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ΚΕΦΑΛΑΙΟ 1

Παράγωγος πραγματικής συνάρτησης

1.1 Ορισμός και βασικές ιδιότητες

Ορισμός 1.1.1. ´Εστω I διάστημα του R, f : I → R και x0 ∈ I. Το όριο lim
x→x0

f (x) − f (x0)
x − x0

αν υπάρχει

(πεπερασμένο ή άπειρο) ϑα καλείται παράγωγος f στο x0 και ϑα συμβολίζεται με f ′(x0). Η συνάρτηση
f ϑα καλείταιπαραγωγίσιμη στο x0 αν η παράγωγος f ′(x0) της f στο x0 υπάρχει και είναι πραγματικός
αριθμός.

Θεώρημα 1.1.2. Αν η f : I → R είναι παραγωγίσιμη στο x0 ∈ I τότε είναι και συνεχής στο x0.

Απόδειξη. ´Εχουμε

lim
x→x0

( f (x) − f (x0)) = lim
x→x0

(
f (x) − f (x0)

x − x0
· (x − x0)

)
= lim

x→x0

f (x) − f (x0)
x − x0

· lim
x→x0

(x − x0) = f ′(x0) · 0 = 0

□

Παρατήρηση 1.1.3. Το αντίστροφο του Θεωρήματος 1.1.2 δεν ισχύει. Π.χ. η συνάρτηση f (x) = |x| είναι

συνεχής αλλά δεν είναι παραγωγίσιμη στο x0 = 0. Πράγματι, το lim
x→0

f (x) − f (0)
x − 0

δεν υπάρχει αφού

lim
x→0+

f (x) − f (0)
x − 0

= lim
x→0+

x
x
= 1

ενώ
lim

x→0−
f (x) − f (0)

x − 0
= lim

x→0−
−x
x
= −1

1.2 Πράξεις μεταξύ συναρτήσεων και Παράγωγος

Θεώρημα 1.2.1. ´Εστω I διάστημα του R, x0 ∈ I και f , g : I → R παραγωγίσιμες στο x0 ∈ I.

(α) Η συνάρτηση f + g είναι παραγωγίσιμη στο x0 και ισχύει ότι

( f + g)′(x0) = f ′(x0) + g′(x0)
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(β) Για κάθε λ ∈ R η συνάρτηση λ f είναι παραγωγίσιμη στο x0 και ισχύει ότι

(λ f )′(x0) = λ f ′(x0)

(γ) Η συνάρτηση f g είναι παραγωγίσιμη στο x0 και ισχύει ότι

( f g)′(x0) = f ′(x0)g(x0) + f (x0)g′(x0)

(δ) Αν g(x) , 0 για κάθε x ∈ I και g′(x0) , 0 τότε η συνάρτηση
f
g

είναι παραγωγίσιμη στο x0 και

ισχύει ότι (
f
g

)′
(x0) =

f ′(x0)g(x0) − f (x0)g′(x0)
g2(x0)

Θεώρημα 1.2.2. (Κανόνας Αλυσίδας) ´Εστω I, J διαστήματα του R, g : J → I και f : I → R. ´Εστω
x0 ∈ J. Αν η g είναι παραγωγίσιμη στο x0 και η f είναι παραγωγίσιμη στο g(x0) τότε η f ◦ g είναι
παραγωγίσιμη στο x0 και ισχύει ότι ( f ◦ g)′(x0) = f ′(g(x0))g′(x0).

Θεώρημα 1.2.3. (Παράγωγος Αντίστροφης Συνάρτησησης) ´Εστω I διάστημα του R, f : I → R
συνεχής και γνησίως μονότονη συνάρτηση. ´Εστω x0 ∈ I τέτοιο ώστε η f είναι παραγωγίσιμη στο x0 με
f ′(x0) , 0. Τότε η f −1 είναι παραγωγίσιμη στο y0 = f (x0) και ισχύει ότι

(
f −1

)′
(y0) =

1
f ′(x0)

1.3 Βασικά ϑεωρήματα παραγωγίσιμων συναρτήσεων

Ορισμός 1.3.1. ´Εστω f : I → R και έστω x0 ∈ I.

(α) Το x0 καλείται τοπικό μέγιστο της f , αν υπάρχει δ > 0 τέτοιο ώστε για κάθε x ∈ I με |x− x0| < δ
ισχύει ότι f (x0) ⩾ f (x).

(β) Το x0 καλείται τοπικό ελάχιστο της f , αν υπάρχει δ > 0 τέτοιο ώστε για κάθε x ∈ I με |x− x0| < δ
ισχύει ότι f (x0) ⩽ f (x).

Αν το x0 είναι τοπικό μέγιστο ή ελάχιστο για την f τότε το x0 καλείται τοπικό ακρότατο της f .

Θεώρημα 1.3.2. (Θεώρημα Fermat) ´Εστω f : I → R και έστω x0 ∈ I εσωτερικό σημείο του I το οποίο
είναι τοπικό ακρότατο της f . Αν η f είναι παραγωγίσιμη στο x0 τότε f ′(x0) = 0.

Απόδειξη. Επειδή το x0 είναι εσωτερικό σημείο του I μπορούμε να χρησιμοποιήσουμε πλευρικά όρια

για την παράγωγο. Συγκεκριμμένα, αφού το όριο f ′(x0) = lim
x→x0

f (x) − f (x0)
x − x0

υπάρχει ϑα υπάρχουν και

τα πλευρικά όρια lim
x→x+0

f (x) − f (x0)
x − x0

και lim
x→x+0

f (x) − f (x0)
x − x0

και ϑα είναι ίσα με την f ′(x0). Ας υποθέσουμε

ότι το x0 είναι τοπικό μέγιστο, δηλαδή υπάρχει δ > 0 τέτοιο ώστε για κάθε x ∈ I με |x − x0| < δ ισχύει

ότι f (x0) ≥ f (x). Ειδικότερα, για x ∈ X με 0 < x < x0 + δ ϑα έχουμε ότι
f (x) − f (x0)

x − x0
≥ 0 και άρα

f ′(x0) = lim
x→x+0

f (x) − f (x0)
x − x0

≥ 0



1.4 Κανόνες de l’ Hospital · 3

Από την άλλη μεριά, για x ∈ I με x0 − δ < x < x0 ϑα έχουμε ότι
f (x) − f (x0)

x − x0
≤ 0 οπότε

f ′(x0) = lim
x→x−0

f (x) − f (x0)
x − x0

≤ 0

Από τα παραπάνω έπεται ότι f ′(x0) = 0. □

Θεώρημα 1.3.3. (Θεώρημα Rolle) ´Εστω f : [a, b]→ R συνεχής στο [a, b] και παραγωγίσιμη στο (a, b).
Αν f (a) = f (b) τότε υπάρχει ξ ∈ (a, b) με f ′(ξ) = 0.

Απόδειξη. Η f ως συνεχής σε κλειστό φραγμένο διάστημα λαμβάνει μέγιστη και ελάχιστη τιμή. ´Εστω
M = max{ f (x) : x ∈ [a, b]} και m = min{ f (x) : x ∈ [a, b]}. Διακρίνουμε δύο περιπτώσεις :

1) M = m. Τότε, αφού m ≤ f (x) ≤ M έπεται ότι η f είναι σταθερή και άρα f ′(x) = 0 για κάθε
x ∈ (a, b).

2) M > m. Τότε αφού f (a) = f (b) μια τουλάχιστον από τις ακρότατες τιμές M,m ϑα λαμβάνεται
από την f σε κάποιο σημείο ξ ∈ [a, b] με ξ , a και ξ , b. Άρα υπάρχει ξ ∈ (a, b) που είναι ολικό (άρα
και τοπικό) ακρότατο της f , οπότε από το Θεώρημα 1.3.2, f ′(ξ) = 0. □

Θεώρημα 1.3.4. (Θεώρημα Μέσης Τιμής) ´Εστω f : [a, b] → R συνεχής στο [a, b] και παραγωγίσιμη

στο (a, b). Τότε υπάρχει ξ ∈ (a, b) με
f (b) − f (a)

b − a
= f ′(ξ).

Απόδειξη. ´Εστω λ =
f (b) − f (a)

b − a
. Ορίζουμε την συνάρτηση g : [a, b]→ R με τύπο g(x) = f (x) − f (a) −

λ(x−a), για κάθε x ∈ [a, b]. Η g είναι συνεχής στο [a, b] και παραγωγίσιμη στο (a, b) (με g′(x) = f ′(x)−λ
για κάθε x ∈ (a, b)). Επειδή g(a) = 0 = g(b) από το Θεώρημα Rolle έπεται ότι υπάρχει ξ ∈ (a, b) με

g′(ξ) = 0. Επειδή g′(ξ) = f ′(ξ) − λ έπεται ότι f ′(ξ) = λ =
f (b) − f (a)

b − a
. □

Θεώρημα 1.3.5. (Θεώρημα Μέσης Τιμής του Cauchy) ´Εστω f , g : [a, b] → R συνεχείς στο [a, b] και
παραγωγίσιμες στο (a, b). Αν g′(x) , 0 για κάθε x ∈ (a, b) τότε g(b) , g(a) και υπάρχει ξ ∈ (a, b) με
f (b) − f (a)
g(b) − g(a)

=
f ′(ξ)
g′(ξ)

.

Απόδειξη. Καταρχάς παρατηρούμε ότι g(a) , g(b) διότι διαφορετικά από Θεώρημα Rolle ϑα υπήρχε

ξ ∈ (a, b) με f ′(ξ) = 0, άτοπο. Θέτουμε τώρα λ =
f (b) − f (a)
g(b) − g(a)

και ορίζουμε την συνάρτηση h : [a, b]→ R

με τύπο h(x) = f (x) − f (a) − λ(g(x) − g(a)), για κάθε x ∈ [a, b]. ´Εχουμε ότι η h είναι συνεχής στο [a, b]
και παραγωγίσιμη στο (a, b) με h′(x) = f ′(x) − λg′(x) για κάθε x ∈ (a, b). Επειδή h(a) = 0 = h(b) από
το Θεώρημα Rolle έπεται ότι υπάρχει ξ ∈ (a, b) με h′(ξ) = 0. Επειδή h′(ξ) = f ′(ξ) − λg′(ξ) έπεται ότι
f ′(ξ)
g′(ξ)

= λ =
f (b) − f (a)
g(b) − g(a)

. □

Παρατήρηση 1.3.6. Το Θεώρημα 1.3.5 δίνει το κλασικό Θεώρημα Μέσης Τιμής αν ϑέσουμε G(x) = x.

1.4 Κανόνες de l’ Hospital

Θεώρημα 1.4.1. ´Εστω −∞ ⩽ a < b ⩽ +∞ και f , g : (a, b) → R παραγωγίσιμες συναρτήσεις τέτοιες
ώστε g(x) , 0 και g′(x) , 0, για κάθε x ∈ (a, b).
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(Ι) Αν lim
x→a+

f (x) = lim
x→a+

g(x) = 0. τότε

lim
x→a+

f (x)
g(x)

= lim
x→a+

f ′(x)
g′(x)

υπό την προυπόθεση ότι το lim
x→a+

f ′(x)
g′(x)

υπάρχει (πεπερασμένο ή άπειρο).

(ΙΙ) Αντίστοιχα, αν lim
x→b−

f (x) = lim
x→b−

g(x) = 0. τότε

lim
x→b−

f (x)
g(x)

= lim
x→b−

f ′(x)
g′(x)

υπό την προυπόθεση ότι το lim
x→b−

f ′(x)
g′(x)

υπάρχει (πεπερασμένο ή άπειρο).

Απόδειξη. Θα δώσουμε την απόδειξη μόνο για το (Ι) και για την περίπτωση όπου a ∈ R. Επεκτείνουμε
τις συναρτήσεις f και g στο x = a ϑέτοντας f (a) = g(a) = 0. Τότε από το Θεώρημα Μέσης Τιμής του
Cauchy (Θεώρημα 1.3.5), για κάθε x ∈ (a, b), υπάρχει ξ ∈ (a, x), τέτοιο ώστε

(1.4.1)
f (x)
g(x)

=
f (x) − f (a)
g(x) − g(a)

=
f ′(ξ)
g′(ξ)

Επειδή a < ξ < x και x→ a έπεται ότι και ξ → a. Άρα

(1.4.2) lim
x→a+

f (x)
g(x)

= lim
ξ→a+

f ′(ξ)
g′(ξ)

□

Το Θεώρημα 1.4.1 έχει ανάλογη εκδοχή για απροσδιοριστίες της μορφής ±∞
±∞

ή πιο γενικότερα για
περιπτώσεις όπου lim g(x) = ±∞.

Θεώρημα 1.4.2. ´Εστω −∞ ⩽ a < b ⩽ +∞ και f , g : (a, b) → R παραγωγίσιμες συναρτήσεις τέτοιες
ώστε g(x) , 0 και g′(x) , 0, για κάθε x ∈ (a, b).

(Ι) Αν lim
x→a+

g(x) = ±∞ τότε

lim
x→a+

f (x)
g(x)

= lim
x→a+

f ′(x)
g′(x)

υπό την προυπόθεση ότι το lim
x→a+

f ′(x)
g′(x)

υπάρχει (πεπερασμένο ή άπειρο).

(ΙΙ) Αντίστοιχα αν lim
x→b−

g(x) = ±∞ τότε

lim
x→b−

f (x)
g(x)

= lim
x→b−

f ′(x)
g′(x)

υπό την προυπόθεση ότι το lim
x→b−

f ′(x)
g′(x)

υπάρχει (πεπερασμένο ή άπειρο).
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1.5 Πολυώνυμα Taylor

Θα λέγαμε ότι οι πιο απλές πραγματικές συναρτήσεις είναι οι πολυωνυμικές, δηλαδή οι συναρτήσεις
της μορφής

p(x) = a0 + a1x + · · · + anxn

όπου a0, a1, . . . , an σταθεροί πραγματικοί αριθμοί. Στις πολυωνυμικές συναρτήσεις μπορούμε να βρούμε
σχετικά εύκολα τις τιμές τους και γενικά να μελετήσουμε τις ιδιότητές τους. ´Ομως η πλειονότητα των
συναρτήσεων που χρησιμοποιούμε στην πράξη είναι συναρτήσεις που δεν μπορούν να γραφούν ως
πολυώνυμα όπως πχ. οι εκθετικές συναρτήσεις ax, η λογαριθμική συνάρτηση ln x, οι τριγωνομετρικές
συναρτήσεις cos x (συνημίτονο του x), sin x (ημίτονο του x) tan x (εφαπτομένη του x) κλπ. Τα Θεω-
ρήματα Taylor λένε ότι κάτω από κάποιες προυποθέσεις για πολλές μη πολυωνυμικές συναρτήσεις
ορίζεται μια συγκεκριμένη ακολουθία πολυωνύμων που πλησιάζει οσο κοντά ϑέλουμε την συνάρτηση.

Ορισμός 1.5.1. (n παραγοντικό) Για κάθε ακέραιο n ≥ 1 με n! συμβολίζουμε το γινόμενο όλων των
ϑετικών ακεραίων που είναι μικρότεροι ή ίσοι με το n, δηλαδή

(1.5.1) n! = 1 · 2 · 3 · · · · n

Επίσης ορίζουμε

(1.5.2) 0! = 1

Πχ. 1! = 1, 2! = 1 · 2 = 2, 3! = 1 · 2 · 3 = 6, κ.ο.κ. Παρατηρείστε ότι για κάθε ακέραιο n ≥ 0 ισχύει ότι

(1.5.3) (n + 1)! = n!(n + 1)

Ορισμός 1.5.2. (n-τάξης παράγωγος) Αν f : I → R είναι μία πραγματική συνάρτηση με πεδίο
ορισμού ένα διάστημα I του R. Για κάθε ακέραιο n ≥ 1 με f (n) συμβολίζουμε την παράγωγο n-τάξης της
f . Επίσης ϑέτουμε f (0) = f .

Πχ. αν n ≥ 1 ακέραιος και f (x) = xn τότε δεν είναι δύσκολο να δούμε ότι ισχύει ο τύπος

(1.5.4) f (n)(x) = n!

Αν p(x) = a0+a1x+ · · ·+anxn μια πολυωνυμική συνάρτηση τότε μπορεί να δειχθεί ότι οι συντελεστές
a0, a1, . . . , an του p(x) δίνονται από την σχέση

(1.5.5) ak =
p(k)(0)

k!

για κάθε k = 0, . . . , n. Δηλαδή,

a0 = p(0), a1 = p′(0), a2 =
p′′(0)
2
, a3 =

p′′′(0)
3!
. . .

Συνεπώς το p(x) γράφεται και στην μορφή

(1.5.6) p(0) +
p′(0)
1!

x +
p′′(0)
2!

x2 + · · · +
p(n)(0)

n!
xn
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Γενικότερα αν ϑεωρήσουμε πολυωνυμικές συναρτήσεις της μορφής

p(x) = a0 + a1(x − a) + · · · + an(x − a)n

όπου a ∈ R σταθερά, τότε αποδεικνύεται ότι ισχύει ότι για κάθε k = 0, . . . , n, ο συντελεστής ak

σχετίζεται με την k-τάξης παράγωγο της p στο a, p(k)(a), μέσω του τύπου

(1.5.7) ak =
p(k)(a)

k!

Συνεπώς αντίστοιχα το p(x) γράφεται και στην μορφή

(1.5.8) p(x) = p(a) +
p′(a)
1!

(x − a) +
p′′(a)
2!

(x − a)2 + · · · +
p(n)(a)

n!
(x − a)n

Γενικεύοντας τον τύπο (1.5.8) ϑέτοντας στην ϑέση του p(x) μια n-φορές παραγωγίσιμη πραγματική
συνάρτηση f (x) δίνουμε τον εξής ορισμό.

Ορισμός 1.5.3. (Ορισμός πολυωνύμων Taylor) ´Εστω I ανοικτό διάστημα του R και f : I → R. ´Εστω
n ≥ 1 ακέραιος και έστω ότι η f είναι n- φορές παραγωγίσιμη συνάρτηση. Τέλος έστω a ∈ I. Το
πολυώνυμο

(1.5.9) Tn(x) = f (a) +
f ′(a)
1!

(x − a) +
f ′′(a)
2!

(x − a)2 + · · · +
f (n)(a)

n!
(x − a)n

καλείται πολυώνυμο Taylor τάξης n της f με κέντρο το a.

Το σταθερό πολυώνυμο T0(x) = f (a) ϑεωρείται ως το πολυώνυμο Taylor τάξης 0 της f με κέντρο
το a.

Χρησιμοποιώντας το σύμβολο του αθροίσματος ῾῾
∑
᾿᾿ και τις συμβάσεις f (0)(x) = f (x) και 0! = 1, το

πολυώνυμο Taylor τάξης n της f με κέντρο το a γράφεται σύντομα με τον τύπο

(1.5.10) Tn(x) =
n∑

k=0

f (k)(a)
k!

(x − a)k.

Στην ειδική περίπτωση όπου a = 0 το πολυώνυμο Taylor τάξης n της f με κέντρο το a = 0 παίρνει
την πιο απλή μορφή

(1.5.11) Tn(x) = f (0) +
f ′(0)
1!

x +
f ′′(0)
2!

x2 + · · · +
f (n)(0)

n!
xn =

n∑
k=0

f (k)(0)
k!

xk

´Οταν μια συνάρτηση είναι απεριόριστα παραγωγίσιμη τότε ορίζονται τα πολυώνυμα Taylor ο-
ποιασδήποτε τάξης της f . Παρατηρείστε επίσης ότι από τις (1.5.8) και (1.5.9) έχουμε ότι αν η f είναι
πολυωνυμική βαθμού n,

f (x) = a0 + a1(x − a) + · · · + an(x − a)n

τότε τα πολυώνυμα Taylor τάξης n και πάνω με κέντρο το a ταυτίζονται με την f .

Παράδειγμα 1.5.4. Για κάθε ακέραιο n ≥ 1 το πολυώνυμο Taylor τάξης n της f (x) = ex με κέντρο
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a = 0 έχει τύπο

(1.5.12) Tn(x) = 1 +
x
1!
+

x2

2!
+ · · · +

xn

n!
.

Πράγματι, f (k)(x) = ex και άρα f (k)(0) = 1, για κάθε k ≥ 0. Αντικαθιστώντας στην (1.5.11) παίρνουμε την
(1.5.12).

Πρόταση 1.5.5. ´Εστω n ≥ 1 ακέραιος, f : I → R n-φορές παραγωγίσιμη συνάρτηση και x0 ∈ I. Τότε η
παράγωγος του πολυωνύμου Taylor τάξης n της f με κέντρο το x0 είναι ίση με το πολυώνυμο Taylor
τάξης n − 1 της f ′ με κέντρο το x0.

Δηλαδή αν με Tn, f (και αντίστοιχα με Tn−1, f ′) συμβολίσουμε το πολυώνυμο Taylor τάξης n της f (και
αντίστοιχα τάξης n − 1 της f ′) με κέντρο το x0, τότε

(1.5.13) T ′n, f (x) = Tn−1, f ′(x)

Απόδειξη. ´Εχουμε

T ′n, f (x) =
(

f (x0) +
f ′(x0)
1!

(x − x0) +
f ′′(x0)
2!

(x − x0)2 + · · · +
f (n)(x0)

n!
(x − x0)n

)′
=

f ′(x0)
1!
+

f ′′(x0)
2!

2(x − x0) + · · · + +
f (n)(x0)

n!
n(x − x0)n−1

= ( f ′)(x0) +
( f ′)′(x0)

1!
(x − x0) + · · · +

( f ′)(n−1)(x0)
(n − 1)!

(x − x0)n−1 = Tn−1, f ′(x)

□

Η συνάρτηση f και τα πολυώνυμα Taylor της f όταν η f δεν είναι πολυώνυμο είναι αναγκαστικά
διαφορετικές συναρτήσεις. Μια εκτίμηση για το πόσο διαφέρουν δίνεται από το Θεώρημα Taylor Ι που
ϑα παρουσιάσουμε στην συνέχεια. Το ϑεώρημα αυτό καλείται και Θεώρημα Μέσης Τιμής ανώτερης
τάξης γιατί στην ουσία όπως ϑα δούμε είναι μια γενίκευση του κλασσικού Θεω´ρηματος Μέσης Τιμής.

Θεώρημα 1.5.6. ´Εστω n ≥ 0 ακέραιος, I διάστημα του R και f : I → R μια (n+ 1)-φορές παραγωγίσιμη
συνάρτηση. ´Εστω a ∈ I και έστω Tn το πολυώνυμο Taylor τάξης n της f με κέντρο το a. Τότε για κάθε
x ∈ I υπάρχει ξ στο ανοικτό διάστημα με άκρα τα a και x τέτοιος ώστε

(1.5.14) f (x) = Tn(x) +
f (n+1)(ξ)
(n + 1)!

(x − a)n+1.

Π. χ. για n = 1 έχουμε ότι για κάθε x ∈ I με x , a υπάρχει ξ στο ανοικτό διάστημα με άκρα τα a
και x τέτοιος ώστε

(1.5.15) f (x) = T1(x) +
f ′′(ξ)
2

(x − a)2 = f (a) + f ′(a)(x − a) +
f ′′(ξ)
2

(x − a)2

Μπορούμε να δώσουμε μια απόδειξη της (1.5.15) που στηρίζεται στο Θεώρημα Μέσης Τιμής του Cauchy
(Θεώρημα 1.3.5).

