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ΚΕΦΑΛΑΙΟ 1

Οι Πραγματικοί Αριθμοί

1.1 Ιδιότητες των Πράξεων των πραγματικών αριθμών

Στο R ορίζονται δύο πράξεις, η πρόσθεση (συμβολίζεται με +) και ο πολλαπλασιασμός (συμβολίζεται
με ·).

Ιδιότητες της πρόσθεσης

(Ι1) (Αντιμεταθετική ιδιότητα) Για κάθε a, b ∈ R, a + b = b + a.

(Ι2) (Προσεταιριστική ιδιότητα) Για κάθε a, b, c ∈ R, (a + b) + c = a + (b + c).

(Ι3) (´Υπαρξη ουδετέρου στοιχείου) Υπάρχει ένας πραγματικός αριθμός που τον συμβολίζουμε με 0
τέτοιος ώστε a + 0 = a για κάθε a ∈ R.

(Ι4) (´Υπαρξη αντιθέτου) Για κάθε a ∈ R, υπάρχει ένας πραγματικός αριθμός που τον συμβολίζουμε
με −a (καλείται αντίθετος του a) τέτοιος ώστε a + (−a) = 0.

Μπορεί να δειχθεί εύκολα ότι το ουδέτερο στοιχείο είναι μοναδικό. Πράγματι αν υπήρχαν δύο
ουδέτερα στοιχεία 01 και 02 τότε

01 + 02 = 02

λόγω του ότι το )1 είναι ουδέτερο και ομοίως

01 + 02 = 01

λόγω του ότι το 02 είναι ουδέτερο. Άρα 01 = 02.
Με παρόμοιο τρόπο μπορεί να δειχθεί ότι ο αντίθετος ενός πραγματικού αριθμού είναι μοναδικός

(αφήνεται ως άσκηση). Παρατηρείστε επίσης ότι

−(−a) = a

για κάθε a ∈ R. Πράγματι
(−a) + a = 0
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και άρα λόγω μοναδικότητας, ο αντίθετος του −a (δηλαδή ο −(−a)) είναι ο a.

Ιδιότητες του πολλαπλασιασμού

(Ι5) (Αντιμεταθετική ιδιότητα) Για κάθε a, b ∈ R, a · b = b · a.

(Ι6) (Προσεταιριστική ιδιότητα) Για κάθε a, b, c ∈ R, (a · b) · c = a · (b · c).

(Ι7) (´Υπαρξη ουδετέρου στοιχείου) Υπάρχει ένας πραγματικός αριθμός που τον συμβολίζουμε με 1
τέτοιος ώστε 1 , 0 και a · 1 = a για κάθε a ∈ R.

(Ι8) (´Υπαρξη αντιστρόφου) Για κάθε a ∈ R με a , 0 υπάρχει ένας πραγματικός αριθμός που τον
συμβολίζουμε με a−1 (καλείται αντίστροφος του a) τέτοιος ώστε a · a−1 = 1.

´Οπως και στην πρόσθεση με ανάλογο τρόπο μπορεί να δειχθεί ότι το ουδέτερο στοιχείο 1 είναι
μοναδικό και ότι υπάρχει μοναδικός αντίστροφος για κάθε μη μηδενικό αριθμό (αφήνεται ως άσκηση).
Επίσης

(a−1)−1 = a

για κάθε a , 0.
Μια επιπλέον ιδιότητα που εμπλέκει και τις δύο πράξεις είναι η επόμενη

(Ι9) (Επιμεριστική ιδιότητα) Για κάθε a, b, c ∈ R, (a + b) · c = a · c + b · c.

Πρόταση 1.1.1. Για κάθε a ∈ R, 0 · a = 0.

Απόδειξη. ´Εστω a ∈ R. ´Εχουμε

0 · a = (0 + 0) · a = 0 · a + 0 · a

Θέτοντας τώρα x = 0 · a η παραπάνω σχέση γράφεται

x + x = x

Προσθέτοντας εκατέρωθεν το −x και εφαρμόζωντας την προσεταιριστική ιδιότητα παίρνουμε

(x + x) + (−x) = x + (−x)⇒ x + (x + (−x)) = 0⇒ x + 0 = 0⇒ x = 0

Άρα 0 · a = 0. □

Η Πρόταση 1.1.1 έχι πολλά πορίσματα. Καταρχάς δικαιολογεί την απαίτηση a , 0 στην ιδιότητα
(Ι8).

Πόρισμα 1.1.2. Το 0 δεν έχει αντίστροφο.

Απόδειξη. Αν υπήρχε ο αντίστροφος του 0 τότε ϑα έπρεπε 0 · 0−1 = 1. Άτοπο, από την Πρόταση 1.1.1
και την υπόθεση ότι 1 , 0. □

Πόρισμα 1.1.3. a · b = 0 αν και μόνο αν a = 0 ή b = 0.
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Απόδειξη. ´Εστω a, b ∈ R με
a · b = 0

´Εστω a , 0. Τότε υπάρχει ο a−1. Πολλαπλασιάζοντας με a−1 παίρνουμε

a−1 · (a · b) = a−1 · 0⇒ (a−1 · a) · b = 0⇒ 1 · b = 0⇒ b = 0

Άρα αν a · b = 0 τότε είτε a = 0 είτε b = 0.
Αντιστρόφως αν a = 0 ή b = 0 τότε από Πρόταση 1.1.1 έχουμε ότι a · b = 0. □

Πόρισμα 1.1.4. (−a) · b = a · (−b) = −(a · b).

Απόδειξη. ´Εχουμε
a · b + (−a) · b = (a + (−a)) · b = 0 · b = 0

και άρα από την μοναδικόητα του αντιθέτου ϑα πρέπει

(−a) · b = −(a · b)

Ομοίως δείχνουμε ότι a · (−b) = −(a · b). □

Θέτοντας a = 1 στο παραπάνω πόρισμα παίρνουμε και το εξής.

Πόρισμα 1.1.5. (−1)b = −b για κάθε b ∈ R.

Στο R ορίζονται δύο επιπλέον πράξεις η αφαίρεση και η διαίρεση:

Ορισμός 1.1.6. (α) (Ορισμός της αφαίρεσης) Για κάθε a, b ∈ R ορίζουμε

a − b = a + (−b)

δηλαδή η αφαίρεση του b από τον a είναι η πρόσθεση στο a του αντιθέτου του b. Το a − b καλείται
διαφορά του b από τον a.

(β) (Ορισμός της διαίρεσης) Για κάθε a, b ∈ R με b , 0 ορίζουμε

a
b
= a · b−1

δηλαδή η διαίρεση του a με τον b είναι ο πολλαπλασιασμός του a με τον αντίστροφο του b. Το
a
b

καλείται πηλίκο του a προς το b.

1.2 Ιδιότητες της διάταξης των πραγματικών αριθμών

Στο R ορίζεται η σχέση της διάταξης που συμβολίζεται με < και έχει τις παρακάτω ιδιότητες.

(Ι10) (α) (Ιδιότητα της μεταβατικότητας) Για κάθε a, b, c ∈ R

αν a < b και b < c τότε a < c

(β) (Ιδιότητα Τριχοτομίας) Για κάθε a, b ∈ R ακριβώς ένα από τα επόμενα ισχύει:

είτε a = b είτε a < b είτε b < a
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(Ι11) Για κάθε a, b ∈ R αν a < b τότε a + c < b + c για κάθε c ∈ R.

(Ι12) Για κάθε a, b ∈ R αν a < b τότε a · c < b · c για κάθε c > 0.

Σημείωση : ´Οταν γράφουμε a > b εννοούμε ότι b < a. Επίσης όταν γράφουμε a ⩽ b εννοούμε ότι είτε
a < b είτε a = b. Π.χ. 1 ⩽ 1, 2 ⩽ 5.

Ορισμός 1.2.1. ´Ενας αριθμός a ∈ R καλείται ϑετικός αν a > 0 και αρνητικός αν a < 0.

Από την ιδιότητα (Ι10) (β) έχουμε ότι για καθε αριθμό a μια ακριβώς από τις επόμενες τρείς
περιπτώσεις ισχύει: είτε a = 0 είτε a ϑετικός είτε a αρνητικός.

Πρόταση 1.2.2. (Γινόμενο ϑετικών είναι ϑετικός) Αν a > 0 και b > 0 τότε a · b > 0.

Απόδειξη. Από την (Ι12) και Πρόταση 1.1.1 έχουμε

a > 0, b > 0⇒ a · b > 0 · b⇒ a · b > 0

□

Πρόταση 1.2.3. (Άθροισμα ϑετικών είναι ϑετικός) Αν a > 0 και b > 0 τότε a + b > 0.

Απόδειξη. Από την (Ι11) έχουμε

a > 0⇒ a + b > 0 + b⇒ a + b > b

Επειδή b > 0 από την μεταβατικότητα της διάταξης έπεται ότι a + b > 0. □

Πόρισμα 1.2.4. (α) Αν a > 0 τότε −a < 0.
(β) Ομοίως αν a < 0 τότε −a > 0.

Απόδειξη. (α) ´Εστω a > 0. Από την ιδιότητα της Τριχοτομίας ϑα έχουμε ότι είτε −a = 0 είτε −a > 0
είτε −a < 0. Αν −a = 0 τότε 0 = a + (−a) = a + 0 = a άτοπο αφού a > 0. Αν −a > 0 τότε από την
Πρόταση 1.2.3 0 = a + (−a) > 0 πάλι άτοπο. Άρα το μόνο που μένει να ισχύει είναι ότι −a < 0.

(β) Ομοίως με το (α). □

Πρόταση 1.2.5. (Γινόμενο αρνητικών είναι ϑετικός) Αν a < 0 και b < 0 τότε a · b > 0.

Απόδειξη. Αφού b < 0 από το Πόρισμα 1.2.4 έχουμε ότι −b > 0. Άρα από την (Ι12), a·(−b) < 0·(−b) = 0.
Από το Πόρισμα 1.1.4 έχουμε ότι a · (−b) = −(a · b). Άρα −(a · b) < 0 οπότε από το Πόρισμα 1.2.4
a · b > 0. □

Πόρισμα 1.2.6. (Τα τετράγωνα αριθμών είναι μη αρνητικά) Για κάθε a ∈ R, a2 ⩾ 0. Ειδικότερα, αν
a , 0 τότε a2 > 0.

Απόδειξη. Αν a = 0 τότε a2 = 0 · 0 = 0 από Πρόταση 1.1.1. Αν a > 0 τότε a2 = a · a > 0 από την
Πρόταση 1.2.3. Τέλος αν a < 0 τότε a2 = a · a > 0 από την Πρόταση 1.2.5. □

Πόρισμα 1.2.7. 1 > 0.

Απόδειξη. Είναι 1 , 0 και 1 = 12. □



1.3 Οι Φυσικοί αριθμοί · 5

Το επόμενο Πόρισμα λέει ότι αν πολλαπλασιάσουμε τα μέλη μιας ανισότητας με αρνητικό αριθμό
τότε αλλάζει η φορά της ανισότητας.

Πόρισμα 1.2.8. Αν a < b και c < 0 τότε a · c > b · c.

Απόδειξη. ´Εχουμε a < b ⇒ a + (−b) < b + (−b) ⇒ a − b < 0. Από το Πόρισμα 1.2.5 έπεται ότι
(a − b) · c > 0⇒ a · c − b · c > 0⇒ a · c > b · c. □

1.3 Οι Φυσικοί αριθμοί

1.3.1 Επαγωγικά σύνολα και η Αρχή της Μαθηματικής Επαγωγής

Το σύνολο των φυσικών αριθμών είναι το σύνολο

N = {1, 2, 3, . . . }

όπου το 1 είναι το ουδέτερο στοιχείο του πολλαπλασιασμού στο R και

2 = 1 + 1, 3 = 2 + 1, ...

Γενικά
Θα μπορούσαμε να ορίσουμε το N χρησιμοποιώντας λίγη Θεωρία Συνόλων ως εξής. Εισάγουμε

πρώτα την έννοια του επαγωγικού υποσυνόλου του R.

Ορισμός 1.3.1. ´Ενα υποσύνολο A του R ϑα καλείται επαγωγικό αν (α) 1 ∈ A και (β) για κάθε x ∈ A
ισχύει ότι x + 1 ∈ A.

Παραδείγματα επαγωγικών υποσυνόλων του R είναι το ίδιο το R, το σύνολο R+ = {x ∈ R : x > 0}
όλων των ϑετικών πραγματικών αριθμών κ.α.

Πρόταση 1.3.2. Υπάρχει το μικρότερο επαγωγικό υποσύνολο του R, δηλαδή υπάρχει ένα υποσύνολο
του R το οποίο (α) είναι επαγωγικό και (β) περιέχεται σε κάθε επαγωγικό υποσύνολο του R.

Απόδειξη. ´Εστω E0 η τομή όλων των επαγωγικών υποσυνόλων του R, δηλαδή το E0 αποτελείται από
όλα τα x ∈ R που ανήκουν σε όλα τα επαγωγικά υποσύνολα του R. Παρατηρούμε τα εξής.

(α) Το E0 είναι επαγωγικό: Πράγματι 1 ∈ E0 αφού το 1 ανήκει σε όλα τα επαγωγικά υποσύνολα
του R. Επίσης, έστω x ∈ E0. Τότε το x ανήκει σε κάθε επαγωγικό υποσύνολο του R και άρα το x + 1
ανήκει και αυτό σε κάθε επαγωγικό υποσύνολο του R και συνεπώς x + 1 ∈ E0.

(β) Το E0 περιέχεται σε κάθε επαγωγικό υποσύνολο του R: Πράγματι έστω E ένα οποιοδήποτε
επαγωγικό υποσύνοπλο του R και έστω x ∈ E0. Το ότι x ∈ E0 σημαίνει ότι το x ανήκει σε όλα τα
επαγωγικά υποσύνολα του R και άρα x ∈ E. Συνεπώς κα´θε στοιχείο του E0 είναι και στοιχείο του E
και άρα E0 ⊆ E. □

Παρατηρείστε επίσης ότι το μικρότερο επαγωγικό υποσύνολο είναι και μοναδικό. Πράγματι, αν
υπήρχαν δύο μικρότερα επαγωγικά υποσύνολα έστω A0, A′0 τότε ϑα είχαμε

A0 ⊆ A′0 και A′0 ⊆ A0

και άρα A0 = A′0.
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Ορισμός 1.3.3. Το μικρότερο επαγωγικό υποσύνολο του R το συμβολίζουμε με N και το καλούμε
σύνολο των φυσικών αριθμών.

Η επόμενη πρόταση είναι άμεση από τον ορισμό του N.

Πρόταση 1.3.4. ´Εστω A ⊆ N. Αν (α) 1 ∈ A και (β) για κάθε n ∈ A ισχύει ότι n + 1 ∈ A, τότε A = N.

Απόδειξη. Από τις υποθέσεις (α) και (β) για το A έχουμε ότι το A είναι επαγωγικό υποσύνολο του R.
Άρα N ⊆ A. Από την άλλη μεριά έχουμε υποθέσει ότι A ⊆ N. Άρα A = N. □

Η παραπάνω πρόταση δίνει και μια μέθοδο απόδειξης για προτάσεις που αφορούν φυσικούς
αριθμούς.

Πρόταση 1.3.5. (Αρχή της Μαθηματικής Επαγωγής) ´Εστω p(n) ένας ισχυρισμός για τον φυσικό
αριθμό n. ´Εστω (α) η p(1) ισχύει και (β) Αν ο p(n) ισχύει για κάποιο n ∈ N τότε ο p(n+ 1) ισχύει. Τότε ο
ισχυρισμός p(n) ισχύει για κάθε n ∈ N.

Απόδειξη. ´Εστω A = {n ∈ N : ο ισχυρισμός p(n) ισχύει}. Από τις υποθέσεις μας το A είναι επαγωγικό
υποσύνολο του N και άρα από την Πρόταση 1.3.4 ταυτίζεται με το N. □

Παράδειγμα 1.3.6. Αποδείξτε ότι

1 + 3 + 5 + ... + (2n − 1) = n2

για κάθε n ∈ N.

Λύση. Για n = 1 έχουμε 1 = 12 και άρα ο ισχυρισμός ισχύει για n = 1. Υποθέτουμε τώρα ότι ισχύει
για κάποιο n ∈ N, δηλαδή ότι ισχύει

1 + 3 + 5 + ... + (2n − 1) = n2

Θα δείξουμε ότι αυτο συνεπάγεται ότι ιχύει και για τον n + 1, δηλαδή ότι

1 + · · · + (2(n + 1) − 1) = (n + 1)2

Πράγματι,

1 + · · · + (2n − 1) + (2(n + 1) − 1) = (1 + · · · + (2n − 1)) + (2(n + 1) − 1) = n2 + 2n + 1 = (n + 1)2

Από την Αρχή της Μαθηματικής Επαγωγής ο ισχυρισμός ισχύει για κάθε n ∈ N.

1.3.2 Πράξεις και διάταξη στους φυσικούς αριθμούς

Πρόταση 1.3.7. Το N είναι κλειστό στην πράξη της πρόσθεσης και του πολλαπλασιασμού, δηλαδή
για κάθε m, n ∈ N m + n ∈ N και m · n ∈ N.

Απόδειξη. ´Εστω m ένας οποισδήποτε φυσικός αριθμός. Θεωρούμε την πρόταση p(n) : m + n ∈ N. Θα
δείξουμε με Επαγωγή ότι η p(n) ισχύει για κάθε n ∈ N. Πράγματι για n = 1 έχουμε ότι m + 1 ∈ N αφού
το N είναι επαγωγικό και άρα η p(1) ισχύει. ´Εστω ότι η p(n) ισχύει δηλαδή m + n ∈ N για κάποιο
n ∈ N. Τότε, από Προσεταιριστική ιδιότητα,

m + (n + 1) = (m + n) + 1 ∈ N
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αφού m + n ∈ N και N επαγωγικό. Άρα m + n ∈ N για κάθε n ∈ N. Ομοίως αποδεικνύεται ότι m · n ∈ N
για κάθε n ∈ N (αφήνεται ως άσκηση). □

Πρόταση 1.3.8. Για κάθε n ∈ N, n ⩾ 1.

Απόδειξη. Η πρόταση ισχύει τετριμμένα για n = 1. ´Εστω ότι ισχύει για κάποιο n ⩾ 1 δηλαδή n ⩾ 1.
Συνεπώς

n + 1 ⩾ 1 + 1 = 2

´Οπως γνωρίζουμε 1 > 0 (Πόρισμα 1.2.7 ) και άρα

2 = 1 + 1 > 1 + 0 = 1

Από την μεταβατικότητα της διάταξης n + 1 > 1 οπότε και n + 1 ⩾ 1. □

Ορισμός 1.3.9. Ορίζουμε N0 = {0, 1, 2, . . . }.

Πρόταση 1.3.10. Για κάθε n ∈ N υπάρχει k ∈ N0 τέτοιος ώστε n = 1 + k.

Απόδειξη. Για n = 1, 1 = 1 + 0 και η πρόταση ισχύει για k = 0. ´Εστω ότι η πρόταση ισχύει για κάποιο
n ∈ N, δηλαδή έστω ότι υπάρχει k ∈ N με n = 1 + k. Τότε

n + 1 = (1 + k) + 1 = 1 + (k + 1)

και άρα η πρόταση ισχύει και για το n+ 1 αφού ο k+ 1 ∈ N. Από την Αρχή της Μαθηματικής Επαγωγής
έχουμε ότι η πρόταση ισχύει για όλα τα n ∈ N. □

Πρόταση 1.3.11. ´Εστω n ∈ N. Τότε για κάθε m ∈ N με m > n υπάρχει k ∈ N τέτοιο ώστε m = n + k.

Απόδειξη. Για n = 1 η πρόταση ισχύει από την Πρόταση 1.3.10. ´Εστω ότι η πρόταση ισχύει για κάποιο
n ∈ N. ´Εστω m > n + 1. Τότε m > n + 1 > n ⇒ m > n και άρα m = n + k′ για κάποιο k′ ∈ N. Από την
Πρόταση 1.3.10 έπεται ότι k′ = 1 + k με k ∈ N0. Αν k = 0 τότε k′ = 1 και m = n + k′ = n + 1 άτοπο. Άρα
k ∈ N και m = n + (1 + k) = (n + 1) + k. Συνεπώς η p(n + 1) ισχύει. □

Πόρισμα 1.3.12. Για κάθε n ∈ N δεν υπάρχει φυσικός m τέτοιος ώστε

n < m < n + 1

Απόδειξη. ´Εστω n ∈ N και έστω ότι υπήρχε m ∈ N τέτοιος ώστε

n < m < n + 1

Άρα m > n οπότε από την Πρόταση 1.3.11 ο m γράφεται m = n + k για κάποιο k ∈ N. Άρα

m = n + k < n + 1⇒ k < 1

άτοπο (Πρόταση 1.3.8. □

Πόρισμα 1.3.13. Αν m, n ∈ N τότε
m > n⇒ m ⩾ n + 1
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Ορισμός 1.3.14. ´Εστω A ⊆ R μη κενό. ´Ενα στοιχείο x0 ∈ A καλείται ελάχιστο στοιχείο του A αν x0 ≤ x
για όλα τα x ∈ A.

Το ελάχιστο στοιχείο ενός υποσυνόλου A του R συμβολίζεται με min A. Γενικά ένα υποσύνολο
του R δεν έχει πάντα ελάχιστο στοιχείο. Π.χ. το A = (0, 1) δεν έχει ελάχιστο στοιχείο (γιατί;). Μια
σημαντική ιδιότητα της διάταξης στο N είναι ότι δεν υπάρχει μη κενό υποσύνολο του N χωρίς ελάχιστο
στοιχείο.

Πρόταση 1.3.15. Κάθε μη κενό υποσύνολο του N έχει ελάχιστο στοιχείο.

Απόδειξη. ´Εστω A ⊆ N μη κενό και έστω προς απαγωγή σε άτοπο ότι το A δεν έχει ελάχιστο στοιχείο.
´Εστω p(n) ο εξής ισχυρισμός :

Για κάθε k ∈ N με k ⩽ n ισχύει ότι k < A

Η p(1) ισχύει. Πράγματι, 1 < A διότι διαφορετικά το 1 = min A αφού n ⩾ 1 για κάθε n ∈ N (Πρόταση
1.3.8). ´Εστω ότι η p(n) ισχύει για κάποιο n ∈ N. Αυτό σημαίνει ότι για κάθε k ∈ N με k ⩽ n, k < A. Άρα
από την Τριχοτομία της Διάταξης, για κάθε m ∈ A, m > n. Από το Πόρισμα 1.3.13 έπεται ότι m ⩾ n + 1
για κάθε m ∈ A. Άρα αν n + 1 ∈ A τότε ϑα είχαμε ότι n + 1 = min A, άτοπο αφού έχουμε υποθέσει ότι
το A δεν έχει ελάχιστο. Άρα n + 1 < A. Επειδή επιπλέον έχουμε υποθέσει ότι ισχύει η p(n), έχουμε ότι
k < A για όλα τα k ⩽ n + 1 οπότε η p(n + 1) ισχύει.

Από την Αρχή της Μαθηματικής Επαγωγής, η p(n) ισχύει για όλα τα n ∈ N. Επειδή η p(n)
ειδικότερα συνεπάγεται ότι n < A έχουμε ότι n < A για κάθε n ∈ N. Άρα το σύνολο A είναι το κενό
σύνολο, άτοπο. □

1.3.3 Η ταυτότητα της Ευλείδιας Διαίρεσης στους φυσικούς αριθμούς

Ορισμός 1.3.16. ´Εστω m, n ∈ N. Θα ϑα λέμε ότι ο m διαιρεί τον n (συμβολίζουμε m|n) αν υπάρχει
k ∈ N τέτοιο ώστε n = m · k. Όταν ο m διαιρεί τον n τότε ϑα λέμε ότι ο n είναι ένα πολλαπλάσιο του n.

Ο 1 διαρεί κάθε φυσικό αριθμό αφού n = 1 · n για κάθε n ∈ N.

Πρόταση 1.3.17. (Ταυτότητα της Ευκλείδιας διαίρεσης) Για κάθε n,m ∈ N υπάρχουν μοναδικοί k, r ∈
N0 τέτοιοι ώστε

n = mk + r και 0 ⩽ r < m

Ο αριθμός k καλείται πηλίκο και ο r ϑα καλείται υπόλοιπο της διαίρεσης του n με τον m.

