Functional Analysis I

(Problem sheet 4)

Exercise 1. Let $T \in B(X,Y)$. Show that

(i)

$$||T|| = \sup \{||Tx|| : ||x|| \le 1\}$$
$$= \sup \{||Tx|| : ||x|| = 1\}.$$

(ii)

$$||T|| = \inf \{M > 0 : ||Tx|| \le M||x||, \text{ for all } x \in X\}.$$

Exercise 2 (Multiplication operator). Consider X = C[a,b] equipped with $\|\cdot\|_{\infty}$ and $g \in X$. Define $T: X \to X$ by

$$Tf(x) = g(x)f(x)$$
, for all $x \in [a, b]$.

Show that $T \in B(X)$.

Exercise 3 (Right shift operator). Let $S: l^1 \to l^1$ defined by

$$S(x_1, x_2, ...) = (0, x_1, x_2, ...).$$

Show that S is bounded and find its norm.

Exercise 4. Show that if X is a finite dimensional normed space, then every operator $T: X \to Y$, where Y is a normed space, is bounded.

Exercise 5. Let X be a Banach space.

(i) Suppose that $T \in B(X)$ and for all $y \in X$, the series

$$\sum_{n=1}^{\infty} \|T^n y\|$$

converges. Show that for all $y \in X$, the equation

$$x = y + Tx$$

has a unique solution.

- (ii) We suppose that $T \in B(X)$ and ||T|| < 1. Show that the operator I T is "1-1" and onto.
- (iii) Let $T: l^{\infty} \to l^{\infty}$ defined by

$$T(x_1,x_2,x_3,\ldots)=(\frac{1}{2}x_2,\frac{1}{3}x_3,\frac{1}{4}x_4,\ldots)$$

Show that for all $y \in l^{\infty}$, the equation

$$x = y + Tx$$

has a unique solution.