Απόδειξη της (1.5.15). Θα δείξουμε ισοδύναμα ότι

f (x) − T1(x)
(x − a)2

=
f ′′(ξ)
2
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Ορίζουμε τις συναρτήσεις
F(x) = f (x) − T1(x) και G(x) = (x − a)2

´Εχουμε F(a) = f (a) − T1(a) = 0 και ομοίως G(a) = 0. Επίσης G′(x) = 2(x − a) , 0 για κάθε x , a και
F′(x) = f ′(x) − T ′1 (x) = f ′(x) − f ′(a) (παρατηρείστε ότι T ′1 (x) = ( f (a) + f ′(a)(x − a))′ = f ′(a)).

Σταθεροποιούμε τώρα ένα x , a. ´Εχουμε

f (x) − T1(x)
(x − a)2

=
F(x) − F(a)
G(x) −G(a)

=
F′(ξ′)
G′(ξ′)

(Θεώρημα 1.3.5 για κάποιο ξ′ μεταξύ των x και a)

=
1
2

f ′(ξ′) − f ′(a)
ξ′ − a

=
f ′′(ξ)
2

(Κλασσικό Θεώρημα Μέσης Τιμής για την f ′ με ξ μεταξύ των ξ′ και a).

□

Στο επόμενο παράδειγμα δίνουμε μια εφαρμογή του ϑεωρήματος 1.5.6 για την συνάρτηση ex.

Παράδειγμα 1.5.7. Για κάθε n ≥ 1 και κάθε 0 < x ≤ 1, ισχύει ότι

(1.5.16) Tn(x) < ex < Tn(x) +
3

(n + 1)!

όπου Tn(x) = 1+
x
1!
+

x2

2!
+ · · ·+

xn

n!
είναι το πολυώνυμο Taylor τάξης n της f (x) = ex με κέντρο το a = 0

(Παράδειγμα 1.5.4).

Απόδειξη. Σταθεροποιούμε ένα n ≥ 1 και ένα x ∈ (0, 1]. Από το Θεώρημα 1.5.6 υπάρχει ξ ∈ (0, x) τέτοιο
ώστε

(1.5.17) ex = Tn(x) +
f (n+1)(ξ)
(n + 1)!

xn+1 = Tn(x) +
eξ

(n + 1)!
xn+1

Επειδή η f (x) = ex > 0 και 0 < x ≤ 1 έχουμε ότι eξ > 0 και άρα από την (1.5.17) προκύπτει ότι

(1.5.18) ex > Tn(x)

Από την άλλη μεριά η f (x) = ex είναι γνησίως αύξουσα και επειδή 0 < ξ < x ≤ 1 έχουμε ότι 1 < eξ <
ex ≤ e < 3 και άρα

eξ

(n + 1)!
xn+1 <

3
(n + 1)!

Συνεπώς από την (1.5.17) παίρνουμε ότι

(1.5.19) ex < Tn(x) +
3

(n + 1)!
.

Από τις (1.5.18) και (1.5.19) προκύπτει η (1.5.16). □

Παρατήρηση 1.5.8. Απο την ανισότητα (1.5.16) για n = 9 και x = 1 μπορούμε με πράξεις να συμπερά-
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νουμε ότι

(1.5.20) 2, 718281 < e < 2, 718282

που είναι μια πολύ καλή προσέγγιση του e.

Θεώρημα 1.5.9. ´Εστω n ≥ 1 ακέραιος. ´Εστω I διάστημα του R, x0 ∈ I και f : I → R τέτοια ώστε η f
είναι n-φορές παραγωγίσιμη στο x0. Τότε

(1.5.21) lim
x→a

f (x) − Tn(x)
(x − x0)n = 0

όπου Tn είναι το πολυώνυμο Taylor της f το τάξης n με κέντρο το x0.

Απόδειξη. Θα αποδείξουμε το ϑεώρημα με Μαθηματική Επαγωγή. Για n = 1 προκύπτει άμεσα από
την παραγωγισιμότητα της f στο x0. Πράγματι,

lim
x→a

f (x) − T1(x)
x − a

= lim
x→a

f (x) − f (x0) − f ′(x0)(x − x0)
x − a

= lim
x→a

f (x) − f (x0)
x − a

− f ′(x0) = 0

´Εστω k ∈ N και έστω ότι το Θεώρημα 1.5.9 ισχύει για κάποιο n και ϑα δείξουμε ότι τότε ισχύει και για
το n + 1.

´Εστω f : I → R μια (k + 1)-φορές παραγωγίσιμη συνάρτηση σε ένα a ∈ I. Επειδή

lim
x→a

( f (x) − Tn(x)) = f (x0) − f (x0) = 0

το όριο lim
x→a

f (x) − Tn+1, f ,a(x)
(x − x0)k+1 είναι απροσδιοριστία 0

0 . Άρα από τον κανόνα De l’Hospital και την

Πρόταση 1.5.5 έχουμε

lim
x→a

f (x) − Tn+1(x)
(x − x0)k+1 = lim

x→a

[ f (x) − Tn+1(x)]′

[(x − x0)k+1]′
=

1
n + 1

lim
x→a

f ′(x) − Tn, f ′(x)
(x − x0)n = 0

όπου η τελευταία ισότητα προκύπτει από την υπόθεση ότι το Θεώρημα 1.5.9 ισχύει για το n (με την
f ′ στην ϑέση της f ). □

1.6 Αναπτύγματα Taylor

´Εστω f : I → R απεριόριστα παραγωγίσιμη συνάρτηση, a ∈ I και έστω Tn(x) το πολυώνυμο Taylor
τάξης n της f με κέντρο το a. Αν x ∈ I ϑα λέμε ότι το f (x) είναι το όριο των Tn(x) και ϑα γράφουμε

(1.6.1) f (x) = lim
n→∞

Tn(x)

αν οι τιμές T0(x), T1(x), T2(x), T3(x), ...., που δίνουν τα πολυώνυμα Taylor στο x, πλησιάζουν, όσο
μεγαλώνει το n, την τιμή f (x).

Επειδή Tn(x) = f (a) +
f ′(a)
1!

(x − a) +
f ′′(a)
2!

(x − a)2 + · · · +
f ′′(a)

n!
(x − a)n, τον τύπο 1.6.1 τον γράφουμε

συνήθως ως εξής

(1.6.2) f (x) = f (a) +
f ′(a)
1!

(x − a) +
f ′′(a)
2!

(x − a)2 + . . .
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Η παράσταση

f (a) +
f ′(a)
1!

(x − a) +
f ′′(a)
2!

(x − a)2 + . . .

γράφεται και με την μορφή
∞∑

n=0

f ′′(a)
n!

(x − a)n

και καλείται ανάπτυγμα (ή σειρά) Taylor της f με κέντρο το a.
Δεν ισχύει πάντα ο τύπος 1.6.1 (ή ισοδύναμα ο 1.6.2). Οι απεριόριστα παραγωγίσιμες συναρτήσεις

για τις οποίες αποτελούν μια ειδική κλάση συναρτήσεων (καλούνται αναλυτικές συναρτήσεις) που ϑα
μπορούσαμε να πούμε είναι σαν πολυώνυμα απείρου βαθμού. ´Ομως με χρήση του Θεωρήματος Taylor
αποδεικνύεται ότι οι εκθετικές, οι τριγωνομετρικές και άλλες συναρτήσεις είναι όντως αναλυτικές
συναρτήσεις.

Θεώρημα 1.6.1. (α) Για κάθε x ∈ R, ισχύει ότι

(1.6.3) ex =

∞∑
n=0

xn

n!
= 1 +

x
1!
+

x2

2!
+

x3

3!
+ . . .

(1.6.4) sin x =
∞∑

n=0
(−1)n x2n+1

(2n + 1)!
=

x
1!
−

x3

3!
+

x5

5!
+ . . .

(1.6.5) cos x =
∞∑

n=0
(−1)n x2n

(2n)!
= 1 −

x2

2!
+

x4

4!
+ . . .

(β) Για κάθε x ∈ (−1, 1), ισχύει ότι

(1.6.6)
1

1 − x
=

∞∑
n=0

xn = 1 + x + x2 + x3 + . . .

(γ) Για κάθε x ∈ (−1, 1] ισχύει ότι

(1.6.7) ln(1 + x) =
∞∑

n=1
(−1)n+1 xn

n
=

x
1
−

x2

2
+

x3

3
− . . .

Παρατήρηση 1.6.2. Ο τύπος (1.6.3) για x = 1 δίνει ότι

(1.6.8) e = 1 +
1
1!
+

1
2!
+

1
3!
+ . . .

που σημαίνει ότι e = lim
n→∞

sn όπου sn = 1 +
1
1!
+

1
2!
+ · · · +

1
n!

.



ΚΕΦΑΛΑΙΟ 2

Οι αντίστροφες τριγωνομετρικές και οι
υπερβολικές τριγωνομετρικές

συναρτήσεις

2.1 Αντίστροφες τριγωνομετρικές συναρτήσεις

´Οπως η συνάρτηση f (x) = ex, x ∈ R έχει αντίστροφη την ln x, x > 0 έτσι και οι τριγωνομετρικές
συναρτήσεις (tan x, cos x, sin x) περιορισμένες σε κατάλληλα υποδιαστήματα του R έχουν αντίστροφες
συναρτήσεις. Θα δούμε επίσης ότι οι αντίστροφες αυτές τριγωνομετρικές συναρτήσεις υπολογίζονται
και μέσω ολοκληρωμάτων, όπως ακριβώς συμβαίνει και με την λογαριθμική συνάρτηση όπου ισχύει ο

τύπος ln x =
∫ x

1

1
t

dt.

2.1.1 Η συνάρτηση τόξο εφαπτομένης.

´Εστω
f (x) = tan x, x ∈

(
−
π

2
,
π

2

)
Η f είναι συνεχής, γνησίως αύξουσα και με σύνολο τιμών όλο το R. Άρα ορίζεται η αντίστροφή
της που την καλούμε τόξο εφαπτομένης x και την συμβολίζουμε με arctan x (ή tan−1 x), . Συνεπώς,
η συνάρτηση arctan x έχει πεδίο ορισμού το R, σύνολο τιμών το

(
−
π

2
,
π

2

)
, είναι συνεχής και γνησίως

αύξουσα.
Η arctan x αντιστοιχεί σε κάθε x ∈ R το μοναδικό τόξο y ∈

(
−
π

2
,
π

2

)
με εφαπτομένη x. Πχ. arctan 0 =

0, arctan(−1) = −
π

4
, arctan 1 =

π

4
.

2.1.2 Η συνάρτηση τόξο συνημιτόνου.

´Εστω
f (x) = cos x, x ∈ [0, π]

Η f είναι συνεχής, γνησίως φθίνουσα και με σύνολο τιμών το [−1, 1]. Άρα ορίζεται η αντίστροφή της
που την συμβολίζουμε με arccos x, (διαβάζεται “τόξο συνημιτόνου x”). Η συνάρτηση arccos x έχει πεδίο
ορισμού το [−1, 1], σύνολο τιμών το [0, π], είναι συνεχής και γνησίως φθίνουσα.
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Η συνάρτηση arccos x αντιστοιχεί σε κάθε x ∈ [−1, 1] το μοναδικό y ∈ [0, π] με cos y = x. Πχ.

arccos 0 = π/2, arccos(−1) = π, arccos 1 = 0, arccos
 √22

 = π4.
2.1.3 Η συνάρτηση τόξο ημιτόνου.

´Εστω
f (x) = sin x, x ∈

[
−
π

2
,
π

2

]
Η f είναι συνεχής, γνησίως αύξουσα και με σύνολο τιμών το [−1, 1]. Άρα ορίζεται η αντίστροφή της
που την συμβολίζουμε με arcsin x, (διαβάζεται “τόξο ημιτόνου x”). Η συνάρτηση arcsin x έχει πεδίο
ορισμού το [−1, 1], σύνολο τιμών το

[
−
π

2
,
π

2

]
, είναι συνεχής και γνησίως αύξουσα.

Η συνάρτηση arcsin x αντιστοιχεί σε κάθε x ∈ [−1, 1] το μοναδικό τόξο y ∈
[
−
π

2
,
π

2

]
με sin y = x. Πχ.

arcsin 0 = 0, arcsin(−1) = −
π

2
, arcsin 1 =

π

2
, arcsin

 √22
 = π4.

2.1.4 Παράγωγοι των αντίστροφων τριγωνομετρικών

Ιδιαίτερο ενδιαφέρον παρουσιάζουν οι παράγωγοι των αντίστροφων τριγωνομετρικών συναρτήσεων
που υπολογίζονται σύμφωνα με το παρακάτω ϑεώρημα.

Θεώρημα 2.1.1. (Θεώρημα Παραγώγου Αντίστροφης Συνάρτησης) ´Εστω I διάστημα του R και
f : I → R γνησίως μονότονη και συνεχής. ´Εστω J = f [I] = { f (x); x ∈ I} το σύνολο τιμών της f και
έστω f −1 : J → I η αντίστροφη συνάρτηση. ´Εστω y0 ∈ J και x0 ∈ I τέτοιο ώστε y0 = f (x0) (ή ισοδύναμα
x0 = f −1(y0). Αν η f είναι παραγωγίσιμη στο x0 και f ′(x0) , 0 τότε η f −1 είναι παραγωγίσιμη στο y0 και

ισχύει ότι
(

f −1
)′

(y0) =
1

f ′(x0)
.

Πρόταση 2.1.2. Για κάθε y ∈ R ισχύει ότι (arctan y)′ =
1

1 + y2
.

Απόδειξη. ´Εστω y = y0 ∈ R και x0 το μοναδικό σημείο στο
(
−π2 ,

π
2

)
με y0 = f (x0) = tan x0. Επειδή

f ′(x) =
(

sin x
cos x

)′
=

(sin x)′ cos x − sin x(cos x)′

cos2 x
=

cos2 x + sin2 x
cos2 x

=
cos2 x
cos2 x

+
sin2 x
cos2 x

= 1 + tan2 x = 1 + f 2(x)

έχουμε f ′(x0) = 1 + y20 , 0. Άρα, από το Θεώρημα 2.1.1, για την παράγωγο της f −1 = arctan στο y0 ϑα
έχουμε

( f −1)′(y0) =
1

f ′(x0)
=

1
1 + y20

Επειδή αυτό ισχύει για κάθε y0 ∈ R έπεται ότι (arctan y)′ =
1√

1 + y2
για κάθε y ∈ R. □

Παρατηρείστε ότι από την Πρόταση 2.1.2 έχουμε και την εξής συνέπεια στον υπολογισμό των
ολοκληρωμάτων.
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Πόρισμα 2.1.3. Για κάθε a < b στο R ισχύει ότι

(2.1.1)
∫ b

a

1
1 + x2

dx = arctan x
∣∣∣b
a = arctan b − arctan a.

ή σε μορφή αορίστου ολοκληρώματος

(2.1.2)
∫

1
1 + x2

dx = arctan x + c

Ειδικότερα, για κάθε x ∈ R,

(2.1.3) arctan x =
∫ x

0

1
1 + t2

dt

Παράδειγμα 2.1.4.
∫ 1

0

1
1 + x2

dx = arctan x
∣∣∣1
0 = arctan 1 − arctan 0 =

π

4
.

Πρόταση 2.1.5. Για κάθε y ∈ (−1, 1) ισχύει ότι (arccos y)′ = −
1√

1 − y2
.

Απόδειξη. ´Εστω y0 ∈ (−1, 1) και x0 ∈ (0, π) με y0 = f (x0) = cos x0. Για κάθε x ∈ (0, π) έχουμε
−1 < sin x < 0. Οπότε

f ′(x) = (cos x)′ = sin x = −
√
1 − cos2 x , 0

και άρα από το Θεώρημα 2.1.1, για την ( f −1)′(y0) παίρνουμε

(
f −1

)′
(y0) =

1
f ′(x0)

= −
1√

1 − cos2 x0
= −

1√
1 − y20

Επειδή αυτό ισχύει για κάθε y0 ∈ (−1, 1) έχουμε ότι (arccos y)′ = −
1√

1 − y2
για κάθε y ∈ (−1, 1). □

Από την Πρόταση 2.1.5 έχουμε το παρακάτω πόρισμα.

Πόρισμα 2.1.6. Για κάθε −1 ≤ a < b ≤ 1 ισχύει ότι

(2.1.4)
∫ b

a

1
√
1 − x2

dx = arccos a − arccos b

ή σε μορφή αορίστου ολοκληρώματος

(2.1.5)
∫

1
√
1 − x2

dx = − arccos x + c

Ειδικότερα, για κάθε x ∈ [−1, 1],

(2.1.6) arccos x = −
∫ x

0

1
√
1 − x2

dx

Πρόταση 2.1.7. Για κάθε y ∈ (−1, 1) ισχύει ότι (arcsin y)′ =
1√

1 − y2
.
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Απόδειξη. ´Εστω y0 ∈ (−1, 1) και x0 ∈
(
−
π

2
,
π

2

)
με f (x0) = sin x0 = y0. Για κάθε x ∈

(
−
π

2
,
π

2

)
έχουμε

0 < cos x < 1 και άρα
f ′(x) = cos x =

√
1 − sin2 x , 0

Άρα από το Θεώρημα 2.1.1, παίρνουμε

(
f −1

)′
(y0) =

1
f ′(x0)

=
1√

1 − sin2 x0
=

1√
1 − y20

Επειδή αυτό ισχύει για κάθε y0 ∈ (−1, 1) και η f −1 = arcsin έχουμε ότι (arcsin y)′ =
1√

1 − y2
για κάθε

y ∈ (−1, 1). □

Από την Πρόταση 2.1.7 έχουμε το εξής πόρισμα.

Πόρισμα 2.1.8. Για κάθε −1 ≤ a < b ≤ 1,

(2.1.7)
∫ b

a

1
√
1 − x2

dx = arcsin x
∣∣∣b
a = arcsin b − arcsin a

ή σε μορφή αορίστου ολοκληρώματος

(2.1.8)
∫

1
√
1 − x2

dx = arcsin x + c

Ειδικότερα, για κάθε x ∈ [−1, 1],

(2.1.9) arcsin x =
∫ x

0

1
√
1 − x2

dx

2.2 Οι υπερβολικές τριγωνομετρικές συναρτήσεις

Στην παράγραφο αυτή ϑα ορίσουμε τις υπερβολικές συναρτήσεις. Οι συναρτήσεις αυτές καλούνται
συνήθως υπερβολικές τριγωνομετρικές διότι μπορούν να ορισθούν μέσω της ισοσκελούς υπερβολής
x2 − y2 = 1 με έναν τρόπο ανάλογο με εκείνον με τον οποίο ορίζονται οι τριγωνομετρικές συναρτήσεις
μέσω του μοναδιαίου κύκλου.

2.2.1 Η συνάρτηση υπερβολικό συνημίτονο.

Η συνάρτηση

(2.2.1) cosh x =
ex + e−x

2

καλείται υπερβολικό συνημίτονο και ορίζεται για κάθε x ∈ R.
Η συνάρτηση cosh x είναι άρτια συνάρτηση δηλαδή

(2.2.2) cosh(−x) = cosh x, ∀x ∈ R

αφού,

cosh(−x) =
e−x + e−(−x)

2
=

e−x + ex

2
= cosh x
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Επίσης,

(2.2.3) cosh x ≥ 1, ∀x ∈ R

αφού αν ϑέσουμε y = ex τότε y > 0 και

cosh x =
y + 1

y

2
=

y2 + 1
2y

≥ 1⇔ y2 + 1 ≥ 2y⇔ y2 − 2y + 1 ≥ 0⇔ (y − 1)2 ≥ 0

Ακόμη, επειδή ο μέσος όρος δύο πραγματικών αριθμών είναι πάντα μεταξύ των αριθμών αυτών έχουμε
ότι

(2.2.4) e−x < cosh x < ex, ∀x > 0

και αντίστοιχα

(2.2.5) ex < cosh x < e−x, ∀x < 0

Επίσης,

(2.2.6) (cosh x)′ =
ex − e−x

2

Παρατηρούμε ότι (cosh x)′ < 0 για x < 0 και (cosh x)′ > 0 για x > 0. Άρα η cosh x είναι γνησίως
φθίνουσα στο (−∞, 0] και γνησίως αύξουσα στο [0,+∞) με cosh(0) = 1 να είναι η ελάχιστη τιμή της.
Επιπλέον είναι εύκολο να δούμε ότι

(2.2.7) lim
x→−∞

cosh x = lim
x→+∞

cosh x = +∞.

και άρα το σύνολο τιμών της cosh x (δηλαδή το σύνολο {cosh x : x ∈ R}) είναι το [1,+∞). Η καμπύλη που
σχηματίζει η γραφική παράσταση της cosh x μοιάζει με παραβολή (δηλαδή σαν αυτήν της συνάρτησης
x2) και καλείται αλυσσοειδής γιατί είναι το σχήμα που παίρνει μια αλυσίδα όταν την κρεμάσουμε
οριζόντια από τα δύο άκρα της.

2.2.2 Η συνάρτηση υπερβολικό ημίτονο.

Η συνάρτηση

(2.2.8) sinh x =
ex − e−x

2

καλείται υπερβολικό ημίτονο και ορίζεται για κάθε x ∈ R.
Η συνάρτηση sinh x, x ∈ R είναι περιττή συνάρτηση δηλαδή

(2.2.9) sinh(−x) = − sinh x

´Εχουμε

(2.2.10) (sinh x)′ =
ex + e−x

2
= cosh x
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και άρα η sinh x είναι γνησίως αύξουσα. Επειδή επιπλέον

(2.2.11) lim
x→−∞

sinh x = −∞ και lim
x→+∞

sinh x = +∞

το σύνολο τιμών της είναι όλο το R. Η γραφική της παράσταση μοιάζει με της συνάρτησης f (x) = x3.
Παρατηρείστε ότι από την (2.2.6) έχουμε

(2.2.12) (cosh x)′ =
ex − e−x

2
= sinh x

Επίσης είναι εύκολο να επαληθεύσουμε με πράξεις την εξής ταυτότητα

(2.2.13) cosh2 x − sinh2 x = 1, ∀x ∈ R

Παρατήρηση 2.2.1. Η (2.2.13), δείχνει την σχέση των συναρτήσεων cosh x και sinh x με την ισοσκελή
υπερβολή, δηλαδή την καμπύλη του επιπέδου που αποτελείται από όλα τα σημεία (x, y) που ικανο-
ποιούν την σχέση x2 − y2 = 1. Πράγματι, αποδεικνύεται ότι ένα σημείο (x, y) του επιπέδου ανήκει στον
δεξί κλάδο της ισοσκελούς υπερβολής αν και μόνο αν τα x, y γράφονται υπό την μορφή

(2.2.14)

x = cosh t

y = sinh t

όπου το t ισούται με το διπλάσιο εμβαδό του χωρίου που φράσεται από την ακτίνα που ενώνει το
κέντρο των αξόνων O(0, 0) με το σημείο (x, y) της υπερβολής, την υπερβολή και τον x-άξονα. Αυτό το
γεγονός έρχεται σε αναλογία με τα σημεία (x, y) του μοναδιαίου κύκλου του οποίου τα σημεία δίνονται
από τις εξισώσεις

(2.2.15)

x = cos t

y = sin t

2.2.3 Η συνάρτηση υπερβολική εφαπτομένη.