Απόδειξη. Η πρόταση ισχύει τετριμμένα m = 1 (αρκεί να ϑέσουμε k = n και r = 0). Σταθεροποιούμε
για την συνέχεια ένα m ∈ N με m ⩾ 2. Θα δείξουμε πρώτα την ύπαρξη των k, r. Θα χρησιμοποιήσουμε
Μαθηματική Επαγωγή. ´Εστω p(n) η πρόταση:

για τον φυσικό αριθμό n υπάρχουν k, r ∈ N0 τέτοιοι ώστε n = mk + r και 0 ⩽ r < m

Η p(1) ισχύει για k = 0 και r = 1 (ϑυμηθείτε ότι έχουμε υποθέσει m ≥ 2). ´Εστω ότι για κάποιον n ∈ N
η p(n) ισχύει δηλαδή ο n γράφεται στην μορφή n = mk + r όπου k, r ∈ N0 και 0 ⩽ r < m. Τότε

n + 1 = mk + r + 1

Διακρίνουμε εδώ δύο δυνατές περιπτώσεις :
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Περίπτωση 1: r + 1 = m. Τότε n+ 1 = mk +m = m(k + 1). Θέτοντας k′ = k + 1 και r′ = 0 βλέπουμε ότι
n + 1 = mk′ + r′.

Περίπτωση 2 : r + 1 < m. Τότε n + 1 = mk + r′ και άρα ϑέτοντας r′ = r + 1 έχουμε n + 1 = mk + r′.
Από τα παραπάνω συμπεραίνουμε ότι αν η p(n) ισχύει τότε και η p(n + 1) ισχύει. Αφού όπως

είδαμε η p(1) ισχύει, από Μαθ. Επαγωγή η p(n) ισχύει για κάθε n ∈ N.
Αποδεικνύουμε τώρα και την μοναδικότητα. ´Εστω n = mk1 + r1 = mk2 + r2. ´Εστω k1 , k2 και έστω

k1 > k2 ( η απόδειξη είναι όμοια αν k1 < k2). Θέτουμε k = k2 − k1 και έχουμε

mk1 + r1 = mk2 + r2 ⇔ m(k1 − k2) = r2 − r1 ⇒ r2 − r1 = mk ⩾ m⇒ r2 ⩾ m + r1 ⇒ m ⩾ m

άτοπο. Άρα k1 = k2 οπότε και r1 = r2. □

Πόρισμα 1.3.18. Για κάθε φυσικό αριθμό n υπάρχει μοναδικός k ∈ N0 τέτοιος ώστε ακριβώς ένα από
τα παρακάτω ισχύει : Είτε n = 2k είτε n = 2k + 1. Αν n = 2k ο n καλείται άρτιος ενώ αν n = 2k + 1 ο n
καλείται περιττός.

1.4 Οι Ακέραιοι αριθμοι

Το σύνολο των ακεραίων αριθμών είναι το σύνολο

Z = {. . . ,−2,−1, 0, 1, 2, . . . }

που αποτελείται από όλους τους φυσικούς αριθμούς, το μηδέν και όλους τους αντίθετούς τους.

Πρόταση 1.4.1. Το σύνολο Z είναι κλειστό ως προς την πρόσθεση και τον πολλαπλασιασμό.

Απόδειξη. ´Εστω m, λ ∈ Z. Θα δείξουμε ότι m + λ ∈ Z. Αν m = 0 τότε m + λ = λ ∈ Z. Ομοίως αν λ = 0.
Υποθέτουμε για την συνέχεια ότι m, n , 0. Διακρίνουμε τις παρακάτω περιπτώσεις.

(1) m, λ ∈ N. Τότε m + λ ∈ N (Πρόταση 1.3.7) και άρα m + λ ∈ Z.

(2) m ∈ N και λ = −n για κάποιον n ∈ N. Τότε m+ λ = m− n. Διακρίνουμε τις εξής υποπεριπτώσεις :

(α) m > n. Τότε m = n + k (Πρόταση 1.3.7) και άρα m + λ = m − n = (n + k) − n = k ∈ N.

(β) m = n. Τότε m + λ = m − m = 0.

(γ) m < n. Τότε n = m + k για κάποιον k ∈ N και m + λ = m − n = −(n − m) = −k ∈ Z

(3) m = −n για κάποιον n ∈ N και λ ∈ N. Τότε από την προηγούμενη περίπτωση m + λ ∈ Z.

Από τα παραπάνω έχουμε ότι για κάθε m, λ ∈ Z έπεται ότι m + λ ∈ Z. Με αναάλογο τρόπο
δείχνουμε ότι m · λ ∈ Z. □

Παρατηρείστε επίσης ότι το σύνολο Z είναι το μικρότερο υποσύνολο του R που περιέχει το N και
ικανοποιεί τις ιδιότητες (Ι1)-(Ι7) και (Ι9) των πράξεων της πρόσθεσης και του πολλαπλασιασμού.
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1.5 Οι Ρητοί αριθμοί

Το σύνολο των ρητών αριθμών είναι το σύνολο

Q =
{a

b
: a, b ∈ Z και b , 0

}
Θυμίζουμε ότι έχουμε ορίσει

a
b
= a · b−1

Πρόταση 1.5.1.
a
b
=

c
d
⇔ b · c = b · c

Απόδειξη. Πράγματι,

a
b
=

c
d
⇔ a · b−1 = c · d−1 ⇔ (a · b−1)(b · d) = (c · d−1)(b · d)⇔ a · d = b · c

□

Πόρισμα 1.5.2. Για κάθε
a
b
∈ Q και για κάθε k ∈ Z με k , 0 ισχύει ότι

a
b
=

a · k
b · k

.

Πρόταση 1.5.3. (Κανόνες πρόσθεσης και πολλαπλασιασμού στους ρητούς) Για κάθε
a
b
,

c
d
∈ Q ισχύει

ότι
a
b
+

c
d
=

(a · d) + (c · b)
b · d

και
a
b
·

c
d
=

a · c
b · d

Απόδειξη. Από το Πόρισμα 1.5.2 έχουμε

a
b
+

c
d
=

a · d
b · d

+
c · b
d · b

= (a · d)(b · d)−1 + (c · b)(b · d)−1 = ((a · d) + (c · b)) · (d · b)−1 =
(a · d) + (c · b)

b · d

Ομοίως,
a
b
·

c
d
= (a · b−1) · (c · d−1) = (a · c) · (b−1d−1) = (a · c) · (b · d)−1 =

a · c
b · d

□

Πόρισμα 1.5.4. Το σύνολο Q είναι κλειστό ως προς την πρόσθεση και τον πολλαπλασιασμό.

Απόδειξη. Προκύπτει από τις Προτάσεις 1.4.1 και 1.5.3. □

Πόρισμα 1.5.5. Για κάθε
a
b
∈ Q με

a
b
, 0 ισχύει ότι

(a
b

)−1
=

b
a

Απόδειξη. Είναι
a
b
·

b
a
=

a · b
b · a

= (a · b) · (a · b)−1 = 1

και άρα
b
a
=

(a
b

)−1
□

Πόρισμα 1.5.6. Το σύνολο Q είναι το μικρότερο υποσύνολο του R που περιέχει το N και ικανοποιεί
όλες τις ιδιότητες (Ι1)-(Ι9) των πράξεων της πρόσθεσης και του πολλαπλασιασμού.
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1.6 Η ιδιότητα της Πληρότητας των πραγματικών αριθμών

Ορισμός 1.6.1. ´Εστω A ⊆ R. Θα λέμε ότι το A είναι άνω φραγμένο αν υπάρχει M ∈ R τέτοιο ώστε

(1.6.1) ∀a ∈ A, a ≤ M

Κάθε πραγματικός αριθμός M που ικανοποιεί την (1.6.1) ϑα καλείται άνω φράγμα του A.
Αντίστοιχα, ϑα λέμε ότι το A είναι κάτω φραγμένο αν υπάρχει m ∈ R τέτοιο ώστε

(1.6.2) ∀a ∈ A, m ≤ a

Κάθε πραγματικός αριθμός m που ικανοποιεί την (1.6.2) ϑα καλείται κάτω φράγμα του A.
Τέλος, το A ϑα καλείται φραγμένο αν είναι και κάτω και άνω φραγμένο.

Παρατήρηση 1.6.2. Παρατηρείστε ότι ένας M ∈ R δεν είναι άνω φράγμα του A αν

(1.6.3) ∃a ∈ A τέτοιος ώστε M < a

και αντίστοιχα ένας m ∈ R δεν είναι κάτω φράγμα του A αν

(1.6.4) ∃a ∈ A τέτοιος ώστε a < m

Παρατηρείστε επίσης ότι αν το A είναι άνω φραγμένο από κάποιο M ∈ R τότε κάθε αριθμός
M′ > M είναι πάλι άνω φράγμα του A. Αντίστοιχα, αν το A είναι κάτω φραγμένο από κάποιο m ∈ R
τότε κάθε αριθμός m′ < m είναι πάλι άνω φράγμα του A.

Ορισμός 1.6.3. ´Ενας αριθμός s ∈ R ϑα καλείται supremum του A ή ελάχιστο άνω φράγμα του A αν
(α) Ο s είναι άνω φράγμα του A και (β) Κάθε s′ < s δεν είναι άνω φράγμα του A.

Αντίστοιχα, ένας αριθμός t ∈ R ϑα καλείται infimum του A ή μέγιστο κάτω φράγμα του A αν (α)
Ο t είναι κάτω φράγμα του A και (β) Κάθε t′ > t δεν είναι κάτω φράγμα του A.

Πρόταση 1.6.4. ´Εστω A ⊆ R μη κενό και φραγμένο και έστω s = sup A και τ = inf A.

(α) Για κάθε ε > 0 υπάρχει a ∈ A τέτοιο ώστε s − ε < a ≤ s.

(β) Για κάθε ε > 0 υπάρχει a ∈ A τέτοιο ώστε τ ≤ a < τ + ε.

Απόδειξη. ´Εστω ε > 0. Τότε (α) s − ε < s = sup A και άρα το s − ε δεν είναι άνω φράγμα του A. Άρα
υπάρχει a ∈ A με s − ε < a. Υποχρεωτικά a ≤ s αφού το s = sup A είναι άνω φράγμα του A.

(β) inf A = τ < τ+ ε και άρα το τ+ ε δεν είναι κάτω φράγμα του A. Άρα υπάρχει a ∈ A με a < τ+ ε.
Υποχρεωτικά τ ≤ a αφού το τ = inf A είναι κάτω φράγμα του A. □

Είναι εύκολο να δούμε ότι το supremum ενός υποσυνόλου A του R αν υπάρχει είναι μοναδικό και
ϑα συμβολίζεται με sup A. ´Ομοια για το infimum το οποίο ϑα συμβολίζεται με inf A.

Παράδειγμα 1.6.5. ´Εστω A = (0, 1). Τότε sup A = 1 και inf A = 0. Άρα το supremum ή το infimum
ενός συνόλου A δεν ανήκει απαραίτητα στο A.

Πρόταση 1.6.6. ´Εστω A ⊆ R. Το A έχει μέγιστο στοιχείο αν και μόνο αν sup A ∈ A και στην περίπτωση
αυτή sup A = max A. Αντίστοιχα, το A έχει ελάχιστο στοιχείο αν και μόνο αν inf A ∈ A και στην
περίπτωση αυτή inf A = min A.
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Απόδειξη. ´Εστω ότι το A έχει μέγιστο και έστω M = max A. Τοτε το M είναι άνω φράγμα του A (ως
το μεγαλύτερο από όλα τα στοιχεία του A). Επίσης, έστω M′ < M. Τότε το M′ δεν είναι άνω φράγμα
του A αφού είναι γνήσια μικρότερο από το στοιχείο M ∈ A. Άρα το M είναι το μικρότερο άνω φράγμα
του A δηλαδή είναι το supremum του A. ´Εστω τώρα ότι sup A ∈ A. Τότε αφού το sup A είναι άνω
φράγμα του A, έπεται ότι ∀a ∈ A, sup A ≥ a και άρα αφού ανήκει και στο A είναι το μέγιστο στοιχείο
του, δηλαδή sup A = max A. ´Ομοια για το infimum. □

Δεν έχουν όλα τα υποσύνολα του R μέγιστο στοιχείο ακόμα και αν είναι άνω φραγμένα. Για

παράδειγμα, αν A = (0, 1) τότε για κάθε a ∈ (0, 1) υπάρχει a′ ∈ A με a′ > a (πχ. το στοιχείο a′ =
a + 1

2
).

Δεχόμαστε τώρα ότι το R έχει επιπλέον των (Ι1)-(Ι12) την παρακάτω ιδιότητα.

(Ι13) Ιδιότητα της Πληρότητας του R: Κάθε μη κενό και άνω φραγμένο υποσύνολο του R έχει
supremum.

1.7 Συνέπειες της Πληρότητας των πραγματικών αριθμών

Η ιδιότητα της Πληρότητας του R έχει πολύ σημαντικές συνέπειες για την δομή των πραγματικών
αριθμών τις οποίες αναφέρουμε στην συνέχεια.

1.7.1 ´Υπαρξη του infimum για κάτω φραγμένα υποσύνολα των πραγματικών αριθμών

Θεώρημα 1.7.1. Κάθε μη κενό και κάτω φραγμένο υποσύνολο του R έχει infimum.

Απόδειξη. ´Εστω A ⊆ R μη κενό και κάτω φραγμένο. Θέτουμε

K = {m ∈ R : m κάτω φράγμα του A}

Το K είναι μη κενό αφού το A είναι εξ υποθέσεως κάτω φραγμένο. Επίσης είναι άνω φραγμένο αφού
αν a ∈ A τότε m ≤ a για όλα τα m ∈ K, δηλαδή κάθε στοιχείο του A είναι άνω φράγμα του K. Άρα,
από την Ιδιότητα της Πληρότητας το K έχει supremum.

Ισχυριζόμαστε τώρα ότι το sup K είναι κάτω φράγμα του A και άρα ανήκει στο K. Πράγματι,όπως
είδαμε παραπάνω οποιοδήποτε στοιχείο a του A είναι άνω φράγμα του K και το sup K είναι εξ ορισμού
το μικρότερο άνω φράγμα του A. Άρα sup K ≤ a για όλα τα a ∈ A οπότε το sup K είναι κάτω φράγμα
του A και άρα εξ ορισμού του K ανήκει στο K.

Άρα sup K ∈ K και συνεπώς από Πρόταση 1.6.6 το K έχει μέγιστο, με άλλα λόγια υπάρχει το
μέγιστο κάτω φράγμα του A, δηλαδή το inf A. □

1.7.2 Ιδιότητες Αρχιμήδους και Ευδόξου

Θεώρημα 1.7.2. (Αρχιμήδεια Ιδιότητα) Για κάθε x ∈ R υπάρχει n ∈ N τέτοιο ώστε n > x. Ισοδύναμα
το σύνολο των φυσικών αριθμών δεν είναι άνω φραγμένο υποσύνολο του R.

Απόδειξη. ´Εστω, προς απαγωγή σε άτοπο, ότι η πρόταση δεν είναι αληθής. Αυτό σημαίνει ότι υπάρχει
x ∈ R τέτοιο ώστε για κάθε n ∈ N, n ≤ x. Άρα το x είναι ένα άνω φράγμα του N, δηλαδή το N είναι
άνω φραγμένο υποσύνολο του R. Από την ιδιότητα της Πληρότητας του R υπάρχει το supremum του
N. ´Εστω s = supN.
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Θεωρούμε τώρα τον αριθμό s − 1. Επειδή s − 1 < s και το s είναι το supremum του A (δηλαδή το s
είναι το μικρότερο άνω φράγμα του A) ο s − 1 ως γνήσια μικρότερος του s δεν είναι άνω φράγμα του
A. Άρα υπάρχει n0 ∈ N τέτοιο ώστε

s − 1 < n0

Αλλά τότε
s < n0 + 1

και επειδή n0 + 1 ∈ N, το s δεν είναι άνω φράγμα του N, άτοπο. □

Πόρισμα 1.7.3. Για κάθε x ∈ R υπάρχει k ∈ Z με k < x. Ισοδύναμα, το Z δεν είναι κάτω φραγμένο.

Απόδειξη. ´Εστω x ∈ R. Από το Θεώρημα 1.7.2 υπάρχει n ∈ N με n > −x ⇔ −n < x. Θέτοντας k = −n
έχουμε το συμπέρασμα. □

Πόρισμα 1.7.4. (Ιδιότητα του Ευδόξου) Για κάθε ε > 0 υπάρχει n ∈ N τέτοιο ώστε 0 <
1
n
< ε

Απόδειξη. Αν ϑεωρήσουμε τον αριθμό x = 1
ε τότε από το Θεώρημα 1.7.2 υπάρχει n ∈ N τέτοιο ώστε

n >
1
ε
⇒ 0 <

1
n
< ε

□

1.7.3 Ακέραιο μέρος ενός πραγματικού αριθμού

Στην απόδειξη του επόμενου ϑεωρήματος ϑα χρησιμοποιήσουμε το γεγονός ότι αν k , k′ δύο δια-
φορετικοί ακέραιοι αριθμοί τότε |k − k′| ≥ 1, δηλαδή η απόσταση δύο διαφορετικών ακεραίων είναι
τουλάχιστον 1.

Θεώρημα 1.7.5. Κάθε μη κενό και άνω φραγμένο υποσύνολο του Z έχει μέγιστο στοιχείο.

Απόδειξη. ´Εστω A ⊆ Z άνω φραγμένο και έστω s = sup A. Αρκεί να δειχθεί ότι s ∈ A γιατί τότε το s
ϑα είναι το μέγιστο στοιχείο του A. Ας υποθέσουμε ότι s < A. ´Οπως και στην απόδειξη της Πρότασης
1.7.1 ϑεωρούμε τον αριθμό s− 1. Επειδή ο s− 1 είναι γνήσια μικρότερος του s και ο s είναι το ελάχιστο
άνω φράγμα του A, ο s− 1 δεν είναι άνω φράγμα του A και συνεπώς υπάρχει ένα στοιχείο k ∈ A τέτοιο
ώστε

(1.7.1) s − 1 < k1

Επειδή s = sup A έχουμε k ≤ s. Επειδή k ∈ A και υποθέσαμε ότι s < A αποκλείεται να έχουμε k = s και
άρα

(1.7.2) k < s

Συνεπώς και ο k δεν είναι άνω φράγμα του A. Άρα υπάρχει k′ ∈ A τέτοιος ώστε

(1.7.3) k < k′

Επειδή k′ ∈ A και s = sup A έχουμε ότι k′ ≤ s και όπως και με τον k, επειδή k′ ∈ A και s < A,

(1.7.4) k′ < s
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Από τις (1.7.1)–(1.7.4) έχουμε
s − 1 < k < k′ < s

που σημαίνει ότι
|k − k′| < 1

άτοπο, αφού k, k′ ακέραιοι. □

Για κάθε x ∈ R ορίζουμε
Zx = {k ∈ Z : k ≤ x}

δηλαδή Zx είναι το υποσύνολο του Z που αποτελείται από όλους τους ακέραιους που είναι μικρότεροι
ή ίσοι του x. Π.χ. αν x = −3, 2 τότε Zx = {...,−5,−4}, αν x = 3, 2 τότε Zx = {..., 0, 1, 2, 3}.

Πόρισμα 1.7.6. Για κάθε x ∈ R το Zx = {k ∈ Z : k ≤ x} έχει μέγιστο στοιχείο.

Απόδειξη. Από το Πόρισμα 1.7.3 το Zx δεν είναι κενό. Επίσης εξ ορισμού το Zx είναι άνω φραγμένο
(π.χ. από το x). Άρα από το Θεώρημα 1.7.5 το Zx έχει μέγιστο στοιχείο. □

Ορισμός 1.7.7. (Ακέραιο μέρος) ´Εστω x ∈ R. Ονομάζουμε ακέραιο μέρος του x το μέγιστο στοιχείο
του Zx = {k ∈ Z : k ≤ x}.

Το ακέραιο μέρος ενός πραγματικού αριθμού ϑα συμβολίζεται με [x].

Πρόταση 1.7.8. ´Εστω x ∈ R. Τότε το ακέραιο μέρος του x είναι ο μοναδικός ακέραιος k0 με την
ιδιότητα

(1.7.5) k0 ≤ x < k0 + 1

Απόδειξη. ´Εχουμε [x] = max Zx = max{k ∈ Z : k ≤ x}. Άρα [x] ≤ x διότι [x] ∈ Zx. Επίσης [x] + 1 < Zx

αφού [x] + 1 > [x] = max Zx. Άρα εξ ορισμού του Zx ϑα πρέπει [x] + 1 > x. Συνεπώς [x] ≤ x < [x] + 1.
Αν τώρα έχουμε έναν ακέραιο k ∈ Z με k ≤ x < k + 1 τότε

x − 1 < k ≤ x

Αλλά αυτό ϑα ισχύει και για k = [x] δηλαδή,

x − 1 < [x] ≤ x

Άρα |k − [x]| < 1⇒ k = [x]. □

1.7.4 Πυκνότητα ρητών και αρρήτων

Μια ιδιότητα των ακεραίων που είναι συνέπεια της ύπαρξης του ακεραίου μέρους είναι η παρακάτω.

Λήμμα 1.7.9. ´Εστω a < b πραγματικοί αριθμοί. Αν b − a > 1 τότε υπάρχει k ∈ Z τέτοιος ώστε

a < k < b

Με άλλα λόγια, κάθε ανοικτό διάστημα του R με μήκος γνήσια μεγαλύτερο του 1 περιέχει κάποιον
ακέραιο.
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Απόδειξη. ´Εχουμε
[a] ≤ a < [a] + 1 ≤ a + 1 < b

Συνεπώς, ο ακέραιος k = [a] + 1 ικανοποιεί το ζητούμενο. □

Παρατήρηση 1.7.10. Το Λήμμα 1.7.9 δεν ισχύει αν b− a ≤ 1. Πχ. το ανοικτό διάστημα (1, 2) έχει μήκος
1 και δεν περιέχει κανένα ακέραιο.

Μια από τις σημαντικότερες συνέπειες της Πληρότητας για τους ρητούς είναι η εξής.

Θεώρημα 1.7.11. (Πυκνότητα ρητών στο R) ´Εστω a < b πραγματικοί αριθμοί. Τότε υπάρχει q ∈ Q
τέτοιος ώστε

a < q < b

Με άλλα λόγια κάθε ανοικτό διάστημα του R περιέχει ρητό αριθμό.

Απόδειξη. Αν b − a > 1 το συμπέρασμα έπεται από το Λήμμα 1.7.9, αφού κάθε ακέραιος είναι και
ρητός. ´Εστω λοιπόν ότι b − a ≤ 1. Επιλέγουμε n ∈ N τέτοιο ώστε

(1.7.6) nb − na > 1

Αυτό είναι εφικτό από την Αρχιμήδεια Ιδιότητα (Θεώρημα 1.7.2). Πράγματι, για τον πραγματικό αριθμό
1

b − a
υπάρχει n ∈ N με

n >
1

b − a
⇒ n(b − a) = nb − na > 1

Από το Λήμμα 1.7.9 (για ′′a = na′′ και ′′b = nb′′), υπάρχει k ∈ Z με

na < k < nb⇒ a <
k
n
< b

και άρα ο ρητός q =
k
n

ικανοποιεί το συμπέρασμα. □

Πόρισμα 1.7.12. (Πυκνότητα ρητών, β´ μορφή) Μεταξύ δύο πραγματικών αριθμών a < b υπάρχουν
άπειροι ρητοί.

Απόδειξη. ´Εστω a < b. Μεταξύ των a και b υπάρχει ένας ρητός a < q1 < b, μεταξύ των a και q1

υπάρχει ρητός a < q2 < q, ομοίως υπάρχει q3 ∈ Q με a < q3 < q2 κ.ο.κ. □

Θεώρημα 1.7.13. (´Υπαρξη τετραγωνικής ρίζας ϑετικού αριθμού) Για κάθε a > 0 υπάρχει ένας
μοναδικός ϑετικός πραγματικός αριθμός s τέτοιος ώστε s2 = a.

Ο ϑετικός αριθμός s με την ιδιότητα s2 = a καλείται τετραγωνική ρίζα του a και συμβολίζεται με
√

a.
Για την απόδειξη του ϑεωρήματος 1.7.13 ϑα χρειασθούμε το εξής λήμμα.

