Exercises in Functional Analysis

(problem sheet 2)

Exercise 1. Let X be a normed space and Y a subspace of X. Show that the closure \overline{Y} of Y is a subspace of X.

Exercise 2. Let Y a subspace of the Banach space $(X, \|\cdot\|)$. Show that $(Y, \|\cdot\|)$ is a Banach if and only if Y is closed.

Exercise 3. With l^{∞} we denote the space of bounded real sequences. Show that l^{∞} with the norm

$$||x||_{\infty} = \sup_{n \in \mathbb{N}} |x_n|, for x = (x_n) \in l^{\infty}$$

is a Banach space.

Exercise 4. With c_0 we denote the space of real sequences coverging to zero. Show that c_0 with the norm $\|\cdot\|_{\infty}$ is a Banach space. (Hint: use exercise 2.)

Exercise 5. Show that

$$X = \{ f \in C[a, b] : f(a) = 0 \}$$

with the norm $\|\cdot\|_{\infty}$ is a Banach space.

Exercise 6. We equip C[a,b] with the norm

$$||f||_2 = (\int_a^b f(x)^2 dx)^{\frac{1}{2}}.$$

- (i) Show that $\|\cdot\|_2$ is a norm.
- (ii) Show that if the sequence (f_n) converges to f with respect to $\|\cdot\|_{\infty}$, then it converges to f with respect to $\|\cdot\|_2$.
- (iii) Is C[a,b] with $\|\cdot\|_2$ a Banach space?