}}, n = 1, 2, \dots \text{ and } f(x) = |x|, \text{ for all } x \in [-1, 1],$$

then f_n converges uniformly to f, i.e. $||f_n - f||_1 = ||f_n - f||_{\infty} \to 0$, as $n \to +\infty$. But $f \notin X$ and hence X is not a Banach space.

- (ii) If f(x) = c, for all $x \in [-1, 1]$, then $||f||_2 = ||f'||_{\infty} = 0$ while $f \neq 0$. Hence $||\cdot||_2$ is not a norm on X,
- (iii) Let (f_n) a Cauchy sequence with respect to $\|\cdot\|$. Then (f_n) and (f'_n) are Cauchy sequences with respect to $\|\cdot\|_{\infty}$ and hence $f_n \to f$ and $f'_n \to g$ in C([-1,1]). To conclude the proof it is enough to show that f is differentible with f' = g.

To the end let $\varepsilon > 0$ and $t \in [-1, 1]$. Since g is continuous in [-1, 1] it is uniformly continuous and thus there exists $\delta > 0$ such that

$$|g(t+s) - g(t)| < \varepsilon$$
, for all $|s| < \delta$.

If $h \in \mathbb{R}$ with $0 < |h| < \delta$, then

$$\left| \frac{f(t+h) - f(t)}{h} - g(t) \right| = \lim \left| \frac{f_n(t+h) - f_n(t)}{h} - g(t) \right|$$

$$= \lim \left| \frac{1}{h} \int_0^h f'_n(t+s) \, ds - g(t) \right|$$

$$= \left| \frac{1}{h} \int_0^h (g(t+s) - g(t)) \, ds \right|$$

$$\leq \frac{1}{|h|} \varepsilon |h| = \varepsilon.$$

Hence f is differentiable with f'=g. Therefore $(X,\|\cdot\|)$ is a Banach space.