Λήμμα 1.7.14. ´Εστω s, a ϑετικοί αριθμοί τέτοιοι ώστε s2 , a. ´Εστω

(1.7.7) 0 < ε < min
{
1,
|s2 − a|
2s + 1

}
(α) Αν s2 < a τότε (s + ε)2 < a.
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(β) Αν s2 > a τότε s − ε > 0 και (s − ε)2 > a

Απόδειξη. (α) ´Εστω s2 < a. ´Εχουμε

(s + ε)2 = s2 + 2sε + ε2

= s2 + (2s + ε)ε

< s2 + (2s + 1)ε

< s2 + (a − s2) = a

(β) ´Εστω s2 > a. ´Εχουμε

(s − ε)2 = s2 − 2sε + ε2

> s2 − 2sε − ε

= s2 − (2s + 1)ε

> s2 − (s2 − a) = a

Επίσης εύκολα βλέπουμε ότι

s − ε > 0⇔ s > ε⇔ s >
s2 − a
2s + 1

⇔ 2s2 + s > s2 − a⇔ s2 + s + a > 0

που ισχύει αφού s, a > 0. □

Απόδειξη του Θεωρήματος 1.7.13. ´Εστω a > 0. Θεωρούμε το σύνολο A = {x ∈ R : x2 < a}. Το A είναι
μη κενό, αφού 0 ∈ A. Επίσης το A είναι άνω φραγμένο. Πράγματι ο αριθμός M = a + 1 είναι άνω
φράγμα του A (αν υπήρχε x ∈ A με x > a + 1 > 1, τότε x2 > (a + 1)2 > a + 1 > a, άτοπο.

Άρα, από την ιδιότητα της Πληρότητας του R, υπάρχει το s = sup A. ´Εχουμε ότι s > 0. Πράγματι,

από την Ιδιότητα Ευδόξου (Πόρισμα 1.7.4, υπάρχει n ∈ N τέτοιο ώστε
1
n
< a. Επειδή

(
1
n

)2
≤

1
n
< a

έπεται ότι
1
n
∈ A και άρα s = sup A ≥

1
n
> 0.

Θα δείξουμε ότι s2 = a αποκλείοντας τις περιπτώσεις s2 < a και s2 > a. Πράγματι, αν s2 < a
από το Λήμμα 1.7.14 ϑα υπήρχε ε > 0 αρκετά μικρό με (s + ε)2 < a. Αλλά τότε από τον ορισμό του
A ϑα είχαμε s + ε ∈ A, άτοπο αφού s + ε > s = sup A. Αντίστοιχα, αν s2 > a, πάλι από το Λήμμα
1.7.14 ϑα υπήρχε ε > 0 αρκετά μικρό με s − ε > 0 και (s − ε)2 > a. Άρα (s − ε)2 > a > x2 για κάθε
x ∈ A που σημαίνει ότι s − ε > x για κάθε x ∈ A. Άρα το s − ε είναι άνω φράγμα του A, άτοπο αφού
s − ε < s = sup A και κάθε αριθμός μικρότερος του sup A δεν είναι άνω φράγμα του A. □

Ορισμός 1.7.15. Κάθε πραγματικός αριθμός που δεν είναι ρητός καλείται άρρητος.

Πρόταση 1.7.16. Δεν υπάρχει ρητός αριθμός τέτοιος ώστε το τετράγωνό του να είναι το 2.

Απόδειξη. ´Εστω ότι υπάρχει ρητός q =
m
n

με q2 = 2. Μπορούμε να υποθέσουμε επιπλέον, απλοποιώ-

ντας το κλάσμα
m
n
, ότι οι m, n δεν έχουν άλλους κοινούς διαιρέτες εκτός της μονάδας. Ειδικότερα,
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μπορούμε να υποθέσουμε ότι δεν είναι και οι δύο άρτιοι. ´Εχουμε

q2 =
m2

n2 = 2⇒ m2 = 2n2 ⇒ m2 άρτιος ⇒ m άρτιος ⇒ m = 2k

Άρα

q2 =
(2k)2

n2 = 2⇒ (2k)2 = 2n2 ⇒ 4k2 = 2n2 ⇒ n2 = 2k2 ⇒ n2 άρτιος ⇒ n άρτιος

Συνεπώς, m, n και οι δύο άρτιοι, άτοπο. □

Πόρισμα 1.7.17. (´Υπαρξη αρρήτων αριθμών) Ο
√
2 είναι άρρητος και άρα υπάρχουν άρρητοι αριθμοί.

Απόδειξη. Από το Θεώρημα 1.7.13 υπάρχει x > 0 με x2 = 2. Από την Πρόταση 1.7.16 ο x < Q. Άρα
x =
√
2 είναι άρρητος. □

Πρόταση 1.7.18. ´Εστω q ∈ Q με q , 0 και a ∈ R άρρητος. Τότε οι αριθμοί qa,
q
a
,

a
q
είναι άρρητοι.

Απόδειξη. Αν ο qa = q′ ∈ Q τότε a =
q′

q
∈ Q ως πηλίκο ρητών, άτοπο. Ομοίως και για τους

q
a

και
a
q

□

Θεώρημα 1.7.19. (Πυκνότητα αρρητών) ´Εστω a < b πραγματικοί αριθμοί. Τότε υπάρχει ξ άρρητος
τέτοιος ώστε

a < ξ < b

Με άλλα λόγια κάθε ανοικτό διάστημα του R περιέχει έναν άρρητο.

Απόδειξη. ´Εστω a < b στο R. Θεωρούμε τους a′ =
√
2a και b′ =

√
2b. ´Εχουμε a′ < b′ και άρα από

την Πυκνότητα των ρητών αριθμών (Θεώρημα 1.7.11) υπάρχει q ∈ Q τέτοιος ώστε a′ < q < b′. Μπορούμε
να υποθέσουμε ότι q , 0 (αν q = 0 επιλέγουμε έναν άλλο ρητό q′ με a′ < q′ < 0 < b′). Άρα

√
2a < q <

√
2b⇒ a <

q
√
2
< b

Επειδή ο q είναι ρητός διάφορος του 0 και ο
√
2 είναι άρρητος (Πόρισμα 1.7.17) , από Πρόταση 1.7.18,

ο
q
√
2

είναι άρρητος. Συνεπώς, ο ξ =
q
√
2

ικανοποιεί το συμπέρασμα της πρότασης. □

Πόρισμα 1.7.20. (Πυκνότητα αρρητών, β´ μορφή) Μεταξύ δύο πραγματικών αριθμών a < b υπάρχουν
άπειροι άρρητοι.

Απόδειξη. Ανάλογα όπως το Πόρισμα 1.7.20 □





ΚΕΦΑΛΑΙΟ 2

Ακολουθίες Πραγματικών αριθμών

2.1 Βασικοί ορισμοί

Κάθε συνάρτηση a : N → R με πεδίο ορισμού το N και τιμές στο R ϑα καλείται ακολουθία πραγμα-
τικών αριθμών. Αν a : N → R μια ακολουθία τότε για κάθε n ∈ N η τιμή της συνάρτησης a στο n ϑα
συμβολίζεται με an αντί για a(n), δηλαδή η μεταβλητή n μετατρέπεται σε δείκτη. ´Ετσι γράφουμε a1

αντί για a(1), a2 αντί για a(2), a3 αντί για a(3) κ.ο.κ. Ο a1 καλείται ο πρώτος όρος, ο a2 δεύτερος όρος
και γενικά, ο an καλείται ο n-οστός (ή γενικός) όρος της ακολουθίας. Τον δείκτη n στον όρο an ϑα
τον καλούμε πολλές φορές και τάξη του όρου.

Μια ακολουθία a : N → R ϑα την συμβολίζουμε συνήθως με (an) ή και με αναγραφή των πρώτων
όρων της δηλαδή a1, a2, a3, . . . . Πολλές φορές μια ακολουθία δίνεται απο ένα κλειστό τύπο πχ. λέμε
η ακολουθία an = 1/n, και εννούμε την ακολουθία 1, 1/2, 1/3, . . . , η λέμε η σταθερή ακολουθία an = 1
και εννοούμε την ακολουθία 1, 1, 1, . . . όπου όλοι οι όροι είναι ίσοι με 1. Άλλες φορές η ακολουθία
δίνεται με κάποιον αναδρομικό τύπο, δηλαδή μας δίνουν τον πρώτο ή και άλλους αν χρειάζεται
όρους της ακολουθίας και ύστερα ένα τύπο που μας λέει πώς προκύπτει ο n-οστός όρος από τους
προηγούμενούς του. Χαρακτηριστικό παράδειγμα εδώ είναι η ακολουθία Fibonacci 1, 1, 2, 3, 5, 8, . . .
που είναι η ακολουθία με a1 = a2 = 1 και an = an−1+an−1 για κάθε n ≥ 3. Τέλος ορίζονται και ακολουθίες
για τις οποίες δεν μπορούμε να βρούμε ούτε κλειστό ούτε αναδρομικό τύπο. Πχ. η ακολουθία (an)
όπου ο an είναι το n-οστό δεκαδικό ψηφίο του αριθμού π.

2.2 Συγκλίνουσες ακολουθίες

Με απλά λόγια ϑα λέγαμε ότι μία ακολουθία συγκλίνει σε ένα πραγματικό αριθμό αν οι όροι της
πλησιάζουν τον αριθμό αυτόν καθώς η τάξη τους μεγαλώνει. Ο ακριβής ορισμός είναι ο εξής.

Ορισμός 2.2.1. ´Εστω (an) μια ακολουθία πραγματικών αριθμών και a ∈ R. Θα λέμε ότι η (an) συγκλίνει
στο a αν για κάθε ε > 0 υπάρχει n0 ∈ N τέτοιο ώστε για κάθε n ≥ n0 ισχύει ότι |an − a| < ε.

´Οταν η (an) συγκλίνει στο a ϑα γράφουμε an → a. Μια ακολουθία (an) καλείται συγκλίνουσα αν
υπάρχει a ∈ R με an → a.

Ορισμός 2.2.2. ´Εστω a ∈ R και ε > 0. Το ανοικτό διάστημα (a − ε, a + ε) καλείται ε-περιοχή του a ή
απλά περιοχή του a. Το ε καλείται ακτίνα της περιοχής.



20 · Ακολουθίες Πραγματικών Αριθμών

Επειδή
x ∈ (a − ε, a + ε)⇔ |x − a| < ε

έχουμε ότι η περιοχή (a − ε, a + ε) αποτελείται από όλα τα x ∈ R που απέχουν από το a απόσταση
μικρότερη του ε (ϑυμηθείτε ότι το απόλυτο της διαφοράς δύο αριθμών εκφράζει την απόσταση των
αριθμών αυτών). Ο Ορισμός 2.2.1 λέει ότι an → a ∈ R αν κάθε περιοχή του a περιέχει τελικά όλους
τους όρους της ακολουθίας (δηλαδή από κάποια τάξη και μετά).

Πρόταση 2.2.3. Αν an = c για κάθε n ∈ N τότε an → c.

Απόδειξη. Επειδή |an − c| = 0 για κάθε n ∈ N έχουμε κατά τετριμμένο τρόπο ότι |an − c| < ε για κάθε
n ≥ 1. Συνεπώς για κάθε ε > 0 υπάρχει n0 ∈ N (το n0 = 1) για το οποίο για όλα τα n ≥ n0 ισχύει ότι
|an − c| < ε. Άρα an → c. □

Παράδειγμα 2.2.4. Η ακολουθία an =
1
n

συγκλίνει στο μηδέν.

Απόδειξη. ´Εστω ε > 0. Επιλέγουμε n0 ∈ N τέτοιο ώστε n0 >
1
ε
(αυτό μπορεί να γίνει λόγω Αρχιμήδειας

ιδιότητας του N. Εναλλακτικά μπορούμε να χρησιμοποιήσουμε το ακέραιο μέρος του
1
ε
και να ϑέσουμε

n0 =

[
1
ε

]
+1.) Τότε για κάθε n ≥ n0 έχουμε n ≥ n0 ⇒ n ≥ n0 >

1
ε
⇔

1
n
≤

1
n0

< ε⇒
1
n
< ε⇒ |an−0| < ε. □

Δεν είναι όλες οι ακολουθίες συγκλίνουσες.

Παράδειγμα 2.2.5. Η ακολουθία an = (−1)n δεν είναι συγκλίνουσα.

Απόδειξη. Παρατηρούμε καταρχάς ότι η απόσταση δύο οποιωνδήποτε διαδοχικών όρων της (an) είναι
ίση με 2, δηλαδή

(2.2.1) |an+1 − an| = 2 για κάθε n ∈ N

Πράγματι, αν ο n είναι άρτιος τότε an = 1 και an+1 = −1 ενώ αν ο n είναι περιττός τότε an = −1 και
an+1 = 1. Παρατηρούμε επίσης ότι αν μια ακολουθία είναι συγκλίνουσα τότε οι όροι της όσο μεγαλώνει
η τάξη τους έρχονται ολοένα και κοντά στο όριο της ακολουθίας και κατά συνέπεια ϑα πρέπει να
έρχονται ολοένα πιο κοντά και μεταξύ τους. Πιο συγκεκριμμένα στην περίπτωσή μας, αν η an = (−1)n

συνέκλινε σε κάποιο a ∈ R τότε από τον ορισμό της σύγκλισης ϑα μπορούσαμε να βρούμε ένα n0 ∈ N
τέτοιο ώστε |an − a| < 1/2 για όλα τα n ≥ n0. Ειδικότερα, για n = n0 ϑα είχαμε

|an0 − a| <
1
2

και |an0+1 − a| <
1
2

´Ομως τότε από την τριγωνική ανισότητα ϑα είχαμε

|an0+1 − an0 | ≤ |an0+1 − a| + |a − an0 | < 1

το οποίο έρχεται σε αντίφαση με την (2.2.1). □

Αν an → a τότε ο αριθμός a στον οποίο η (an) συγκλίνει ϑα καλείται όριο της (an) και ϑα
συμβολίζεται με limn→+∞ an.

Πρόταση 2.2.6. (Μοναδικότητα του ορίου) Αν μια ακολουθία συγκλίνει τότε το όριό της είναι μονα-
δικό.
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Απόδειξη. ´Εστω ότι μια ακολουθία (an) είχε δύο διαφορετικά όρια a, a′ και έστω a < a′. Επιλέγοντας

κατάλληλα μικρό ε > 0 (πχ. ε =
a′ − a

10
) έχουμε ότι a + ε < b − ε και άρα οι περιοχές

(a − ε, a + ε) και (a′ − ε, a′ + ε)

των a και a′ είναι ξένες μεταξύ τους δηλαδή δεν έχουν κοινά σημεία. Από την άλλη μεριά, αφού
an → a υπάρχει n0 ∈ N τέτοιο ώστε

an ∈ (a − ε, a + ε) ∀n ≥ n0

και ομοίως, αφού an → a′, υπάρχει n′0 ∈ N τέτοιο ώστε

an ∈ (a′ − ε, a′ + ε) ∀n ≥ n′0

Αλλά τότε για n = max{n0, n′0} ϑα είχαμε ότι ο an ϑα περιεχόταν και στις δύο περιοχές, πράγμα
αδύνατον αφού τις έχουμε επιλέξει έτσι ώστε να είναι ξένες. □

2.3 Αποκλίνουσες στο άπειρο ακολουθίες

Ορισμός 2.3.1. ´Εστω (an) ακολουθία πραγματικών αριθμών.

(α) Θα λέμε ότι η (an) τείνει στο +∞ ή ότι το όριο της είναι το +∞ και ϑα γράφουμε an → +∞ ή
limn an = +∞ αν για κάθε M > 0 υπάρχει n0 ∈ N τέτοιο ώστε an > M για όλα τα n ≥ n0.

(β) Θα λέμε ότι η (an) τείνει στο −∞ ή ότι το όριο της είναι το −∞ και ϑα γράφουμε an → −∞ ή
limn an = −∞ αν για κάθε M < 0 υπάρχει n0 ∈ N τέτοιο ώστε an < M για όλα τα n ≥ n0.

Οι ακολουθίες που τείνουν στο άπειρο δεν ϑεωρούνται συγκλίνουσες ακολουθίες. Συχνά όταν μια
ακολουθία τείνει στο +∞ ή −∞ λέμε και ότι αποκλίνει στο +∞ ή −∞ αντίστοιχα.

Μια χρήσιμη πρόταση είναι και η εξής.

Πρόταση 2.3.2. Αν an , 0 και an → +∞ τότε
1

an
→ 0. Ομοίως αν an → −∞.

Απόδειξη. Θα αποδείξουμε την πρόταση στην περίπτωση όπου an → +∞ (η περίπτωση an → −∞

αντιμετωπίζεται με παρόμοιο τρόπο ή ϑεωρώντας την (−an)). ´Εστω ε > 0. Θέτουμε M = 1/ε. Αφού
an → +∞ υπάρχει n0 ∈ N με an > M για κάθε n ≥ n0. Άρα

0 <
1

an
<

1
M
= ε

για κάθε n ≥ n0. Συνεπώς, για κάθε ε > 0 υπάρχει n0 ∈ N τέτοιο ώστε 0 <
1

an
< ε για όλα τα n ≥ n0.

Αυτό σημαίνει ότι για κάθε ε > 0 υπάρχει n0 ∈ N τέτοιο ώστε |
1

an
− 0| < ε για κάθε n ≥ n0. Άρα

1
an
→ 0. □

2.4 Φραγμένες ακολουθίες

Ορισμός 2.4.1. ´Εστω (an) ακολουθία πραγματικών αριθμών.
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(α) Η (an) λέγεται άνω φραγμένη αν υπάρχει M ∈ R τέτοιο ώστε an ≤ M για κάθε n ∈ N. Κάθε
αριθμός M ∈ R με αυτή την ιδιότητα ϑα καλείται άνω φράγμα της (an).

(β) Η (an) λέγεται κάτω φραγμένη αν υπάρχει m ∈ R τέτοιο ώστε m ≤ an για κάθε n ∈ N. Κάθε
αριθμός m με αυτή την ιδιότητα ϑα καλείται κάτω φράγμα της (an).

(γ) Η (an) ϑα λέγεται φραγμένη αν είναι άνω και κάτω φραγμένη.

Παραδείγματα 2.4.2. (1) Η ακολουθία (an) με an = n είναι κάτω φραγμένη, αφού ο m = 0 είναι ένα
κάτω φράγμα της. Η (an) όμως δεν είναι άνω φραγμένη. Πράγματι, (από την Αρχιμήδεια ιδιότητα του
N) για κάθε M ∈ R υπάρχει n ∈ N με M < n = an.

(2) Η ακολουθία an = 1/n είναι φραγμένη. Πχ. ο m = 0 είναι ένα κάτω φράγμα της και ο M = 1
είναι ένα άνω φράγμα της.

Πρόταση 2.4.3. Μια ακολουθία (an) είναι φραγμένη αν και μόνο αν υπάρχει K ≥ 0 με |an| ≤ K για κάθε
n ∈ N.

Απόδειξη. ´Εστω ότι η (an) είναι φραγμένη και έστω m,M ∈ R με m ≤ an ≤ M για κάθε n ∈ N. Θέτουμε
K = max{|m|, |M|}. Τότε |an| ≤ K για όλα τα n ∈ N. Αντίστροφα αν |an| ≤ K για κάθε n ∈ N τότε
−K ≤ an ≤ K για κάθε n ∈ N δηλαδή η (an) είναι φραγμένη. □

Πρόταση 2.4.4. Κάθε συγκλίνουσα ακολουθία είναι φραγμένη.

Απόδειξη. ´Εστω an → a. Άρα υπάρχει n0 ∈ N τέτοιο ώστε

n ≥ n0 ⇒ |an − a| < 1⇒ |an| ≤ |a| + 1

Θέτουμε K = max{|a1|, . . . , |an0−1|, |a| + 1}. Τότε K ≥ |an| για κάθε 1 ≤ n ≤ n0 − 1 και K ≥ |a| + 1 ≥ |an| για
κάθε n ≥ n0. Άρα |an| ≤ K για όλα τα n ∈ N, δηλαδή η (an) είναι φραγμένη. □

Ορισμός 2.4.5. Μια ακολουθία πραγματικών αριθμών ϑα την καλούμε μηδενική αν συγκλίνει στο
μηδέν.

Από τον ορισμό της σύγκλισης στο μηδέν έχουμε ότι μια ακολουθία (an) είναι μηδενική αν και μόνο
αν για κάθε ε > 0 υπάρχει n0 ∈ N τέτοιο ώστε

∀n ⩾ n0, |an| < ε

Πρόταση 2.4.6. (Φραγμένη επί μηδενική είναι μηδενική) ´Εστω (an) φραγμένη και (bn) μηδενική
ακολουθία. Τότε η ακολουθία (anbn) είναι μηδενική ακολουθία.

Απόδειξη. ´Εστω M > 0 με |an| < M. ´Εστω ε > 0. Αφού bn → 0 για το ε′ =
ε

M
υπάρχει n0 ∈ N τέτοιο

ώστε για κάθε n ⩾ n0, |bn| < ε
′. Άρα

|anbn| = |an| · |bn| < M
ε

M
= ε

για κάθε n ⩾ n0. □

Πρόταση 2.4.7. Μια ακολουθία (an) είναι μηδενική αν και μόνο αν η (|an|) είναι μηδενική.
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Απόδειξη.

an → 0⇔ ∀ε > 0 ∃n0 ∈ N τέτοιο ώστε ∀n ≥ n0 |an − 0| < ε

⇔ ∀ε > 0 ∃n0 ∈ N τέτοιο ώστε ∀n ≥ n0 |an| < ε

⇔ ∀ε > 0 ∃n0 ∈ N τέτοιο ώστε ∀n ≥ n0 | |an| − 0| < ε

⇔ |an| → 0

□

2.5 Το Κριτήριο των Ισοσυγκλινουσών ακολουθιών

Το παρακάτω ϑεώρημα καλείται Κριτήριο των Ισοσυγκλινουσών ακολουθιών (ή Κριτήριο Παρεμβολής)
και αποτελεί ένα πολύ χρήσιμο κριτήριο για την εύρεση του ορίου μιας ακολουθίας.

Θεώρημα 2.5.1. ´Εστω (an), (bn) και (γn) ακολουθίες πραγματικών αριθμών τέτοιες ώστε

(α) Υπάρχει m0 ∈ N, τέτοιο ώστε

(2.5.1) an ≤ bn ≤ γn

για όλα τα n ≥ m0.

(β) Οι (an) και (γn) είναι συγκλίνουσες και limn an = limn γn = ℓ.

Τότε η (bn) είναι συγκλίνουσα και limn bn = ℓ.

Απόδειξη. ´Εστω ε > 0. Αφού an → ℓ υπάρχει n1 ∈ N τέτοιο ώστε

(2.5.2) n ≥ n1 ⇒ |an − ℓ| < ε⇒ ℓ − ε < an < ℓ + ε

Ομοίως αφού γn → ℓ υπάρχει n2 ∈ N τέτοιο ώστε

(2.5.3) n ≥ n2 ⇒ |γn − ℓ| < ε⇒ ℓ − ε < γn < ℓ + ε

Θέουμε n0 = max{n1, n2,m0}. Τότε για κάθε n ≥ n0 έχουμε ότι n ≥ n1 και n ≥ n2 και άρα ισχύουν
ταυτόχρονα και οι (2.5.2) και η (2.5.3). Επίσηως n ≥ n0 ⇒ n ≥ m0 και άρα ισχύει και η (2.5.1).
Συνδυάζοντας τις (2.5.1), (2.5.2) και (2.5.3) παίρνουμε

n ≥ n0 ⇒ ℓ − ε < an ≤ bn ≤ γn < ℓ + ε

⇒ ℓ − ε < bn < ℓ + ε⇒ |bn − ℓ| < ε

Άρα για κάθε ε > 0 υπάρχει n0 ∈ N τέτοιο ώστε για κάθε n ≥ n0 ισχύει ότι |bn − ℓ| < ε, ισοδύναμα
limn bn = ℓ. □

Πόρισμα 2.5.2. Αν (bn), (γn) ακολουθίες ϑετικών αριθμών τέτοιες ώστε bn ≤ γn και γn → 0. Τότε και
bn → 0.

Απόδειξη. ´Εχουμε 0 ≤ bn ≤ γn οπότε το συμπέρασμα προκύπτει από το Θεώρημα 2.5.1 για an = 0. □
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Παράδειγμα 2.5.3.
n2

n3 + 2n2 + 1
→ 0. Πράγματι,

0 <
n2

n3 + 2n2 + 1
=

1
n + 2 + 1

n2

≤
1
n
→ 0

Πρόταση 2.5.4. (Πυκνότητα ρητών, ακολουθιακή μορφή) Κάθε πραγματικός αριθμός είναι το όριο
μιας ακολουθίας ρητών.

Λύση. ´Εστω x ∈ R. Από την πυκνότητα των ρητών στο R επιλέγουμε q1 ∈ Q με

x − 1 < q1 < x + 1

Ομοίως επιλέγουμε q2 ∈ Q με

x −
1
2
< q2 < x +

1
2

Γενικά για κάθε n ∈ N επιλέγουμε qn ∈ Q με

x −
1
n
< qn < x +

1
n

Είναι εύκολο να δούμε ότι οι ακολουθίες an = x −
1
n

και γn = x +
1
n

συγκλίνουν στο x. Άρα από το
Θεώρημα των Ισοσυγκλινουσών ακολουθιών η ακολουθία bn = qn συγκλίνει στο x.

