

SPATIAL DATABASES

Lecture: Entity Relationship Diagram

Nikolas Mitrou, Professor, ECE, NTUA Anastasios Zafeiropoulos, Postdoc Researcher, ECE, NTUA

Geospatial Information Systems Layering

- Layer 1 Applications
- Layer 2 Analysis and visualization services
- Layer 3 Spatial data management (production, management, interlinking of spatial data)
- Layer 4 Base Maps

Classification of Spatial Databases

Relational Databases

- Manage/Classify the data through tables
 - tables or relations (named as relational)
 - the columns refer to attributes
 - the records refer to different physical entities and span horizontally across the various columns
- Archiving and efficient searching is done with the help of primary keys.
- They relate the tables (and therefore the entities they represent) through common properties referred to as foreign keys.

INTERDEPARTMENTAL POSTGRADUATE COURSE IN GEOINFORMATICS

Relational Database: ER Diagram and Relational Model

Data Models

- Model: abstract representation of the real world.
- Object based models
 - Entity Relationship
- Record based models
 - Relational model

- The entity-relationship model is based on the notion that the real world consists of entities with attributes and relationships between the entities.
- It was developed to facilitate the design of a database by allowing the definition of a schema that represents the overall logical structure of the database.

Symbol	Meaning	Symbol	Meaning
	Entity		Composite Attribute
	Weak Entity		Composite Attribute
	Relationship		Derived Attribute
	Indentifying Relationship	E_1 R E_2	Total Participation of E_2 in R
— <u> </u>	Attribute	E_1 1 R N E_2	Cardinality Ratio 1: N for $E_1:E_2$ in R
	Key Attribute	(min, max)	Structural Constraint (min, max) on Participation of <i>E</i> in <i>R</i>
	Multivalued Attribute		

 Entity: a "thing" or "object" of the world that is distinct from other objects, an abstract concept

- Simple and complex properties/attributes
- Single-valued and multi-valued properties
- Derived property
- Primary key (set of attributes that uniquely identifies a record)

- Relationship: a relationship between two or more entities, which represents a corresponding relationship of objects in the real world.
- A relationship has descriptive properties.

Relationship Degrees

- One-to-one: an entity in A is associated with at most one entity in B and vice versa.
- One-to-many: an entity in A is associated with any number of entities in B. An entity in B is associated with at most one entity in A.
- Many-to-one: an entity in A is associated with at most one entity in B. An entity in B is associated with any number of entities in A.
- Many-to-many: an entity in A is associated with any number of entities in B and vice versa.

Relationship Degrees

Relationship Degrees

Weak Entities

Weak entities are the entities whose instances are identified only through an identifying relationship with a strong entity.

Constraints in Relationships

Constraints express the minimum and maximum instances of the second entity in which the first entity can participate.

- The ER diagram is converted to a relational model by implementing simple steps
- The main points are:
 - Convert entities to relations (tables)
 - Represent relationships using foreign keys

Strong Entities

- For each strong entity we create a relation (table) with all the attributes of the entity.
- We select the primary key and underline it. If the primary key is a complex attribute, all the simple attributes are underlined.

One to One Relationship

One to Many Relationship

Many to Many Relationship

Online tool for the design of ER diagrams

https://erdplus.com/