Η συνάρτηση

(2.2.16) tanh x =
sinh x
cosh x

=
ex − e−x

ex + e−x , x ∈ R

καλείται υπερβολική εφαπτομένη. Η tanh x είναι περιττή,

(2.2.17) tanh(−x) = − tanh x, ∀x ∈ R

Είναι εύκολο να δούμε ότι

(tanh x)′ =
(

sinh x
cosh x

)′
=

(sinh x)′ cosh x − sinh x(cosh x)′

cosh2 x

=
cosh2 x − sinh2 x

cosh2 x

=
1

cosh2 x
> 0

(2.2.18)
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και άρα η tanh x είναι γνησίως αύξουσα. Επίσης,

(2.2.19) lim
x→+∞

tanh x = +1

Πράγματι

lim
x→+∞

tanh x = lim
x→+∞

ex − e−x

ex + e−x = lim
x→+∞

ex(1 − e−2x)
ex(1 + e−2x)

= lim
x→+∞

1 − e−2x

1 + e−2x = 1

Παρόμοια, έχουμε

(2.2.20) lim
x→−∞

tanh x = −1

Με άλλα λόγια οι ευθείες y = ±1 αποτελούν οριζόντιες ασύμπτωτες της γραφικής της παράστασης της
tanh x. Η γραφική παράσταση της tanh x μοιάζει με αυτήν της arctan x.

2.2.4 Αντίστροφες Υπερβολικές Συναρτήσεις

´Οπως είδαμε η συνάρτηση sinh x : R→ R είναι μια γνησίως αύξουσα και άρα αντιστρέψιμη συνάρτηση.
Η αντίστροφή της συμβολίζεται με sinh−1 x.

Πρόταση 2.2.2. Η αντίστροφη της συνάρτησης sinh x δίνεται από τον τύπο

(2.2.21) sinh−1 x = ln
(
x +
√

x2 + 1
)
, ∀x ∈ R

Η συνάρτηση sinh−1 x, x ∈ R είναι παραγωγίσιμη και ισχύει ότι

(2.2.22)
(
sinh−1 x

)′
=

1
√
1 + x2

Συνεπώς,

(2.2.23)
∫

1
√
1 + x2

dx = sinh−1 x + c = ln
(
x +
√

x2 + 1
)
+ c

Απόδειξη. ´Εστω x ∈ R και έστω

(2.2.24) y = sinh−1 x

Άρα x = sinh y =
ey − e−y

2
. Θέτοντας w = ey, έχουμε

(2.2.25) x =
w − 1

w

2
=

w2 − 1
2w

⇔ w2 − 2xw − 1 = 0

Η (2.2.25) έχει λύσεις
w1,2 = x ±

√
x2 + 1

Επειδή w = ey > 0 και x −
√

x2 + 1 < 0 παίρνουμε ότι

w = x +
√

x2 + 1⇔ ey = x +
√

x2 + 1

⇔ y = ln
(
x +
√

x2 + 1
)
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Από τον κανόνα παραγώγισης σύνθετης συνάρτησης έχουμε(
sinh−1 x

)′
=

(
ln

(
x +
√

x2 + 1
))′

=
1

x +
√

x2 + 1
·
(
x +
√

x2 + 1
)′

=
1

x +
√

x2 + 1
·

(
1 +

1
2
√

x2 + 1
· (x2 + 1)′

)
=

1
x +
√

x2 + 1
·

(
1 +

1
2
√

x2 + 1
· 2x

)
=

1
x +
√

x2 + 1
·

(
1 +

x
√

x2 + 1

)
=

1
x +
√

x2 + 1
·

√
x2 + 1 + x
√

x2 + 1
=

1
√

x2 + 1
.

□

Η συνάρτηση cosh x, x ∈ R ως άρτια δεν είναι 1 − 1 και άρα δεν αντιστρέφεται. ´Ομως αν πε-
ριοριστούμε στα x ≥ 0 η cosh x είναι μια γνησίως αύξουσα συνάρτηση από το [0,+∞) στο [1,+∞).
Αν συμβολίσουμε με cosh−1 x την αντίστροφη της cosh x στο διάστημα [0,+∞) παίρνουμε την εξής
πρόταση.

Πρόταση 2.2.3. Η αντίστροφη της συνάρτησης cosh x στο διάστημα [0,+∞), δίνεται από τον τύπο

(2.2.26) cosh−1 x = ln
(
x +
√

x2 − 1
)
, ∀x ∈ [1,+∞)

Η συνάρτηση cosh−1 x, x ∈ [1,+∞) είναι παραγωγίσιμη και ισχύει ότι

(2.2.27)
(
cosh−1 x

)′
=

1
√

x2 − 1

Συνεπώς,

(2.2.28)
∫

1
√

x2 − 1
dx = cosh−1 x + c = ln

(
x +
√

x2 − 1
)
+ c

Η απόδειξη της Πρότασης 2.2.3 είναοι ανάλογη με εκείνη της Πρότασης 2.2.2 και αφήνεται ως
άσκηση.

Τέλος, όπως είδαμε η tanh x είναι μια γνησιως αύξουσα συνάρτηση από το R στο (−1, 1). Η
αντίστροφή της συμβολίζεται με tanh−1 x και είναι μια γνησίως αύξουσα συνάρτηση από το (−1, 1) στο
R.

Πρόταση 2.2.4. Η αντίστροφη της συνάρτησης tanh x στο διάστημα [0,+∞), δίνεται από τον τύπο

(2.2.29) tanh−1 x =
1
2

ln
(
1 + x
1 − x

)
, ∀x ∈ (−1, 1)

Η συνάρτηση tanh−1 x, x ∈ (−1, 1) είναι παραγωγίσιμη και ισχύει ότι

(2.2.30)
(
tanh−1 x

)′
=

1
1 − x2
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Απόδειξη. ´Εστω x ∈ R. Τότε

y = tanh−1 x⇔ x = tanh y =
ey − e−y

ey + e−y =
e2y − 1
e2y + 1

⇔ e2y =
1 + x
1 − x

⇔ y =
1
2

ln
(
1 + x
1 − x

)
Επίσης

(
tanh−1 x

)′
=

1
2

ln
(
1 + x
1 − x

)′
==

1
2
·
1 − x
1 + x

·

(
1 + x
1 − x

)′
=

1
2
·
1 − x
1 + x

·
2

(1 − x)2
=

1
1 − x2

□





ΚΕΦΑΛΑΙΟ 3

Ολοκλήρωμα Riemann

3.1 Βασικοί ορισμοί και Ολοκληρώσιμες συναρτήσεις

3.1.1 Βασικοί ορισμοί

Για τους επόμενους ορισμούς σταθεροποιούμε ένα κλειστο φραγμένο διάστημα [a, b] του R.

Ορισμός 3.1.1. Κάθε πεπερασμένο υποσύνολο του [a, b] που περιέχει τα άκρα a, b του [a, b] ϑα
καλείται διαμέριση του [a, b].

´Εστω n ∈ N και έστω
P = {a = x0 < x1 < · · · < xn = b}

μια διαμέριση του [a, b] με n + 1 σημεία. Η P χωρίζει το διάστημα [a, b] σε n διαστήματα

[a, b] = [x0, x1] ∪ [x1, x2] ∪ · · · ∪ [xn−1, xn]

=

n⋃
i=1

[xi−1, xi]

Για κάθε i = 1, . . . , n, με ∆xi συμβολίζουμε το μήκος του διαστήματος [xi−1, xi], δηλαδή

∆xi = xi − xi−1.

Ορισμός 3.1.2. ´Εστω P = {a = x0 < x1 < · · · < xn = b} μια διαμέριση του [a, b] με n + 1 σημεία. ´Ενα
υποσύνολο T = {t1, . . . , tn} του [a, b] τέτοιο ώστε ti ∈ [xi−1, xi] για κάθε i = 1, . . . , n ϑα καλείται επιλογή
ενδιάμεσων σημείων ως προς την P.

Ορισμός 3.1.3. ´Εστω f : [a, b] → R, P = {a = x0 < x1 < · · · < xn = b} μια διαμέριση του [a, b] και
T = {t1, . . . , tn} επιλογή ενδιάμεσων σημείων ως προς την P. Το άθροισμα

S ( f , P,T ) =
n∑

i=1
f (ti)∆xi = f (t1)(x1 − x0) + f (t2)(x2 − x1) + · · · + f (tn)(xn − xn−1)

καλείται άθροισμα Riemann της f ως προς την διαμέριση P και την επιλογή T .

Ορισμός 3.1.4. ´Εστω P = {a = x0 < x1 < · · · < xn = b} μια διαμέριση του [a, b]. Η λεπτότητα της P
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ορίζεται να είναι το μέγιστο από τα μήκη ∆xi και συμβολίζεται με λ(P), δηλαδή,

λ(P) = max{∆xi : i = 1, . . . , n}

3.1.2 Ολοκληρωσιμότητα συναρτήσεων

Μία συνάρτηση f : [a, b]→ R καλείται ολοκληρώσιμη αν υπάρχει ένας πραγματικός αριθμός I τέτοιος
ώστε

(3.1.1) I = lim
λ(P)→0

S ( f , P,T )

Ο αριθμός I με την παραπάνω ιδιότητα ϑα καλείται ολοκλήρωμα της f και συμβολίζεται με
∫ b

a
f (x) dx.

Η σχέση (3.1.1) σημαίνει ότι το ολοκλήρωμα της f είναι το όριο των αθροισμάτων Riemann καθώς η
λεπτότητα των διαμερίσεων τείνει προς στο μηδέν και ανεξατήτως των επιλογών ενδιάμεσων σημείων1.

´Ενα σημαντικό αποτέλεσμα στην ϑεωρία ολοκλήρωσης είναι το εξής.

Θεώρημα 3.1.5. Κάθε συνεχής συνάρτηση είναι ολοκληρώσιμη.

Παρατήρηση 3.1.6. Το Θεώρημα 3.1.5 λέει ότι η κλάση των ολοκληρωσίμων συναρτήσεων περιλαμ-
βάνει όλες τις συνεχείς συναρτήσεις. Δεν είναι όμως μόνο οι συνεχείς συναρτήσεις ολοκληρώσιμες.
Για παράδειγμα, αποδεικνύεται ότι κάθε μονότονη συνάρτηση είναι ολοκληρώσιμη ασχέτως αν είναι
συνεχής ή όχι.

Επίσης, υπάρχουν συναρτήσεις που δεν είναι ολοκληρώσιμες. Για παράδειγμα η συνάρτηση f :
[a, b]→ R με τύπο:

f (x) =

 1 αν x ρητός

0 αν x άρρητος

αποδεικνύεται ότι δεν είναι ολοκληρώσιμη. Αυτό οφείλεται στο γεγονός ότι τα αθροίσματα Riemann
δεν συγκλίνουν καθώς η λεπτότητα των διαμερίσεων τείνει στο μηδέν.

3.2 Παράγωγος και Ολοκλήρωμα

Το επόμενο ϑεώρημα συνδέει την Ολοκλήρωση με την Διαφόριση και παίζει καθοριστικό ρόλο στους
υπολογισμούς ολοκληρωμάτων.

Θεώρημα 3.2.1. (Πρώτο Θεμελιώδες Θεώρημα του Ολοκληρωτικού Λογισμού) ´Εστω f : [a, b] → R
ολοκληρώσιμη συνάρτηση. Αν υπάρχει F : [a, b]→ R συνεχής με F′(x) = f (x) για κάθε x ∈ (a, b) τότε

(3.2.1)
∫ b

a
f (x) dx = F(b) − F(a)

Μια συνεχής συνάρτηση F : [a, b] → R με F′(x) = f (x) για κάθε x ∈ (a, b) ϑα καλείται αρχική (ή
παράγουσα) της f . Αν μια συνάρτηση f έχει μια αρχική F τότε αυτή ϑα είναι στην ουσία μοναδική
με την έννοια ότι όλες οι άλλες αρχικές της f ϑα είναι της μορφής F + c όπου c σταθερά (πράγματι,
αν F1, F2 δύο αρχικές της f τότε F′1 = F′2 = f και άρα (F2 − F1)′ = F′2 − F′1 = 0 ⇒ F2 − F1 = c). Ως

1Σε πιο αυστηρά μαθηματική γλώσσα η (3.1.1) σημαίνει το εξής: Για κάθε ε > 0 υπάρχει δ > 0 τέτοιο ώστε για κά-
ϑε διαμέριση P του [a, b] με λ(P) < δ και για οποιαδήποτε επιλογή T ενδιάμεσων σημείων ως προς την P, έχουμε ότι
|S ( f , P,T ) − I| < ε.
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συνέπεια έχουμε ότι η διαφορά F(b)−F(a) στην (3.2.1) είναι η ίδια για κάθε αρχική της f . Την διαφορά
F(b) − F(a) ϑα την συμβολίζουμε στην συνέχεια με [F(x)]b

a.
Η απόδειξη του ϑεωρήματος 3.2.1 στηρίζεται στην επόμενη πρόταση που είναι συνέπεια του ϑεω-

ρήματος Μέσης Τιμής.

Πρόταση 3.2.2. ´Εστω f : [a, b]→ R και έστω F μια αρχική της f . Τότε για κάθε διαμέριση P υπάρχει
επιλογή ενδιάμεσων σημείων TP τέτοια ώστε

(3.2.2) S ( f , P,TP) = F(b) − F(a)

Απόδειξη. ´Εστω P = {a = x0 < x1 < x2 < · · · < xn = b} μια διαμέριση του [a, b]. Καταρχάς παρατηρούμε
ότι

(3.2.3) F(b) − F(a) =
n∑

i=1
(F(xi) − F(xi−1))

Από το Θεώρημα Μέσης Τιμής, για κάθε i = 1, . . . , n, υπάρχει ti ∈ (xi−1, xi) τέτοιο ώστε

F(xi) − F(xi−1)
xi − xi−1

= F′(ti) = f (ti)

και άρα
F(xi) − F(xi−1) = f (ti)∆xi

Θέτουμε TP = {t1, . . . , tn} και παρατηρούμε ότι το TP αποτελεί μια επιλογή ενδιάμεσων σημείων ως
προς την διαμέριση P.

Τώρα από την (3.2.3) έχουμε

F(b) − F(a) =
n∑

i=1
(F(xi) − F(xi−1)) =

n∑
i=1

f (ti)∆xi = S ( f , P,TP)

□

Απόδειξη του Θεωρήματος 3.2.1. Από τον ορισμό του ολοκληρώματος έχουμε ότι∫ b

a
f (x) dx = lim

λ(P)→0
S ( f , P,T )

Επειδή το όριο αυτό είναι ανεξάρτητο της επιλογής T χωρίς βλάβη της γενικότητας μπορούμε να
υποθέσουμε ότι T = TP, με άλλα λόγια∫ b

a
f (x) dx = lim

λ(P)→0
S ( f , P,TP)

´Ομως κάθε άθροισμα Riemann S ( f , P,TP) είναι σταθερό και ίσο με F(b)− F(a) όποια και αν είναι η P.
Συνεπώς lim

λ(P)→0
S ( f , P,TP) = F(b) − F(a) και άρα

∫ b
a f (x) dx = F(b) − F(a). □
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Παράδειγμα 3.2.3.
∫ 1

0
x2 dx =

[
x3

3

]1
0
=

1
3
. Γενικότερα, για κάθε k ∈ N,

∫ 1

0
xk dx =

[
xk

k + 1

]1
0
=

1
k + 1∫ e

1

1
x

dx = [ln x]e
1 = ln e − ln 1 = 1

∫ π
2

0
cos x dx = [sin x]

π
2
0 = 1

Το Θεώρημα 3.2.1 λέει ότι για να υπολογίσουμε το ολοκλήρωμα
∫ b

a
f (x) dx μιας συνάρτησης f

αρκεί να βρούμε μια αρχική της, δηλαδή μια συνάρτηση F με F′ = f και τότε το ολοκλήρωμα που
ϑέλουμε να υπολογίσουμε είναι απλώς η διαφορά των τιμών της συνάρτησης F στα άκρα a και b
του διαστήματος ολοκλήρωσης. Άρα ο υπολογισμός ενός ολοκληρώματος ανάγεται στην ουσία σε μια
διαδικασία που είναι αντίστροφη σε αυτή της παραγώγου.

Ορισμός 3.2.4. Το αόριστο ολοκλήρωμα (ή γενικό ολοκλήρωμα ) μιας συνάρτησης f : [a, b] → R
ορίζεται να είναι το σύνολο όλων των αρχικών συναρτήσεων της f . Το αόριστο ολοκλήρωμα της f ϑα
συμβολίζεται με

∫
f (x) dx.

Επειδή δύο αρχικές της f διαφέρουν κατά σταθερά2, έχουμε ότι∫
f (x) dx = {F + c : c ∈ R}

όπου F είναι μια αρχική της f . Στα επόμενα για απλότητα ϑα γράφουμε∫
f (x) dx = F(x) + c ή πιο απλά

∫
f (x) dx = F(x)

Παράδειγμα 3.2.5. ∫
xa dx =

xa

a + 1
, για όλα τα a , −1∫

1
x

dx = ln |x|∫
cos x dx = sin x

∫
sin x dx = − cos x∫

1
x2 + 1

dx = arctan x

Για συνεχείς συναρτήσεις έχουμε το εξής ϑεώρημα.

Θεώρημα 3.2.6. (Δεύτερο Θεμελιώδες ϑεώρημα του Ολοκληρωτικού Λογισμού) ´Εστω f : [a, b] → R
συνεχής συνάρτηση. Τότε η συνάρτηση F : [a, b]→ R με τύπο

F(x) =
∫ x

a
f (t) dt

για κάθε x ∈ [a, b] (για x = a ϑέτουμε F(a) = 0) είναι παραγωγίσιμη στο [a, b] και ειδικότερα για κάθε
x ∈ [a, b], ισχύει ότι F′(x) = f (x).

2Αν F′1 = f και F′2 = f τότε F′1 = F′2 ⇔ F′1 − F′2 = 0⇔ (F1 − F2)′ = 0 και άρα από το Θεώρημα Μέσης Τιμής F1 − F2 = c
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Πόρισμα 3.2.7. Κάθε συνεχής συνάρτηση f : [a, b]→ R έχει αρχική.

Παρατήρηση 3.2.8. Το Πρώτο Θεμελιώδες Θεώρημα λέει ουσιαστικά ότι αν ολοκληρώσουμε την πα-
ράγωγο μιας συνάρτησης παίρνουμε πάλι πίσω την συνάρτηση ενώ το Δεύτερο Θεμελιώδες Θεώρημα
λέει ότι το ίδιο γίνεται αν παραγωγίσουμε το ολοκλήρωμα μιας συνάρτησης. Άρα Ολοκλήρωση και
Διαφόριση είναι αντίστροφες διαδικασίες.

3.3 Βασικές ιδιότητες Ολοκληρώματος και Μεθοδοι Ολοκληρωσης

3.3.1 Βασικές ιδιότητες

Αποδεικνύεται ότι το ολοκλήρωμα έχει τις επόμενες τρείς βασικές ιδιότητες.

Πρόταση 3.3.1. (Προσθετικότητα) ´Εστω f : [a, b]→ R ολοκληρώσιμη συνάρτηση και c ∈ (a, b). Τότε
η f είναι ολοκληρώσιμη στα [a, c] και [c.b] και ισχύει ότι∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx

Πρόταση 3.3.2. (Μονοτονία) ´Εστω f , g : [a, b] → R ολοκληρώσιμες συναρτήσεις. Αν f (x) ≤ g(x) για
κάθε x ∈ [a, b] τότε ∫ b

a
f (x) dx ≤

∫ b

a
g(x) dx

Πρόταση 3.3.3. (Γραμμικότητα) ´Εστω f , g : [a, b] → R ολοκληρώσιμες συναρτήσεις και λ, µ ∈ R.
Τότε η συνάρτηση λ f + µg είναι ολοκληρώσιμη και∫ b

a
(λ f (x) + µg(x)) dx = λ

∫ b

a
f (x) dx + µ

∫ b

a
g(x) dx

3.3.2 Ολοκλήρωση κατά παράγοντες

Η πρώτη μέθοδος Ολοκλήρωσης είναι το ανάλογο του κανόνα παραγώγισης του γινομένου δύο συναρ-
τήσεων

( f g)′ = f ′g + f g′

και καλείται Ολοκλήρωση κατά παράγοντες.

Θεώρημα 3.3.4. ´Εστω f , g : [a, b]→ R παραγωγίσιμες με συνεχή παράγωγο. Τότε

(3.3.1)
∫ b

a
f ′(x)g(x) dx =

[
f (x)g(x)

]b
a −

∫ b

a
f (x)g′(x) dx

ή με τον συμβολισμό του αορίστου ολοκληρώματος

(3.3.2)
∫

f ′(x)g(x) dx = f (x)g(x) −
∫

f (x)g′(x) dx

Απόδειξη. Επειδή ( f · g)′ = f ′ · g + f · g′ έχουμε ότι f ′ · g = ( f · g)′ − f · g′. Άρα από την γραμμικότητα
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του ολοκληρώματος, ∫ b

a
f ′(x)g(x) dx =

∫ b

a
( f (x)g(x))′ dx −

∫ b

a
f (x) · g′(x) dx

= [ f (x)g(x)]b
a −

∫ b

a
f (x) · g′(x) dx.

□

Παράδειγμα 3.3.5.∫ e

1
ln x dx =

∫ e

1
(x)′ ln x dx = [x ln x]e

1 −

∫ e

1
x(ln x)′ dx

= [x ln x]e
1 −

∫ e

1
x
1
x

dx

= [x ln x]e
1 −

∫ e

1
1 dx

= [x ln x]e
1 − [x]e

1 = [x ln x − x]e
1 = [x(ln x − 1)]e

1

3.3.3 Ολοκλήρωση με αλλαγή μεταβλητής

Η δεύτερη μέθοδος ολοκλήρωσης είναι το αντίστοιχο του κανόνα παραγώγισης της σύνθεσης δύο
συναρτήσεων (κανόνας αλυσίδας):

(F ◦ φ)′(t) = F′(φ(t))φ′(t)

και καλείται ολοκλήρωση με αντικατάσταση (ή ολοκλήρωση με αλλαγή μεταβλητής). Θα χρειασθούμε
και τον εξής συμβολισμό.