Με όμοιο τρόπο αποδεικνύεται και η παρακάτω

Πρόταση 2.5.5. (Πυκνότητα αρρήτων, ακολουθιακή μορφή) Κάθε πραγματικός αριθμός είναι το
όριο μιας ακολουθίας αρρήτων.

2.6 ´Ορια και αλγεβρικές πράξεις

2.6.1 ´Οριο αθροίσματος ακολουθιών

Πρόταση 2.6.1. ´Εστω (an), (bn) συγκλίνουσες ακολουθίες με an → a και bn → b. Τότε an + bn → a + b.

Απόδειξη. ´Εστω ε > 0. Θέλουμε να βρούμε n0 ∈ N τέτοιο ώστε για κάθε n ≥ n0 να ισχύει ότι

|(an + bn) − (a + b)| < ε

Παρατηρούμε ότι

(2.6.1) |(an + bn) − (a + b)| ≤ |an − a| + |bn − b|

Άρα αρκεί να βρούμε n0 ∈ N τέτοιο ώστε

(2.6.2) n ≥ n0 ⇒ |an − a| <
ε

2
και |bn − b| <

ε

2

Για την εύρεση του n0 εργαζόμαστε ως εξής. Αφού an → a υπάρχει ένα n1 ∈ N τέτοιο ώστε

(2.6.3) n ≥ n1 ⇒ |an − a| <
ε

2
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Ομοίως, αφού bn → b, υπάρχει n2 ∈ N τέτοιο ώστε

(2.6.4) n ≥ n2 ⇒ |bn − b| <
ε

2

Θέτουμε n0 = max{n1, n2}. Τότε για κάθε n ≥ n0 έχουμε n ≥ n1 και n ≥ n2 και άρα ισχύει και η (2.6.3)
και η (2.6.4), δηλαδή η (2.6.2). □

2.6.2 ´Οριο γινομένου ακολουθιών

Πρόταση 2.6.2. ´Εστω ´Εστω (an), (bn) συγκλίνουσες ακολουθίες, an → a και bn → b. Τότε anbn → ab.

Απόδειξη. ´Εστω ε > 0. Παρατηρούμε ότι

(2.6.5) |anbn − ab| = |anbn − abn + abn − ab| ≤ |bn| · |an − a| + |a| · |bn − b|

για κάθε n ∈ N. Επειδή bn → b έπεται ότι η (bn) είναι φραγμένη. ´Εστω K > 0 με |bn| ≤ K και έστω
Λ = max{|a|,K} > 0. Από την (2.6.4) έχουμε

(2.6.6) |anbn − ab| ≤ Λ (|an − a| + |bn − b|)

Τώρα, όπως και στην Πρόταση 2.6.1, βρίσκουμε n0 ∈ N τέτοιο ώστε

n ≥ n0 ⇒ |an − a| <
ε

2Λ
και |bn − b| <

ε

2Λ

□

Πόρισμα 2.6.3. ´Εστω an → a, bn → b και λ, µ ∈ R Τότε λan + µbn → λa + µb.

Απόδειξη. Θεωρώντας τα λ και µ ως σταθερές ακολουθίες, από την Πρόταση 2.6.2 έχουμε ότι λan → λa
και µbn → µb. Άρα από Πρόταση 2.6.1 έπεται ότι λan + µbn → λa + µb. □

Πόρισμα 2.6.4. ´Εστω an → a και k ∈ N. Τότε ak
n → ak.

Απόδειξη. Με επαγωγή στο k ∈ N. Για k = 1 ισχύει τετριμμένα. ´Εστω ότι ισχύει για κάποιο k ∈ N.
Τότε ak+1

n = ak
nan → aka = ak+1. □

2.6.3 ´Οριο Πηλίκου ακολουθιών

Πρόταση 2.6.5. ´Εστω (an), (bn) συγκλίνουσες ακολουθίες, an → a, bn → b με b , 0 και bn , 0 για όλα
τα n ∈ N. Τότε

an

bn
→

a
b
.

Για την απόδειξη της Πρότασης 2.6.5 ϑα χρειασθούμε το παρακάτω λήμμα.

Λήμμα 2.6.6. ´Εστω (bn) συγκλίνουσα ακολουθία, bn → b με b , 0. Τότε υπάρχει n1 ∈ N τέτοιο ώστε

|bn| ≥
|b|
2

για κάθε n ≥ n1.

Απόδειξη. Αφού b , 0⇒ |b| > 0 και αφού bn → b για τον ϑετικό ε =
|b|
2

υπάρχει n1 ∈ N τέτοιο ώστε

(2.6.7) n ≥ n1 ⇒ |bn − b| <
|b|
2
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Επειδή για κάθε n ∈ N, ∣∣∣|bn| − |b|
∣∣∣ ≤ |bn − b|

από την (2.6.7) παίρνουμε ότι

n ≥ n1 ⇒
∣∣∣|bn| − |b|

∣∣∣ < |b|
2

⇒ −
|b|
2
< |bn| − |b|

⇒ |b| −
|b|
2
< |bn|

⇒
|b|
2
< |bn|

□

Απόδειξη της Πρότασης 2.6.5. Αρκεί να δειχθεί ότι
1

bn
→

1
b
. Από το Λήμμα 2.6.6 παίρνουμε ότι

υπάρχει n1 ∈ N τέτοιο ώστε |bn| ≥
|b|
2

για κάθε n ≥ n1 και άρα

(2.6.8) n ≥ n1 ⇒
∣∣∣∣ 1
bn
−

1
b

∣∣∣∣ = |bn − b|
|b| · |bn|

≤
2
|b|2
· |bn − b| = C|bn − b|

όπου C = 2/|b|2.
´Εστω τώρα ε > 0. Αφού bn → b για ε′ = ε/C υπάρχει n2 ∈ N τέτοιο ώστε

(2.6.9) n ≥ n2 ⇒ |bn − b| < ε/C

Άρα αν n0 = max{n1, n′1} τότε για n ≥ n0 ϑα ισχύει και η (2.6.8) και η (2.6.9) οπότε

n ≥ n0 ⇒
∣∣∣∣ 1
bn
−

1
b

∣∣∣∣ < C ·
ε

C
= ε

□

2.6.4 ´Οριο ρίζας ακολουθίας

Πρόταση 2.6.7. ´Εστω (an) συγκλίνουσα ακολουθία και έστω an → a. Αν an ≥ 0 για κάθε n ∈ N τότε
a ≥ 0.

Απόδειξη. ´Εστω προς απαγωγή σε άτοπο ότι a < 0. Αφού an → a για ε = |a|/2 υπάρχει n0 ∈ N τέτοιο
ώστε για κάθε n ≥ n0, |an − a| < |a|/2. Αλλά τότε για κάθε n ≥ n0 ϑα είχαμε

an < a +
|a|
2
= a −

a
2
=

a
2
< 0⇒ an < 0

άτοπο. □

Πρόταση 2.6.8. ´Εστω (an) συγκλίνουσα ακολουθία, an ≥ 0, an → a και k ∈ N με k ≥ 2. Τότε k
√

an →
k√a.

Απόδειξη. Σταθεροποιούμε ένα k ∈ N με k ≥ 2 και έστω an → a με an ≥ 0. Από την Πρόταση 2.6.7
έχουμε ότι a ≥ 0. Διακρίνουμε τις εξής περιπτώσεις για το a:

Περίπτωση 1: a = 0.
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´Εστω ότι an → 0. Θα δείξουμε ότι τότε k
√

an → 0 δηλαδή ότι για κάθε ε > 0 υπάρχει n0 ∈ N τέτοιο
ώστε | k

√
an − 0| < ε για κάθε n ≥ n0. Πράγματι, έστω ε > 0. Θέτουμε ε′ = εk. Αφού an → 0 υπάρχει n0

τέτοιο ώστε
n ≥ n0 ⇒ an < ε

′ = εk ⇒ k√an < ε

Περίπτωση 2 : a = 1.

´Εστω an → 1. Θα δείξουμε ότι k
√

an → 1, δηλαδή ότι για κάθε ε > 0 υπάρχει n0 ∈ N τέτοιο ώστε
| k
√

an − 1| < ε για κάθε n ≥ n0. ´Εστω ε > 0. Χωρίς βλα´βη της γενικότητας μπορούμε να υποθέσουμε ότι
0 < ε < 1. Αφού an → 1 υπάρχει n0 ∈ N τέτοιο ώστε για κάθε n ≥ n0, |an − 1| < ε, ισοδύναμα

(2.6.10) 1 − ε < an < 1 + ε

Επειδή υποθέσαμε ότι 0 < ε < 1 έχουμε

0 < 1 − ε < 1 < 1 + ε

και άρα αφού k ∈ N με k ≥ 2 έπεται ότι

(2.6.11) (1 − ε)k < 1 − ε < 1 < 1 + ε < (1 + ε)k

Συνδυάζοντας τις (2.6.10) και (2.6.11) παίρνουμε ότι αν n ≥ n0 τότε

0 < (1 − ε)k < an < (1 + ε)k ⇔ 1 − ε < k√an < 1 + ε⇔
∣∣∣∣ k√an − 1

∣∣∣∣ < ε
Περίπτωση 3 : a > 0 και a , 1.

Ορίζουμε την ακολουθία bn =
an

a
. Τότε bn →

a
a
= 1 και άρα από την Περίπτωση 2, k√bn → 1.

Επειδή an = a · bn έχουμε k√an =
k√a k

√
bn →

k√a · 1 = k√a. □

2.7 Δύο χρήσιμες ανισότητες

Στην παράγραφο αυτή ϑα παρουσιάσουμε δύο βασικές ανισότητες : την ανισότητα Bernoulli και την
ανισότητα αριθμητικού-γεωμετρικού μέσου. Τις ανισότητες αυτές ϑα τις χρησιμοποιήσουμε στην
επόμενη παράγραφο για να υπολογίσουμε κάποια βασικά όρια.

Πρόταση 2.7.1. (ανισότητα Bernoulli) Για κάθε n ∈ N και για κάθε a > −1 ισχύει ότι

(2.7.1) (1 + a)n ≥ 1 + na

Απόδειξη. Η απόδειξη ϑα γίνει με Μαθηματική Επαγωγή. Για n = 1 η ανισότητα ισχύει τετριμμένα.
Υποθέτουμε τώρα ότι η (2.7.1) ισχύει για κάποιο n και δείχνουμε ότι ισχύει για n + 1. ´Εστω λοιπόν ότι
(1 + a)n ≥ 1 + na. Επειδή 1 + a > 0, πολλαπλασιάζοντας κατά μέλη παίρνουμε

(1 + a)n ≥ 1 + na⇒ (1 + a)n(1 + a) ≥ (1 + na)(1 + a)

⇒ (1 + a)n+1 ≥ 1 + a + na + a2 ≥ 1 + na + a = 1 + (n + 1)a

□
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Παρατήρηση 2.7.2. Η ανισότητα Bernoulli στην ουσία ισχύει πιο αυστηρά, δηλαδή

(2.7.2) (1 + a)n > 1 + na

για κάθε n ≥ 2 και για κάθε a > −1 με a , 0. Η (2.7.2) αποδεικνύεται όπως και η (2.7.1) με επαγωγή. Η
(2.7.2) χρησιμοποιείται όταν ϑέλουμε να δείξουμε γνήσιες ανισότητες (πχ. δείτε τον ορισμό του αριθμού
e παρακάτω).

Πόρισμα 2.7.3. Για κάθε n ∈ N και κάθε x > 0 ισχύει ότι

(2.7.3) xn ≥ 1 + n(x − 1)

Απόδειξη. Επειδή x = 1 + (x − 1), ϑέτοντας a = x − 1 στην (2.7.1) παίρνουμε την (2.7.3). □

Ορισμός 2.7.4. ´Εστω n ∈ N και a1, . . . , an ϑετικοί πραγματικοί αριθμοί. Θέτουμε

An =
a1 + · · · + an

n
και Gn =

n√a1 · · · · · an

Ο An καλείται αριθμητικός μέσος και ο Gn γεωμετρικός μέσος των a1, . . . , an.

Λήμμα 2.7.5. ´Εστω n ∈ N και a1, . . . , an ϑετικοί πραγματικοί αριθμοί. Για κάθε n ≥ 2 ισχύουν οι
παρακάτω σχέσεις

(2.7.4) nAn = (n − 1)An−1 + an

και

(2.7.5) An
n ≥ An−1

n−1an

Απόδειξη. Θα δείξουμε μόνο την (2.7.5) (η (2.7.4) είναι άμεση). ´Εστω n ≥ 2. Από την (2.7.3) για
x = An/An−1 > 0 παίρνουμε

An
n = An

n−1

(
An

An−1

)n (2.7.3)
≥ An

n−1

(
1 + n

(
An

An−1
− 1

))
= An

n−1
An−1 + nAn − nAn−1

An−1

= An
n−1

nAn − (n − 1)An−1

An−1

(2.7.4)
= An−1

n−1an

□

Πρόταση 2.7.6. (ανισότητα αριθμητικού-γεωμετρικού μέσου) ´Εστω n ∈ N και a1, . . . , an ϑετικοί
πραγματικοί αριθμοί. Τότε An ≥ Gn.

Απόδειξη. Πράγματι, για n = 1, A1 = G1 = a1 και η ανισότητα είναι τετριμμένη. ´Εστω ότι για κάποιο n
ισχύει ότι An ≥ Gn. Τότε από την (2.7.5) έχουμε

An+1
n+1 ≥ An

nan+1 ≥ Gn
nan+1 = Gn+1

n+1 ⇒ An+1
n+1 ≥ Gn+1

n+1 ⇒ An+1 ≥ Gn+1

□
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Παρατήρηση 2.7.7. Από την απόδειξη της Πρότασης 2.7.6 βλέπουμε ότι η η ανισότητα Bernoulli
συνεπάγεται την ανισότητα αριθμητικού-γεωμετρικού μέσου. Μπορεί να δειχθεί και η αντίστροφη συ-
νεπαγωγή και άρα στην ουσία οι δύο ανισότητες είναι ισοδύναμες μεταξύ τους. Επίσης αποδεικνύεται
ότι η ανισότητα αριθμητικού-γεωμετρικού μέσου είναι γνήσια αν και μόνο αν n ≥ 2 και οι a1, . . . , an δεν
είναι όλοι ίσοι μεταξύ τους.

2.8 Κάποια χρήσιμα όρια

Πρόταση 2.8.1. (i) ´Εστω λ > 1. Τότε λn → +∞.

(ii) ´Εστω −1 < λ < 1. Τότε λn → 0.

(iii) ´Εστω a > 0. Τότε n√a→ 1.

(iv) n√n→ 1.

Απόδειξη. (i) ´Εστω M > 0. Θα βρούμε n0 ∈ N τέτοιο ώστω λn > M για κα´θε n ≥ n0. Θέτουμε a = λ− 1.
Τότε a > 0 και από την ανισότητα Bernoulli

λn = (1 + a)n ⩾ 1 + na > na

για κάθε n ∈ N. Επιλέγοντας συνεπώς n0 ∈ N με n0 >
M
a

έχουμε ότι λn > na ≥ n0a > M για κάθε n ≥ n0.

(ii) Αν λ = 0 τότε λn = 0→ 0. ´Εστω λ , 0. Τότε −1 < λ < 1⇒ |λ| < 1⇒
1
|λ|

> 1. Από το (1) έχουμε
1
|λ|n
→ +∞ και άρα από την Πρόταση 2.3.2 |λ|n = |λn| → 0. Από την Πρόταση 2.4.7 αυτό σημαίνει ότι

λn → 0.

(iii) Από την ανισότητα αριθμητικού-γεωμετρικού μέσου, έχουμε

n√a =
n

√
a · 1 · 1 · · · · · 1︸      ︷︷      ︸

(n−1)−φορές

≤
a + (n − 1)

n
=

a
n
+ 1 −

1
n
< 1 +

a
n

Αν a ≥ 1 τότε
1 ≤ n√a ≤ 1 +

a
n

για κάθε n ∈ N. Επειδή

lim
n

a
n
= a lim

n

1
n
= 0

από το Θεώρημα των ισοσυγκλινουσών ακολουθιών έχουμε limn
n√a = 1.

Αν τώρα 0 < a < 1 ϑέτουμε β = 1/a. Τότε β > 1 και άρα, από την περίπτωση που μόλις αποδείξαμε,
n√β→ 1. Άρα,

n√a =
1

n√β
→

1
1
= 1
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(iv) Από την ανισότητα αριθμητικού-γεωμετρικού μέσου, έχουμε

n√n = n

√
√

n ·
√

n · 1 · 1 · · · · · 1︸      ︷︷      ︸
(n−2)−φορές

≤

√
n +
√

n + (n − 2)
n

=
2
√

n
+ 1 −

2
n
< 1 +

2
√

n

Επειδή επιπλέον n√n ≥ 1 (άμεσο αφού n ≥ 1) για κάθε n ∈ N, έχουμε

(2.8.1) 1 ≤ n√n ≤ 1 +
2
√

n

για κάθε n ∈ N. Επειδή

lim
n

2
√

n
= 2 lim

n

1
√

n
= 2

√
lim

n

1
n
= 0

από το Θεώρημα των ισοσυγκλινουσών ακολουθιών έχουμε limn
n√n = 1. □

2.9 Μονότονες ακολουθίες

2.9.1 Βασικοί ορισμοί

Ορισμός 2.9.1. Μια ακολουθία (an) ϑα λέγεται αύξουσα αν a1 ≤ a2 ≤ a3 ≤ . . . και γνησίως αύξουσα
αν a1 < a2 < a3 < . . . . Αντίστοιχα, η (an) ϑα λέγεται φθίνουσα αν a1 ≥ a2 ≥ a3 ≥ . . . και γνησίως
φθίνουσα αν a1 > a2 > a3 > . . . .

Αν μια ακολουθία είναι αύξουσα ή φθίνουσα τότε καλείται μονότονη. Ειδικότερα αν είναι γνησίως
αύξουσα ή γνησίως φθίνουσα τότε καλείται γνησίως μονότονη.

Παρατήρηση 2.9.2. Συνήθως για να αποδείξουμε ότι μια ακολουθία (an) είναι π.χ. αύξουσα δείχνουμε
με Μαθηματική Επαγωγή ότι an+1 ≥ an για κάθε n ∈ N. Εναλλακτικά στην περίπτωση όπου η (an) είναι
ακολουθία ϑετικών αριθμών μπορούμε να ϑεωρήσουμε τα πηλίκα

an+1

an
π.χ. αν ισχύει ότι

an+1

an
> 1 για

κάθε n ∈ N τότε η (an) είναι αύξουσα.

Παραδείγματα 2.9.3. Η an = 1/n είναι γνησίως φθίνουσα, η an = n είναι γνησίως αύξουσα.

2.9.2 Μονότονες και φραγμένες ακολουθίες

Ορισμός 2.9.4. ´Εστω (an) φραγμένη ακολουθία πραγματικών αριθμών.

(α) Με sup an συμβολίζουμε το ελάχιστο άνω φράγμα του συνόλου των όρων της (an), δηλαδή sup an =

sup{an : n ∈ N}.

(β) Με inf an συμβολίζουμε το μέγιστο κάτω φράγμα του συνόλου των όρων της (an), δηλαδή inf an =

inf{an : n ∈ N}.

´Οπως έχουμε δεί αν μια ακολουθία είναι φραγμένη τότε δεν έπεται απαραίτητα ότι είναι και
συγκλίνουσα (κλασσικό παράδειγμα η an = (−1)n). Τα πράγματα όμως είναι πιο ομαλά στις μονότο-
νες ακολουθίες. Το επόμενο ϑεώρημα είναι στην ουσία η Αρχή Πληρότητας του R διατυπωμένη με
ακολουθίες.
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Θεώρημα 2.9.5. Κάθε μονότονη και φραγμένη ακολουθία είναι συγκλίνουσα. Πιο συγκεκριμένα ισχύ-
ουν τα εξής.

(α) Αν (an) αύξουσα και άνω φραγμένη τότε lim an = sup an.

(β) Αν (an) φθίνουσα και κάτω φραγμένη ακολουθία τότε lim an = inf an.

Απόδειξη. Θα δείξουμε μόνο το (α) (το (β) αποδεικνύεται ομοίως). ´Εστω (an) αύξουσα και άνω
φραγμένη ακολουθία και έστω s = sup an. (Το s είναι το ελάχιστο άνω φράγμα του συνόλου των όρων
της (an) και υπάρχει από το αξίωμα της πληρότητας του R.)

Θα δείξουμε ότι an → s. Σύμφωνα με τον ορισμό της σύγκλισης ακολουθίας αυτό σημαίνει ότι για
κάθε ε > 0 ϑα πρέπει να βρούμε ένα n0 ∈ N τέτοιο ώστε |an − s| < ε για κάθε n ≥ n0. ´Εστω λοιπόν
ένα ε > 0. Τότε s− ε < s και άρα το s− ε δεν είναι άνω φράγμα της (an) (αφού είναι γνήσια μικρότερο
του ελαχίστου άνω φράγματος της (an)). Συνεπώς δεν είναι όλοι οι όροι της (an) μικρότεροι ή ίσοι του
s − ε δηλαδή υπάρχει όρος γνήσια μεγαλύτερος του s − ε. Άρα ϑα ισχύει

s − ε < an0 ≤ s

για κάποιο n0 ∈ N. Επειδή η (an) είναι αύξουσα έχουμε an0 ≤ an για κάθε n ≥ n0 και άρα

s − ε < an0 ≤ an ≤ s

για όλα τα n ≥ n0. Συνεπώς
|an − s| < ε, για κάθε n ≥ n0.

Άρα an → s. □

2.9.3 Αρχή Κιβωτισμού

´Ενα σημαντικό πόρισμα του Θεωρήματος 2.9.5 είναι το επόμενο ϑεώρημα γνωστό και ως η αρχή του
κιβωτισμού.

Θεώρημα 2.9.6. ´Εστω [a1, b1] ⊇ [a2, b2] ⊇ [a3, b3] ⊇ . . . φθίνουσα ακολουθία κλειστών και φραγμένων
διαστημάτων του R. Τότε η τομή

⋂∞
n=1[an, bn] είναι μη κενή. Αν επιπλέον bn − an → 0 τότε η τομή⋂∞

n=1[an, bn] είναι μονοσύνολο.

Απόδειξη. Η υπόθεση [a1, b1] ⊇ [a2, b2] ⊇ [a3, b3] ⊇ . . . συνεπάγεται ότι

a1 ≤ a2 ≤ a3 ≤ · · · ≤ b3 ≤ b2 ≤ b1

Με άλλα λόγια η (an) είναι αύξουσα και άνω φραγμένη και η (bn) είναι φθίνουσα και κάτω φραγμένη.
Από το Θεώρημα 2.9.5 έχουμε ότι οι (an) και (bn) είναι συγκλίνουσες με limn an = sup an και limn bn =

inf bn. ´Εστω a = lim an = sup an και b = lim bn = inf bn. Επειδή an < bn ⇒ lim an ≤ lim bn και άρα a ≤ b.
Ισχυριζόμαστε ότι

(2.9.1)
∞⋂

n=1
[an, bn] = [a, b]
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Πράγματι an ≤ a και b ≤ bn. Συνεπώς, an ≤ a ≤ b ≤ bn για κάθε n ∈ N. Με άλλα λόγια [a, b] ⊆ [an, bn],
για κάθε n ∈ N και άρα

(2.9.2) [a, b] ⊆
∞⋂

n=1
[an, bn]

Από την άλλη μεριά αν x ∈
⋂∞

n=1[an, bn] τότε x ∈ [an, bn] ⇔ an ≤ x ≤ bn για κάθε n ∈ N. Αυτό σημαίνει
ότι το x είναι άνω φράγμα της (an) και το y είναι κάτω φράγμα της (bn) και άρα sup an = a ≤ x ≤
inf bn = b⇔ x ∈ [a, b]. Συνεπώς,

(2.9.3)
∞⋂

n=1
[an, bn] ⊆ [a, b]

Από τις (2.9.2) και (2.9.3) έπεται η (2.9.1). Αν τώρα limn(bn − an) = 0 ⇒ lim an − lim bn = 0 ⇒ a − b =

0⇒ a = b και από την (2.9.1) η τομή
∞⋂

n=1
[an, bn] είναι το κοινό όριο των (an) και (bn). □

Παρατήρηση 2.9.7. Το Θεώρημα 2.9.6 δεν ισχύει για φθίνουσα ακολουθία ανοικτών φραγμένων δια-
στημάτων. Π.χ.

∞⋂
n=1

(
0,

1
n

)
= ∅

διότι αν υπήρχε x ∈
(
0,

1
n

)
για κάθε n ∈ N τότε 0 < x <

1
n
για κάθε n ∈ N, άτοπο από Ιδιότητα Ευδόξου.

