Functional Analysis I

(Problem sheet 3)

Exercise 1. Let X be a normed space.

(i) A subset C of X is called convex if for all $x, y \in C$ and $t \in [0, 1]$

$$tx + (1-t)y \in C$$
.

Show that B(0,1) is convex.

(ii) A convex subset C of X is called strictly convex if for all $x, y \in C$ and $t \in (0,1)$

$$tx + (1-t)y \in C^{\circ}.$$

Is the closed unit ball of $(\mathbb{R}^2, \|\cdot\|_{\infty})$ strictly convex?

Exercise 2. Let $g:[0,1] \to \mathbb{R}$ with g(x) > 0, for all $x \in [0,1]$. If $f \in C[0,1]$ we define

$$||f||_g = \sup_{x \in [0,1]} |f(x)|g(x).$$

- (i) Show that $\|\cdot\|_g$ is a norm on C[0,1].
- (ii) If $\inf_{x\in[0,1]}g(x)=m>0$ and $\sup_{x\in[0,1]}g(x)=<+\infty$, show that $\|\cdot\|_g$ is an equivalent to $\|\cdot\|_{\infty}$.

Exercise 3. (i) Show that the unit sphere

$$S = \{x \in X : ||x|| = 1\}$$

of a normed space is closed.

(ii) Show that the unit sphere of l^2 is not compact.

Exercise 4. Let X be a normed space and Y a subspace of X with $Y \neq X$. Show that the set Y^c is dense in X.

Exercise 5. Show that c_{00} cannot be a Banach space.

Exercise 6. Let $X = C^1([-1,1])$. Set $||f||_1 = ||f||_{\infty}$, $||f||_2 = ||f'||_{\infty}$ and $||f|| = ||f||_1 + ||f||_2$. Show that

- (i) $(X, \|\cdot\|_1)$ is a normed space but not a Banach space,
- (ii) $\|\cdot\|_2$ is not a norm on X,
- (iii) $(X, \|\cdot\|)$ is a Banach space.