Θεώρημα 3.3.6. ´Εστω I διάστημα του R και έστω f : I → R συνεχής συνάρτηση. ´Εστω φ : [c, d] → I
παραγωγίσιμη συνάρτηση με συνεχή παράγωγο. Τότε

(3.3.3)
∫ d

c
f (φ(t)) · φ′(t) dt =

∫ φ(d)

φ(c)
f (u) du

Απόδειξη. Από το Θεώρημα 3.2.6) υπάρχει F : [a, b]→ R με F′ = f . Από το Θεώρημα 3.2.1, έχουμε

(3.3.4)
∫ φ(d)

φ(c)
f (u) du = F(φ(d)) − F (φ(c))

Από την άλλη μεριά, από τον κανόνα παραγώγισης σύνθετης συνάρτησης, έχουμε ότι∫ d

c
f (φ(t)) · φ′(t) dt =

∫ d

c
F′(φ(t)) · φ′(t) dt

=

∫ d

c
(F ◦ φ)′(t) dx

= F ◦ φ (d) − F ◦ φ (c) = F(φ(d)) − F (φ(c))

(3.3.5)

Από (3.3.4) και (3.3.5) έπεται το συμπέρασμα. □
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Στην πράξη για να εφαρμόσουμε το Θεώρημα 3.3.6, ϑέτουμε

“u = φ(t)” και “du = φ′(t) dt”

Παράδειγμα 3.3.7. ∫ b

a
φ(t)φ′(t) dt =

∫ φ(b)

φ(a)
u du =

[
u2

2

]b

a
=

[
φ2(x)
2

]b

a

όπου ϑέσαμε u = φ(t), du = φ′(t) dt. Π.χ.∫ π/2

0
sin t cos t dt =

∫ π/2

0
sin t(sin t)′ dt

=

∫ sin(π/2)

sin 0
u du =

sin2(π/2) − sin2 0
2

=
1
2

Παράδειγμα 3.3.8. ´Εστω φ : [c, d]→ (0,+∞) παραγωγίσιμη με συνεχή παράγωγο. Τότε∫ d

c

φ′(t)
φ(t)

dt =
∫ φ(d)

φ(c)

du
u

du = [ln u]φ(d)
φ(c) = lnφ(d) − lnφ(c)

Πχ. ∫ π/3

0
tan t dt =

∫ π/3

0

sin t
cos t

dt = −
∫ π/3

0

(cos t)′

cos t
dt

u=cos t
= −

∫ 1/2

1

du
u
=

∫ 1

1/2

du
u
= [ln u]11/2 = − ln

1
2
= ln 2

Ο τύπος (3.3.3) χρησιμοποιείται και αντίστροφα ως εξής:

Θεώρημα 3.3.9. ´Εστω f : [a, b] → R συνεχής συνάρτηση και έστω φ : [c, d] → [a, b] γνησίως αύξουσα
παραγωγίσιμη συνάρτηση με συνεχή παράγωγο τέτοια ώστε φ(c) = a και φ(d) = b. Τότε

(3.3.6)
∫ b

a
f (x) dx =

∫ d

c
f (φ(t))φ′(t) dt

Στην πράξη, ϑέτουμε
x = φ(t) και dx = φ′(t) dt

Το δύσκολο εδώ είναι να βρούμε την κατάλληλη συνάρτηση φ : [c, d]→ [a, b].

Παράδειγμα 3.3.10. Χρησιμοποιώντας ότι
∫

cos2 t dt =
cos t · sin t + t

2
δείξτε ότι

∫
√
1 − x2 dx =

x
√
1 − x2 + arcsin x

2
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Απόδειξη. Θέτουμε x = sin t ⇔ t = arcsin x, t ∈
[
−π
2 ,
π
2

]
. Τότε∫

√
1 − x2 dx =

∫ √
1 − sin2 t (sin t)′ dt

=

∫
cos2 t dt

=
1
2

(cos t · sin t + t)

=
1
2

(cos(arcsin x) · sin(arcsin x) + arcsin x)

=
1
2

(x cos(arcsin x) + arcsin x)

=
1
2

(x
√
1 − x2 + arcsin x)

διότι sin(arcsin x) = x και cos(arcsin x) =
√
1 − sin2(arcsin x) =

√
1 − x2. □

3.4 Ολοκλήρωση Ρητών συναρτήσεων

Με τον όρο ρητή συνάρτηση εννοούμε μια συνάρτηση της μορφής
P(x)
Q(x)

όπου P(x),Q(x) πολυώνυμα

με πραγματικο’υς συντελεστές. Αν ο βαθμός του πολυωνύμου P(x) που βρίσκεται στον αριθμητή είναι
γνήσια μεγαλύτερος από τον βαθμό του πολυωνύμου Q(x) που είναι στον παρονομαστή τότε από την
ταυτότητα της διαίρεσης των πολυωνύμων υπάρχουν δύο μοναδικά πολυώνυμα Π(x) (το πηλίκο) και
R(x) (το υπόλοιπο) με τον βαθμό του R(x) να είναι γνήσια μικρότερος του βαθμού του Q(x) τέτοια ώστε
P(x) = Π(x) · Q(x) + R(x) και άρα

P(x)
Q(x)

= Π(x) +
R(x)
Q(x)

Οπότε,

(3.4.1)
∫

P(x)
Q(x)

dx =
∫
Π(x) dx +

∫
R(x)
Q(x)

dx

Επειδή το ολοκλήρωμα ενός πολυωνύμου υπολογίζεται εύκολα,∫ (
anxn + · · · + a1x + a0

)
dx = an

∫
xn dx + · · · + a1

∫
x dx + a0

∫
dx

=
an

n + 1
xn+1 + · · · +

a1

2
x2 + a0x

από την σχέση (3.4.1) βλέπουμε ότι η ολοκλήρωση μιας ρητής συνάρτησης ανάγεται στην ολοκλή-
ρωση μιας ρητής συνάρτησης όπου ο βαθμός του αριθμητή είναι γνήσια μικρότερος του βαθμού του
παρονομαστή. Τέτοιες ρητές συναρτήσεις τις καλούμε γνήσιες.

Για να ολοκληρώσουμε μια γνήσια ρητή συνάρτηση χρησιμοποιούμε μια μέθοδο που καλείται διά-
σπαση σε απλά κλάσματα. Το πρώτο βήμα αυτής της μεθόδου είναι η παραγοντοποίηση του παρονο-
μαστή.

Αποδεικνύεται ότι ένα πολυώνυμο xn + an−1xn−1 + · · · + a1x + a0 με πραγματικούς συντελεστές και
συντελεστή μεγιστοβάθμιου όρου an+1 = 1 παραγοντοποιείται με μοναδικό τρόπο σε ένα γινόμενο πρω-
τοβαθμίων όρων της μορφής x − ρ, όπου ρ ∈ R και σε ένα γινόμενο δευτεροβαθμίων όρων (τριωνύμων)
της μορφής x2 + bx+ c, τα οποία δεν έχουν πραγματικές ρίζες, με άλλα λόγια η διακρίνουσά τους είναι
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αρνητική. Πιο συγκεκριμένα έχουμε το εξής.

Θεώρημα 3.4.1. Κάθε πολυώνυμο Q(x) = xn + an−1xn−1 + · · · + a1x + a0 με πραγματικούς συντελεστές
και συντελεστή μεγιστοβάθμιου όρου an+1 = 1 γράφεται στην μορφή

Q(x) = Q1(x) · Q2(x)

όπου

(3.4.2) Q1(x) =
m∏

i=1
(x − ρi)ni και Q2(x) =

ℓ∏
j=1

(x2 + b jx + c j)k j

όπου ni, k j ∈ N, ρi, b j, c j ∈ R και ∆ j = b2
j − 4c j < 0.

Την μορφή Q(x) = Q1(x) ·Q2(x) με Q1(x),Q2(x) όπως στην (3.4.2) ϑα την καλούμε ανάλυση του Q(x).
Αντιστοιχεί κατά κάποιο τρόπο στην γνωστή ανάλυση των ακεραίων σε γινόμενο πρώτων παραγόντων.
´Οπως οι πρώτοι αριθμοί δεν γράφονται ως γινόμενο μικρότερων αριθμών, τα πρωτοβάθμια πολυώνυμα
καθώς και τα δευτεροβάθμια με αρνητική διακρίνουσα είναι τα μοναδικά πολυώνυμα με πραγματικούς
συντελεστές που δεν μπορούν να αναλυθούν σε γινόμενο άλλων απλούστερης μορφής.

Η διάσπαση τώρα μιας ρητής συνάρτησης σε απλά κλάσματα περιγράφεται στο επόμενο ϑεώρημα.

Θεώρημα 3.4.2. ´Εστω
P(x)
Q(x)

μία γνήσια ρητή συνάρτηση.

(i) Αν Q(x) = (x − ρ)n · Q1(x), όπου ρ ∈ R και το x − ρ δεν διαιρεί το Q1(x) τότε υπάρχουν μοναδικοί
A1, . . . , An ∈ R τέτοιοι ώστε

(3.4.3)
P(x)
Q(x)

=
A1

x − ρ
+ · · · +

An

(x − ρ)n +
P1(x)
Q1(x)

όπου
P1(x)
Q1(x)

είναι γνήσια ρητή συνάρτηση.

(ii) Αν Q(x) = (x2 + bx + c)k · Q1(x) με ∆ = b2 − 4c < 0 και το x2 + bx + c δεν διαιρεί το Q1(x), τότε
υπάρχουν μοναδικοί B1, . . . , Bk,C1, . . . ,Ck ∈ R τέτοιοι ώστε

(3.4.4)
P(x)
Q(x)

=
B1x +C1

x2 + bx + c
+ · · · +

Bkx +Ck

(x2 + bx + c)k +
P1(x)
Q1(x)

όπου
P1(x)
Q1(x)

είναι γνήσια ρητή συνάρτηση.

Παράδειγμα 3.4.3. Υπάρχουν μοναδικοί A1, . . . , A5 ∈ R τέτοιοι ώστε

x2 + 1
(x − 1)(x + 1)2(x2 + 2x + 5)

=
A1

x − 1
+

A2

x + 1
+

A3

(x + 1)2
+

A4x + A5

x2 + 2x + 5

Από το Θεώρημα 3.4.2 έχουμε ότι η ολοκλήρωση των γνήσια ρητών συναρτήσεων ανάγεται στην
ολοκλήρωση κλασμάτων της μορφής

1
(x − ρ)n και

Bx +C
(x2 + bx + c)k με b2 − 4c < 0
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Παράδειγμα 3.4.4. Να αναλυθεί η συνάρτηση
10x

(x + 1)(x2 + 9)
σε απλά κλάσματα και να βρεθεί το

ολοκλήρωμα
∫

10x
(x + 1)(x2 + 9)

dx..

Σύμφωνα με το Θεώρημα 3.4.2 έχουμε

(3.4.5)
10x

(x + 1)(x2 + 9)
=

A
x + 1

+
Bx +C
x2 + 9

όπου A, B,C ∈ R.
Για να βρούμε τις σταθερές A, B,C εργαζόμαστε ως εξής: Κάνοντας ομώνυμα τα κλάσματα και

εκτελώντας τις πράξεις στο δεξί μέλος της (3.4.5) παίρνουμε

10x
(x + 1)(x2 + 9)

=
A

x + 1
+

Bx +C
x2 + 9

=
A(x2 + 9) + (Bx +C)(x + 1)

(x + 1)(x2 + 9)

=
(A + B)x2 + (B +C)x + 9A +C

(x + 1)(x2 + 9)

και άρα
(A + B)x2 + (B +C)x + 9A +C = 10x

Συνεπώς έχουμε το σύστημα
A + B = 0, B +C = 10, 9A +C = 0

απ´ όπου συμπεραίνουμε ότι
A = −1, B = 1,C = 9

Άρα
10x

(x + 1)(x2 + 9)
= −

1
x + 1

+
x + 9
x2 + 9

Οπότε ∫
10x

(x + 1)(x2 + 9)
dx = −

∫
1

x + 1
dx +

∫
x + 9
x2 + 9

dx(3.4.6)

´Εχουμε ∫
1

x + 1
dx = ln |x + 1|
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και ∫
x + 9
x2 + 9

dx =
1
9

∫
x + 9(
x
3

)2
+ 1

dx

t=x/3,dx=3dt
=

1
9

∫
3t + 9
t2 + 1

3 dt

=

∫
t + 3
t2 + 1

dt

=

∫
t

t2 + 1
dt +

∫
3

t2 + 1
dt

u=t2+1,du=2t dt
=

1
2

∫
du
u
+ 3

∫
1

t2 + 1
dt

=
1
2

ln |u| + 3 arctan t =
1
2

ln(t2 + 1) + 3 arctan t

=
1
2

ln
(

x2

9
+ 1

)
+ 3 arctan

( x
3

)
= ln

√
x2

9
+ 1 + 3 arctan

( x
3

)
.

Συνεπώς

10x
(x + 1)(x2 + 9)

= − ln |x + 1| + ln

√
x2

9
+ 1 + 3 arctan

( x
3

)

= ln


√

x2
9 + 1

|x + 1|

 + 3 arctan
( x
3

)

Παράδειγμα 3.4.5. Υπολογίστε το ολοκλήρωμα
∫

1
x2 + 2x + 5

dx.
´Εχουμε ∫

1
x2 + 2x + 5

dx =
∫

1
x2 + 2x + 1 − 1 + 5

=

∫
1

(x + 1)2 + 4

=
1
4

∫
1(

x+1
2

)2
+ 1

dx

t= x+1
2 , dt=dx/2
=

1
2

∫
1

t2 + 1
dt =

1
2

arctan t

=
1
2

arctan
(

x + 1
2

)
.

Παράδειγμα 3.4.6. Υπολογίστε το ολοκλήρωμα
∫

1
x3 + x

dx.
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´Εχουμε ∫
1

x3 + x
dx =

∫
1

x(x2 + 1)
dx

=

∫ (
1
x
−

x
x2 + 1

)
dx

=

∫
1
x

dx −
∫

x
x2 + 1

dx

= ln |x| −
1
2

ln(x2 + 1)

3.5 Γεωμετρικές εφαρμογές

3.5.1 Εμβαδά επίπεδων χωρίων

´Οπως είδαμε ο ορισμός του ολοκληρώματος συνδέεται άμεσα με τον υπολογισμό του εμβαδού του
υπογραφήματος μιας μη αρνητικής συνάρτησης. Πιο συγκεκριμμένα έχουμε το παρακάτω ϑεώρημα.

Θεώρημα 3.5.1. ´Εστω f : [a, b]→ R συνεχής και μη αρνητική συνάρτηση. ´Εστω

S = {(x, y) ∈ R2 : a ≤ x ≤ b και 0 ≤ y ≤ f (x)}

το υπογράφημα της f , δηλαδή το χωρίο του επιπέδου που περιορίζεται από το γράφημα της συνάρ-
τησης, τον άξονα x και τις δύο κάθετες στον άξονα x στα σημεία x = a και x = b. Τότε το εμβαδό του

S ισούται με
∫ b

a
f (x) dx.

Παράδειγμα 3.5.2. Το εμβαδό E ενός κύκλου ακτίνας R δίνεται από τον τύπο E = πR2.

Απόδειξη. Ο κύκλος του R2 με κέντρο την αρχή των αξόνων και ακτίνα R αποτελείται από όλα τα
σημεία (x, y) που ικανοποιούν την σχέση

(3.5.1) x2 + y2 = R2

Θεωρώντας το άνω ημικύκλιο, δηλαδή τα σημεία (x, y) με y > 0 και λύνοντας την (3.5.1) ως προς y
βλέπουμε ότι αυτό είναι η γραφική παράσταση της συνάρτησης

f (x) =
√

R2 − x2, −R ≤ x ≤ R

Παρατηρούμε ότι το εμβαδό του κύκλου με κέντρο το (0, 0) και ακτίνα R είναι το διπλάσιο του εμβαδού
του ημικυκλίου, το οποίο με την σειρά του είναι το εμβαδό του υπογραφήματος της συνάρτησης f .
Συνεπώς, από το Θεώρημα 3.5.1, έχουμε

(3.5.2) E = 2
∫ R

−R

√
R2 − x2 = 2R

∫ R

−R

√
1 −

( x
R

)2
dx

και κάνωντας την αντικατάσταση y = x/R dy = dx/R παίρνουμε

(3.5.3) E = 2R2
∫ 1

−1

√
1 − y2 dy
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Από το Παράδειγμα 3.3.10 έχουμε
∫ 1
−1

√
1 − y2 dy = π/2 και άρα

E = 2
∫ R

−R

√
R2 − x2 = 2R2π

2
= πR2

□

3.5.2 Μήκος επίπεδης καμπύλης

Με τον όρο (επίπεδη) καμπύλη ϑα εννοούμε ένα υποσύνολο του C του R2 για το οποίο υπάρχουν
δύο συνεχείς συναρτήσεις

x(t), y(t) : I → R

όπου Ι ένα διάστημα του R τέτοιες ώστε

C = {(x, y) ∈ R2 : x = x(t) και y = y(t), t ∈ [a, b]}

Το ζεύγος (x(t), y(t)), t ∈ [a, b] αποτελεί όπως λέμε μια παραμετρική αναπαράσταση της καμπύλης (δεν
είναι μοναδική). Αν οι συναρτήσεις x(t), y(t) είναι επιπλέον και παραγωγίσιμες ως προς t με συνεχείς
παραγώγους τότε η καμπύλη ϑα καλείται συνεχώς διαφορίσιμη. Αν I = [a, b] τότε τα άκρα της
καμπύλης ορίζονται να είναι τα σημεία A = (x(a), y(a)) και B = (x(b), y(b)). Αν τα άκρα ταυτίζονται
η καμπύλη καλείται κλειστή. Αν για κάθε σημείο (x, y) της καμπύλης εκτός ίσως των άκρων υπάρχει
μοναδικό t ∈ (a, b) με x = x(t) και y = y(t) τότε η καμπύλη καλείται απλή.

Το μήκος της C ορίζεται μέσω των τεθλασμένων γραμμών με κορυφές σημεία της καμπύλης. Απο-
δεικνύεται ότι αν μια καμπύλη C έχει μια παραμετρική αναπαράσταση (x(t), y(t)) t ∈ [a, b] είναι απλή
και συνεχώς διαφορίσιμη τότε το μήκος L(C) της καμπύλης δίνεται από τον τύπο

(3.5.4) L(C) =
∫ b

a

√
(x′(t))2 + (y′(t))2 dt

Στην περίπτωση όπου η C είναι η γραφική παράσταση μιας συνάρτησης f : [a, b] → R με συνεχή
παράγωγο τότε μια παραμετρική αναπαράσταση της C δίνεται από τους τύπους x(t) = t και y(t) = f (t)
για κάθε t ∈ [a, b] και άρα η (3.5.4) παίρνει την μορφή

(3.5.5) L(C) =
∫ b

a

√
1 + ( f ′(x))2 dx

Παράδειγμα 3.5.3. Η περιφέρεια L ενός κύκλου ακτίνας R > 0 δίνεται από τον τύπο L = 2πR.

Απόδειξη. Πράγματι, οι συναρτήσεις

x(t) = R cos t, y(t) = R sin t, t ∈ [0, 2π]

αποτελούν παραμετρικές εξισώσεις ενός κύκλου ακτίνας R > 0 και κέντρου (0, 0). Άρα, από τον τύπο
(3.5.4), έχουμε

L =
∫ 2π

0

√
R2 sin2 t + R2 cos2 t dt = R2

∫ 2π

0

√
sin2 t + cos2 t dt = R2

∫ 2π

0
dt = 2πR.

□





ΚΕΦΑΛΑΙΟ 4

Συναρτήσεις Πολλών Μεταβλητών

4.1 Βασικές έννοιες

Ο διανυσματικός χώρος Rn είναι το σύνολο όλων των σημείων (διανυσμάτων) x = (x1, . . . , xn), (όπου
xi ∈ R για κάθε 1 ≤ i ≤ n), εφοδιασμένο με τις πράξεις της πρόσθεσης:

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn)

για κάθε (x1, . . . , xn), (y1, . . . , yn) ∈ Rn και του βαθμωτού πολλαπλασιασμού:

λ(x1, . . . , xn) = (λx1, . . . , λxn)

για κάθε λ ∈ R και κάθε (x1, . . . , xn) ∈ Rn.
Τα διανύσματα e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) αποτελούν την λεγόμενη

συνήθη βάση του Rn. Παρατηρείστε ότι αν x = (x1, . . . , xn) είναι ένα διάνυσμα του Rn τότε

x = (x1, . . . , xn) =
n∑

i=1
xiei.

Ορισμός 4.1.1. Για κάθε x = (x1, . . . , xn), και y = (y1, . . . , yn) ∈ Rn, ορίζουμε

x · y =
n∑

i=1
xiyi.

Το x · y καλείται (το συνήθες) εσωτερικό γινόμενο των x και y.

Είναι εύκολο να διαπιστώσουμε τις εξής ιδιότητες του εσωτερικού γινομένου:

1. x · x =
∑n

i=1 x2i ≥ 0 και άρα x · x = 0 αν και μόνο αν x = 0.

2. x · y = y · x.

3. x · (y + z) = x · y + x · z.

4. (λx) · y = λ(x · y).

Αν x · y = 0 τότε τα x, y καλούνται ορθογώνια. Παρατηρείστε ότι ei · e j = 0 για κάθε i , j δηλαδή
οποιαδήποτε δύο διαφορετικά διανύσματα της συνήθους βάσης του Rn είναι ορθογώνια.
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Ορισμός 4.1.2. Για κάθε x = (x1, . . . , xn) ∈ Rn ορίζουμε την νόρμα (ή μέτρο) του x να είναι η ποσότητα

∥x∥ =
√
x · x =

√√ n∑
i=1

x2i .

Αποδεικνύεται ότι ισχύουν οι παρακάτω ιδιότητεσ:

1. ∥x∥ ≥ 0 και ∥x∥ = 0⇔ x = 0.

2. ∥λx∥ = |λ| · ∥x∥.

3. (Τριγωνική Ανισότητα) ∥x + y∥ ≤ ∥x∥ + ∥y∥.

Πρόταση 4.1.3. (Ανισότητα Cauchy-Schwarz) Αν x, y είναι δύο διανύσματα στον Rd τότε

(4.1.1) |x · y| ≤ ∥x∥ · ∥y∥

ή ισοδύναμα ∣∣∣∣∣∣∣
d∑

i=1
xiyi

∣∣∣∣∣∣∣ ≤
√√√ d∑

i=1
x2i ·

√√√ d∑
i=1

y2i

για κάθε x1, . . . , xd, y1, . . . , yd ∈ R.
Ειδικότερα, x · y = ∥x∥ · ∥y∥ (αντίστοιχα x · y = −∥x∥ · ∥y) αν και μόνο αν είτε (α) x = 0 είτε (β) x , 0

και υπάρχει λ ≥ 0 (αντ. λ ≤ 0) τέτοιο ώστε y = λx.

Ορισμός 4.1.4. Για κάθε x = (x1, . . . , xn) και y = (y1, . . . , yn) ∈ Rn, ορίζουμε την απόσταση των x και y
να είναι η νόρμα της διαφοράς τους δηλαδή

∥x − y∥ =

√√ n∑
i=1
|xi − yi|

2

Από τις ιδιότητες της νόρμας προκύπτει ότι η απόσταση έχει τις παρακάτω ιδιότητεσ:

1. ∥x − y∥ ≥ 0 και ∥x − y∥ = 0⇔ x = y.

2. ∥x − y∥ = ∥y − x∥.

3. ∥x − y∥ ≤ ∥x − z∥ + ∥z − y∥,

Ορισμός 4.1.5. ´Εστω x0 = (x1, . . . , xn) ∈ Rn και δ > 0. Το σύνολο

Bδ(x0) = {x ∈ Rn : ∥x − x0∥ < δ}

καλείται ανοικτή μπάλα του Rn κέντρου x0 και ακτίνας δ.

Με άλλα λόγια το Br(x0) αποτελείται από όλα τα στοιχεία του Rn που απέχουν απο το x0
απόσταση γνήσια μικρότερη του δ. Οι ανοικτές μπάλες Bδ(x0) καλούνται και (βασικές ανοικτές)
περιοχές του x0.

Ορισμός 4.1.6. ´Εστω A ⊆ Rn.