Ομοίως δεν ισχύει για φθίνουσα ακολουθία κλειστών αλλά μη φραγμένων διαστημάτων. Π.χ.

∞⋂
n=1

[n,+∞) = ∅

διότι αν υπήρχε x ∈ [n,+∞) για κάθε n ∈ N ϑα έπρεπε n ≤ x για κάθε n ∈ N, άτοπο από Αρχιμήδεια
Ιδιότητα.

2.9.4 Μονότονες και μη φραγμένες ακολουθίες

Το επόμενο ϑεώρημα είναι το αντίστοιχο του ϑεωρήματος 2.9.5 για μη φραγμένες μονότονες ακολουθίες.

Θεώρημα 2.9.8. Αν μία ακολουθία (an) είναι αύξουσα και όχι άνω φραγμένη τότε αποκλίνει στο +∞.
Αντίστοιχα, αν μία ακολουθία είναι φθίνουσα και όχι κάτω φραγμένη τότε αποκλίνει στο −∞.

Απόδειξη. ´Εστω (an) αύξουσα και όχι άνω φραγμένη (αν (an) είναι φθίνουσα η απόδειξη είναι παρό-
μοια). ´Εστω M > 0. Αφού η (an) δεν είναι άνω φραγμένη το M δεν είναι άνω φράγμα της (an) και
συνεπώς ϑα υπάρχει ένας όρος έστω an0 της (an) που ϑα είναι γνήσια μεγαλύτερος του M. ´Εχουμε
λοιπόν an0 > M. Απο την άλλη μεριά αφού η (an) είναι αύξουσα έπεται ότι για κάθε n ≥ n0 ϑα έχουμε
an ≥ an0 > M Άρα an > M για κάθε n ≥ n0.

Δείξαμε συνεπώς ότι για κάθε M ∈ R υπάρχει n0 ∈ N τέτοιο ώστε an > M για όλα τα n ≥ n0. Αυτό
όμως σημαίνει ότι an → +∞. □

Από το Θεώρημα 2.9.5 και το Θεώρημα 2.9.8 έχουμε το εξής συμπέρασμα.

Πόρισμα 2.9.9. Κάθε μονότονη ακολουθία έχει όριο (πεπερασμένο ή άπειρο). Το όριο είναι πεπερα-
σμένο αν και μόνο αν η ακολουθία είναι φραγμένη.
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2.10 Ο αριθμός Euler

Για να δώσουμε τον ορισμό του αριθμού e ϑα χρειασθούμε την παρακάτω πρόταση.

Πρόταση 2.10.1. ´Εστω οι ακολουθίες an =

(
1 +

1
n

)n

και bn =

(
1 +

1
n

)n+1

. Ισχύουν τα εξής.

(i) Η (an) είναι γνησίως αύξουσα.

(ii) Η (bn) είναι γνησίως φθίνουσα.

(iii) an < bn για κάθε n ∈ N.

(iv) Οι (an) και (bn) συγκλίνουν στο ίδιο όριο.

Απόδειξη. (α) Για κάθε n ≥ 2 έχουμε

an

an−1
=

(
1 + 1

n

)n(
1 + 1

n−1

)n−1 =

(n+1)n

nn

nn−1

(n−1)n−1

=
(n + 1)n(n − 1)n−1

nnnn−1 =

(
n2 − 1

n2

)n

·
n

n − 1

=

(
1 −

1
n2

)n

·
n

n − 1

>
(
1 −

n
n2

)
·

n
n − 1

(ανισότητα Bernoulli ισχυρή μορφή)

=

(
1 −

1
n

)
·

n
n − 1

=
n − 1

n
·

n
n − 1

= 1

(β) Για κάθε n ≥ 2 έχουμε

bn−1

bn
=

(
1 + 1

n−1

)n(
1 + 1

n

)n+1 =

nn

(n−1)n

(n+1)n+1

nn+1

=
n2n+1

(n2 − 1)n(n + 1)

=

(
n2

n2 − 1

)n

·
n

n + 1
=

(
1 +

1
n2 − 1

)n

·
n

n + 1

>
(
1 +

n
n2 − 1

)
·

n
n + 1

(ανισότητα Bernoulli ισχυρή μορφή)

=
(n2 − 1 + n)n

(n2 − 1)(n + 1)
=

n3 − n + n2

n3 + n2 − n − 1
> 1

(γ) Παρατηρούμε ότι bn = an

(
1 +

1
n

)
> an · 1 = an

(δ) Από τα προηγούμενα έχουμε ότι a1 ≤ an < bn ≤ b1 για κάθε n ∈ N. Άρα η (an) είναι γνησίως
αύξουσα και άνω φραγμένη και η (bn) είναι γνησίως φθίνουσα και κάτω φραγμένη. Συνεπώς είναι και
οι δύο συγκλίνουσες ως μονότονες και φραγμένες. Επιπλέον, έχουν το ίδιο όριο αφού

lim
n

bn = lim
n

(
an

(
1 +

1
n

))
= lim

n
an · lim

n

(
1 +

1
n

)
= lim

n
an

□
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Ορισμός 2.10.2. Το κοινό όριο των ακολουθιών an =

(
1 +

1
n

)n

και bn =

(
1 +

1
n

)n+1

καλείται αριθμός

Euler και συμβολίζεται με e.

2.11 Το Θεώρημα Bolzano–Weierstrass

Ορισμός 2.11.1. ´Εστω (an) ακολουθία πραγματικών αριθμών. Μια ακολουθία (bn) ϑα καλείται υπα-
κολουθία της (an) αν υπάρχει μια γνησίως αύξουσα ακολουθία φυσικών αριθμών k1 < k2 < . . . τέτοια
ώστε bn = akn για κάθε n ∈ N.

Πρόταση 2.11.2. ´Εστω (an) ακολουθία. Αν limn an = a (a πεπερασμένο ή άπειρο) τότε lim
n

akn = a για
κάθε υπακολουθία (akn) της (an).

Για την απόδειξη ϑα χρειασθούμε το παρακάτω λήμμα.

Λήμμα 2.11.3. Αν (kn) γνησίως αύξουσα ακολουθία φυσικών αριθμών τότε kn ≥ n για κάθε n ∈ N

Απόδειξη. Με επαγωγή. ´Εχουμε k1 ≥ 1 αφού k1 ∈ N. ´Εστω kn ≥ n για κάποιο n ∈ N. Αφού kn+1 > kn

και kn+1, kn φυσικοί έπεται ότι kn+1 ≥ kn + 1 ≥ n + 1. □

Απόδειξη της Πρότασης 2.11.2. Θα εξετάσουμε την περίπτωση a ∈ R (η περίπτωση a = ±∞ αποδει-
κνύεται παρόμοια). ´Εστω an → a και έστω (akn) υπακολουθία της (an). Θα δείξουμε ότι akn → a.
Πράγματι, έστω ε > 0. Από την σύγκλιση an → a υπάρχει n0 ∈ N τέτοιο ώστε για κάθε n ≥ n0,
|an − a| < ε. Επειδή kn ≥ n για κάθε n ∈ N (Λήμμα 2.11.3) έπεται ότι kn ≥ n0 για κάθε n ≥ n0. Συνεπώς
|akn − a| < ε για κάθε n ≥ n0. Άρα για κάθε ε > 0 υπάρχει n0 ∈ N τέτοιο ώστε |akn − a| < ε για κάθε
n ≥ n0, δηλαδή η υπακολουθία (akn) συγκλίνει στο a. □

Πρόταση 2.11.4. Κάθε ακολουθία πραγματικών αριθμών περιέχει μονότονη υπακολουθία.

Απόδειξη. ´Εστω (an) ακολουθία πραγματικών αριθμών. ´Ενας φυσικός αριθμός k ∈ N ϑα καλείται
σημείο κορυφής της (an) (από δεξιά) αν ak > an για κάθε n > k (δηλαδή ο ak ξεπερνάει όλους τους
επόμενους όρους της (an)). ´Εστω

K = {k ∈ N : ak σημείο κορυφής της (an)}

Διακρίνουμε δύο περιπτώσεις για το πλήθος των στοιχείων του K.
Περίπτωση 1 : Το K είναι πεπερασμένο. Στην περίπτωση αυτή ϑέτουμε k1 = max K + 1 (αν το

K είναι κενό ϑέτουμε k1 = 1). Τότε το k1 δεν ανήκει στο K (αφού είναι μεγαλύτερο του max K) και
άρα το k1 δεν είναι σημείο κορυφής της (an). Συνεπώς υπάρχει k2 > k1 με ak2 ≥ ak1 . Ομοίως επειδή
k2 > k1 > max K το k2 δεν είναι σημείο κορυφής και άρα υπάρχει k3 > k2 με ak3 ≥ ak2 κ.ο.κ. Με αυτόν
τον τρόπο κατασκευάζουμε μια αύξουσα υπακολουθία (akn) της (an).

Περίπτωση 2 : Το K είναι άπειρο, έστω K = {k1 < k2 < k3 < . . . }. Τότε ak1 > ak2 > ak3 > . . . δηλαδή
η (akn) είναι γνησίως φθίνουσα υπακολουθία της (an). □

Θεώρημα 2.11.5. (Θεώρημα Bolzano–Weierstrass) Κάθε φραγμένη ακολουθία περιέχει μια συγκλί-
νουσα υπακολουθία.

Απόδειξη. ´Εστω (an) φραγμένη. Από την Πρόταση 2.11.4 η (an) περιέχει μια μονότονη υπακολουθία
(akn). Η (akn) είναι φραγμένη αφού όλη η (an) είναι φραγμένη. Άρα η (akn) είναι μονότονη και φραγμένη
και συνεπώς από το Θεώρημα 2.9.5 είναι συγκλίνουσα. □
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2.12 Βασικές Ακολουθίες

Πολλές φορές είναι δύσκολο να υπολογίσουμε το όριο μιας ακολουθίας. Πως όμως ϑα μπορούσαμε να
καταλάβουμε αν μια ακολουθία είναι ή δεν είναι συγκλίνουσα χωρίς να βρίσκουμε αν υπάρχει ή όχι το
όριό της; ´Ενας τρόπος είναι να ελέγχουμε αν η ακολουθία μας είναι μονότονη και φραγμένη. Πράγματι,
όπως είδαμε κάθε μονότονη και φραγμένη ακολουθία είναι συγκλίνουσα. ´Ομως αν η ακολουθία μας
δεν είναι μονότονη τι ϑα μπορούσαμε να κάνουμε; Μια απάντηση στο ερώτημα αυτό είναι η έννοια
της βασικής ακολουθίας (ή ακολουθίας Cauchy).

Πρόταση 2.12.1. ´Εστω (an) συγκλίνουσα ακολουθία πραγματικών αριθμών. Τότε για κάθε ε > 0
υπάρχει n0 ∈ N τέτοιο ώστε |am − an| < ε για όλα τα m, n ≥ n0.

Απόδειξη. ´Εστω a το όριο της (an). ´Εστω επίσης ε > 0. Από τον ορισμό της σύγκλισης έχουμε ότι
για τον ϑετικό αριθμό ε/2 υπάρχει n0 ∈ N τέτοιο ώστε όταν n ≥ n0 τότε

|an − a| <
ε

2

Ισχυριζόμαστε ότι αυτό συνεπάγεται ότι |an − am| < ε για όλα τα n,m ≥ n0. Πράγματι, έστω n,m ≥ n0.
Τότε

|am − an| = |am − a + a − an| ≤ |am − a| + |a − an| ≤
ε

2
+
ε

2
= ε.

□

Ορισμός 2.12.2. Μια ακολουθία (an) καλείται βασική (ή Cauchy) αν για κάθε ε > 0 υπάρχει n0 ∈ N
τέτοιο ώστε |an − am| < ε για όλα τα n,m ⩾ n0.

Πρόταση 2.12.3. Κάθε βασική ακολουθία είναι φραγμένη.

Απόδειξη. ´Εστω (an) βασική ακολουθία. Τότε για ε = 1 υπάρχει n0 ∈ N τέτοιο ώστε |an − am| < 1
για όλα τα n,m ≥ n0. Ειδικότερα,

(2.12.1) |an − an0 | < 1 για όλα τα n ≥ n0

Θέτουμε
M = max{|a1|, . . . , |an0−1|, |an0 | + 1}

(αν n0 = 1 τότε ϑέτουμε απλά M = |an0 | + 1). Ισχυριζόμαστε ότι

|an| ≤ M

για όλα τα n ∈ N. Πράγματι έστω n ∈ N. Αν n < n0 τότε από τον ορισμό του M έχουμε |an| ≤ M. Αν
n ≥ n0 τότε από την (2.12.1), την τριγωνική ανισότητα και τον ορισμό του M,

|an − an0 | < 1⇒ |an| − |an0 | < 1⇒ |an| < |an0 | + 1 ≤ M

και η απόδειξη έχει ολοκληρωθεί. □

Πρόταση 2.12.4. Μια βασική ακολουθία που περιέχει μια συγκλίνουσα υπακολουθία είναι και η ίδια
συγκλίνουσα.
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Απόδειξη. ´Εστω (an) βασική ακολουθία και έστω ότι η (an) περιέχει μια συγκλίνουσα υπακολουθία
(akn). Αν akn → a ϑα δείξουμε ότι και an → a. Πράγματι έστω ε > 0. Επειδή η (an) είναι βασική
υπάρχει n1 ∈ N τέτοιο ώστε

(2.12.2) |an − am| < ε/2 για όλα τα n,m ≥ n1

Ισχυριζόμαστε ότι

(2.12.3) |an − a| < ε για όλα τα n ≥ n1

Πράγματι, επειδή akn → a μπορούμε να επιλέξουμε n2 ∈ N τέτοιο ώστε

(2.12.4) |akn − a| < ε/2 για όλα τα n ≥ n2

Θέτουμε
n0 = max{n1, n2}

Τότε kn0 ≥ n0 ≥ n1 και άρα από την (2.12.2) (για m = m0) παίρνουμε

(2.12.5) |an − akn0
| < ε/2 για όλα τα n ≥ n1

Αντίστοιχα, αφού n0 ≥ n2, η (2.12.4) (για n = n0) δίνει

(2.12.6) |akn0
− a| < ε/2

Άρα για κάθε n ≥ n1 έχουμε

|an − a| ≤ |an − akn0
| + |akn0

− a| ⩽
ε

2
+
ε

2
= ε

□

Θεώρημα 2.12.5. Μια ακολουθία είναι συγκλίνουσα αν και μόνο αν είναι βασική.

Απόδειξη. Από την Πρόταση 2.12.1 έχουμε ότι αν μια ακολουθία είναι συγκλίνουσα τότε είναι και βα-
σική. Μένει συνεπώς να δειχθεί το αντίστροφο δηλαδή ότι κάθε βασική ακολουθία είναι συγκλίνουσα.
Εστω (an) μια βασική ακολουθία. Από την Πρόταση 2.12.3 η (an) είναι φραγμένη και συνεπώς από
το Θεώρημα Bolzano–Weierstrass η (an) περιέχει συγκλίνουσα υπακολουθία. Άρα από την Πρόταση
2.12.4 η (an) είναι συγκλίνουσα. □

2.13 Αριθμήσιμα και Υπεραριθμήσιμα σύνολα

Ορισμός 2.13.1. ´Εστω A, B μη κενά σύνολα και έστω f : A→ B.

(i) Η f καλείται 1 − 1 αν για κάθε a1, a2 ∈ A με a1 , a2 ισχύει ότι f (a1) , f (a2).

(ii) Η f καλείται επί αν για κάθε b ∈ B υπάρχει a ∈ A με b = f (a), ισοδύναμα f (A) = B όπου
f (A) = { f (a) : a ∈ A}.

(iii) Η f καλείται αμφιμονοσήμαντη αντιστοιχία μεταξύ του A και B αν είναι 1-1 και επί.



2.13 Αριθμήσιμα και Υπεραριθμήσιμα σύνολα · 37

Ορισμός 2.13.2. ´Ενα σύνολο X καλείται αριθμήσιμο αν είτε είναι πεπερασμένο είτε υπάρχει αμφι-
μονοσήμαντη αντιστοιχία μεταξύ του N και του X. ´Ενα σύνολο που δεν είναι αριθμήσιμο καλείται
υπεραριθμήσιμο.

Πρόταση 2.13.3. Το σύνολο Z όλων των ακεραίων αριθμών είναι αριθμήσιμο.

Απόδειξη. ´Εστω η συνάρτηση f : N→ Z όπου

f (n) =


n − 1

2
, n περιττός

−
n
2
, n άρτιος

είναι μια αμφιμονοσήμαντη αντιστοιχία μεταξύ του N και του Z. □

Αποδεικνύεται επίσης το εξής ϑεώρημα.

Θεώρημα 2.13.4. Το σύνολο Q των ρητών αριθμών είναι αριθμήσιμο.

Θεώρημα 2.13.5. Το R είναι υπεραριθμήσιμο.

Απόδειξη. ´Εστω προς απαγωγή σε άτοπο ότι το R είναι αριθμήσιμο. ´Εστω f : N → R αμφιμονοσή-
μαντη αντιστοιχία. Θέτοντας xn = f (n) για κάθε n ∈ N, έχουμε R = {xn : n ∈ N}. Θα επιλέξουμε μια
φθίνουσα ακολουθία κλειστών και φραγμένων διαστημάτων του R, I1 ⊇ I2 ⊇ I3 ⊇ . . . με την ιδιότητα
xn < In για κάθε n ∈ N. Αρχίζουμε με ένα κλειστό φραγμένο διάστημα I1 τέτοιο ώστε x1 < I1. Μετά
επιλέγουμε κλειστό υποδιάστημα I2 του I1 με x2 < I2, μετά ένα κλειστό υποδιάστημα I3 του I2 με
x3 < I3 κ. ο. κ.

Από την Αρχή του Κιβωτισμού (Θεώρημα 2.9.6) υπάρχει x ∈ R με x ∈
⋂∞

n=1 In. Αφού υποθέσαμε ότι

R = {xn : n ∈ N} ϑα πρέπει x = xk για κάποιο k ∈ N. Συνεπώς xk ∈

∞⋂
n=1

In και άρα xk ∈ In για κάθε

n ∈ N. Αυτό όμως είναι άτοπο, αφού για n = k, xk < Ik. □





ΚΕΦΑΛΑΙΟ 3

Συνέχεια και ´Ορια Συναρτήσεων

3.1 Ορισμός της συνέχειας

Στα επόμενα με X ϑα συμβολίζουμε ένα μη κενό υποσύνολο του R.

Ορισμός 3.1.1. ´Εστω f : X → R και έστω x0 ∈ X. Η συνάρτηση f καλείται συνεχής στο x0 αν για
κάθε ε > 0 υπάρχει δ > 0 τέτοιο ώστε για κάθε x ∈ X με |x − x0| < δ ισχύει ότι | f (x) − f (x0)| < ε.

Η f ϑα καλείται συνεχής αν είναι συνεχής σε κάθε x0 ∈ X.

Με άλλα λόγια ο παραπάνω ορισμός λέει ότι η f είναι συνεχής στο x0 ∈ X αν οποιαδήποτε περιοχή
του f (x0) περιέχει όλες τις τιμές που παίρνει η f όταν αυτή περιορισθεί σε μια κατάλληλη περιοχή
του x0.

Παράδειγμα 3.1.2. Κάθε σταθερή συνάρτηση f : X → R είναι συνεχής. Πράγματι, έστω x0 ∈ X και
ε > 0. Τότε για οποιοδήποτε δ > 0 αν x ∈ X με |x − x0| < δ έπεται ότι | f (x) − f (x0)| = 0 < ε.

Παράδειγμα 3.1.3. Η ταυτοτική συνάρτηση f : X → R με f (x) = x για κάθε x ∈ X είναι συνεχής.
Πράγματι, έστω x0 ∈ X και ε > 0. Τότε για δ = ε έχουμε ότι αν x ∈ X με |x− x0| < δ τότε | f (x)− f (x0)| =
|x − x0| < ε = δ.

Στα παραπάνω δύο παραδείγματα το δ ήταν ανεξάρτητο της επιλογής του x0 (στην περίπτωση της
σταθερής συνάρτσης ήταν ανεξάρτητο και του ε). Γενικά, για μια δεδομένη συνάρτηση f : X → R το
δ εξαρτάται από το x0 και το ε. Παρατηρείστε επίσης ότι η συνέχεια είναι μια ιδιότητα που αφορά
μόνο στα σημεία του πεδίου ορισμού της συνάρτησης.

Παρατήρηση 3.1.4. Αν η f δεν είναι συνεχής στο x0 ϑα λέμε ότι είναι ασυνεχής στο x0. Αν η f είναι
ασυνεχής σε κάθε x0 ∈ X τότε ϑα λέμε ότι η f είναι παντού ασυνεχής.Η άρνηση του Ορισμού 3.1.1
σημαίνει το εξής:

´Εστω f : X → R και x0 ∈ X. Η f είναι ασυνεχής στο x0 αν και μόνο αν υπάρχει μια ϑετική σταθερά
ε0 > 0 τέτοια ώστε για κάθε δ > 0 υπάρχει x ∈ X με |x − x0| < δ αλλά | f (x) − f (x0)| ≥ ε0.

Με άλλα λόγια υπάρχει μια σταθερή περιοχή του f (x0) για την οποία όσο και να περιορίσουμε την
f σε μικρές περιοχές γύρω από το x0 δεν ϑα καταφέρουμε ποτέ να εγκλωβίσουμε μέσα σε αυτήν όλες
τις τιμές της.
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Παράδειγμα 3.1.5. (Η συνάρτηση Dirichlet) Η συνάρτηση f : R→ R με τύπο f (x) =

1 αν x ρητός

0 αν x άρρητος
είναι παντού ασυνεχής. Πράγματι έστω x0 ∈ R. Από την την ιδιότητα της Πυκνότητας των ρητών και

αρρήτων στο διάστημα (x0 − δ, x0 + δ) όπου δ > 0 οποιοδήποτε, μπορούμε να βρούμε έναν ρητό q και
έναν άρρητο a. Αν τώρα ο x0 είναι ρητός έπεται ότι | f (a)− f (x0)| = |0− 1| = 1 ενώ αν ο x0 είναι άρρητος
| f (q) − f (x0)| = |1 − 0| = 1.

Άρα για ε0 = 1 και για κάθε δ > 0 υπάρχει x ∈ R με |x − x0| < δ και | f (x) − f (x0)| ≥ ε0. Συνεπώς η
f είναι ασυνεχής σε οποιοδήποτε x0 ∈ R.

3.2 Τοπικές ιδιότητες συνεχών συναρτήσεων

Πρόταση 3.2.1. ´Εστω f : X → R και έστω x0 ∈ X σημείο συνέχειας της f .

(α) Αν f (x0) > 0 τότε υπάρχει δ > 0 τέτοιο ώστε f (x) > 0 για κάθε x ∈ X ∩ (x0 − δ, x0 + δ).

(β) Αν f (x0) < 0 τότε υπάρχει δ > 0 τέτοιο ώστε f (x) < 0 για κάθε x ∈ X ∩ (x0 − δ, x0 + δ).

Απόδειξη. (α) Το ότι το x0 είναι σημείο συνέχειας της f σημαίνει εξ ορισμού ότι για κάθε ε > 0 υπάρχει
δ > 0 τέτοιο ώστε f (x0) − ε < f (x) < f (x0) + ε, για κάθε x ∈ X ∩ (x0 − δ, x0 + δ) Θέτοντας ε = f (x0) > 0
παίρνουμε το συμπέρασμα. (β) Θεωρούμε την − f και εφαρμόζουμε το (α). □

Πόρισμα 3.2.2. ´Εστω f : X → R και έστω x0 ∈ X σημείο συνέχειας της f .

(α) Αν M ∈ R τέτοιο ώστε f (x0) < M τότε υπάρχει δ > 0 τέτοιο ώστε f (x) < M για κάθε x ∈
X ∩ (x0 − δ, x0 + δ).

(β) Αν m ∈ R τέτοιο ώστε m < f (x0) τότε υπάρχει δ > 0 τέτοιο ώστε m < f (x) για κάθε x ∈
X ∩ (x0 − δ, x0 + δ).

(γ) Αν m,M ∈ R τέτοιοι ώστε m < f (x0) < M τότε υπάρχει δ > 0 τέτοιο ώστε m < f (x) < M για κάθε
x ∈ X ∩ (x0 − δ, x0 + δ).

Απόδειξη. (α) Θεωρούμε την συνάρτηση g(x) = M − f (x). Η g είναι συνεχής στο x0 και g(x0) > 0.
Εφαρμόζωντας την Πρόταση 3.2.1(α) παίρνουμε ότι υπάρχει δ > 0 τέτοιο ώστε g(x) > 0 ⇔ f (x) < M
για κάθε x ∈ X ∩ (x0 − δ, x0 + δ).

(β) Θεωρούμε την − f και εφαρμόζουμε το (α) για το −m.

(γ) Από το (α) υπάρχει δ1 > 0 τέτοιο ώστε f (x) < M για κάθε x ∈ X ∩ (x0 − δ1, x0 + δ1). Ομοίως από
το (β) υπάρχει δ2 > 0 τέτοιο ώστε m < f (x) για κάθε x ∈ X ∩ (x0 − δ2, x0 + δ2). Για δ = min{δ1, δ2} έχουμε
το ζητούμενο. □

3.3 Συνέχεια και ακολουθίες - Αρχή Μεταφοράς

Το παρακάτω ϑεώρημα λέει ότι η f είναι συνεχής σε ένα x0 ∈ X αν και μόνο αν μεταφέρει τις ακολουθίες
που είναι συγκλίνουσες στο x0 σε ακολουθίες που είναι συγκλίνουσες στο f (x0). Για τον λόγο αυτό
καλείται και Αρχή Μεταφοράς.

Θεώρημα 3.3.1. ´Εστω f : X → R και έστω x0 ∈ X. Τα επόμενα είναι ισοδύναμα.
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(α) Η f είναι συνεχής στο x0.

(β) Για κάθε ακολουθία (xn) στο X με xn → x0 έπεται ότι f (xn)→ f (x0).

Απόδειξη. (α) ⇒ (β) : Υποθέτουμε ότι η f είναι συνεχής στο x0. ´Εστω (xn) ακολουθία στο X με
xn → x0. Θα δείξουμε ότι f (xn)→ f (x0). ´Εστω ε > 0. Λόγω της συνέχειας της f στο x0 υπάρχει δ > 0
τέτοιο ώστε

(3.3.1) x ∈ X και |x − x0| < δ⇒ | f (x) − f (x0)| < ε

Επειδή η (xn) συγκλίνει στο x0 υπάρχει n0 ∈ N τέτοιο ώστε

(3.3.2) n ≥ n0 ⇒ |xn − x0| < δ

´Εστω n ≥ n0. Από την (3.3.2) έχουμε |xn − x0| < δ και άρα από την (3.3.1) (για x = xn) έπεται ότι
| f (xn)− f (x0)| < ε. Άρα για κάθε ε > 0 υπάρχει n0 ∈ N με | f (xn)− f (x0)| < ε για όλα τα n ≥ n0. Συνεπώς
f (xn)→ f (x0).

(β) ⇒ (α) Υποθέτουμε ότι f (xn) → f (x0) για κάθε ακολουθία (xn) στο X με xn → x0. Θα δείξουμε
ότι η f είναι συνεχής στο x0. ´Εστω προς απαγωγή σε άτοπο ότι η f δεν είναι συνεχής στο x0. ´Οπως
είδαμε αυτό σημαίνει ότι υπάρχει κάποιο ε0 > 0 τέτοιο ώστε για κάθε δ > 0 υπάρχει x ∈ X με |x−x0| < δ

αλλά | f (x) − f (x0)| ≥ ε0. Άρα για n ∈ N, ϑέτοντας δ = 1/n έχουμε ότι υπάρχει xn ∈ X με

(3.3.3) |xn − x0| < 1/n για κάθε n ∈ N

αλλά

(3.3.4) | f (xn) − f (x0)| ≥ ε0 για κάθε n ∈ N

Η ακολουθία (xn) που σχηματίζεται με αυτό τον τρόπο συγκλίνει στο x0 αφού από την (3.3.3) έχουμε
xn − x0 → 0⇔ xn → x0. Άρα από την υπόθεσή μας ϑα πρέπει f (xn)→ f (x0). Συνεπώς υπάρχει n0 ∈ N
τέτοιο ώστε

| f (xn) − f (x0)| < ε0 για κάθε n ≥ n0

το οποίο έρχεται σε αντίφαση με την (3.3.4). □

Η Αρχή Μεταφοράς μπορεί να χρησιμοποιηθεί και για να δείξουμε ότι μια συνάρτηση f : X → R
είναι ασυνεχής σε ένα σημείο x0 ∈ X. Πράγματι, από το Θεώρημα 3.3.1 έχουμε ότι η f είναι ασυνεχής
στο x0 αν και μόνο αν υπάρχει ακολουθία (xn) στο X με xn → x0 αλλά f (xn) ↛ f (x0). Ειδικότερα
έχουμε το εξής.

Πόρισμα 3.3.2. ´Εστω f : X → R και x0 ∈ X. Αν υπάρχουν δύο ακολουθίες (xn) και (x′n) με limn xn =

limn x′n = x0 αλλά limn f (xn) , limn f (x′n) τότε η f είναι ασυνεχής στο x0.

Απόδειξη. Αν η f ήταν συνεχής στο x0, από την Αρχή Μεταφοράς ϑα έπρεπε limn f (xn) = limn f (x′n) =
f (x0), άτοπο. Άρα η f είναι ασυνεχής στο x0. □

Παράδειγμα 3.3.3. Χρησιμοποιώντας το Πόρισμα 3.3.2 μπορούμε να δώσουμε έναν άλλο τρόπο α-
πόδειξης για το ότι η συνάρτηση Dirichlet (Παράδειγμα 3.1.5) δεν είναι συνεχής σε κανένα σημείο.
Πράγματι έστω x0 ∈ R. ´Εστω (qn) ακολουθία ρητών και (an) ακολουθία αρρήτων με με qn → x0 και
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an → x0 (τέτοιες ακολουθίες υπάρχουν από πυκνότητα ρητών και αρρήτων). ´Εχουμε f (qn) = 1, για
όλα τα n ∈ N και άρα limn f (qn) = 1. Από την άλλη πλευρά f (an) = 0, για όλα τα n ∈ N και άρα
limn f (an) = 0.

3.4 Πράξεις και σύνθεση συνεχών συναρτήσεων

Με την Αρχή Μεταφοράς αποδεικνύεται πολύ εύκολα ότι η συνέχεια διατηρείται μέσω αλγεβρικ’ων
πράξεων και σύνθεσης συναρτήσεων.

Θεώρημα 3.4.1. ´Εστω f , g : X → R και x0 ∈ X τέτοιο ώστε οι f και g είναι συνεχείς στο x0. Τότε
ισχύουν τα παρακάτω.

(α) Η συνάρτηση f + g είναι συνεχής στο x0.

(β) Η συνάρτηση f · g είναι συνεχής στο x0.

(γ) Αν επιπλέον g(x) , 0 για κάθε x ∈ X η συνάρτηση
f
g

είναι συνεχής στο x0.

Απόδειξη. Θα δείξουμε μόνο το (α). Τα (β) και (γ) αποδεικνύονται ομοίως. ´Εστω (xn) ακολουθία στο
X με xn → x0. Αφού οι f , g είναι συνεχείς στο x0 έχουμε ότι f (xn) → f (x0) και g(xn) → g(x0). Άρα
f (xn) + g(xn)→ f (x0) + g(x0). Από Αρχή Μεταφοράς η συνάρτηση f + g είναι συνεχής στο x0. □

Θεώρημα 3.4.2. ´Εστω g : X → R και f : Y → R με f (X) ⊆ Y ώστε να ορίζεται η σύνθεση F : X → R
με F(x) = f (g(x)) για κάθε x ∈ X. Αν η g είναι συνεχής στο x0 και η f είναι συνεχής στο g(x0) τότε η F
είναι συνεχής στο x0.

Απόδειξη. ´Εστω (xn) ακολουθία στο X με xn → x0. Αφού η g είναι συνεχής στο x0, από Αρχή
Μεταφοράς έχουμε ότι g(xn) → x0. Ομοίως επειδή η f είναι συνεχής στο x0 έχουμε ότι f (g(xn) →
f (g(x0)). Από Αρχή Μεταφοράς η σύνθεση F = f ◦ g των f και g είναι συνεχής στο x0. □

3.5 Συνεχείς συναρτήσεις ορισμένες σε διαστήματα των πραγματικών αριθμών

Στην παράγραφο αυτή ϑα αποδείξουμε δύο βασικές ιδιότητες που έχουν οι συνεχείς συναρτήσεις
f : X → R στην περίπτωση όπου το X είναι κλειστό και φραγμένο διάστημα του R.

3.5.1 Το Θεώρημα Ενδιάμεσων Τιμών

´Ενα από τα σημαντικότερα ϑεωρήματα για συνεχείς συναρτήσεις είναι το Θεώρημα Ενδιαμέσων τιμών
που διατυπώνεται ως εξής.

Θεώρημα 3.5.1. (Bolzano) ´Εστω f : [a, b]→ R συνεχής συνάρτηση με f (a) < 0 < f (b) ή f (b) < 0 < f (a).
Τότε υπάρχει ξ ∈ (a, b) τέτοιο ώστε f (ξ) = 0.

Για την απόδειξη του Θεωρήματος 3.5.1 ϑυμίζουμε τις παρακάτω δύο προτάσεις.

Πρόταση 3.5.2. ´Εστω A ⊆ R μη κενό και άνω φραγμένο. Τότε υπάρχει ακολουθία (an) στο A με
an → sup A.
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Απόδειξη. Από την χαρακτηριστική ιδιότητα του supremum, για κάθε ε > 0 υπάρχει a ∈ A με s − ε <
a ≤ s. Θέοντας ε = 1/n έχουμε ότι για κάθε n ∈ N μπορούμε να επιλέξουμε an ∈ A τέτοιο ώστε

sup A −
1
n
< an ≤ sup A

Από το Θεώρημα των Ισοσυγκλινουσών ακολουθιών έπεται ότι η ακολουθία (an) συγκλίνει στο sup A.
□

Πρόταση 3.5.3. ´Εστω (yn) συγκλίνουσα ακολουθία. Αν yn ≥ 0 τότε limn yn ≥ 0. Αντίστοιχα αν yn ≤ 0
για κάθε n ∈ N τότε limn yn ≤ 0.

Απόδειξη. ´Εστω yn ≥ 0 για κάθε n ∈ N και έστω y = limn yn. ´Εστω προς απαγωγή σε άτοπο ότι y < 0.
Επειδή yn → y για ε = |y| > 0 ϑα υπήρχε n0 ∈ N με |yn − y| < |y| ⇒ yn < 0 για κάθε n ≥ n0. Άτοπο, αφού
yn > 0 για κάθε n ∈ N. Ομοίως αν yn ≤ 0 για κάθε n ∈ N. □

Απόδειξη του Θεωρήματος 3.5.1. Μπορούμε να υποθέσουμε ότι f (a) < 0 < f (b) (αν f (b) < 0 < f (a)
ϑεωρούμε την − f ). Ορίζουμε A = {x ∈ [a, b] : f (x) < 0}. Το A είναι μη κενό αφού περιέχει το a. Επίσης
είναι άνω φραγμένο από το b. Άρα από την Αρχή Πληρότητας του R το A έχει supremum. Θέτουμε
ξ = sup A και ϑα δείξουμε ότι f (ξ) = 0.

Καταρχάς η f ορίζεται στο ξ αφού ξ ∈ [a, b] (πράγματι, a ≤ ξ διότι a ∈ A και ξ άνω φράγμα του A
και ξ ≤ b διότι το b είναι άνω φράγμα του A και το ξ είναι το μικρότερο άνω φράγμα του A). Επειδή
ξ = sup A από την Πρόταση 3.5.2 υπάρχει ακολουθία (an) στο A με an → ξ. Από Αρχή Μεταφοράς
f (an)→ f (ξ) και επειδή f (an) < 0 (an ∈ A) από Πρόταση 3.5.3 έχουμε ότι

(3.5.1) lim
n

f (an) = f (ξ) ≤ 0

Αυτό μας δίνει και ότι ξ , b αφού f (b) > 0 και άρα ξ < b. Επιλέγουμε τώρα μια ακολουθία (bn) στο

(ξ, b] με bn → ξ (π.χ. bn = ξ+
d
n

όπου d = b− ξ). Αφού η f είναι συνεχής στο ξ έπεται ότι f (bn)→ f (ξ).
Επειδή bn < A (bn > ξ = sup A), έχουμε ότι f (bn) ≥ 0 για κάθε n ∈ N και άρα από Πρόταση 3.5.3,

(3.5.2) lim
n

f (bn) = f (ξ) ≥ 0

Από τις (3.5.1) και (3.5.2) προκύπτει ότι f (ξ) = 0. □

Το Θεώρημα 3.5.1 διατυπώνεται και γενικότερα ως εξής.

Θεώρημα 3.5.4. (Θεώρημα των Ενδιάμεσων Τιμών γενική μορφή) ´Εστω f : I → R συνεχής όπου I
διάστημα του R και έστω a, b στο I με a < b και f (a) , f (b). Αν f (a) < f (b) τότε για κάθε η ∈ R με
f (a) < η < f (b) υπάρχει ξ ∈ (a, b) με f (ξ) = η. Ομοίως αν f (a) > f (b).

Απόδειξη. ´Εστω f (a) < f (b). Θεωρούμε την συνάρτηση g : [a, b] → R με g(x) = f (x) − η, για κάθε
x ∈ [a, b]. Η g είναι συνεχής και g(a) < 0 < g(b). Από το Θεώρημα 3.5.1 υπάρχει ξ ∈ (a, b) με
g(ξ) = 0⇔ f (ξ) = η. Αν f (a) > f (b) ϑεωρείστε την g(x) = η − f (x). □

Πόρισμα 3.5.5. ´Εστω f : I → R συνεχής όπου I διάστημα του R. Αν f (x) , 0 τότε η f διατηρεί το ίδιο
πρόσημο σε όλο το I, δηλαδή είτε f (x) > 0 για κάθε x ∈ I είτε f (x) < 0 για κάθε x ∈ I.

Απόδειξη. Αν η f έπαιρνε ετερόσημες τιμές τότε από το Θεώρημα 3.5.4 ϑα έπαιρνε και την τιμή 0. □
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Με χρήση του Θεωρήματος Ενδιάμεσων Τιμών μπορούμε να αποδείξουμε την ύπαρξη της n-οστής
ρίζας ενός οποιουδήποτε ϑετικού αριθμού.

Πόρισμα 3.5.6. ´Εστω a > 0 και n ∈ N με n ≥ 2. Τότε υπάρχει x > 0 με xn = a.

Απόδειξη. Η συνάρτηση f (x) = xn − a είναι συνεχής (προκύπτει από πράξεις συνεχών) και παίρνει
αρνητικές και ϑετικές τιμές (π.χ. f (0) = −a και f (a + 1) = (a + 1)n − a > a + 1 − a = 1 > 0). Άρα υπάρχει
x ∈ R με 0 < x < a + 1 τέτιοι ώστε f (x) = 0 ισοδύναμα xn = a. □

3.5.2 Το Θεώρημα Μέγιστης και Ελάχιστης Τιμής

Μια συνάρτηση f : X → R ϑα καλείται φραγμένη αν υπάρχουν m,M ∈ R τέτοιοι ώστε m ≤ f (x) ≤ M
για όλα τα x ∈ X. Είναι εύκολο να δούμε ότι η f είναι φραγμένη αν υπάρχει K ≥ 0 με | f (x)| ≤ K.

Πρόταση 3.5.7. Κάθε συνεχής συνάρτηση f : [a, b]→ R είναι φραγμένη.

Απόδειξη. ´Εστω προς απαγωγή σε άτοπο ότι η f δεν είναι φραγμένη. Τότε για κάθε M > 0 υπάρχει
x ∈ [a, b] τέτοιο ώστε | f (x)| > M. Άρα για K = 1 μπορούμε να επιλέξουμε x1 ∈ [a, b] με | f (x1)| > 1.
Ομοίως για K = 2 επιλέγουμε x2 ∈ [a, b] με | f (x2)| > 2. Συνεχίζοντας με τον ίδιο τρόπο σχηματίζουμε
μια ακολουθία (xn) στο [a, b] με

(3.5.3) | f (xn)| > n

για κάθε n ∈ N. Η (xn) είναι φραγμένη και άρα από το Θεώρημα Bolzano–Weierstrass περιέχει μια
συγκλίνουσα υπακολουθία (xkn). ´Εστω x0 = lim xkn . Επειδή a ≤ xkn ≤ b ϑα είναι και a ≤ x0 ≤ b. Άρα
η f ορίζεται στο x0 και συνεπώς αφού xkn → x0 από Αρχή Μεταφοράς ϑα πρέπει f (xkn) → f (x0).
´Ομως, από την (3.5.3), έχουμε | f (xkn)| > kn και επειδή όπως έχουμε δεί kn ≥ n για κάθε n ∈ N έπεται
ότι | fkn(x)| > n για κάθε n ∈ N. Άρα η

(
fkn(x)

)
δεν είναι φραγμένη και συνεπώς δεν μπορεί να είναι και

συγκλίνουσα, άτοπο. □

Θεώρημα 3.5.8. ´Εστω f : [a, b] → R συνεχής συνάρτηση. Τότε η f λαμβάνει μέγιστη και ελάχιστη
τιμή.

Απόδειξη. Από την Πρόταση 3.5.7 η f είναι φραγμένη, δηλαδή το σύνολο τιμών της f είναι φραγμένο.
Θέτουμε s = sup{ f (x) : x ∈ [a, b]} και ϑα δείξουμε ότι υπάρχει x ∈ [a, b] με f (x) = s (για να δείξουμε ότι
η f λαμβάνει ελάχιστη τιμή ϑέτουμε τ = inf{ f (x) : x ∈ [a, b]} και εργαζόμαστε ομοίως). Ας υποθέσουμε
ότι αυτό δεν συμβαίνει, οπότε

(3.5.4) f (x) < s

για κάθε x ∈ [a, b]. Μπορούμε τότε να ορίσουμε την συνάρτηση g : [a, b]→ R με τύπο

g(x) =
1

s − f (x)

Από την χαρακτηριστική ιδιότητα του supremum, για κάθε n ∈ N μπορούμε να επιλέξουμε xn ∈ [a, b]
με την ιδιότητα

(3.5.5) s −
1
n
< f (xn) ≤ s
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Από τις (3.5.4) και (3.5.5) παίρνουμε ότι 0 < s − f (x) <
1
n

και άρα g(xn) > n. Αυτό όμως σημαίνει ότι η
g δεν είναι άνω φραγμένη, άτοπο αφού είναι συνεχής και ορίζεται σε κλειστό φραγμένο διάστημα. □

Από τα Θεωρήματα 3.5.4 και 3.5.8 παίρνουμε το παρακάτω πόρισμα.

Πόρισμα 3.5.9. ´Εστω f : [a, b] → R συνεχής συνάρτηση. Τότε υπάρχουν m ≤ M στο R με f ([a, b]) =
[m,M]. Με άλλα λόγια οι συνεχείς συναρτήσεις μεταφέρουν κλειστά και φραγμένα διαστήματα σε
κλειστά και φραγμένα διαστήματα.

Απόδειξη. Από το Θεώρημα 3.5.8 η f λαμβάνει μέγιστη και ελάχιστη τιμή. ´Εστω m = min{ f (x) : x ∈
[a, b]} και M = max{ f (x) : x ∈ [a, b]}. έχουμε m ≤ f (x) ≤ M για κάθε x ∈ [a, b] και άρα f ([a, b]) ⊆ [m,M].
Από την άλλη μεριά αν m = f (x1) και M = f (x2) τότε από το Θεώρημα 3.5.4 για κάθε y ∈ (m,M)
υπάρχει ξ μεταξύ των x1, x2 με f (ξ) = η και άρα [m,M] ⊆ f ([a, b]). Συνεπώς f ([a, b]) = [m,M]. □

3.6 Συνεχείς και 1-1 συναρτήσεις

´Εστω ∅ , X ⊆ R και f : X → R. Η f καλείται γνησίως αύξουσα αν για κάθε x1, x2 ∈ X με x1 < x2 ισχύει
ότι f (x1) < f (x2). Αντίστοιχα η f καλείται γνησίως φθίνουσα αν για κάθε x1, x2 ∈ X με x1 < x2 ισχύει
ότι f (x1) > f (x2). Η f καλείται γνησίως μονότονη αν είναι γνησίως αύξουσα ή γνησίως φθίνουσα.
Τέλος η f καλείται 1− 1 αν για κάθε x1, x2 ∈ X με x1 , x2 έχουμε ότι f (x1) , f (x2). Είναι άμεσο ότι κάθε
γνησίως μονότονη συνάρτηση είναι 1−1. Το αντίστροφο δεν ισχύει γενικά. Για παράδειγμα η συνάρτηση

f : R → R με τύπο f (x) =

x αν x ≤ 0
1
x αν x > 0

είναι 1-1 αλλά δεν είναι γνησίως μονότονη. Παρατηρείστε

ότι η συνάρτηση αυτή δεν είναι συνεχής στο x0 = 0. Αυτό δεν είναι τυχαίο όπως φαίνεται από το
παρακάτω ϑεώρημα.

Θεώρημα 3.6.1. ´Εστω I διάστημα του R και f : I → R μια 1 − 1 συνάρτηση. Αν η f είναι συνεχής τότε
είναι γνησίως μονότονη.

Απόδειξη. ´Εστω a < b στο I. ´Εχουμε f (a) , f (b) και άρα είτε f (a) < f (b) είτε f (a) > f (b). Ας
υποθέσουμε ότι f (a) < f (b). Θα δείξουμε ότι για κάθε x < y στο I ισχύει ότι f (x) < f (y) δηλαδή η f
είναι γνησίως αύξουσα. Πράγματι έστω x < y στο I. Ορίζουμε την συνάρτηση g : [0, 1]→ R με τύπο

g(t) = f (tx + (1 − t)a) − f (ty + (1 − t)b)

για κάθε t ∈ [0, 1]. έχουμε ότι η g είναι καλά ορισμένη λόγω του ότι το I είναι διάστημα. Επιπλέον
είναι και συνεχής. Επειδή a < b και x < y έχουμε ότι tx + (1 − t)a < ty + (1 − t)b για κάθε t ∈ [0, 1].
Ειδικότερα, tx + (1 − t)a , ty + (1 − t)b για κάθε t ∈ [0, 1] και άρα αφού η f είναι 1-1, g(t) , 0 για όλα τα
t ∈ [0, 1]. ´Ομως η g είναι συνεχής και άρα διατηρεί πρόσημο. Επειδή g(0) = f (a) − f (b) < 0 έπεται ότι
και g(1) = f (x) − f (y) < 0⇔ f (x) < f (y). □

3.7 Συνέχεια μονότονων συναρτήσεων

Το επόμενο ϑεώρημα δίνει μια ικανή συνθήκη για την συνέχεια μονότονων συναρτήσεων.

Θεώρημα 3.7.1. ´Εστω ∅ , X ⊆ R και f : X → R μονότονη συνάρτηση. Αν το σύνολο τιμών f (X) =
{ f (x) : x ∈ X} της f αποτελεί ένα διάστημα του R τότε η f είναι συνεχής συνάρτηση.
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Απόδειξη. ´Εστω ότι η f : X → R είναι αύξουσα συνάρτηση. ´Εστω x0 ∈ X και έστω ε > 0. Θα βρούμε
δ > 0 τέτοιο ώστε | f (x) − f (x0)| < ε για κάθε x ∈ X με |x − x0| < δ. Θέτουμε J = f (X). Διακρίνουμε δύο
περιπτώσεις για το f (x0) και το J: Είτε το f (x0) είναι εσωτερικό σημείο του J είτε είναι άκρο του.

Ας υποθέσουμε ότι είναι εσωτερικό σημείο του J. Τότε υπάρχει 0 < ε′ < ε τέτοιο ώστε

(3.7.1) [ f (x0) − ε′, f (x0) + ε′] ⊆ J

Επειδή J = f (X) υπάρχουν x1, x2 ∈ X με

(3.7.2) f (x1) = f (x0) − ε′ και f (x2) = f (x0) + ε′

Αφού f (x1) < f (x0) < f (x2) και η f είναι αύξουσα ϑα πρέπει x1 < x0 < x2. Επιλέγουμε δ > 0 τέτοιο
ώστε

(3.7.3) (x0 − δ, x0 + δ) ⊆ (x1, x2)

Τότε για κάθε x ∈ X με |x − x0| < δ έχουμε | f (x) − f (x0)| < ε. Πράγματι,

x ∈ (x0 − δ, x0 + δ)
(3.7.3)
⇒ x1 < x < x2

⇒ f (x1) ≤ f (x) ≤ f (x2)
(3.7.2)
⇒ f (x0) − ε′ ≤ f (x) ≤ f (x0) + ε′

⇒ | f (x) − f (x0)| ≤ ε′ < ε

Αν το f (x0) είναι άκρο του J η απόδειξη είναι παρόμοια. Π.χ. αν είναι άνω άκρο τότε επιλέγουμε
0 < ε′ < ε με [ f (x0) − ε′, f (x0)] ⊆ J και εργαζόμαστε ομοίως. Αντίστοιχα αν το f (x0) είναι κάτω άκρο
του J. □

Παρατήρηση 3.7.2. Το Θεώρημα 3.7.1 δίνει μια ικανή συνθήκη για την συνέχεια μιας μονότονης συ-
νάρτησης. Η συνθήκη αυτή δεν είναι απαραίτητα αναγκαία αν η f δεν ορίζεται σε διάστημα. Για

παράδειγμα η συνάρτηση f : (0, 1) ∪ (1, 2) → R με f (x) =

 1 αν x ∈ (0, 1)

2 αν x ∈ (1, 2)
είναι αύξουσα και συνεχής

αλλά το πεδίο τιμών της είναι το δισύνολο {1, 2}.