(1) ´Ενα σημείο x0 ∈ A ϑα καλείται εσωτερικό σημείο του A αν το A περιέχει μια ανοικτή μπάλα με
κέντρο το x0, δηλαδή υπάρχει δ > 0 τέτοιο ώστε Bδ(x0) ⊆ A.

(2) Το A ϑα καλείται ανοικτό αν κάθε σημείο του είναι εσωτερικό του σημείο.
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4.2 Συναρτήσεις πολλών μεταβλητών

4.2.1 Ταξινόμηση των συναρτήσεων πολλών μεταβλητών

Οι συναρτήσεις πολλών μεταβλητών ταξινομούνται ως εξής:

(Ι) Πραγματικές (ή βαθμωτές.) Είναι οι συναρτήσεις της μορφής f : X → R όπου X ⊆ Rn (n ≥ 2).
Μερικά παραδείγματα τέτοιων συναρτήσεων είναι τα ακόλουθα:

1) f : R2 → R με τύπο f (x, y) = x2 + y2.

2) f : D → R με τύπο f (x, y) =
√
1 − x2 − y2 όπου D = {(x, y) ∈ R2 : x2 + y2 ≤ 1} είναι ο κλειστός

μοναδιαίος δίσκος του R2.

3) f : R3 → R με τύπο f (x, y, z) = x2 + y2 + z2.

4) f : B→ R με τύπο f (x, y, z) =
√
1 − x2 − y2 − z2, όπου B = {(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 1} είναι η

κλειστή μοναδιαία μπάλα του R3.

Στην Φυσική συναρτήσεις της μορφής f : R3 → R χρησιμοποιούνται για να αντιστοιχίσουν βαθμωτά
φυσικά μεγέθη (όπως πχ. η ϑερμοκρασία, η ατμοσφαιρική πίεση) στα σημεία του χώρου.

(ΙΙ) Διανυσματικές Συναρτήσεις μιας μεταβλητής - Παραμετρικές Καμπύλες. Είναι συναρτή-
σεις της μορφής f : X → Rm όπου X ⊆ R και m ≥ 2. Συνήθως το σύνολο X είναι ένα διάστημα του R.
Μερικά παραδείγματα τέτοιων συναρτήσεων είναι τα ακόλουθα:

1) f : [0, 2π]→ R2 με τύπο f (t) = (cos t, sin t).

2) f : R→ R2 με τύπο f (t) = (t, t2).

3) f : R→ R3 με τύπο f (t) = (cos t, sin t, t).

4) f : R→ Rm με τύπο f (t) =
(
t, t2, . . . , tm

)
.

Οι συναρτήσεις f : X → Rm με X ⊆ R γράφονται πάντα στην μορφή

f (t) = ( f1(t), f2(t), . . . , fm(t)), t ∈ X ⊆ R

όπου f1(t), . . . , fm(t) είναι πραγματικές συναρτήσεις μιας μεταβλητής από το X στο R.

Αν X = I είναι ένα διάστημα του R τότε οι συναρτήσεις f : I → Rm μετασχηματίζουν το διάστημα
I του R σε μια m-διάστατη παραμετρική καμπύλη. Πχ. η f (t) = (cos t, sint), μετασχηματίζει το
διάστημα [0, 2π] στον μοναδιαίο κύκλο, η f (t) = (t, t2) μετασχηματίζει την ευθεία στην παραβολή y = x2.
Θεωρώντας τη μεταβλητή t σαν χρόνο συναρτήσεις της μορφής f : [0,+∞)→ R3 χρησιμοποιούνται στην
Φυσική για να απεικονίζουν την ϑέση ενός κινητού στον χώρο την χρονική στιγμή t.

(ΙΙΙ) Διανυσματικές Συναρτήσεις πολλών μεταβλητών. Είναι συναρτήσεις της μορφής f : X →
Rm όπου X ⊆ Rn και n,m ≥ 2 (αν n = m οι συναρτήσεις αυτές καλούνται και διανυσματικά πεδία).

Παραδείγματα τέτοιων συναρτήσεων είναι τα ακόλουθα:

1) f : R3 → R3 με τύπο

f (x, y, z) =
(
−

x
(x2 + y2 + z2)3/2

,−
y

(x2 + y2 + z2)3/2
,−

z
(x2 + y2 + z2)3/2

)
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2) f : R2 → R2 με τύπο f (x, y) =
(
−

y
x2 + y2

,
x

x2 + y2

)
.

3) f : R2 → R2 με τύπο f (x, y) = (−y, x).

Τα διανυσματικά πεδία χρησιμοποιούνται στην Φυσική για να περιγράψουν ένα πεδίο βαρύτητας,
ή ένα πεδίο ταχύτητας ρευστού.

4.2.2 Ανάλυση διανυσματικής συνάρτησης σε συνιστώσες βαθμωτές συναρτήσεις.

Η επόμενη πρόταση ουσιαστικά ανάγει τη μελέτη όλων των συναρτήσεων πολλών μεταβλητών στη
μελέτη των βαθμωτών συναρτήσεων.

Πρόταση 4.2.1. ´Εστω f : X → Rm, X ⊆ Rn. Τότε υπάρχουν μοναδικές συναρτήσεις f1, . . . , fm από το
X στο R τέτοιες ώστε

f (x) = ( f1(x), . . . , fm(x))

για κάθε x ∈ X. Συμβολικά γράφουμε
f = ( f1, . . . , fm)

και οι f1, . . . , fm καλούνται οι συνιστώσες συναρτήσεις της f .

Απόδειξη. Για κάθε i ∈ {1, . . . ,m} έστω πi : Rm → R η i-προβολή του Rm, δηλαδή η συνάρτηση

πi(y1, . . . , ym) = yi.

Παρατηρούμε ότι κάθε διάνυσμα y = (y1, . . . , ym) του Rm γράφεται ως

(4.2.1) y = (π1(y), . . . , πm(y)) .

´Εστω τώρα τυχόν x ∈ X. Θέτοντας y = f (x), από την (4.2.1) έχουμε

(4.2.2) f (x) = (π1 ( f (x)) , . . . , πm ( f (x))) .

Συνεπώς, αν ϑέσουμε fi = πi ◦ f : X → R να είναι η σύνθεση των πi και f , τότε fi(x) = πi ( f (x)) και
άρα από την (4.2.2) έχουμε

(4.2.3) f (x) = ( f1(x), . . . , fm(x)) .

Μένει να δείξουμε ότι οι f1, . . . , fm είναι η μοναδικές συναρτήσεις που ικανοποιούν την (4.2.3). Πράγ-
ματι, αν g1, . . . , gm είναι συναρτήσεις από το X στο R με

f (x) = (g1(x), . . . , gm(x))

τότε αναγκαστικά gi(x) = πi( f (x)) = πi ◦ f (x) = fi(x) για κάθε i ∈ {1, . . . ,m} και κάθε x ∈ X. □

4.3 Μερικές παράγωγοι πρώτης τάξης βαθμωτής συνάρτησης

Θα δώσουμε εδώ τους ορισμούς των μερικών παραγώγων πρώτης τάξης για μια βαθμωτή συνάρτηση δύο
μεταβλητών. Για ευκολία ϑα διατυπώσουμε τους ορισμούς για βαθμωτές συναρτήσεις δύο μεταβλητών.
Οι ορισμοί αυτοί γενικεύονται άμεσα για βαθμωτές συναρτήσεις τριών ή περισσοτέρων μεταβλητών.
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Ορισμός 4.3.1. ´Εστω f : A→ R, A ⊆ R2 ανοικτό και (x0, y0) ∈ A.

Το όριο

lim
x→x0

f (x, y0) − f (x0, y0)
x − x0

αν υπάρχει καλείται μερική παράγωγος ως προς x της συνάρτησης f στο σημείο (x0, y0) και συμβο-
λίζεται με

fx(x0, y0) ή
∂ f
∂x

(x0, y0) ή ∂x f (x0, y0)

Ομοίως το όριο

lim
y→y0

f (x0, y) − f (x0, y0)
y − y0

αν υπάρχει καλείται μερική παράγωγος ως προς y της συνάρτησης f στο σημείο (x0, y0) και συμβο-
λίζεται με

fy(x0, y0) ή
∂ f
∂y

(x0, y0) ή ∂y f (x0, y0)

Οι fx(x0, y0) και fy(x0, y0) καλούνται μερικές παράγωγοι πρώτης τάξης της f στο σημείο (x0, y0).
Αν υπάρχουν οι μερικές παραγώγους πρώτης τάξης της f σε κάθε σημείο (x0, y0) ∈ A και είναι

πραγματικοί αριθμοί τότε η f ϑα καλείται μερικώς παραγωγίσιμη.

Παράδειγμα 4.3.2. ´Εστω f : R2 → R με τύπο f (x, y) = x3 + y3 + x2y + xy2. Για κάθε (x, y) ∈ R2,
fx(x, y) = 3x2 + 2xy + y2 και fy(x, y) = 3y2 + x2 + 2xy.

Παράδειγμα 4.3.3. ´Εστω η συνάρτηση f : R2 → R με τύπο f (x, y) = |x| + |y|. Τότε οι fx(0, 0) και
fy(0, 0) δεν υπάρχουν. Πράγματι,

fx(0, 0) = lim
x→0

f (x, 0) − f (0, 0)
x − 0

= lim
x→0

|x|
x

που ως γνωστόν δεν υπάρχει (αφού τα πλευρικά όρια είναι διαφορετικά). Ομοίως

fy(0, 0) = lim
y→0

f (0, y) − f (0, 0)
y − 0

= lim
y→0

|y|
y

που πάλι δεν υπάρχει.

4.4 Παράγωγος κατά κατεύθυνση βαθμωτής συνάρτησης

Μια άλλη έννοια παραγώγισης βαθμωτής συνάρτησης που γενικεύει τις μερικές παραγώγους είναι η
παράγωγος κατά κατεύθυνση που ορίζεται ως εξής.

Ορισμός 4.4.1. ´Εστω f : A → R A ⊆ R2, x0 = (x0, y0) εσωτερικό σημείο του A και u = (u1, u2) ∈ R2

μοναδιαίο διάνυσμα (δηλαδή u2
1 + u2

2 = 1). Το όριο

lim
t→0

f (x0 + tu) − f (x0)
t

= lim
t→0

f (x0 + tu1, y0 + tu2) − f (x0, y0)
t

καλείται παράγωγος της f κατά την κατεύθυνση u = (u1, u2) στο σημείο x0 = (x0, y0) και συμβολί-
ζεται με

fu(x0, y0) ή
∂ f
∂u

(x0, y0) ή ∂u f (x0, y0)
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Παρατηρούμε ότι η παράγωγος της f κατά την κατεύθυνση u στο σημείο (x0, y0) είναι στην ουσία
η παράγωγος του περιορισμού της f στην προσανατολισμένη ευθεία

L = {x0 + tu : t ∈ R}

Πράγματι ας υποθέσουμε για απλότητα ότι A = R2 και έστω g : R→ R η συνάρτηση

g(t) = f (x0 + tu)

Είναι εύκολο να διαπιστώσουμε ότι

∂ f
∂u

(x0, y0) = lim
t→0

g(t) − g(0)
t

= g′(0)

Επίσης αν e1 = (1, 0), e2 = (0, 1) είναι η συνήθης βάση του R2 τότε

∂ f
∂e1

(x0, y0) = lim
t→0

f (x0 + t, y0) − f (x0, y0)
t

=
∂ f
∂x

(x0, y0)

και ομοίως
∂ f
∂e2

(x0, y0) = lim
t→0

f (x0, y0 + t) − f (x0, y0)
t

=
∂ f
∂y

(x0, y0).

Άρα η έννοια της κατευθυνόμενης παραγώγου όντως γενικεύει την έννοια των μερικών παραγώγων
πρώτης τάξης.

Παράδειγμα 4.4.2. ´Εστω f : R2 → R με f (0, 0) = 0 και f (x, y) =
x4 + y3

x2 + y2
αν (x, y) , (0, 0). Υπολογίστε

την
∂ f
∂u

(0, 0) για κάθε u = (u1, u2) μοναδιαίο διάνυσμα του R2. Στην συνέχεια υπολογίστε τις fx(0, 0)
και fy(0, 0).

Λύση. Από τον ορισμό της παραγώγου κατά κατεύθυνση έχουμε

∂ f
∂u

(0, 0) = lim
t→0

f (tu1, tu2) − f (0, 0)
t

= lim
t→0

t4u4
1 + t3u3

2

t2u2
1 + t2u2

2
t

= lim
t→0

t4u4
1 + t3u3

2

t3u2
1 + t3u2

2
= lim

t→0
(tu4

1 + u3
2) = u3

2

´Εχουμε fx(0, 0) =
∂ f
∂e1

(0, 0) = 0 και αντίστοιχα fy(0, 0) =
∂ f
∂e2

(0, 0) = 1.

4.5 ´Οριο βαθμωτής συνάρτησης

Σε αυτήν την ενότητα ϑα μελετήσουμε την έννοια του ορίου βαθμωτής συνάρτησης πολλών μεταβλη-
τών. ´Οπως ϑα δούμε, είναι μια απλή γενίκευση της γνωστής αντίστοιχης έννοιας για πραγματικές
συναρτήσεις μιας μεταβλητής.

Ορισμός 4.5.1. ´Εστω X ⊆ Rn και x0 ∈ Rn. Το σημείο x0 καλείται σημείο συσσώρευσης του X αν για
κάθε δ > 0 υπάρχει x ∈ X με x , x και ∥x − x0∥ < δ, δηλαδή οσοδήποτε κοντά στο x0 υπάρχει σημείο
του X διαφορετικό από το x0.
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Ορισμός 4.5.2. ´Εστω f : X → R, X ⊆ Rn, x0 ∈ Rn σημείο συσσώρευσης του X και L ∈ R. Λέμε ότι η
f έχει όριο το ℓ στο x0 και γράφουμε

lim
x→x0

f (x) = ℓ

αν για κάθε ε > 0 υπάρχει δ > 0 τέτοιο ώστε για κάθε x ∈ X με x , x0 και ∥x − x0∥ < δ ισχύει ότι
| f (x) − ℓ| < ε.

Πολλές φορές χρησιμοποιούμε τις επόμενες προτάσεις για να βρούμε το όριο μιας συνάρτησης.

Πρόταση 4.5.3. (Κανόνας Παρεμβολής) ´Εστω g, f , h : X → R, όπου X ⊆ Rn, και x0 ∈ Rn σημείο
συσσώρευσης του X. Αν

g(x) ≤ f (x) ≤ h(x) για κάθε x ∈ X με x , x0

και
lim
x→x0

g(x) = lim
x→x0

h(x) = ℓ ∈ R

τότε
lim
x→x0

f (x) = ℓ

Ειδικότερα για ℓ = 0 ισχύουν τα παρακάτω.

Πρόταση 4.5.4. ´Εστω f , h : X → R, όπου X ⊆ Rn, και x0 ∈ Rn σημείο συσσώρευσης του X.Αν

| f (x)| ≤ |h(x)| για κάθε x ∈ X με x , x0

και
lim
x→x0

h(x) = 0

τότε lim
x→x0

f (x) = 0.

Πρόταση 4.5.5. (Φραγμένη επί Μηδενική = Μηδενική) Αν

f (x) = g(x)h(x), για κάθε x ∈ X με x , x0

με
|g(x)| ≤ M για κάθε x ∈ X

και
lim
x→x0

h(x) = 0

τότε lim
x→x0

h(x) = 0.

Παράδειγμα 4.5.6. Υπολογίστε το lim
(x,y)→(0,0)

(
x sin

(
1
y

))
.

Λύση. ´Εχουμε ∣∣∣∣∣∣x sin
(
1
y

)∣∣∣∣∣∣ ≤ |x|
Επειδή lim(x,y)→(0,0) x = 0 από τον Κανόνα παρεμβολής έπεται ότι lim

(x,y)→(0,0)

(
x sin

(
1
y

))
= 0

Παράδειγμα 4.5.7. Αποδείξτε ότι lim
(x,y)→(0,0)

x3 + y3

x2 + y2
= 0.
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Λύση. Παρατηρούμε ότι για κάθε (x, y) , (0, 0) έχουμε

∣∣∣∣ x3 + y3

x2 + y2

∣∣∣∣ ≤ ∣∣∣∣ x3

x2 + y2

∣∣∣∣ + ∣∣∣∣ y3

x2 + y2

∣∣∣∣ = ∣∣∣∣ x2

x2 + y2

∣∣∣∣ · |x| + ∣∣∣∣ y2

x2 + y2

∣∣∣∣ · |y| ≤ |x| + |y|.
Επομένως, αν ϑέσουμε f (x, y) =

x3 + y3

x2 + y2
και h(x, y) = |x| + |y|, τότε

| f (x, y)| ≤ h(x, y).

Επιπλέον, lim(x,y)→(0,0) h(x, y) = 0.
Το όριο της συνάρτησης οφείλει να είναι το ίδιο ανεξάρτητα με τον τρόπο που προσεγγίζουμε το

x0. Διαφορετικά το limx→x0 f (x) δεν υπάρχει.

Παράδειγμα 4.5.8. Εξετάστε αν υπάρχει ή όχι το lim
(x,y)→(0,0)

xy
x2 + y2

.

Λύση. Αν κινούμαστε πάνω στον x-άξονα και προσεγγίζουμε το (0, 0) έχουμε

lim
x→0

f (x, 0) = 0

γιατί f (x, 0) = 0 για κάθε x ∈ R. ´Ομως αν προσεγγίσουμε το (0, 0) κατά μήκος της ευθείας y = x τότε

lim
x→0

f (x, x) = lim
x→0

x2

2x2
=

1
2

Άρα το lim
(x,y)→(0,0)

xy
x2 + y2

δεν υπάρχει.

Παράδειγμα 4.5.9. ´Εστω f (x, y) =
x2y

x4 + y2
για κάθε (x, y) , (0, 0).

(α) Να βρείτε το όριο της f στο (0, 0) κατά μήκος κάθε ευθείας που διέρχεται από το (0, 0).

(β) Να βρείτε το όριο της f στο (0, 0) κατά μήκος κάθε παραβολής της μορφής y = λx2.

(γ) Υπάρχει το όριο της f στο (0, 0) ?

Λύση. (α) Κατά μήκος του x-άξονα έχουμε f (x, 0) = 0 και ομοίως κατά μήκος του y-άξονα f (0, y) =
0. ´Εστω y = λx με λ , 0. Τότε

lim
x→0

f (x, λx) = lim
x→0

x2λx
x4 + λ2x2

= lim
x→0

λx3

x4 + λ2x2
= lim

x→0

λx
x2 + λ2

= 0

Άρα το όριο είναι το μηδέν όταν προσεγγίζουμε το (0, 0) κινούμενοι πάνω σε μια ευθεία.

(β) ´Εχουμε

lim
x→0

f (x, x2) = lim
x→0

x2λx2

x4 + λ2x4
= lim

x→0

λx4

x4 + λ2x4
=
λ

1 + λ2

και άρα το όριο εξαρτάται από τον συντελεστή λ της παραβολής.

(γ) Από το (β) το lim(x,y)→(0,0) f (x, y) δεν υπάρχει.

Παράδειγμα 4.5.10. (α) Εξετάστε αν υπάρχει το lim
(x,y)→(0,0)

xy
x + y

.

(β) Ομοίως για το lim
(x,y)→(0,0)

x2 + y2

x + y
.
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Λύση. (α) Κατά μήκος της ευθείας y = x το όριο είναι

lim
x→0

f (x, x) = lim
x→0

x2

2x
= lim

x→0

x
2
= 0.

´Ομως, κατά μήκος της καμπύλης y = −x + x2, το όριο είναι

lim
x→0

f
(
x,−x + x2

)
= lim

x→0

−x2 + x3

x2
= lim

x→0
(−1 + x) = −1.

Συνεπώς, το lim
(x,y)→(0,0)

xy
x + y

δεν υπάρχει.

(β) Μπορούμε με τον ίδιο τρόπο να δείξουμε ότι το lim
(x,y)→(0,0)

x2 + y2

x + y
δεν υπάρχει. ´Ενας δεύτερος

τρόπος είναι να παρατηρήσουμε ότι
xy

x + y
=

(x + y)2

x + y
−

x2 + y2

x + y
= x+ y−

x2 + y2

x + y
και συνεπώς αν υπήρχε

το lim
(x,y)→(0,0)

x2 + y2

x + y
= ℓ ϑα υπήρχε και το lim

(x,y)→(0,0)

xy
x + y

= −ℓ, άτοπο από το (α).

4.6 ´Οριο γενικής συνάρτησης

Η έννοια του ορίου μιας γενικής συνάρτησης πολλών μεταβλητών είναι μια απλή γενίκευση της α-
ντίστοιχης έννοιας για πραγματικές συναρτήσεις που είδαμε στην προηγούμενη παράγραφο.

Ορισμός 4.6.1. ´Εστω f : X → Rm, X ⊆ Rn, x0 ∈ Rn σημείο συσσώρευσης του X και L ∈ Rm. Λέμε ότι
η f έχει όριο το L στο x0 και γράφουμε

lim
x→x0

f (x) = L

αν για κάθε ε > 0 υπάρχει δ > 0 τέτοιο ώστε για κάθε x ∈ X με 0 < ∥x − x0∥ < δ να ισχύει ότι
∥ f (x) − L∥ < ε.

Το όριο μιας διανυσματικής συνάρτησης ανάγεται στο όριο των πραγματικών συναρτήσεων που
αποτελούν την ανάλυση της f . Συγκεκριμένα, έχουμε την εξής πρόταση.

Πρόταση 4.6.2. ´Εστω f : X → Rm, X ⊆ Rn και x0 ∈ Rn σημείο συσσώρευσης του X. Τα επόμενα είναι
ισοδύναμα:

(1) Το όριο limx→x0 f (x) υπάρχει.
(2) Αν f = ( f1, . . . , fm) είναι η ανάλυση της f τότε το όριο limx→x0 fi(x) υπάρχει για όλα τα i = 1, . . . ,m

και ισχύει ότι
lim
x→x0

f (x) =
(

lim
x→x0

f1(x), . . . , lim
x→x0

fm(x)
)
.

4.7 Συνέχεια συνάρτησης πολλών μεταβλητών

Ορισμός 4.7.1. ´Εστω f : X → Rm, X ⊆ Rn και x0 ∈ X. Λέμε ότι η f είναι συνεχής στο x0 αν για κάθε
ε > 0 υπάρχει δ > 0 τέτοιο ώστε για όλα τα x ∈ X με ∥x − x0∥ < δ να ισχύει ότι ∥ f (x) − f (x0)∥ < ε. Η f
καλείται συνεχής αν είναι συνεχής σε κάθε σημείο του X.

Πρόταση 4.7.2. ´Εστω f : X → Rm, X ⊆ Rn και x0 ∈ X σημείο συσσώρευσης του X. Τα επόμενα είναι
ισοδύναμα:
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(α) Η f είναι συνεχής στο x0.

(β) Ισχύει ότι limx→x0 f (x) = f (x0).

Η συνέχεια μιας διανυσματικής συνάρτησης ανάγεται στη συνέχεια των συνιστωσών συναρτήσεών
της. Συγκεκριμένα, από τις Προτάσεις 4.6.2 και 4.7.2 έχουμε το εξής πόρισμα.