Ως άμεση συνέπεια του Θεωρήματος 3.7.1 και του Θεωρήματος των Ενδιάμεσων Τιμών έχουμε το
επόμενο Κριτήριο Συνέχειας για μονότονες συναρτήσεις που ορίζονται σε διαστήματα του R.

Θεώρημα 3.7.3. ´Εστω I διάστημα του R και f : I → R μονότονη. Τότε η f είναι συνεχής αν και μόνο
αν το f (I) είναι διάστημα.

Απόδειξη. Αν η f είναι συνεχής τότε από το Θεώρημα Ενδιάμεσων Τιμών η f μεταφέρει διαστήματα
σε διαστήματα και άρα το f (I) είναι διάστημα. Αντίστροφα, αν το f (I) είναι διάστημα τότε από το
Θεώρημα 3.7.1 έχουμε ότι η f είναι συνεχής. □

Το Θεώρημα 3.7.1 έχει και κάποιες συνέπειες σχετικά με την συνέχεια της αντίστροφης συνάρτησης.

Θεώρημα 3.7.4. ´Εστω I διάστημα του R και f : I → R συνεχής και 1−1. Τότε η αντίστροφη συνάρτηση
f −1 είναι συνεχής.
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Απόδειξη. Από το Θεώρημα 3.6.1 η f είναι γνησίως μονότονη. Άρα και η αντίστροφη f −1 : f (I) → I
ϑα είναι γνησίως μονότονη. Επειδή το σύνολο τιμών της αντίστροφης είναι το I που είναι διάστημα
του R από το Θεώρημα 3.7.1 η f −1 είναι συνεχής. □

3.8 Ομοιόμορφη συνέχεια

Ο ορισμός της συνέχειας μιας συνάρτησης f : X → R σε ένα σημείο x0 ∈ X λέει ότι η f είναι συνεχής
αν για κάθε ε > 0 υπάρχει δ > 0 τέτοιο ώστε αν x ∈ X με |x − x0| < δ έχουμε ότι | f (x) − f (x0)| < ε.
Αν η f είναι συνεχής σε διάφορα σημεία x0 ∈ X τότε ο ϑετικός αριθμός δ γενικά ϑα εξαρτάται μόνο
από το ε αλλά και από το σημείο x0 ∈ X, δηλαδή ϑα είναι στην ουσία μια συνάρτηση δύο μεταβλητών
δ = δ(ε, x0). Στην περίπτωση όπου η f είναι συνεχής και το δ δεν εξαρτάται από τα σημεία x0 ∈ X
έχουμε μια ισχυρότερη έννοια που καλείται ομοιόμορφη συνέχεια. Ο ακριβής ορισμός είναι ο εξής.

Ορισμός 3.8.1. ´Εστω ∅ , X ⊆ R και f : X → R. Η f ϑα καλείται ομοιόμορφα συνεχής αν για κάθε
ε > 0 υπάρχει δ > 0 τέτοιο για κάθε x, y ∈ X με |x − y| < δ ισχύει ότι | f (x) − f (y)| < ε.

Παράδειγμα 3.8.2. Η συνάρτηση f (x) = x, x ∈ R είναι ομοιόμορφα συνεχής. Πράγματι για κάθε ε > 0
το δ = ε ικανοποιεί τον Ορισμό 3.8.1.

Πρόταση 3.8.3. ´Εστω f : X → R. Αν η f είναι ομοιόμορφα συνεχής τότε είναι συνεχής.

Απόδειξη. ´Εστω x0 ∈ X και έστω ε > 0. Από τον Ορισμό 3.8.1 υπάρχει δ > 0 τέτοιο ώστε αν x ∈ X με
|x − x0| < δ τότε | f (x) − f (x0)| < ε. Άρα η f είναι συνεχής στο x0. □

´Οπως ϑα δούμε παρακάτω το αντίστροφο της Πρότασης 3.8.3 δεν ισχύει, δηλαδή δεν είναι κάθε
συνεχής και ομοιόμορφα συνεχής.

Το επόμενο ϑεώρημα συνδέει τις ομοιόμορφα συνεχείς συναρτήσεις με τις ακολουθίες και είναι μια
αντίστοιχη Αρχή Μεταφοράς για ομοιόμορφα συνεχείς συναρτήσεις.

Θεώρημα 3.8.4. ´Εστω f : X → R. Τα επόμενα είναι ισοδύναμα.

(α) Η f είναι ομοιόμορφα συνεχής.

(β) Για κάθε ζεύγος (xn), (yn) ακολουθιών στο X με |xn − yn| → 0 ισχύει ότι | f (xn) − f (yn)| → 0.

Απόδειξη. (α) ⇒ (β): ´Εστω ότι η f είναι ομοιόμορφα συνεχής και έστω (xn), (yn) ακολουθίες στο X με
|xn − yn| → 0. Θα δείξουμε ότι | f (xn) − f (yn)| → 0. ´Εστω ε > 0. Αφού η f είναι ομοιόμορφα συνεχής
υπάρχει δ > 0 τέτοιο ώστε αν x, y ∈ X και |x− y| < δ τότε | f (x)− f (y)| < ε. Επειδή |xn − yn| → 0 υπάρχει
n0 ∈ N με |xn − yn| < δ για κάθε n ≥ n0. Άρα για κάθε n ≥ n0 ϑα έχουμε | f (xn) − f (yn)| < ε. Συνεπώς για
κάθε ε > 0 βρήκαμε n0 ∈ N με | f (xn) − f (yn)| < ε. Αυτό σημαίνει ότι | f (xn) − f (yn)| → 0.

(β) ⇒ (α): ´Εστω ότι για κάθε ζεύγος (xn), (yn) ακολουθιών στο X με |xn − yn| → 0 ισχύει ότι
| f (xn) − f (yn)| → 0. ´Εστω ότι η f δεν είναι ομοιόμορφα συνεχής. Συνεπώς υπάρχει ε > 0 τέτοιο ώστε
για οποιοδήποτε δ > 0 ϑα μπορούσαμε να βρούμε x, y ∈ X με |x − y| < δ αλλά | f (x) − f (y)| ≥ ε. Άρα για
οποιοδήποτε n ∈ N και για δ = 1

n ϑα υπάρχουν xn, yn ∈ X με |xn − yn| <
1
n και | f (xn) − f (yn)| ≥ ε. Αλλά

τότε για τις ακολουθίες (xn) και (yn) έχουμε |xn − yn| → 0 αλλά | f (xn) − f (yn)|↛ 0, άτοπο. □

Το Θεώρημα 3.8.4 χρησιμοποιείται πολλές φορές και για να δείξουμε ότι μια συνάρτηση δεν είναι
ομοιόμορφα συνεχής. Πράγματι από το Θεώρημα 3.8.4 έπεται ότι μια συνάρτηση f : X → R δεν είναι
ομοιόμορφα συνεχής αν και μόνο αν υπάρχουν δύο ακολουθίες (xn) και (yn) στο X με |xn − yn| → 0
αλλά | f (xn) − f (yn)|↛ 0.
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Παράδειγμα 3.8.5. Η συνάρτηση f (x) = x2, x ∈ R είναι συνεχής αλλά δεν είναι ομοιόμορφα συνεχής.
Πράγματι, έστω

xn = n +
1
n

και yn = n

για κάθε n ∈ N. Τότε |xn − yn| =
1
n
→ 0 αλλά

f (xn) − f (yn)| = |
(
n +

1
n

)2
− n2| = 2 +

1
n2 → 2

Θεώρημα 3.8.6. ´Εστω f : [a, b]→ R συνεχής συνάρτηση. Τότε η f είναι ομοιόμορφα συνεχής.

Απόδειξη. ´Εστω ότι η f δεν ήταν ομοιόμορφα συνεχής. Τότε, όπως είδαμε στην απόδειξη του Θεωρή-
ματος 3.8.4, αυτό σημαίνει ότι υπάρχει ένα ε > 0 και δύο ακολουθίες (xn), (yn) στο [a, b] με |xn−yn| → 0
αλλά | f (xn)− f (yn)| ≥ ε. Από το Θεώρημα Bolzano–Weirstrass, η (xn), ως φραγμένη ακολουθία, ϑα έχει
μια συγκλίνουσα υπακολουθία (xkn) και επειδή a ≤ xkn ≤ b ϑα πρέπει και a ≤ lim xkn ≤ b. Άρα το
όριο της (xkn) είναι ένα σημείο x0 ∈ [a, b]. Επειδή |xn − yn| → 0 έπεται ότι xkn − ykn → 0 και άρα και η
αντίστοιχη υπακολουθία (ykn) της (yn) συγκλίνει στο x0. Άρα οι ακολουθίες (xkn) και (ykn) περιέχονται
στο [a, b] και συγκλίνουν στο ίδιο όριο x0 ∈ [a, b]. Η f είναι συνεχής στο [a, b] και συνεπώς από την
Αρχή Μεταφοράς, οι ακολουθίες ( f (xkn) και ( f (ykn) συγκλίνουν στο f (x0). Αλλά τότε f (xkn)− f (ykn)→ 0
το οποίο είναι αδύνατον να συμβαίνει αφού | f (xn) − f (yn)| ≥ ε για όλα τα n ∈ N. □

Αν f : X → R και ∅ , Y ⊆ X η συνάρτηση g : Y → R όπου g(y) = f (y) για κάθε y ∈ Y καλείται
ο περιορισμός της f στο Y και συμβολίζεται με f |Y . Είναι εύκολο να δούμε ότι αν μια συνάρτηση
f : X → R είναι συνεχής ή ομοιόμορφα συνεχής τότε και κάθε περιορισμός της είναι συνεχής ή
αντίστοιχα ομοιόμορφα συνεχής. Από το Παράδειγμα 3.8.5 έχουμε ότι η συνεχής συνάρτηση f (x) = x2,
x ∈ R δεν είναι ομοιόμορφα συνεχής. Παρόλα αυτά το Θεώρημα 3.8.6 λέει ότι ο περιορισμός της f σε
οποιοδήποτε κλειστό και φραγμένο διάστημα είναι ομοιόμορφα συνεχής συνάρτηση. Γενικά έχουμε το
παρακάτω πόρισμα του Θεωρήματος 3.8.6.

Πόρισμα 3.8.7. ´Εστω f : R → R συνεχής συνάρτηση και έστω X ⊆ R μη κενό και φραγμένο. Τότε η
f |X είναι ομοιόμορφα συνεχής συνάρτηση.

Απόδειξη. ´Εστω a ≤ x ≤ b για κάθε x ∈ X. Από το Θεώρημα 3.8.6 ο περιορισμός της f στο [a, b]
είναι ομοιόμορφα συνεχής. Περιορίζοντας ακόμη μια φορά στο X ⊆ [a, b] παίρνουμε ότι η f |X ως
περιορισμός ομοιόμορφα συνεχούς είναι ομοιόμορφα συνεχής. □

Παρατήρηση 3.8.8. Γενικά δεν ισχύει ότι κάθε συνεχής συνάρτηση ορισμένη σε ένα φραγμένο υποσύ-

νολο του R είναι και ομοιόμορφα συνεχής. Για παράδειγμα η συνάρτηση f : (0, 1)→ R με f (x) =
1
x
για

κάθε x ∈ (0, 1) είναι συνεχής αλλά δεν είναι ομοιόμορφα συνεχής. Πράγματι, αν xn =
1
n

και yn =
2
n

τότε

|xn − yn| =
1
n
→ 0 αλλά | f (xn) − f (yn)| =

n
2
→ +∞.

3.9 Σημεία Συσσώρευσης και ´Ορια συναρτήσεων

Στα επόμενα με X ϑα συμβολίζουμε ένα μη κενό υποσύνολο του R. Επίσης για κάθε x0 ∈ R με X \{x0}

ϑα συμβολίζουμε το σύνολο όλων των x ∈ X με x , x0. Παρατηρείστε ότι αν x0 < X τότε X \ {x0} = X.
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3.9.1 ´Οριο συνάρτησης σε πραγματικό αριθμό

Ορισμός 3.9.1. (Σημείο συσσώρευσης) ´Ενα σημείο x0 ∈ R καλείται σημείο συσσώρευσης του X αν
για κάθε δ > 0 υπάρχει x ∈ X \ {x0} τέτοιο ώστε |x − x0| < δ.

Για παράδειγμα αν X = (0, 1) τότε κάθε x0 ∈ [0, 1] είναι σημείο συσσώρευσης του X.

Πρόταση 3.9.2. (Ακολουθιακός χαρακτηρισμός σημείων συσσώρευσης) ´Εστω x0 ∈ R. Τα επόμενα
είναι ισοδύναμα:

(α) Το x0 είναι σημείο συσσώρευσης του X.

(β) Υπάρχει ακολουθία (xn) στο X \ {x0} τέτοια ώστε xn → x0.

Απόδειξη. (α) ⇒ (β): ´Εστω ότι το x0 είναι σημείο συσσώρευσης του X. Από τον Ορισμό 3.9.1 ϑέτοντας
δ = 1/n έχουμε ότι για κάθε n ∈ N υπάρχει xn ∈ X \ {x0} με |xn − x0| <

1
n . Άρα για κάθε n ∈ N έχουμε

x0 −
1
n
< xn < x0 +

1
n

και συνεπώς από το κριτήριο των Ισοσσυγκλινουσών ακολουθιών η ακολουθία
(xn) που επιλέγεται με αυτόν τον τρόπο συγκλίνει στο x0.

(β)⇒(α): ´Εστω ότι υπάρχει ακολουθία (xn) στο X \ {x0} τέτοια ώστε xn → x0. Θα δείξουμε ότι το
x0 είναι σημείο συσσώρευσης του X, δηλαδή ικανοποιεί τον Ορισμό 3.9.1. Πράγματι έστω δ > 0. Αφού
xn → x0 υπάρχει n0 ∈ N με |xn − x0| < δ για κάθε n ≥ n0. Άρα για x = xn0 έχουμε x ∈ X \ {x0} και
|x − x0| < δ. □

Ορισμός 3.9.3. ´Εστω x0 ∈ R σημείο συσσώρευσης του X, f : X → R συνάρτηση και ℓ ∈ R. Θα λέμε
ότι το όριο της f στο x0 είναι το ℓ και ϑα γράφουμε limx→x0 f (x) = ℓ αν για κάθε ε > 0 υπάρχει δ > 0
τέτοιο ώστε για κάθε x ∈ X με 0 < |x − x0| < δ ισχύει ότι | f (x) − f (x0)| < ε.

Ορισμός 3.9.4. ´Εστω x0 ∈ R σημείο συσσώρευσης του X και f : X → R συνάρτηση.

(α) Θα λέμε ότι το όριο της f στο x0 είναι το +∞ και ϑα γράφουμε lim
x→x0

f (x) = +∞ αν για κάθε
N > 0 υπάρχει δ > 0 τέτοιο ώστε για κάθε x ∈ X με 0 < |x − x0| < δ ισχύει ότι f (x) > N.

(β) Θα λέμε ότι το όριο της f στο x0 είναι το −∞ και ϑα γράφουμε lim
x→x0

f (x) = −∞ αν για κάθε
N > 0 υπάρχει δ > 0 τέτοιο ώστε για κάθε x ∈ X με 0 < |x − x0| < δ ισχύει ότι f (x) < −N.

Για παράδειγμα lim
x→0

1
x
= +∞. Πράγματι για κάθε M > 0 μπορούμε να ϑέσουμε δ =

1
M

.
Το επόμενο ϑεώρημα είναι το ανάλογο της Αρχής Μεταφοράς για συνεχείς συναρτήσεις (Θεώρημα

3.3.1) και αποδεικνύεται με παρόμοιο τρόπο.

Θεώρημα 3.9.5. (Αρχή Μεταφοράς για όρια) ´Εστω x0 ∈ R σημείο συσσώρευσης του X, f : X → R
συνάρτηση και L ∈ R ή L = ±∞. Τα επόμενα είναι ισοδύναμα:

(α) lim
x→x0

f (x) = L.

(β) Για κάθε ακολουθία (xn) στο X \ {x0} με xn → x0 ισχύει ότι f (xn)→ L.

Πόρισμα 3.9.6. ´Εστω x0 ∈ R σημείο συσσώρευσης του X και f : X → R συνάρτηση. Αν υπάρχουν δύο
ακολουθίες (xn) και (yn) στο X \{x0} με xn → x0, yn → x0 αλλά limn f (xn) , limn f (yn) τότε το limx→x0 f (x)
δεν υπάρχει.
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Παράδειγμα 3.9.7. Δείξτε ότι το lim
x→0

cos
(
1
x

)
δεν υπάρχει.

Απόδειξη. ´Εστω xn =
1

2nπ
και yn =

1
2nπ + π

2
για κάθε n ∈ N. Τότε xn → 0, yn → 0 αλλά cos

(
1
xn

)
=

cos (2nπ) = 1 ενώ cos
(

1
yn

)
= cos

(
2nπ +

π

2

)
= 0 για κάθε n ∈ N. Συνεπώς lim

n
cos

(
1
xn

)
, lim

n
cos

(
1
yn

)
και

άρα το lim
x→0

cos
(
1
x

)
δεν υπάρχει. □

3.9.2 ´Οριο συνάρτησης στο άπειρο

Οι Ορισμοί 3.9.3 και 3.9.4 γενικεύονται για μη φραγμένα πεδία ορισμού ως εξής.

Ορισμός 3.9.8. ´Εστω f : X → R και ℓ ∈ R.

(α) Υποθέτουμε ότι το X δεν είναι άνω φραγμένο. Θα λέμε ότι το όριο της f στο +∞ είναι το ℓ

και ϑα γράφουμε lim
x→+∞

f (x) = ℓ αν για κάθε ε > 0 υπάρχει M > 0 τέτοιο ώστε για κάθε x ∈ X με
x > M ισχύει ότι | f (x) − ℓ| < ε.

(β) Υποθέτουμε ότι το X δεν είναι κάτω φραγμένο. Θα λέμε ότι το όριο της f στο −∞ είναι το ℓ

και ϑα γράφουμε lim
x→−∞

f (x) = ℓ αν για κάθε ε > 0 υπάρχει M > 0 τέτοιο ώστε για κάθε x ∈ X με
x < −M ισχύει ότι | f (x) − ℓ| < ε.

Ορισμός 3.9.9. ´Εστω X ⊆ R, f : X → R.

(α) Υποθέτουμε ότι το X δεν είναι άνω φραγμένο.

(i) Θα λέμε ότι το όριο της f στο +∞ είναι το +∞ και ϑα γράφουμε lim
x→+∞

f (x) = +∞ αν για
κάθε N > 0 υπάρχει M > 0 τέτοιο ώστε για κάθε x ∈ X με x > M ισχύει ότι f (x) > N.

(ii) Θα λέμε ότι το όριο της f στο +∞ είναι το −∞ και ϑα γράφουμε lim
x→+∞

f (x) = −∞ αν για
κάθε N > 0 υπάρχει M > 0 τέτοιο ώστε για κάθε x ∈ X με x > M ισχύει ότι f (x) < −N.

(β) Υποθέτουμε ότι το X δεν είναι κάτω φραγμένο.

(i) Θα λέμε ότι το όριο της f στο −∞ είναι το +∞ και ϑα γράφουμε lim
x→−∞

f (x) = +∞ αν για
κάθε N > 0 υπάρχει M > 0 τέτοιο ώστε για κάθε x ∈ X με x < −M ισχύει ότι f (x) > N.

(ii) Θα λέμε ότι το όριο της f στο −∞ είναι το −∞ και ϑα γράφουμε lim
x→−∞

f (x) = −∞ αν για
κάθε N > 0 υπάρχει M > 0 τέτοιο ώστε για κάθε x ∈ X με x < −M ισχύει ότι f (x) < −N.

Ορισμός 3.9.10. ´Εστω X ⊆ R. Αν το X δεν είναι άνω φραγμένο ϑα λέμε ότι το +∞ είναι σημείο
συσσώρευσης του X. Αντίστοιχα αν το X δεν είναι κάτω φραγμένο ϑα λέμε ότι το −∞ είναι σημείο
συσσώρευσης του X.

Το Θεώρημα 3.9.5 γενικεύεται τώρα ως εξής.

Θεώρημα 3.9.11. (Γενική Αρχή Μεταφοράς για ´Ορια) ´Εστω x0 (πεπερασμένο ή άπειρο) σημείο
συσσώρευσης του X, f : X → R συνάρτηση και L ∈ R ∪ {±∞}. Τα επόμενα είναι ισοδύναμα:

(α) lim
x→x0

f (x) = L.

(β) Για κάθε ακολουθία (xn) στο X \ {x0} με xn → x0 ισχύει ότι f (xn)→ L.
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Πόρισμα 3.9.12. ´Εστω f : [1,+∞) → R και έστω yn = f (n) για κάθε n ∈ N. Αν limx→+∞ f (x) = L
(πεπερασμένο ή άπειρο) τότε limn yn = L.

Απόδειξη. Προκύπτει από το Θεώρημα 3.9.11 για την ακολουθία (xn) με xn = n για κάθε n ∈ N. □

3.10 Συνέχεια και ´Ορια

Στα επόμενα με X ϑα συμβολίζουμε ένα μη κενό υποσύνολο του R.

Ορισμός 3.10.1. (Απομονωμένα σημεία) ´Ενα σημείο x0 ∈ X ϑα καλείται απομονωμένο σημείο του X
αν υπάρχει δ > 0 τέτοιο ώστε για κάθε x ∈ X \ {x0} ισχύει ότι |x − x0| ≥ δ.

Συγκρίνοντας τους Ορισμό 3.10.1 με τον Ορισμό 3.9.1 έχουμε την εξής πρόταση.

Πρόταση 3.10.2. ´Ενα σημείο x0 ∈ X είναι απομονωμένο σημείο του X αν και μόνο αν δεν είναι σημείο
συσσώρευσης του X.

Παράδειγμα 3.10.3. Το N ή το Z αποτελούνται από απομονωμένα σημεία. Πράγματι ο Ορισμός 3.10.1
ικανοποιείται για X = N ή X = Z για δ = 1.

Πρόταση 3.10.4. ´Εστω f : X → R.

(α) Αν το x0 είναι απομονωμένο σημείο του X τότε η f είναι συνεχής στο x0.

(β) Αν το x0 είναι σημείο συσσώρευσης του X τότε η f είναι συνεχής στο x0 αν και μόνο αν
limx→x0 f (x) = f (x0).

Απόδειξη. (α) ´Εστω x0 είναι απομονωμένο σημείο του X. Τότε κατά τετριμμένο τρόπο ικανοποιείται
ο ορισμός της συνέχειας στο x0. Πράγματι, έστω ε > 0. ´Εστω δ > 0 τέτοιο ώστε |x − x0| ≥ δ για κάθε
x ∈ X \ {x0}. Τότε για κάθε x ∈ X με |x − x0| < δ ισχύει ότι | f (x) − f (x0)| < ε αφού το μοναδικό σημείο
του X που απέχει από το x0 απόσταση γνήσια μικρότερη του δ είναι μόνο το x = x0.

(β) ´Εστω x0 ∈ X σημείο συσσώρευσης του X. ´Εχουμε ότι

η f είναι συνεχής στο x0 ⇔ (∀ε > 0)(∃δ > 0)(∀x ∈ X) |x − x0| < δ⇒ | f (x) − f (x0)| < δ

⇔ (∀ε > 0)(∃δ > 0)(∀x ∈ X) 0 < |x − x0| < δ⇒ | f (x) − f (x0)| < δ

⇔ lim
x→x0

f (x) = f (x0)

□

Πόρισμα 3.10.5. Κάθε συνάρτηση f : Z→ R είναι συνεχής.

Απόδειξη. ´Εστω x0 ∈ Z. ´Οπως παρατηρήσαμε στο Παράδειγμα 3.10.3 το x0 είναι απομονωμένο σημείο
του Z. Από την Πρόταση 3.10.4 έχουμε ότι η f είναι συνεχής στο x0. □

3.11 Πλευρικά όρια

Ορισμός 3.11.1. ´Εστω X ⊆ R και x0 ∈ R.