Πόρισμα 4.7.3. ´Εστω f : X → Rm, X ⊆ Rn και x0 ∈ X σημείο συσσώρευσης του X. ´Εστω επίσης
f = ( f1, . . . , fm) η ανάλυση της f . Τα επόμενα είναι ισοδύναμα:

(α) Η f είναι συνεχής στο x0.

(β) Για κάθε i = 1, . . . ,m η fi : X → R είναι συνεχής στο x0.

4.8 Παράγωγος πραγματικής συνάρτησης πολλών μεταβλητών

4.8.1 Βασικοί Ορισμοί

Η παράγωγος μιας συνάρτησης f : R→ R σε ένα σημείο x0 ∈ R δίνεται από τον τύπο

(4.8.1) f ′(x0) = lim
h→0

f (x0 + h) − f (x0)h
h

Παρατηρείστε ότι ο τύπος (4.8.1) γράφεται ισοδύναμα

(4.8.2) lim
h→0

f (x0 + h) − f (x0) − f ′(x0)h
h

= 0

Γενικεύουμε τώρα τα παραπάνω για πραγματικές συναρτήσεις δύο μεταβλητών ως εξής.

Ορισμός 4.8.1. ´Εστω f : A→ R, A ⊆ R2 και x0 = (x0, y0) εσωτερικό σημείο του A. Αν η f είναι μερικώς
παραγωγίσιμη στο x0 = (x0, y0), το διάνυσμα

(
fx(x0, y0), fy(x0, y0)

)
ϑα καλείται κλίση (ή ανάδελτα) της

f στο x0 = (x0, y0) και ϑα συμβολίζεται με ∇ f (x0, y0) δηλαδή

∇ f (x0, y0) =
(

fx(x0, y0), fy(x0, y0)
)

Ορισμός 4.8.2. ´Εστω f : A → R, A ⊆ R2 και x0 = (x0, y0) εσωτερικό σημείο του A. Λέμε ότι η f είναι
παραγωγίσιμη (ή διαφορίσιμη) στο σημείο x0 = (x0, y0) αν είναι μερικώς παραγωγίσιμη στο x0 και
ισχύει ότι

(4.8.3) lim
h→0

f (x0 + h) − f (x0) − ∇ f (x0) · h
∥h∥

= 0

ή ισοδύναμα

(4.8.4) lim
(h,k)→(0,0)

f (x0 + h, y0 + k) − f (x0, y0) − fx(x0, y0) · h − fy(x0, y0) · k
√

h2 + k2
= 0

Η σχέση (4.8.4) γράφεται

lim
(x,y)→(x0,y0)

f (x, y) − f (x0, y0) − fx(x0, y0) · (x − x0) − fy(x0, y0) · (y − y0)√
(x − x0)2 + (y − y0)2

= 0
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Θέτοντας

ε(x, y) =
f (x, y) − f (x0, y0) − fx(x0, y0) · (x − x0) − fy(x0, y0) · (y − y0)√

(x − x0)2 + (y − y0)2

παίρνουμε ότι η f είναι παραγωγίσιμη στο σημείο x0 = (x0, y0) αν και μόνο αν για κάθε (x, y) ∈ A

(4.8.5) f (x, y) = f (x0, y0) + fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0) + ε(x, y)
√

(x − x0)2 + (y − y0)2

όπου

(4.8.6) lim
(x,y)→(x0,y0)

ε(x, y) = 0

Ορισμός 4.8.3. ´Εστω f : X → R, X ⊆ R2 και (x0, y0) εσωτερικό σημείο του X τέτοιο ώστε η f είναι
παραγωγίσιμη στο (x0, y0).

1) Ο πίνακας γραμμή [
fx(x0, y0) fy(x0, y0)

]
ϑα καλείται παράγωγος της f στο σημείο (x0, y0) και ϑα συμβολίζεται με f ′(x0, y0).

2) Η γραμμική απεικόνιση T : R2 → R με τύπο

T (x, y) = fx(x0, y0)x + fy(x0, y0)y

ϑα καλείται διαφορικό της f στο σημείο (x0, y0).

Παρατήρηση 4.8.4. 1) Ταυτίζοντας τον πίνακα γραμμή [a b] με το διάνυσμα (a, b) μπορούμε να πούμε
ότι η παράγωγος της f στο (x0, y0) είναι η κλίση ∇ f (x0, y0) =

(
fx(x0, y0), fy(x0, y0)

)
της f στο (x0, y0).

2) Το διαφορικό της f στο (x0, y0) γράφεται και υπό την μορφή εσωτερικού γινομένου ως εξής

T (x, y) = ∇ f (x0, y0) · (x, y)

4.8.2 Συνέχεια μερικών παραγώγων και παραγωγισιμότητα

´Εστω A ⊆ R2 ανοικτό. Μια μερικώς παραγωγίσιμη συνάρτηση f : A → R καλείται κλάσης C1 αν
οι συναρτήσεις fx και fy είναι συνεχείς. ´Ενα πολύ χρήσιμο κριτήριο παραγωγισιμότητας είναι το
παρακάτω.

Θεώρημα 4.8.5. ´Εστω A ⊆ R2 ανοικτό και f : A → R. Αν η f είναι κλάσης C1 τότε η f είναι
παραγωγίσιμη σε κάθε σημείο του A.

Παράδειγμα 4.8.6. ´Εστω f : R2 → R με f (x, y) = exy + x2ey. Δείξτε ότι η f είναι παραγωγίσιμη σε
κάθε (x, y) ∈ R2. Επίσης βρείτε την παράγωγο στο σημείο (1, 0).

Λύση. ´Εχουμε fx(x, y) = yex + 2xey και fy(x, y) = ex + x2ey. Οι fx, fy είναι συνεχείς και άρα η f
είναι παραγωγίσιμη. Η παράγωγος της f σε ένα οποιοδήποτε σημείο (x, y) εξ ορισμού είναι ο πίνακας
γραμμή f ′(x, y) = [ fx(x, y) fy(x, y)]. Άρα f ′(1, 0) = [2 e + 1].
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4.8.3 Επιφάνειες και εφαπτόμενα επίπεδα

´Εστω A ⊆ R2 και f : A→ R. Η επιφάνεια της f (ή το γράφημα της f ) είναι το σύνολο

(4.8.7) S f = {(x, y, z) ∈ R3 : (x, y) ∈ A και z = f (x, y)}

´Εστω (x0, y0) εσωτερικό σημείο του A τέτοιο ώστε η f είναι παραγωγίσιμη στο (x0, y0). ´Εστω z0 =
f (x0, y0). Το επίπεδο π του R3 που διέρχεται από το (x0, y0, z0) και περιέχει όλα τα (x, y, z) ∈ R3 για
τα οποία

(4.8.8) z = z0 + fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0)

ϑα καλείται εφαπτόμενο επίπεδο της επιφάνειας της f στο σημείο (x0, y0, z0).

Παρατήρηση 4.8.7. Παρατηρείστε ότι το εφαπτόμενο επίπεδο είναι στην ουσία η επιφάνεια της
γραμμικοποίησης T(x0,y0)(x, y) = f (x0, y0) + fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0) της f .

4.8.4 Κλίση και παράγωγος κατά κατεύθυνση για παραγωγίσιμες συναρτήσεις

Ισχύει η εξής πρόταση για την κατά κατεύθυνση παράγωγο όταν η συνάρτηση είναι παραγωγίσιμη.

Πρόταση 4.8.8. ´Εστω f : A → R, A ⊆ R2 ανοικτό και (x0, y0) ∈ A τέτοιο ώστε η f είναι παραγωγίσιμη
στο (x0, y0). Τότε για κάθε κατευθύνση u = (u1, u2) ∈ R2 ισχύει ότι

∂ f
∂u

(x0, y0) = ∇ f (x0, y0) · u

= fx(x0, y0)u1 + fy(x0, y0)u2

(4.8.9)

Η Πρόταση 4.8.8 δεν ισχύει απαραίτητα αν η f δεν είναι παραγωγίσιμη στο (x0, y0). Παραθέτουμε
σχετικά τα επόμενο παράδειγμα.

Παράδειγμα 4.8.9. ´Εστω f : R2 → R με f (0, 0) = 0 και f (x, y) =
x3 + y3

x2 + y2
αν (x, y) , (0, 0). Δείξτε με

χρήση της κατα κατεύθυνσης παραγώγου ότι η f δεν είναι παραγωγίσιμη στο (0, 0).

Λύση. Για κάθε κατεύθυνση u = (u1, u2) ∈ R2 έχουμε

∂ f
∂u

(0, 0) = lim
t→0

f (tu) − f (0)
t

= lim
t→0

t3u3
1 + t3u3

2

t2u2
1 + t2u2

2
t

=
u3
1 + u3

2

u2
1 + u2

2
= u3

1 + u3
2.

αφού ∥u∥2 = u2
1 + u2

2 = 1 (u μοναδιαίο).

Ειδικότερα, για u = e1 = (1, 0), fx(0, 0) =
∂ f
∂e1

(0, 0) = 1, και αντίστοιχα για u = e2 = (0, 1), fy(0, 0) =

∂ f
∂e2

(0, 0) = 1.
Από την Πρόταση 4.8.8 αν η f ήταν παραγωγίσιμη στο (0, 0) τότε ϑα έπρεπε

∂ f
∂u

(0, 0) = fx(0, 0)u1 + fy(0, 0)u2 = u1 + u2

Άρα ϑα είχαμε
u3
1 + u3

2 = u1 + u2
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για όλα τα u1, u2 ∈ R με u2
1 + u2

2 = 1, άτοπο.
Με χρήση της ανισότητας Cauchy-Schwarz (|x · y| ≤ ∥x∥ · ∥y∥) έχουμε και το εξής πόρισμα.

Πόρισμα 4.8.10. ´Εστω f : A→ R, A ανοικτό υποσύνολο του R2 και (x0, y0) ∈ A εσωτερικό σημείο του
A. Αν η f είναι C1 και ∇ f (x0, y0) , (0, 0) τότε οι κατευθύνσεις

u1 =
∇ f (x0, y0)
∥∇ f (x0, y0)∥

, και u2 = −
∇ f (x0, y0)
∥∇ f (x0, y0)∥

είναι αυτές για τις οποίες η ∂ f
∂u λαμβάνει την μέγιστη και αντίστοιχα την ελάχιστη τιμή.

Απόδειξη. ´Εστω u ∈ R2 με ∥u∥ = 1. Αφού η f είναι παραγωγίσιμηστο x0 απο την Πρόταση 4.8.8
έχουμε

(4.8.10)
∣∣∣∣∣∂ f
∂u

(x0)
∣∣∣∣∣ = |∇ f (x0) · u| ≤ ∥∇ f (x0)∥ · ∥u∥ = ∥∇ f (x0)∥.

Επίσης

∂ f
∂u1

(x0) = ∇ f (x0) · u1 = ∇ f (x0) ·
∇ f (x0)
∥∇ f (x0)∥

=
∇ f (x0) · ∇ f (x0)
∥∇ f (x0)∥

=
∥∇ f (x0)∥2

∥∇ f (x0)∥
= ∥∇ f (x0)∥

Άρα αντικαθιστώντας στην (4.8.10) παίρνουμε∣∣∣∣∣∂ f
∂u

(x0)
∣∣∣∣∣ ≤ ∂ f
∂u1

(x0)

Ομοίως για το u2. □

4.9 Μερικές παράγωγοι δεύτερης τάξης

´Εστω f : A → R, A ⊆ R2 ανοικτό, τέτοια ώστε οι fx(x, y), fy(x, y) υπάρχουν σε κάθε (x, y) ∈ A. ´Εστω
(x0, y0) ∈ A. Τα όρια

fxx(x0, y0) = ( fx)x(x0, y0) = lim
x→x0

fx(x, y0) − fx(x0, y0)
x − x0

,

fxy(x0, y0) = ( fx)y(x0, y0) = lim
y→y0

fx(x0, y) − fx(x0, y0)
y − y0

fyx(x0, y0) = ( fy)x(x0, y0) = lim
x→x0

fy(x, y0) − fy(x0, y0)
x − x0

fyy(x0, y0) = ( fy)y(x0, y0) = lim
y→y0

fy(x0, y) − fy(x0, y0)
y − y0

,

αν υπάρχουν και είναι πραγματικοί αριθμοί καλούνται μερικές παράγωγοι της f στο (x0, y0) δεύτε-
ρης τάξης. Ειδικότερα οι fxy(x0, y0) και fyx(x0, y0) καλούνται μεικτές μερικές παράγωγοι της f στο
σημείο (x0, y0) δεύτερης τάξης.

Επίσης χρησιμοποιούνται και οι συμβολισμοί

fxx(x0, y0) =
∂2 f
∂x2

(x0, y0) fxy(x0, y0) =
∂

∂y

(
∂ f
∂x

)
(x0, y0) =

∂2 f
∂y∂x

(x0, y0)
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fyx(x0, y0) =
∂2 f
∂x∂y

(x0, y0) fyy(x0, y0) =
∂2 f
∂y2

(x0, y0)

Παράδειγμα 4.9.1. ´Εστω f : R2 → R με τύπο f (x, y) = x3 + y3 + x2y+ xy2. Για κάθε (x, y) ∈ R2, έχουμε
fx(x, y) = 3x2 + 2xy + y2, fy(x, y) = 3y2 + x2 + 2xy και

fxx(x, y)(= ( fx)x(x, y)) = 6x + 2y, fxy(x, y)(= ( fx)y(x, y)) = 2x + 2y,

fyx(x, y)(= ( fy)x(x, y)) = 2x + 2y fyy(x, y)(= ( fy)y(x, y)) = 6y + 2x.

Στο παραπάνω παράδειγμα οι μεικτές μερικές παράγωγοι fxy και fyx είναι ίσες. Αυτό δεν είναι
τυχαίο διότι για την συνάρτηση του παραπάνω παραδείγματος ισχύουν οι υποθέσεις του ακόλουθου
ϑεωρήματος.

Θεώρημα 4.9.2. (Schwarz) ´Εστω f : A → R A ⊆ R2 ανοικτό, τέτοια ώστε οι μερικές παράγωγοι της
f εως και δεύτερης τάξης υπάρχουν σε κάθε σημείο του A και είναι συνεχείς συναρτήσεις. Τότε οι
μεικτές παράγωγοι fxy και fyx της f είναι ίσες.

Ορισμός 4.9.3. ´Εστω A ⊆ R2 ανοικτό. Μια συνάρτηση f : A → R καλείται κλάσης C2(A) αν οι
μερικές παράγωγοι της f εως και δεύτερης τάξης υπάρχουν σε κάθε σημείο του A και είναι συνεχείς
συναρτήσεις.

Ορισμός 4.9.4. ´Εστω A ⊆ R2 ανοικτό, f : A→ R και (x0, y0) ∈ A. Υποθέτουμε ότι οι μερικές παράγωγοι
της f έως και δεύτερης τάξης υπάρχουν στο (x0, y0). Ο Εσσιανός πίνακας της f στο (x0, y0) είναι ο
πίνακας

(4.9.1) H f (x0, y0) =

 fxx(x0, y0) fxy(x0, y0)
fyx(x0, y0) fyy(x0, y0)


Παρατήρηση 4.9.5. Παρατηρείστε ότι αν η f είναι κλάσης C2(A) τότε από το Θεώρημα 4.9.2 fxy = fyx

και άρα σε κάθε (x0, y0) ∈ A ο Εσσιανός της πίνακας είναι συμμετρικός.

Στα επόμενα ϑα λέμε ότι μια συνάρτηση f : R2 → R είναι κλάσης C2 αν οι συναρτήσεις των
μερικών παραγώγων της έως και δεύτερης τάξης ορίζονται και είναι συνεχείς συναρτήσεις. Θυμίζουμε
ότι αν η f είναι κλάσης C2, τότε fxy = fyx και άρα ο πίνακας f ′′(x0, y0) ϑα είναι συμμετρικός. Ο
Εσσιανός πίνακας της f ϑεωρείται ως η δεύτερη παράγωγος της f στο (x0, y0).

4.10 Πολυώνυμα Taylor πρώτης και δεύτερης τάξης

Ορισμός 4.10.1. ´Εστω f : A → R όπου A ⊆ R2 ανοικτό. Υποθέτουμε ότι η f είναι C2 συνάρτηση.
´Εστω επίσης ένα σημείο (x0, y0) ∈ A. Το πολυώνυμο

T1(x, y) = f (x0, y0) + fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0).

καλείται πολυώνυμο Taylor πρώτης τάξης της f με κέντρο το (x0, y0).
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Αντίστοιχα, το πολυώνυμο

T2(x, y) = T1(x, y) +
1
2

(
fxx(x0, y0)(x − x0)2 + 2 fxy(x0, y0)(x − x0)(y − y0) + fyy(x0, y0)(y − y0)2

)
= f (x0, y0) + fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0)

+
1
2

[
fxx(x0, y0)(x − x0)2 + 2 fxy(x0, y0)(x − x0)(y − y0) + fyy(x0, y0)(y − y0)2

]
.

καλείται πολυώνυμο Taylor δεύτερης τάξης της f με κέντρο το (x0, y0).

Παράδειγμα 4.10.2. Δίνεται η συνάρτηση f (x, y) = e3x+2y. Υπολογίστε τα πολυώνυμα Taylor πρώτης
και δεύτερης τάξης της f με κέντρο το (0, 1).

Λύση. ´Εχουμε
fx(x, y) = 3e3x+2y, fy(x, y) = 2e3x+2y

και
fxx(x, y) = ( fx)x(x, y) = 9e3x+2y, fxy(x, y) = ( fx)y(x, y) = 6e3x+2y

fyx(x, y) = ( fy)x(x, y) = 6e3x+2y, fyy(x, y) = ( fy)y(x, y) = 4e3x+2y.

Επίσης βλέπουμε ότι
fx(0, 1) = 3e2, fy(0, 1) = 2e2

και
fxx(0, 1) = 9e2, fxy(0, 1) = fyx(0, 1) = 6e2, fyy(0, 1) = 4e2.

Συνεπώς το πολυώνυμο Taylor πρώτης τάξης της f με κέντρο το (x0, y0) = (0, 1) είναι το

T1(x, y) = f (0, 1) + fx(0, 1)x + fy(0, 1)(y − 1)

= e2 + 3e2x + 2e2(y − 1)

= −e2 + 3e2x + 2e2y.

Αντίστοιχα, το πολυώνυμο Taylor δεύτερης τάξης της f με κέντρο το (0, 1) είναι το

T2(x, y) = f (0, 1) + fx(0, 1)x + fy(0, 1)(y − 1)

+
1
2!

[
fxx(0, 1)x2 + 2 fxy(0, 1)x(y − 1) + fyy(0, 1)(y − 1)2

]
= e2 + 3e2x + 2e2(y − 1)

+
1
2!

[
9e2x2 + 12e2x(y − 1) + 4e2(y − 1)2

]
.

Στη παράγραφο όπου ορίσαμε την παράγωγο μιας συνάρτησης f : R2 → R είδαμε ότι η f είναι
παραγωγίσιμη σε ένα σημείο (x0, y0) όταν οι μερικές παράγωγοι fx(x0, y0) και fy(x0, y0) υπάρχουν και
επιπλέον ισχύει ότι

(4.10.1) lim
(x,y)→(x0,y0)

f (x, y) − f (x0, y0) − fx(x0, y0)(x − x0) − fy(x0, y0)(y − y0)
∥(x − x0, y − y0)∥

= 0.

Επειδή το πρώτης τάξης πολυώνυμο Taylor της f με κέντρο το (x0, y0) είναι το πολυώνυμο

T1(x, y) = f (x0, y0) + fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0),
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ο τύπος (4.10.1) γράφεται

(4.10.2) lim
(x,y)→(x0,y0)

f (x, y) − T1(x, y)
∥(x − x0, y − y0)∥

= 0.

Το επόμενο ϑεώρημα γενικεύει την (4.10.2) όταν η f έχει συνεχείς μερικές παραγώγους έως και δεύτερης
τάξης.

Θεώρημα 4.10.3 (ϑεώρημα Taylor). ´Εστω A ⊆ R2 ανοικτό και f κλάσης C2 συνάρτηση. ´Εστω (x0, y0) ∈
A και T2(x, y) το πολυώνυμο Taylor δεύτερης τάξης της f με κέντρο το (x0, y0). Τότε,

(4.10.3) lim
(x,y)→(x0,y0)

f (x, y) − T2(x, y)
∥(x − x0, y − y0)∥2

= lim
(x,y)→(x0,y0)

f (x, y) − T2(x, y)
(x − x0)2 + (y − y0)2

= 0.

Από το Θεώρημα 4.10.3 παίρνουμε και το επόμενο πόρισμα που επεκτείνει τις (4.8.5) και (4.8.6).

Πόρισμα 4.10.4. ´Εστω A ⊆ R2 ανοικτό και f κλάσης C2 συνάρτηση. ´Εστω (x0, y0) ∈ A και T2(x, y) το
πολυώνυμο Taylor δεύτερης τάξης της f με κέντρο το (x0, y0). Τότε για κάθε (x, y) ∈ A,

(4.10.4) f (x, y) = T2(x, y) + ε(x, y)
(
(x − x0)2 + (y − y0)2

)
με

(4.10.5) lim
(x,y)→(x0,y0)

ε(x, y) = 0



ΚΕΦΑΛΑΙΟ 5

Τοπικά ακρότατα

5.1 Τοπικά ακρότατα και Κρίσιμα σημεία

Ορισμός 5.1.1. ´Εστω f : X → R και a = (a1, a2) ∈ X.

(1) Λέμε ότι η f έχει στο a = (a1, a2) τοπικό μέγιστο αν υπάρχει δ > 0 τέτοιο ώστε

(5.1.1) f (a1, a2) ≥ f (x, y)

για όλα τα x = (x, y) ∈ X με ∥x − a∥ < δ.

(2) Λέμε ότι η f έχει στο x0 = (x0, y0) τοπικό ελάχιστο αν υπάρχει δ > 0 τέτοιο ώστε

(5.1.2) f (a1, a2) ≤ f (x, y)

για όλα τα x = (x, y) ∈ X με ∥x − a∥ < δ.

(3) Λέμε ότι η f έχει στο το x0 τοπικό ακρότατο αν η f έχει στο x0 είναι τοπικό μέγιστο ή τοπικό
ελάχιστο.

Ορισμός 5.1.2. ´Εστω A ⊆ R2 ανοικτό και f : A→ R συνάρτηση που έχει μερικές παραγώγους πρώτης
τάξης. ´Ενα σημείο a = (a1, a2) ∈ A καλείται κρίσιμο σημείο της f αν

fx(a) = fy(a) = 0

ή ισοδύναμα αν
∇ f (a1, a2) = (0, 0)

Παρατήρηση 5.1.3. Αν η f είναι παραγωγίσιμη τότε ο τύπος του εφαπτόμενου επιπέδου της f στο
(a1, a2) είναι

z = f (a1, a2) +
∂ f
∂x

(a1, a2)(x − a1) +
∂ f
∂y

(a1, a2)(y − a2).

Συνεπώς, αν το (a1, a2) είναι κρίσιμο σημείο της f τότε ο τύπος του εφαπτόμενου επιπέδου της f στο
(a1, a2) γίνεται z = f (a1, a2) και άρα είναι παράλληλο προς το xy-επίπεδο.

Πρόταση 5.1.4 (σχέση τοπικών ακροτάτων και κρίσιμων σημείων). ´Εστω A ⊆ R2 ανοικτό και f : A→ R
συνάρτηση που έχει μερικές παραγώγους πρώτης τάξης. Τότε, κάθε σημείο τοπικού ακροτάτου της f
είναι και κρίσιμο σημείο της f .
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´Οπως συμβαίνει και στις πραγματικές συναρτήσεις μιας μεταβλητής, το αντίστροφο της Πρότα-
σης 5.1.4 δεν ισχύει. Δεν είναι δύσκολο να δούμε ότι ένα σημείο a ∈ A δεν είναι τοπικό ακρότατο της
f αν και μόνο αν για κάθε δ > 0 υπάρχουν σημεία x1, x2 ∈ Bδ(a), τέτοια ώστε

f (x1) < f (a) < f (x2).

Γεωμετρικά (δείτε και Παρατήρηση 5.1.3) αυτό σημαίνει ότι το εφαπτόμενο οριζόντιο επίπεδο z =
f (a1, a2) δεν αφήνει την επιφάνεια της f από τη μία πλευρά του.

Σε πολλές περιπτώσεις το γράφημα της f (x, y) σε ένα κρίσιμο σημείο που δεν είναι τοπικό ακρό-
τατο μοιάζει με την επιφάνεια μιας σέλας και το σημείο καλείται για τον λόγο αυτό σημείο σέλας ή
σαγματικό. Ειδικότερα υπάρχουν δύο ευθείες που διέρχονται από το σημείο αυτό και στην μια από
αυτές το σημείο ϑα είναι τοπικό μέγιστο για την f ενώ στην άλλη ϑα είναι τοπικό ελάχιστο.

Παράδειγμα 5.1.5. ´Εστω η συνάρτηση f (x, y) = x2 − y2. (α) Δείξτε το (0, 0) είναι το μοναδικό κρίσιμο
σημείο της f . (β) Δείξτε ότι το (0, 0) είναι σαγματικό σημείο της f .

Απάντηση: (α) ´Εχουμε fx(x, y) = 2x και fy(x, y) = 2y για κάθε (x, y) ∈ R2 και άρα η f είναι μερικώς
παραγωγίσιμη. Από το Θεώρημα 5.1.4 έχουμε ότι τα τοπικά ακρότατα της f αν υπάρχουν ϑα είναι
κρίσιμα σημεία δηλαδή ϑα είναι λύσεις του συστήματος2x = 0

2y = 0

Εύκολα βλέπουμε ότι το (0, 0) είναι η μοναδική λύση.
(β) Παρατηρούμε ότι

(1) για κάθε σημείο (x, y) , (0, 0) της ευθείας y = 0 έχουμε f (x, 0) = x2 > 0 και άρα f (x, 0) ≥ f (0, 0)
δηλαδή το (0, 0) είναι ελάχιστο για την f στην ευθεία y = 0.

(2) για κάθε σημείο (x, y) , (0, 0) της ευθείας x = 0 έχουμε f (0, y) = −y2 < 0 και άρα f (0, y) ≤ f (0, 0)
δηλαδή το (0, 0) είναι μέγιστο για την f στην ευθεία x = 0..

Άρα το (0, 0) είναι σαγματικό σημείο.
Από το (α) η f είναι μερικώς παραγωγίσιμη και άρα από το Θεώρημα 5.1.4 όλα τα τοπικά ακρότατά

ϑα είναι κρίσιμα σημεία της. ´Ομως είδαμε ότι η f έχει μοναδικό κρίσιμο σημείο, το (0, 0), που είναι
σαγματικό σημείο. Άρα δεν υπάρχουν σημεία στα οποία η f παρουσιάζει τοπικό ακρότατο.

Παράδειγμα 5.1.6. ´Εστω η συνάρτηση f (x, y) = x4+ y4− (x− y)4. (α) Δείξτε το (0, 0) είναι το μοναδικό
κρίσιμο σημείο της f . (β) Δείξτε ότι το (0, 0) είναι σαγματικό σημείο της f .

Απάντηση: (α) ´Εχουμε fx(x, y) = 4x3 − 4(x − y)3 και fy(x, y) = 4y3 + 4(x − y)3. Βρίσκουμε τα κρίσιμα
σημεία δηλαδή τις λύσεις του συστήματος fx(x, y) = 4x3 − 4(x − y)3 = 0

fy(x, y) = 4y3 + 4(x − y)3 = 0

Με πρόσθεση των εξισώσεων, παίρνουμε ότι x3 + y3 = 0 ή ισοδύναμα

(5.1.3) y = −x
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Αντικαθιστώντας στην πρώτη εξίσωση έχουμε

4x3 − 4(x − y)3 = 4x3 − 4(2x)3 = 4x3 − 32x3 = −28x3 = 0

και άρα x = 0. Οπότε απο την (5.1.3) παίρνουμε ότι το μοναδικό κρίσιμο σημείο είναι το (0, 0).
(β) Παρατηρούμε ότι

(1) f (0, 0) = 0,

(2) για κάθε σημείο της ευθείας y = x διάφορο του (0, 0), είναι f (x, y) = f (x, x) = 2x4 > 0 και

(3) για κάθε σημείο της ευθείας y = −x διάφορο του (0, 0), είναι f (x, y) = f (x,−x) = 2x4 − 16x4 < 0.

Άρα το (0, 0) είναι σαγματικό σημείο.
Από το (α) η f είναι μερικώς παραγωγίσιμη και άρα από το Θεώρημα 5.1.4 όλα τα τοπικά ακρότατά

ϑα είναι κρίσιμα σημεία της. ´Ομως είδαμε ότι η f έχει μοναδικό κρίσιμο σημείο, το (0, 0), που είναι
σαγματικό σημείο. Άρα δεν υπάρχουν σημεία στα οποία η f παρουσιάζει τοπικό ακρότατο.

5.2 Το Κριτηριο Δευτερης Παραγωγου συναρτησης δυο μεταβλητών

Θεώρημα 5.2.1. (Κριτήριο δεύτερης παραγώγου για συναρτήσεις δύο μεταβλητών) ´Εστω A ⊆ R2

ανοικτό, και f : A → R κλάσης C2(A). ´Εστω (x0, y0) ∈ A κρίσιμο σημείο της f , δηλαδή fx(x0, y0) =
fy(x0, y0) = 0. ´Εστω

H f (x0, y0) =

 fxx(x0, y0) fxy(x0, y0)
fyx(x0, y0) fyy(x0, y0)


ο Εσσιανός πίνακας της f στο (x0, y0) και

∆(x0, y0) = det f ′′(x0, y0) = fxx(x0, y0) fyy(x0, y0) −
(

fxy(x0, y0)
)2(5.2.1)

η ορίζουσά του.

(i) Αν fxx(x0, y0) > 0 και ∆(x0, y0) > 0 τότε η f έχει τοπικό ελάχιστο στο (x0, y0).

(ii) Αν fxx(x0, y0) < 0 και ∆(x0, y0) > 0 τότε η f έχει τοπικό μέγιστο στο (x0, y0).

(iii) Αν ∆(x0, y0) < 0 τότε το (x0, y0) είναι σαγματικό σημείο της f .

Παρατηρήσεις 5.2.2. (α) Αν ∆(x0, y0) = 0 τότε το παραπάνω κριτήριο δεν μπορεί να αποφανθεί αν το
(x0, y0) είναι τοπικό ακρότατο ή όχι. Στις περιπτώσεις αυτές πρέπει να χρησιμοποιήσουμε τον ορισμό
της συνάρτησης που μελετούμε για να εξάγουμε πληροφορία για το εν λόγω σημείο.

(β) Επίσης υπάρχουν κάποιες λίγες περιπτώσεις (ειδικά αν η συνάρτηση που μελετούμε έχει πολύ
απλό τύπο) όπου το κριτήριο δεν χρειάζεται να εφαρμοστεί. Πχ. μπορούμε να δούμε εύκολα ότι το
(0, 0) είναι το μοναδικό τοπικό ακρότατο που έχει η f (x, y) = x2 + y2. Πράγματι, για κάθε (x, y) ∈ R2,
f (x, y) = x2 + y2 ≥ 0 = f (0, 0) και άρα η f έχει στο (0, 0) ολικό ελάχιστο. Αν τώρα υπήρχε και
άλλο τοπικό ακρότατο τότε ϑα έπρεπε αυτό να ήταν κρίσιμο σημείο ισοδύναμα ϑα ήταν λύση του
συστήματος

fx(x, y) = 2x = 0

fy(x, y) = 2y = 0
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Επειδή το παραπάνω σύστημα έχει μοναδική λύση την (0, 0), η f δεν έχει άλλο τοπικό ακρότατο εκτός
του (0, 0).

Παράδειγμα 5.2.3. Μελετήστε την συνάρτηση f (x, y) = x3 + y3 + 3xy ως προς τα τοπικά ακρότατα.

Λύση: ´Εχουμε

fx(x, y) = 3x2 + 3y

fy(x, y) = 3y2 + 3x

fxx(x, y) = 6x

fyy(x, y) = 6y

fxy(x, y) = fyx(x, y) = 3

και άρα f ∈ C2(R2). Υπολογίζουμε τώρα τα κρίσιμα σημεία δηλαδή τις λύσεις του συστήματος

fx(x, y) = 3x2 + 3y = 0

fy(x, y) = 3y2 + 3x = 0

Η πρώτη εξίσωση γράφεται y = −x2 και άρα αντικαθιστώντας στην δεύτερη παίρνουμε

x4 + x = 0⇔ x(x3 + 1) = 0⇔ x = 0 ή x = −1

Άρα έχουμε δύο κρίσιμα σημεία, τα (0, 0) και (−1,−1).
Για κάθε (x, y) είναι

∆(x, y) = fxx(x, y) fyy(x, y) −
(

fxy(x, y)
)2
= 36xy − 9

´Εχουμε ∆(0, 0) = −9 < 0 και άρα το (0, 0) είναι σαγματικό. Επίσης ∆(−1,−1) = 36 − 9 > 0 και
fxx(−1,−1) = −6 < 0. Άρα το (−1,−1) είναι τοπικό μέγιστο.

Παράδειγμα 5.2.4. Μελετήστε την συνάρτηση f (x, y) = x4+ y4−2(x− y)2 ως προς τα τοπικά ακρότατα
και τα σαγματικά σημεία.

Λύση: Η f ∈ C2(R2). Πράγματι,

fx(x, y) = 4x3 − 4(x − y) = 4x3 − 4x + 4y

fy(x, y) = 4y3 + 4(x − y) = 4y3 + 4x − 4y

fxx(x, y) = 12x2 − 4

fyy(x, y) = 12y2 − 4

fxy(x, y) = fyx(x, y) = 4

όλες συνεχείς. Βρίσκουμε τα κρίσιμα σημεία:

fx(x, y) = 4x3 − 4(x − y) = 0

fy(x, y) = 4y3 + 4(x − y) = 0
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με πρόσθεση κατά μέλη δίνει ότι x3 = −y3 ισοδύναμα

y = −x

Αντικαθιστώντας στην πρώτη εξίσωση βρίσκουμε ότι 4x3 − 8x = 0⇔ x(x2 − 2) = 0 και άρα

x = 0 ή x =
√
2 ή x = −

√
2

Συνεπώς τα πιθανά τοπικά ακρότατα είναι τα σημεία

(0, 0), (
√
2,−
√
2) και (−

√
2,
√
2).

´Εχουμε
∆(x, y) = fxx(x, y) fyy(x, y) −

(
fxy(x, y)

)2
= (12x2 − 4) · (12y2 − 4) − 16

(1) ∆(0, 0) = 0 και άρα δεν μπορούμε να αποφανθούμε από το Κριτήριο Δεύτερης Παραγώγου για το
αν το (0, 0) είναι ή όχι τοπικό ακρότατο. Παρατηρούμε ότι

(α) f (0, 0) = 0,

(β) για κάθε σημείο (x, y) , (0, 0) της ευθείας y = 0 με x ∈ (−1, 1) είναι f (x, 0) = x4 − 2x2 < 0 και

(γ) για κάθε σημείο (x, y) , (0, 0) της ευθείας y = x είναι f (x, y) = f (x, x) = 2x4 > 0.

Άρα το (0, 0) είναι σαγματικό σημείο.
(2) ´Οπως εύκολα βλέπουμε

∆(−
√
2,
√
2) = ∆(

√
2,
√
2) > 0

και fxx(−
√
2,
√
2) = fxx(

√
2,−
√
2) > 0 οπότε στα σημεία (−

√
2,
√
2) και (−

√
2,
√
2) η f έχει τοπικό

ελάχιστο.





ΚΕΦΑΛΑΙΟ 6

Διπλό ολοκλήρωμα

Με τον όρο διπλό ολοκλήρωμα εννοούμε το ολοκλήρωμα μιας πραγματικής συνάρτησης δύο μετα-
βλητών. Αποτελεί μια φυσιολογική επέκταση του ολοκληρώματος μιας μεταβλητής και συμβολίζεται
με "

D
f ή

"
D

f (x, y) dA ή
"

D
f (x, y) dx dy

όπου D είναι ένα χωρίο του R2 όπου ορίζεται η f . Αν f (x, y) ⩾ 0 για κάθε (x, y) ∈ D τότε το
ολοκλήρωμα παριστάνει τον όγκο του στερεού που βρίσκεται μεταξύ της γραφικής παράστασης της f
και του επιπέδου xy. Για παράδειγμα αν f (x, y) = c > 0 τότε το ολοκλήρωμα παριστάνει τον όγκο ενός
ορθογώνιου κυλίνδρου με βάση το D και ύψους c. Ειδικότερα, αν c = 1 τότε το ολοκλήρωμα ισούται
αριθμητικά με το εμβαδόν του χωρίου D.

Το διπλό ολοκλήρωμα ορίζεται όπως και το ολοκλήρωμα συνάρτησης μιας μεταβλητής χρησιμο-
ποιώντας τα αθροίσματα Riemann. Μια σημαντική διαφορά όμως είναι ότι ενώ το ολοκλήρωμα μιας
μεταβλητής γίνεται πάνω σε ένα διάστημα του R, στο διπλό ολοκλήρωμα το χωρίο D επί του οποίου
γίνεται η ολοκλήρωση μπορεί να είναι αρκετά περίπλοκο. Εδώ ϑα ασχοληθούμε με ομαλά επίπεδα
χωρία όπου τα διπλά ολοκληρώματα ϑα ανάγονται σε δύο διαδοχικά απλά (δηλαδή μιας μεταβλητής)
ολοκληρώματα (δείτε τα ϑεωρήματα Fubini παρακάτω).

6.1 Ολοκλήρωση σε ορθογώνια

Η ϑεμελίωση του διπλού ολοκληρώματος ξεκινά με την απλούστερη δυνατή περίπτωση όπου το χωρίο
ολοκλήρωσης είναι ένα ορθογώνιο του R2,

R = [α, β] × [γ, δ] = {(x, y) ∈ R2 : α ⩽ x ⩽ β, γ ⩽ y ⩽ δ}

όπου α < β και γ < δ πραγματικοί αριθμοί.
Η διαδικασία που ϑα ακολουθήσουμε για να ορίσουμε το διπλό ολοκλήρωμα είναι απλή γενίκευση

της αντίστοιχης που χρησιμοποιήθηκε στο ολοκλήρωμα συνάρτησης μιας μεταβλητής. Συμβολίζουμε με
E(R) το εμβαδόν του R,

E(R) = (β − α)(δ − γ).

Αν P1 = {α = x0 < x1 < · · · < xn = β} και P2 = {γ = y0 < y1 < · · · < ym = δ} είναι διαμερίσεις των [α, β]
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και [γ, δ] αντίστοιχα, τότε το σύνολο

P = P1 × P2 = {(xi, y j) ∈ R2 : 0 ≤ i ≤ n, 0 ≤ j ≤ m} ⊆ R

καλείται διαμέριση του ορθογωνίου R = [α, β]× [γ, δ]. Η διαμέριση P χωρίζει το R στα υποορθογώνια

Ri j := [xi, xi+1] × [y j, y j+1]

που ανά δύο έχουν ξένα εσωτερικά και η ένωσή τους ισούται με το R. Για κάθε 0 ⩽ i ⩽ n − 1 και
0 ⩽ j ⩽ m − 1 ϑέτουμε

∆xi = xi+1 − xi και ∆y j = y j+1 − y j

Παρατηρούμε ότι το εμβαδόν του Ri j είναι

E(Ri j) = ∆xi · ∆y j

Ορίζουμε επίσης,
∥P∥ = max

{
∥P1∥, ∥P2∥

}
όπου ∥P1∥ = max

{
∆xi : 0 ≤ i ≤ n − 1

}
και ∥P2∥ = max

{
∆y j : 0 ≤ i ≤ m − 1

}
. Επιλογή ενδιάμεσων

σημείων ως προς την διαμέριση P είναι ένα πεπερασμένο σύνολο σημείων

T = {Ti j : 0 ≤ i ≤ n − 1, 0 ≤ j ≤ m − 1}

με την ιδιότητα Ti j ∈ Ri j για κάθε 0 ≤ i ≤ n − 1 και 0 ≤ j ≤ m − 1.
Αν f : R→ R, P και T όπως παραπάνω, το άθροισμα

S( f ,P,T ) =
n−1∑
i=0

m−1∑
j=0

f
(
Ti j

)
E(Ri j) =

n−1∑
i=0

m−1∑
j=0

f
(
Ti j

)
∆xi∆y j

καλείται άθροισμα Riemann της f ως προς την διαμέριση P και την επιλογή T .
Η f λέγεται ολοκληρώσιμη στο R αν υπάρχει I ∈ R τέτοιος ώστε για κάθε ε > 0 υπάρχει δ > 0

τέτοιο ώστε |I − S( f ,P,T )| < ε για κάθε διαμέριση P του R με ∥P∥ < δ και όλες τις επιλογές T
ενδιάμεσων σημείων ως προς την P.

Σε αυτή την περίπτωση γράφουμε

I = lim
∥P∥→0

S( f ,P,T ) = lim
∥P∥→0

n−1∑
i=0

m−1∑
j=0

f
(
Ti j

)
∆xi · ∆y j

Ο αριθμός I καλείται ολοκλήρωμα της f στο R και συμβολίζεται με"
R

f ή
"

R
f (x, y) dA ή

"
R

f (x, y) dx dy

Παράδειγμα 6.1.1. ´Εστω f (x, y) = c ∈ R για κάθε (x, y) ∈ R. Τότε, για κάθε διαμέριση P του R και
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κάθε επιλογή T ενδιάμεσων σημείων έχουμε

S( f ,P,T ) =
n−1∑
i=0

m−1∑
j=0

c · E(Ri j) = c ·
n−1∑
i=0

m−1∑
j=0
E(Ri j) = c · E(R)

δηλαδή, όλα τα αθροίσματα Riemann της f είναι ίσα με cE(R) και άρα"
R

f = lim
∥P∥→0

S( f ,P,T ) = c · E(R).

Παράδειγμα 6.1.2. Θεωρούμε το ορθογώνιο R = [0, 1] × [0, 1] και τη συνάρτηση f : R→ R με

f (x, y) =

1 αν και ο x και ο y είναι και οι δύο ρητοί στο [0, 1]

0 διαφορετικά

Η f δεν είναι ολοκληρώσιμη. Πράγματι, αν P είναι μια διαμέριση του R, τότε λόγω της πυκνότητας των
ρητών και των αρρήτων στο [0, 1], υπάρχουν επιλογές ενδιάμεσων σημείων που περιέχουν μόνο ρητά
σημεία καθώς και επιλογές που περιέχουν μόνο άρρητα σημεία. Αν όμως μια επιλογή T αποτελείται
από ρητά σημεία τότε

S( f ,P,T ) = 1

ενώ αν η T αποτελείται από άρρητα σημεία

S( f ,P,T ) = 0

Αυτό δείχνει ότι το όριο lim∥P∥→0 S( f ,P,T ) δεν υπάρχει και άρα η f δεν είναι ολοκληρώσιμη.

Αποδεικνύονται οι ακόλουθες βασικές ιδιότητες του διπλού ολοκληρώματος.

Πρόταση 6.1.3. ´Εστω R ορθογώνιο, f , g : R→ R ολοκληρώσιμες συναρτήσεις και λ, µ ∈ R. Τότε:

(α) Οι λ f + µg, f · g και | f | είναι ολοκληρώσιμες.

(β) (Γραμμικότητα) Το ολοκλήρωμα είναι γραμμικό:"
R
(λ f + µg) = λ

"
R

f + µ
"

R
g.

(γ) (Μονοτονία) Εάν f ≤ g στο R, τότε "
R

f ≤
"

R
g.

(δ) (Τριγωνική Ανισότητα) Ισχύει η ανισότητα∣∣∣∣∣"
R

f
∣∣∣∣∣ ≤"

R
| f |.

Πρόταση 6.1.4. (Οι συνεχείς συναρτήσεις είναι ολοκληρώσιμες) ´Εστω R ορθογώνιο και f : R→ R
συνεχής συνάρτηση. Τότε η f είναι ολοκληρώσιμη στο R.

´Ενα πολύ χρήσιμο εργαλείο για τον υπολογισμό διπλών ολοκληρωμάτων συνεχών συναρτήσεων
είναι το Θεώρημα Fubini που λέει ότι μπορούμε να υπολογίσουμε ένα διπλό ολοκλήρωμα κάνοντας
δύο φορές διαδοχική απλή ολοκλήρωση ως προς x και y με οποιαδήποτε σειρά ϑέλουμε.
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Θεώρημα 6.1.5. (Θεώρημα Fubini για ορθογώνια) ´Εστω R = [α, β] × [γ, δ] και f : R → R συνεχής.
Τότε, "

R
f (x, y) dA =

∫ β

α

(∫ δ

γ
f (x, y) dy

)
dx =

∫ δ

γ

(∫ β

α
f (x, y) dx

)
dy.

Τα δύο ολοκληρώματα στο Θεώρημα 6.1.5 καλούνται επάλληλα (ή διαδοχικά) ολοκληρώματα. Το

ϑεώρημα Fubini λέει ότι αν για κάθε x ∈ [a, b], ϑέσουμε F(x) =
∫ δ

γ
f (x, y) dy τότε

"
R

f (x, y) dA =
∫ β

α
F(x) dx

και ομοίως αν ϑέσουμε G(y) =
∫ β

α
f (x, y) dx για κάθε y ∈ [γ, δ], τότε

"
R

f (x, y) dA =
∫ δ

γ
G(y) dy

Παρατήρηση 6.1.6. Κάποιες φορές έχει σημασία η σειρά που ϑα διαλέξουμε για την διαδοχική ο-
λοκλήρωση. Παρατηρείστε ότι είναι πιο δύσκολο να υπολογίσουμε τα παρακάτω ολοκληρώματα αν
αλλάξουμε την σειρά της διαδοχικής ολοκλήρωσης.

Παράδειγμα 6.1.7. Υπολογίστε το ολοκλήρωμα
!

R y sin(xy) dx dy όπου R = [1, 2] × [0, π].

Λύση. ´Εχουμε"
R

y sin(xy) dx dy =
∫ π

0

(∫ 2

1
y sin(xy) dx

)
dy

= −

∫ π

0
cos(xy)

∣∣∣∣x=2
x=1

dy

= −

∫ π

0
(cos(2y) − cos(y)) dy = −

(
sin(2y)

2
− sin y

) ∣∣∣∣y=π
y=0
= 0.

Παράδειγμα 6.1.8. Υπολογίστε το ολοκλήρωμα
!

R xexy dx dy όπου R = [0, 2] × [0, 1].

Λύση. ´Εχουμε "
R

xexy dx dy =
∫ 2

0

(∫ 1

0
xexy dy

)
dx

=

∫ 2

0
exy|1y=0 dx

=

∫ 2

0
(ex − 1) dx[ex − x]20 = e2 − 3

6.2 Ολοκλήρωση σε γενικότερα χωρία

Δίνουμε τώρα τον ορισμό ολοκληρώσιμης συνάρτησης σε ένα γενικό χωρίο του R2.

Ορισμός 6.2.1. ´Εστω D μη κενό, φραγμένο υποσύνολο του R2, f : D → R φραγμένη συνάρτηση και
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R ορθογώνιο με D ⊆ R. Θεωρούμε τη συνάρτηση f̃ : R2 → R με

f̃ (x, y) =

 f (x, y) αν (x, y) ∈ D,

0 αν (x, y) < D

Θα λέμε ότι η f είναι ολοκληρώσιμη στο D αν η f̃ είναι ολοκληρώσιμη στο R.
Σε αυτήν την περίπτωση ορίζουμε "

D
f =
"

R
f̃ .

Αποδεικνύεται ότι ο ορισμός του
!

D f είναι ανεξάρτητος από την επιλογή του ορθογωνίου R με
D ⊆ R. Με βάση τον Ορισμό 6.2.1 ενδέχεται για κάποιο φραγμένο σύνολο D ⊆ R2 ακόμα και οι σταθερές
συναρτήσεις να μην είναι ολοκληρώσιμες στο D. Π. χ. από το Παράδειγμα 6.1.2 έχουμε ότι στο χωρίο

D = {(x, y) : x, y ρητοί στο [0, 1]}

δεν ορίζεται το ολοκλήρωμα της σταθερής συνάρτησης f (x, y) = 1.
Αποδεικνύεται ότι αν το συνορό του D είναι μια πεπερασμένη ένωση από γραφικές παραστάσεις

συνεχών συναρτήσεων μιας μεταβλητής τότε δεν υπάρχει πρόβλημα με την ολοκλήρωση συνεχών συ-
ναρτήσεων στο D. Οι απλούστερες περιπτώσεις τέτοιου είδους χωρίων περιγράφονται στον επόμενο
ορισμό.

Ορισμός 6.2.2. ´Εστω D ⊆ R2.

(1) Το D λέγεται κατακόρυφα απλό (ή y-απλό) αν υπάρχουν συνεχείς συναρτήσεις g1, g2 : [a, b]→
R με g1 ≤ g2 τέτοιες ώστε

D = {(x, y) ∈ R2 : a ≤ x ≤ b, g1(x) ≤ y ≤ g2(y)}

(2) Το D λέγεται οριζόντια απλό (ή x-απλό) αν υπάρχουν συνεχείς συναρτήσεις h1, h2 : [c, d]→ R
με h1 ≤ h2 τέτοιες ώστε

D = {(x, y) ∈ R2 : c ≤ y ≤ d, h1(y) ≤ x ≤ h2(y)}.

(3) Το D λέγεται απλό αν είτε είναι κατακόρυφα απλό είτε είναι οριζόντια απλό.

Παράδειγμα 6.2.3. Αν D είναι ένα ορθογώνιο ή ένας κλειστός δίσκος τότε το D είναι ταυτόχρονα
και κατακόρυφα και οριζόντια απλό. Π.χ. για τον κλειστό μοναδιαίο κύκλο του R2 έχουμε τις εξής
περιγραφές:

D = {(x, y) ∈ R2 : x2 + y2 ≤ 1} = {(x, y) ∈ R2 : −1 ≤ x ≤ 1, −
√
1 − x2 ≤ y ≤

√
1 − x2}

= {(x, y) ∈ R2 : −1 ≤ y ≤ 1, −
√
1 − y2 ≤ x ≤

√
1 − y2}

Το Θεώρημα 6.1.5 γενικεύεται τώρα για απλά χωρία ως εξής.

Θεώρημα 6.2.4. (Θεώρημα Fubini για απλά χωρία) ´Εστω D ⊆ R2 και f : D→ R συνεχής συνάρτηση.

(1) Αν το D είναι ένα κατακόρυφα απλό χωρίο, D = {(x, y) ∈ R2 : x ∈ [a, b], g1(x) ≤ y ≤ g2(x)} τότε"
D

f (x, y) dx dy =
∫ b

a

(∫ g2(x)

g1(x)
f (x, y) dy

)
dx.
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(2) Αν το D είναι ένα οριζόντια απλό χωρίο, D = {(x, y) ∈ R2 : y ∈ [c, d], h1(y) ≤ x ≤ h2(y)} τότε,"
D

f (x, y) dx dy =
∫ d

c

(∫ h2(y)

h1(y)
f (x, y) dx

)
dy.

Παράδειγμα 6.2.5. Υπολογίστε το ολοκλήρωμα I =
"

D
ey2 dx dy όπου D το τριγωνικό χωρίο που

φράσσεται από την ευθεία y = x, τον άξονα Oy και την ευθεία y = 1.

Λύση. Κάνοντας ένα σχήμα βλέπουμε ότι το D είναι οριζόντια απλό και ειδικότερα για σταθερό
y ∈ [0, 1], το x βρίσκεται μεταξύ του 0 και του y. Με άλλα λόγια,

D = {(x, y) ∈ R2 : 0 ≤ y ≤ 1, 0 ≤ x ≤ y}

και άρα από το Θεώρημα Fubini,

I =
∫ 1

0

(∫ y

0
ey2dx

)
dy =

∫ 1

0
ey2

(∫ y

0
dx

)
dy =

∫ 1

0
ey2y dy =

1
2

∫ 1

0

(
ey2

)′
y dy =

1
2

ey2
∣∣∣∣y=1
y=0
=

e − 1
2
.

Παρατήρηση 6.2.6. Παρατηρείστε ότι το D στο Παράδειγμα 6.2.5 είναι και οριζόντια απλό, αφού
γράφεται και με την μορφή

D = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, y ≤ x ≤ 1}

αλλά δεν εξυπηρετεί να ολοκληρώσουμε πρώτα ως προς y διότι η ey2 δεν έχει παράγουσα η οποία να
εκφράζεται με στοιχειώδεις συναρτήσεις.

Παράδειγμα 6.2.7. Υπολογίστε το ολοκλήρωμα I =
"

D
x dx dy όπου D το χωρίο που φράσσεται από

τον κύκλο x2 + y2 = 4, την ευθεία x = 1 και τους ϑετικούς ημιάξονες.

Λύση. Κάνοντας ένα σχήμα βλέπουμε ότι το D είναι κατακόρυφα απλό, ειδικότερα για σταθερό
x ∈ [0, 1] το y βρίσκεται μεταξύ 0 και

√
4 − x2. Συνεπώς,

D = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤
√
4 − x2}

I =
∫ 1

0
x

∫
√
4−x2

0
dy

 dx =
∫ 1

0
x
√
4 − x2 dx

=
1
2

∫ 4

3

√
u du =

1
2

∫ 4

3
u
1
2 du =

1
3

u3/2
∣∣∣∣u=4
u=3
=

43/2 − 33/2

3
.

Είναι χρήσιμο κάποιες φορές να παρατηρούμε και την συμμετρία του D καθώς και της ολοκληρω-
τέας συνάρτησης f (x, y) ως προς τους άξονες. Σχετικό είναι το επόμενο παράδειγμα.

Παράδειγμα 6.2.8. Υπολογίστε το ολοκλήρωμα I =
"

D

x3

x4 + y4 + 1
dx dy όπου D το χωρίο που φράσ-

σεται από τον κύκλο x2 + y2 = 1, τον άξονα x′x και βρίσκεται στο ημιεπίπεδο y ⩾ 0.

Λύση. Για σταθερό y ∈ [0, 1] το x βρίσκεται μεταξύ −
√
1 − y2 και

√
1 − y2. Συνεπώς,

I =
∫ 1

0

∫
√

1−y2

−
√

1−y2

x3

x4 + y4 + 1
dx

 dy.
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´Ομως, η συνάρτηση x 7→
x3

x4 + y4 + 1
είναι περιττή συνάρτηση (για αντίθετα x δίνει αντίθετες τιμές) και

άρα το εσωτερικό ολοκλήρωμα ισούται με 0 για κάθε y ∈ [0, 1]. ´Επεται λοιπόν ότι I = 0.
´Οταν το χωρίο D διασπάται σε μικρότερα απλά χωρία με μη επικαλυπτόμενα εσωτερικά έχουμε

την εξής πρόταση.

Πρόταση 6.2.9. ´Εστω D ⊆ R2 και f : D→ R συνεχής. Αν D = D1 ∪ D2 όπου D1,D2 απλά υποσύνολα
του R2 με ξένα εσωτερικά, τότε "

D
f =
"

D1

f +
"

D2

f

Παράδειγμα 6.2.10. Υπολογίστε το I =
"

D
(x + y) dx dy όπου D το χωρίο που φράσσεται από τις

ευθείες x + y = 1, x + y = 2 και τους ϑετικούς ημιάξονες.

Λύση. Κάνοντας ένα σχήμα, γράφουμε το D ως την ένωση D = D1 ∪ D2, όπου D1 το χωρίο που
φράσσεται από τις ευθείες x + y = 1, x + y = 2 και τις ευθείες x = 0, x = 1, και D2 το τρίγωνο που
φράσσεται από τις ευθείες x + y = 2, x = 1 και τον ημιάξονα Ox. ´Εχουμε ότι τα D1,D2 έχουν ξένα
εσωτερικά και άρα

I :=
"

D
(x + y) dx dy =

"
D1

(x + y) dx dy +
"

D2

(x + y) dx dy.

Υπολογίζουμε πρώτα το "
D1

(x + y) dx dy.

Για σταθερό x ∈ [0, 1] έχουμε y ∈ [1 − x, 2 − x], άρα"
D1

(x + y) dx dy =
∫ 1

0

[∫ 2−x

1−x
(x + y) dy

]
dx

=
1
2

∫ 1

0
(x + y)2

∣∣∣∣y=2−x

y=1−x
dx =

1
2

∫ 1

0
(22 − 12) dx =

3
2
.

Υπολογίζουμε τώρα το "
D2

(x + y) dx dy.

Για σταθερό x ∈ [1, 2] έχουμε y ∈ [0, 2 − x], άρα"
D2

(x + y) dx dy =
∫ 2

1

[∫ 2−x

0
(x + y) dy

]
dx

=
1
2

∫ 2

1
(x + y)2

∣∣∣∣y=2−x

y=0
dx =

1
2

∫ 1

0
(22 − x2) dx

= 2 −
1
2

∫ 2

1
x2 dx = 2 −

1
6

x3
∣∣∣∣x=2
x=1
= 2 −

1
6

(23 − 1) =
5
6
.

Τελικά,
I =

3
2
+

5
6
=

14
6
=

7
3
.
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6.3 Ολοκλήρωση σε πολικές συντεταγμένες

Στην ολοκλήρωση συναρτήσεων μιας μεταβλητής η μέθοδος της αλλαγής μεταβλητής μετασχηματίζει
ένα πολύπλοκο ολοκλήρωμα σε ένα πολύ απλούστερο. Η μέθοδος αυτή επεκτείνεται στην ολοκλήρω-
ση συναρτήσεων δύο μεταβλητών. Στην παράγραφο αυτή ϑα μελετήσουμε την αλλαγή μεταβλητών και
ειδικότερα την αλλαγή των καρτεσιανών συντεταγμένων (x, y) σε πολικές συντεταγμένες (r, ϑ). Θυμί-
ζουμε ότι για ένα σημείο του R2 οι καρτεσιανές συντεταγμένες του (x, y) και οι πολικές συντεταγμένες
του (r, ϑ) συνδέονται μέσω των σχέσεων

x = r cosϑ

y = r sinϑ

r =
√

x2 + y2

(6.3.1)

Το r είναι πάντα μη αρνητικό και το ϑ γενικά περιορίζεται στο διάστημα [0, 2π]. Μερικές φορές το ϑ
βολεύει να περιορίζεται και σε διαστήματα συμμετρικά ως προς το μηδέν. Π.χ. η ανισότητα cosϑ ≥ 0
ισχύει για ϑ ∈

[
−
π

2
,
π

2

]
.

Για κάθε D ⊆ R2 ορίζουμε D∗ να είναι το σύνολο όλων των ζευγών (r, ϑ) ∈ [0,+∞) × [0, 2π] με την
ιδιότητα

(r, ϑ) ∈ D⇔ (r cosϑ, r sinϑ) ∈ D

Ορισμός 6.3.1. ´Ενα υποσύνολο D του R2 ϑα καλείται ακτινικά απλό αν γράφεται στην μορφή

(6.3.2) D = {(x, y) ∈ R2 : x = r cosϑ, y = r sinϑ, με ϑ1 ≤ ϑ ≤ ϑ2, και r1(ϑ) ≤ r ≤ r2(ϑ)}

Στην περίπτωση αυτή το σύνολο

(6.3.3) D∗ = {(r, ϑ) : ϑ1 ≤ ϑ ≤ ϑ2, r1(ϑ) ≤ r ≤ r2(ϑ)}

ϑα καλείται η πολική αναπαράσταση του D.

Παράδειγμα 6.3.2. Ο γωνιακός τομέας ενός δακτυλίου του R2 ορίζεται να είναι το εξής ακτινικά
απλό χωρίο

D = {(x, y) ∈ R2 : x = r cosϑ, y = r sinϑ, με ϑ1 ≤ ϑ ≤ ϑ2, και r1(ϑ) ≤ r ≤ r2(ϑ)}

Η πολική αναπαράσταση του D είναι το (πολικό) ορθογώνιο

D∗ = [R1,R2] × [ϑ1, ϑ2] = {(r, ϑ) : R1 ≤ r ≤ R2, ϑ1 ≤ ϑ ≤ ϑ2}

Παρατηρείστε ότι η αλλαγή σε πολικές συντεταγμένες οδηγεί στην απλοποίηση της μορφής του χωρίου.

Θεώρημα 6.3.3. (Θεώρημα Fubini για ακτινικά απλά χωρία) ´Εστω D ⊆ R2 ένα ακτινικά απλό χωρίο,

D = {(x, y) ∈ R2 : x = r cosϑ, y = r sinϑ, με ϑ1 ≤ ϑ ≤ ϑ2, και r1(ϑ) ≤ r ≤ r2(ϑ)}

και f : D→ R συνεχής. Τότε"
D

f (x, y) dx dy =
"

D∗
f (r cosϑ, r sinϑ)r dr dϑ =

∫ ϑ2

ϑ1

(∫ r2(ϑ)

r1(ϑ)
f (r cosϑ, r sinϑ) rdr

)
dϑ.
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Παρατηρείστε ότι το στοιχειώδες εμβαδό (το οποίο σε καρτεσιανές συντεταγμένες εκφράζεται ως
dA = dx dy ) σε πολικές συντεταγμένες μετατρέπεται σε

dA = r dr dϑ

Παράδειγμα 6.3.4. ´Εστω D =
{
(x, y) : 1 ⩽ x2 + y2 ⩽ 4

}
ο δακτύλιος του R2 με κέντρο το (0, 0) εσωτε-

ρικής ακτίνα R1 = 1 και εξωτερική ακτίνα R2 = 2. Να υπολογιστεί το ολοκλήρωμα

I =
"

D
e−(x2+y2) dx dy.

Λύση. Θέτουμε x = r cosϑ και y = r sinϑ. Τότε, (x, y) ∈ D αν και μόνο αν x = r cosϑ και y = r sinϑ
όπου 1 ⩽ r ⩽ 2 και ϑ ∈ [0, 2π], δηλαδή το D σε πολικές συντεταγμένες γράφεται D∗ = [1, 2] × [0, 2π].
Συνεπώς,

I =
"

D
e−(x2+y2) dx dy =

"
D∗

e−r2r dr dϑ =
∫ 2π

0

[∫ 2

1
re−r2dr

]
dϑ

Θέτοντας u = −r2 και du = (−2)r dr ⇒ r dr = −
1
2

du το εσωτερικό ολοκλήρωμα γράφεται

∫ 2

1
re−r2dr = −

1
2

∫ −1

−4
eudu =

1
2

(
1
e
−

1
e4

)
=

e3 − 1
2e4

Συνεπώς,

I =
∫ 2π

0

e3 − 1
2e4

dϑ =
e3 − 1
2e4
π

Παράδειγμα 6.3.5. ´Εστω D =
{
(x, y) : x2 + y2 ⩽ 2x

}
. Να υπολογιστεί το ολοκλήρωμα

I =
"

D

1√
x2 + y2

dx dy.

Λύση. Παρατηρήστε ότι x2 + y2 ⩽ 2x αν και μόνο αν (x − 1)2 + y2 ⩽ 1, δηλαδή το D είναι δίσκος με
κέντρο το σημείο (1, 0) και ακτίνα 1. Θέτουμε x = r cosϑ και y = r sinϑ. Τότε, (x, y) ∈ D αν και μόνο αν
0 ⩽ r ⩽ 2 cosϑ. Επειδή 2 cosϑ ≥ 0 το διάστημα στο οποίο κινείται το ϑ είναι το [−π/2, π/2].

Άρα το D σε πολικές συντεταγμένες γράφεται

D∗ = {(r, ϑ) : −π/2 ⩽ ϑ ⩽ π/2, 0 ⩽ r ⩽ 2 cosϑ}

Συνεπώς,

I =
"

D

1√
x2 + y2

dx dy =
"

D∗

1
r

r dr dϑ =
"

D∗
dr dϑ

=

∫ π/2

−π/2

(∫ 2 cosϑ

0
dr

)
dϑ = 2

∫ π/2

−π/2
cosϑ dϑ

= 4
∫ π/2

0
cosϑ dϑ = 4 sinϑ

∣∣∣∣π/2
0
= 4.
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6.4 Εμβαδά και όγκοι μέσω διπλών ολοκληρωμάτων

Οι πιο άμεσες εφαρμογές των διπλών ολοκληρωμάτων είναι στον υπολογισμό εμβαδών και όγκων.

6.4.1 Υπολογισμός εμβαδών επίπεδων χωρίων

Το εμβαδόν ενός χωρίου D του R2 ορίζεται να είναι το ολοκλήρωμα

(6.4.1) E(D) =
"

D
1 dx dy

´Οπως έχουμε δεί το ολοκλήρωμα (6.4.1) δεν ορίζεται σε όλα τα επίπεδα χωρία D ⊆ R2, με άλλα
λόγια δεν έχουν όλα τα επίπεδα χωρία εμβαδόν. Εδώ ϑα ασχοληθούμε μόνο με απλά ή ακτινικά απλά
χωρία για τα οποία όπως έχουμε δεί το ολοκλήρωμα στην (6.4.1) ορίζεται.

Παράδειγμα 6.4.1. ´Εστω D = {(x, y) : (x2 + y2)2 ⩽ x2 − y2} (μισός λημνίσκος Bernoulli). Δείξτε ότι το
D είναι ακτνικά απλό και υπολογίστε το εμβαδόν του.

Λύση. Τότε, αν ϑέσουμε x = r cosϑ και y = r sinϑ έχουμε (x, y) ∈ D αν και μόνο αν

r4 ⩽ r2(cos2 ϑ − sin2 ϑ)⇔ r2 ⩽ cos(2ϑ)

Συνεπώς,
cos(2ϑ) ⩾ 0⇔ −π/4 ⩽ ϑ ⩽ π/4

Άρα
D =

{
(r cosϑ, r sinϑ) : −π/4 ⩽ ϑ ⩽ π/4 και 0 ⩽ r ⩽

√
cos(2ϑ)

}
οπότε

E(D) =
∫ π/4

−π/4

∫
√

cos(2ϑ)

0
r dr

 d∂ =
1
2

∫ π/4

−π/4
cos(2ϑ) dϑ =

∫ π/4

0
cos(2ϑ) dϑ

=
1
2

sin(2ϑ)
∣∣∣∣π/4
0
=

1
2
.

6.4.2 Υπολογισμός όγκων με διπλά ολοκληρώματα

´Εστω ένα απλό χωρίο D ⊆ R2 και g1, g2 : D → R συνεχείς συναρτήσεις με g1 ⩽ g2 στο D. Θεωρούμε
το στερεό

K = {(x, y, z) : (x, y) ∈ D και g1(x, y) ⩽ z ⩽ g2(x, y)}

Το K είναι το στερεό που φράσσεται από τις επιφάνειες z = g1(x, y), z = g2(x, y) και τον ορθό κύλινδρο
με γενέτειρες παράλληλες στον κατακόρυφο άξονα z′z και οδηγό την καμπύλη ∂D. Το D καλείται
προβολή του K στο xy-επίπεδο. Στην περίπτωση αυτή ο όγκος του K ισούται με

(6.4.2) V(K) =
"

D

(
g2(x, y) − g1(x, y)

)
dx dy.

Παράδειγμα 6.4.2. Να υπολογιστεί ο όγκος του στερεού

K =
{

(x, y, z) : x2 + y2 ⩽ 1 και x2 + y2 − 1 ⩽ z ⩽
√
4 − x2 − y2

}
.
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Λύση. Αν D = {(x, y) : x2 + y2 ⩽ 1}, τότε

V(K) =
"

D

(√
4 − x2 − y2 − x2 − y2 + 1

)
dx dy =

∫ 2π

0

∫ 1

0

(√
4 − r2 − r2 + 1

)
r dr dϑ

= 2π
∫ 1

0

(√
4 − r2 − r2 + 1

)
r dr,

το οποίο υπολογίζεται εύκολα.

Παράδειγμα 6.4.3. Δείξτε ότι όγκος μιας σφαίρας ακτίνας R είναι V =
4
3
πR3.

Λύση. Μπορούμε χωρίς βλάβη της γενικότητας να ϑεωρήσουμε ότι η σφαίρα έχει κέντρο την αρχή
των αξόνων. ´Εστω λοιπόν B =

{
(x, y, z) : x2 + y2 + z2 ≤ R2

}
. Παρατηρούμε ότι η B γράφεται στην μορφή

B =
{

(x, y, z) ∈ R3 : (x, y) ∈ D και −
√

R2 − x2 − y2 ⩽ z ⩽
√

R2 − x2 − y2
}

όπου D ο δίσκος του R2 κέντρου (0, 0) και ακτίνας R, δηλαδή D =
{
(x, y) : x2 + y2 ≤ R2

}
. Άρα

V(B) =
"

D
2
√

R2 − x2 − y2 dx dy

Θέτοντας x = r cosϑ, y = r sinϑ και D∗ = {(r, ϑ) : 0 ⩽ ϑ ⩽ 2π, 0 ⩽ r ⩽ R} παίρνουμε

V(B) =
"

D
2
√

R2 − x2 − y2 dx dy =
"

D∗
2
√

R2 − r2 rdr dϑ = 2
∫ 2π

0

(∫ R

0

√
R2 − r2r dr

)
dϑ

Θέτοντας τώρα u = R2 − r2 και du = −2r dr έχουμε∫ R

0
r
√

R2 − r2 dr =
∫ R2

0

√
u du =

1
3

u3/2
∣∣∣∣R2

0
=

1
3

R3

Άρα

V(B) = 2
1
3

R3
∫ 2π

0
dϑ =

4π
3

R3
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