(α) Το x0 ϑα καλείται δεξιό σημείο συσσώρευσης του X αν για κάθε δ > 0 υπάρχει x ∈ X \ {x0}

τέτοιο ώστε x > x0 και x0 < x < x0 + δ.
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(β) Το x0 ϑα καλείται αριστερό σημείο συσσώρευσης του X αν για κάθε δ > 0 υπάρχει x ∈ X \ {x0}

τέτοιο ώστε x0 − δ < x < x0.

(γ) Το x0 ϑα καλείται αμφίπλευρο σημείο συσσώρευσης του X αν είναι και δεξί και αριστερό
σημείο συσσώρευσης του X.

Παράδειγμα 3.11.2. Αν X = (a, b) τότε το σημείο x0 = a είναι δεξιό σημείο συσσώρευσης του X το
x0 = b είναι αριστερό και κάθε x0 ∈ (a, b) είναι αμφίπλευρο.

Είναι εύκολο να δούμε ότι κάθε σημείο συσσώρευσης ενός υποσυνόλου του R είναι είτε δεξιό είτε
αριστερό είτε αμφίπλευρο.

Ορισμός 3.11.3. (Πεπερασμένα Πλευρικά Όρια) ´Εστω X ⊆ R μη κενό, f : X → R, x0 ∈ R σημείο
συσσώρευσης και ℓ ∈ R.

(α) ´Εστω ότι το x0 είναι δεξιό σημείο συσσώρευσης του X. Λέμε ότι το δεξιό όριο της f στο x0 είναι
το ℓ και γράφουμε lim

x→x+0
f (x) = ℓ αν για κάθε ε > 0 υπάρχει δ > 0 τέτοιο ώστε για κάθε x ∈ X με

x0 < x < x0 + δ ισχύει ότι | f (x) − ℓ| < ε.

(β) ´Εστω ότι το x0 είναι αριστερό σημείο συσσώρευσης του X. Λέμε ότι το αριστερό όριο της f στο
x0 είναι το ℓ και γράφουμε lim

x→x−0
f (x) = ℓ αν για κάθε ε > 0 υπάρχει δ > 0 τέτοιο ώστε για κάθε

x ∈ X με x0 − δ < x < x0 ισχύει ότι | f (x) − ℓ| < ε.

Ορισμός 3.11.4. (Άπειρα Πλευρικά Όρια) ´Εστω X ⊆ R μη κενό, f : X → R και x0 ∈ R σημείο
συσσώρευσης.

(α) ´Εστω ότι το x0 είναι δεξιό σημείο συσσώρευσης του X.

(α1) Λέμε ότι το δεξιό όριο της f στο x0 είναι το +∞ και γράφουμε lim
x→x+0

f (x) = +∞ αν για κάθε

N > 0 υπάρχει δ > 0 τέτοιο ώστε για κάθε x ∈ X με x0 < x < x0 + δ ισχύει ότι f (x) > N.

(α2) Λέμε ότι το δεξιό όριο της f στο x0 είναι το −∞ και γράφουμε lim
x→x+0

f (x) = −∞ αν για κάθε

N > 0 υπάρχει δ > 0 τέτοιο ώστε για κάθε x ∈ X με x0 < x < x0 + δ ισχύει ότι f (x) < −N.

(β) ´Εστω ότι το x0 είναι αριστερό σημείο συσσώρευσης του X.

(β1) Λέμε ότι το αριστερό όριο της f στο x0 είναι το +∞ και γράφουμε lim
x→x−0

f (x) = +∞ αν για

κάθε N > 0 υπάρχει δ > 0 τέτοιο ώστε για κάθε x ∈ X με x0 − δ < x < x0 ισχύει ότι f (x) > N.

(β2) Λέμε ότι το αριστερό όριο της f στο x0 είναι το −∞ και γράφουμε lim
x→x−0

f (x) = −∞ αν για

κάθε N > 0 υπάρχει δ > 0 τέτοιο ώστε για κάθε x ∈ X με x0−δ < x < x0 ισχύει ότι f (x) < −N.

Η επόμενη πρόταση αποδεικνύεται άμεσα από τους ορισμούς

Πρόταση 3.11.5. ´Εστω f : X → R και x0 ∈ R σημείο συσσώρευσης του X και L ∈ R ∪ {−∞,+∞}.

(α) Αν το x0 είναι δεξιό σημείο συσσώρευσης αλλά δεν είναι αριστερό τότε limx→x0 f (x) = L αν και
μόνο αν limx→x+0

f (x) = L.

(β) Αν το x0 είναι αριστερό σημείο συσσώρευσης αλλά δεν είναι δεξιό τότε limx→x0 f (x) = L αν και
μόνο αν limx→x−0

f (x) = L.
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(γ) Αν το x0 είναι αμφίπλευρο σημείο συσσώρευσης τότε limx→x0 f (x) = L αν και μόνο αν limx→x+0
f (x) =

limx→x−0
f (x) = L.

Πόρισμα 3.11.6. ´Εστω f : X → R και x0 ∈ R αμφίπλευρο σημείο συσσώρευσης του X. Το limx→x0 f (x)
δεν υπάρχει αν και μόνο αν είτε (1) και τα δύο πλευρικά όρια υπάρχουν αλλά είναι διαφορετικά μεταξύ
τους, είτε (2) ένα τουλάχιστον από τα πλευρικά όρια δεν υπάρχει.

Ορισμός 3.11.7. (Είδη ασυνεχειών) ´Εστω f : X → R και έστω x0 ∈ X σημείο ασυνέχειας της f .

(i) Θα λέμε ότι η f παρουσιάζει στο x0 ασυνέχεια α´ είδους αν υπάρχει το limx→x0 f (x) αλλά f (x0) ,
limx→x0 f (x).

(ii) Θα λέμε ότι η f παρουσιάζει στο x0 ασυνέχεια β´ είδους αν και τα δύο πλευρικά όρια limx→x−0
f (x)

και limx→x+0
f (x) υπάρχουν αλλά είναι διαφορετικά μεταξύ τους.

(iii) Θα λέμε ότι η f παρουσιάζει στο x0 ασυνέχεια γ´ είδους αν ένα τουλάχιστον από τα πλευρικά
όρια limx→x−0

f (x), limx→x+0
f (x) δεν υπάρχει.





ΚΕΦΑΛΑΙΟ 4

Παράγωγος

4.1 Ορισμός και βασικές ιδιότητες

Ορισμός 4.1.1. ´Εστω I διάστημα του R, f : I → R και x0 ∈ I. Το όριο lim
x→x0

f (x) − f (x0)
x − x0

αν υπάρχει

(πεπερασμένο ή άπειρο) ϑα καλείται παράγωγος f στο x0 και ϑα συμβολίζεται με f ′(x0). Η συνάρτηση
f ϑα καλείταιπαραγωγίσιμη στο x0 αν η παράγωγος f ′(x0) της f στο x0 υπάρχει και είναι πραγματικός
αριθμός.

Θεώρημα 4.1.2. Αν η f : I → R είναι παραγωγίσιμη στο x0 ∈ I τότε είναι και συνεχής στο x0.

Απόδειξη. ´Εχουμε

lim
x→x0

( f (x) − f (x0)) = lim
x→x0

(
f (x) − f (x0)

x − x0
· (x − x0)

)
= lim

x→x0

f (x) − f (x0)
x − x0

· lim
x→x0

(x − x0) = f ′(x0) · 0 = 0

□

Παρατήρηση 4.1.3. Το αντίστροφο του Θεωρήματος 4.1.2 δεν ισχύει. Π.χ. η συνάρτηση f (x) = |x| είναι

συνεχής αλλά δεν είναι παραγωγίσιμη στο x0 = 0. Πράγματι, το lim
x→0

f (x) − f (0)
x − 0

δεν υπάρχει αφού

lim
x→0+

f (x) − f (0)
x − 0

= lim
x→0+

x
x
= 1

ενώ
lim

x→0−
f (x) − f (0)

x − 0
= lim

x→0−
−x
x
= −1

Θεώρημα 4.1.4. (Πράξεις και Παράγωγος) ´Εστω I διάστημα του R, x0 ∈ I και f , g : I → R παραγω-
γίσιμες στο x0 ∈ I.

(α) Η συνάρτηση f + g είναι παραγωγίσιμη στο x0 και ισχύει ότι

( f + g)′(x0) = f ′(x0) + g′(x0)
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(β) Για κάθε λ ∈ R η συνάρτηση λ f είναι παραγωγίσιμη στο x0 και ισχύει ότι

(λ f )′(x0) = λ f ′(x0)

(γ) Η συνάρτηση f g είναι παραγωγίσιμη στο x0 και ισχύει ότι

( f g)′(x0) = f ′(x0)g(x0) + f (x0)g′(x0)

(δ) Αν g(x) , 0 για κάθε x ∈ I και g′(x0) , 0 τότε η συνάρτηση
f
g

είναι παραγωγίσιμη στο x0 και

ισχύει ότι (
f
g

)′
(x0) =

f ′(x0)g(x0) − f (x0)g′(x0)
g2(x0)

4.2 Κανόνας Αλυσίδας

Θεώρημα 4.2.1. ´Εστω I, J διαστήματα του R, g : J → I και f : I → R. ´Εστω x0 ∈ J. Αν η g είναι
παραγωγίσιμη στο x0 και η f είναι παραγωγίσιμη στο g(x0) τότε η f ◦ g είναι παραγωγίσιμη στο x0 και
ισχύει ότι ( f ◦ g)′(x0) = f ′(g(x0))g′(x0).

Απόδειξη. Ορίζουμε την συνάρτηση φ : J → R όπου

φ(x) =


g(x)−g(x0)

x−x0
αν x , x0

g′(x0) αν x = x0

Ομοίως ϑέτουμε y0 = g(x0) και ορίζουμε την συνάρτηση ψ : I → R όπου

ψ(y) =


f (y)− f (y0)

y−y0
αν y , y0

g′(y0) αν y = y0

Παρατηρούμε ότι για κάθε x ∈ I,
g(x) − g(x0) = φ(x)(x − x0)

Επιπλέον η φ είναι συνεχής στο x0 αφού

lim
x→x0

φ(x) = lim
x→x0

g(x) − g(x0)
x − x0

= g′(x0) = φ(x0)

Αντίστοιχα, για κάθε y ∈ J,
f (y) − f (y0) = ψ(y)(y − y0)

και η ψ είναι συνεχής στο y0 = g(x0), αφού

lim
y→y0

ψ(y) = lim
y→y0

f (y) − f (y0)
y − y0

= f ′(y0) = ψ(y0)

Επειδή και η g είναι συνεχής στο x0 έπεται ότι και η σύνθεση ψ ◦ g ϑα είναι συνεχής στο x0 δηλαδή

lim
x→x0

ψ(g(x)) = ψ(g(x0)) = f ′(g(x0))
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Συνεπώς, για κάθε x ∈ I,

f (g(x)) − f (g(x0)) = ψ(g(x))(g(x) − g(x0))

= ψ(g(x))φ(x)(x − x0)

οπότε

( f ◦ g)′(x0) = lim
x→x0

f (g(x)) − f (g(x0)
x − x0

= lim
x→x0

(ψ(g(x)) · φ(x))

= lim
x→x0

ψ(g(x)) · lim
x→x0

φ(x)

= f ′(g(x0))g′(x0)

□

4.3 Το Θεώρημα των Ενδιαμέσων Τιμών για παραγώγους

Στο Κεφάλαιο 3 είδαμε ότι κάθε συνεχής συνάρτηση ορισμένη σε ένα διάστημα του R έξει την ιδιότητα
των ενδιάμεσων τιμών (Θεώρημα 3.5.4). Το επόμενο ϑεώρημα λέει ότι η συνάρτηση της παραγώγου μιας
σσυνάρτησης έχει πάντα την ιδιότητα των ενδιάμεσων τιμών παρόλο που μπορεί να μην είναι συνεχής.

Θεώρημα 4.3.1. (Darboux) ´Εστω I διάστημα του R και έστω f : I → R παραγωγίσιμη συνάρτηση. Τότε
η f ′ (ασχέτως αν είναι συνεχής ή όχι) ικανοποιεί την ιδιότητα των Ενδιάμεσων Τιμών, δηλαδή για κάθε
a < b στο I με f ′(a) < f ′(b) (αντ. f ′(a) > f ′(b)) και για κάθε λ ∈ ( f ′(a), f ′(b)) (αντ. λ ∈ ( f ′(b), f ′(a)))
υπάρχει ξ ∈ (a, b) με f ′(ξ) = λ.

Απόδειξη. ´Εστω a < b στο I με f ′(a) < f ′(b) και έστω λ ∈ ( f ′(a), f ′(b)). Ορίζουμε g : [a, b] → R
με g(x) = f (x) − λx για κάθε x ∈ [a, b]. Η g είναι παραγωγίσιμη και ισχύει ότι g′(x) = f ′(x) − λ για
κάθε x ∈ [a, b]. Από την υπόθεση f ′(a) < λ < f ′(b) έχουμε g′(a) < 0 < g′(b) και άρα αρκεί να βρούμε
ξ ∈ (a, b) με g′(ξ) = 0.

´Εστω προς απαγωγή σε άτοπο ότι g′(x) , 0 για κάθε x ∈ (a, b). Τότε από το Θεώρημα Rolle έπεται
ότι η g είναι 1-1 και άρα ως συνεχής σε διάστημα του R είτε είναι γνησίως αύξουσα είτε είναι γνησίως
φθίνουσα (Θεώρημα 3.6.1). Αν ήταν γνησίως αύξουσα τότε για κάθε x ∈ (a, b) ϑα είχαμε g(a) < g(x) και
άρα

g(x) − g(a)
x − a

> 0⇒ g′(a) = lim
x→a+

g(x) − g(a)
x − a

≥ 0

άτοπο. Αντίστοιχα αν η g ήταν γνησίως φθίνουσα τότε για κάθε x ∈ (a, b), ϑα είχαμε g(x) > g(b) και
άρα

g(x) − g(b)
x − b

< 0⇒ g′(b) = lim
x→b−

g(x) − g(b)
x − b

≤ 0

και πάλι άτοπο.
Καταλήξαμε σε άτοπο επειδή υποθέσαμε ότι g′(x) , 0 για κάθε x ∈ (a, b). Άρα η υπόθεση αυτή

είναι λανθασμένη και συνεπώς υπάρχει ξ ∈ (a, b) με g′(ξ) = 0 ή ισοδύναμα f ′(ξ) = λ. □
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4.4 Παράγωγος Αντίστροφης Συνάρτησης

Θεώρημα 4.4.1. ´Εστω I διάστημα του R, f : I → R συνεχής και 1 − 1. ´Εστω x0 ∈ I τέτοιο ώστε η f
είναι παραγωγίσιμη στο x0 με f ′(x0) , 0. Τότε η f −1 είναι παραγωγίσιμη στο y0 = f (x0) και ισχύει ότι

(
f −1

)′
(y0) =

1
f ′(x0)

Απόδειξη. Η f −1 : J → I είναι συνεχής, όπου J = f (I) (Θεώρημα 3.7.4). ´Εστω (yn) ακολουθία στο
J \ {y0} με yn → y0. ´Εστω επίσης (xn) η ακολουθία στο I \ {x0} με xn = f −1(yn) για κάθε n ∈ N. Επειδή
η f −1 είναι συνεχής, από Αρχή Μεταφοράς για συνεχείς συναρτήσεις έπεται ότι xn → x0. Άρα, από
Αρχή Μεταφοράς για όρια (Θεώρημα 3.9.5) έχουμε ότι

lim
n→+∞

f (xn) − f (x0)
xn − x0

= lim
x→x0

f (x) − f (x0)
x − x0

= f ′(x0)

και συνεπώς,

f −1(yn) − f −1(y0)
yn − y0

=
xn − x0

f (xn) − f (x0)
=

1
f (xn)− f (x0)

xn−x0

→
1

f ′(x0)

Άρα για οποιαδήποτε ακολουθία (yn) στο J \ {y0} με yn → y0 ισχύει ότι
f −1(yn) − f −1(y0)

yn − y0
→

1
f ′(x0)

.

Πάλι τώρα από την Αρχή Μεταφοράς για όρια έχουμε
(

f −1
)′

(y0) = lim
y→y0

f −1(y) − f −1(y0)
y − y0

=
1

f ′(x0)
. □

4.5 Το Θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού

Το Θεώρημα Μέσης Τιμής είναι ένα από τα βασικότερα ϑεωρήματα στην Ανάλυση. Στηρίζεται στο
παρακάτω αποτέλεσμα γνωστό και ως Θεώρημα Fermat.

Θεώρημα 4.5.1. (Fermat) ´Εστω f : I → R και έστω x0 ∈ I εσωτερικό σημείο του I το οποίο είναι τοπικό
ακρότατο της f . Αν η f είναι παραγωγίσιμη στο x0 τότε f ′(x0) = 0.

Απόδειξη. Επειδή το x0 είναι εσωτερικό σημείο του I μπορούμε να χρησιμοποιήσουμε πλευρικά όρια

για την παράγωγο. Συγκεκριμμένα, αφού το όριο f ′(x0) = lim
x→x0

f (x) − f (x0)
x − x0

υπάρχει ϑα υπάρχουν και

τα πλευρικά όρια lim
x→x+0

f (x) − f (x0)
x − x0

και lim
x→x+0

f (x) − f (x0)
x − x0

και ϑα είναι ίσα με την f ′(x0). Ας υποθέσουμε

ότι το x0 είναι τοπικό μέγιστο, δηλαδή υπάρχει δ > 0 τέτοιο ώστε για κάθε x ∈ I με |x−x0| < δ ισχύει ότι
f (x0) ≥ f (x). μπορούμε να υποθέσουμε μικραίνοντας το δ αν χρειάζεται ότι το διάστημα (x0 − δ, x0 + δ)

περιέχεται όλο στο I. Ειδικότερα, για x ∈ X με 0 < x < x0 + δ ϑα έχουμε ότι
f (x) − f (x0)

x − x0
≥ 0 και άρα

f ′(x0) = lim
x→x+0

f (x) − f (x0)
x − x0

≥ 0

Από την άλλη μεριά, για x ∈ I με x0 − δ < x < x0 ϑα έχουμε ότι
f (x) − f (x0)

x − x0
≤ 0 οπότε

f ′(x0) = lim
x→x−0

f (x) − f (x0)
x − x0

≤ 0
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Από τα παραπάνω έπεται ότι f ′(x0) = 0. □

Θεώρημα 4.5.2. (Θεώρημα Rolle) ´Εστω f : [a, b]→ R συνεχής στο [a, b] και παραγωγίσιμη στο (a, b).
Αν f (a) = f (b) τότε υπάρχει ξ ∈ (a, b) με f ′(ξ) = 0.

Απόδειξη. Η f ως συνεχής σε κλειστό φραγμένο διάστημα λαμβάνει μέγιστη και ελάχιστη τιμή. ´Εστω
M = max{ f (x) : x ∈ [a, b]} και m = min{ f (x) : x ∈ [a, b]}. Διακρίνουμε δύο περιπτώσεισ:

1) M = m. Τότε, αφού m ≤ f (x) ≤ M έπεται ότι η f είναι σταθερή και άρα f ′(x) = 0 για κάθε
x ∈ (a, b).

2) M > m. Τότε αφού f (a) = f (b) μια τουλάχιστον από τις ακρότατες τιμές M,m ϑα λαμβάνεται
από την f σε κάποιο σημείο ξ ∈ [a, b] με ξ , a και ξ , b. Άρα υπάρχει ξ ∈ (a, b) που είναι ολικό (άρα
και τοπικό) ακρότατο της f , οπότε από το Θεώρημα 4.5.1, f ′(ξ) = 0. □

Πόρισμα 4.5.3. ´Εστω I διάστημα του R και f : I → R συνεχής στο I και παραγωγίσιμη στο εσωτερικό
του I. Αν f ′(x) , 0 για κάθε x εσωτερικό σημείο του I τότε η f είναι γνησίως μονότονη.

Απόδειξη. ´Εστω a < b στο I. Είναι [a, b] ⊆ I και άρα η f είναι συνεχής στο [a, b]. Ομοίως είναι εύκολο
να δούμε ότι το (a, b) περιέχεται στο εσωτερικό του I και άρα η f είναι παραγωγίσιμη στο (a, b). Αν
f (a) = f (b) τότε από το Θεώρημα Rolle ϑα υπήρχε ξ ∈ (a, b) με f ′(ξ) = 0 άτοπο. Άρα η f είναι 1 − 1
στο I. Από το Θεώρημα 3.6.1 η f είναι γνησίως μονότονη. □

Θεώρημα 4.5.4. (Θεώρημα Μέσης Τιμής) ´Εστω f : [a, b] → R συνεχής στο [a, b] και παραγωγίσιμη
στο (a, b). Τότε υπάρχει ξ ∈ (a, b) τέτοιο ώστε

f ′(ξ) =
f (b) − f (a)

b − a

Απόδειξη. ´Εστω λ =
f (b) − f (a)

b − a
. Ορίζουμε την συνάρτηση g : [a, b]→ R με τύπο g(x) = f (x) − f (a) −

λ(x−a), για κάθε x ∈ [a, b]. Η g είναι συνεχής στο [a, b] και παραγωγίσιμη στο (a, b) (με g′(x) = f ′(x)−λ
για κάθε x ∈ (a, b)). Επειδή g(a) = 0 = g(b) από το Θεώρημα Rolle έπεται ότι υπάρχει ξ ∈ (a, b) με

g′(ξ) = 0. Επειδή g′(ξ) = f ′(ξ) − λ έπεται ότι f ′(ξ) = λ =
f (b) − f (a)

b − a
. □

Πόρισμα 4.5.5. ´Εστω f : [a, b] → R συνεχής στο [a, b] και παραγωγίσιμη στο (a, b). Τότε η f είναι
αύξουσα (αντίστοιχα φθίνουσα) αν και μόνο αν f ′(x) ≥ 0 (αντ. f ′(x) ≤ 0) για κάθε x ∈ (a, b).

Απόδειξη. ´Εστω ότι η f είναι αύξουσα (αν f φθίνουσα εργαζόμαστε ομοίως). ´Εστω x ∈ (a, b). Τότε

για κάθε h ∈ R με x+h ∈ [a, b] έχουμε,
f (x + h) − f (x)

h
≥ 0 και συνεπώς, f ′(x) = lim

h→0

f (x + h) − f (x)
h

≥ 0.
Αντίστροφα, έστω ότι f ′(x) ≥ 0 για κάθε x ∈ (a, b) και έστω a ≤ x1 < x2 ≤ b. Από το Θεώρημα Μέσης

Τιμής έπεται ότι υπάρχει ξ ∈ (x1, x2) με
f (x2) − f (x1)

x2 − x1
= f ′(ξ) ≥ 0 και άρα f (x1) ≤ f (x2). □

Πόρισμα 4.5.6. ´Εστω f : [a, b] → R συνεχής στο [a, b] και παραγωγίσιμη στο (a, b). Αν η f ′ είναι
φραγμένη τότε η f είναι συνάρτηση Lipschitz. Ειδικότερα, αν | f ′(x)| ≤ K για κάθε x ∈ (a, b) τότε

| f (y) − f (x)| ≤ K|y − x|

για κάθε x, y ∈ [a, b].



60 · Παράγωγος

Απόδειξη. ´Εστω x, y ∈ [a, b]. Χωρίς βλάβη της γενικότητας υποθέτουμε ότι x < y. Από το Θεώρημα
Μέσης Τιμής υπάρχει ξ ∈ (x, y) τέτοιο ώστε

f (y) − f (x)
y − x

= f ′(ξ)⇒ | f (y) − f (x)| = | f ′(ξ)| · |y − x| ≤ K|y − x|

□

4.6 Θεώρημα Μέσης Τιμής του Cauchy

Μια γενίκευση του Θεωρήματος Μέσης Τιμής είναι το παρακάτω ϑεώρημα.

Θεώρημα 4.6.1. ´Εστω f , g : [a, b] → R συνεχείς στο [a, b] και παραγωγίσιμες στο (a, b). Αν g′(x) , 0
για κάθε x ∈ (a, b) τότε g(b) , g(a) και υπάρχει ξ ∈ (a, b) τέτοιο ώστε

f ′(ξ)
g′(ξ)

=
f (b) − f (a)
g(b) − g(a)

Απόδειξη. ´Εχουμε ότι g(a) , g(b) διότι διαφορετικά από Θεώρημα Rolle ϑα υπήρχε ξ ∈ (a, b) με

g′(ξ) = 0, άτοπο. Θέτουμε λ =
f (b) − f (a)
g(b) − g(a)

και ορίζουμε την συνάρτηση h : [a, b] → R με τύπο

h(x) = f (x) − f (a) − λ(g(x) − g(a)), για κάθε x ∈ [a, b]. ´Εχουμε ότι η h είναι συνεχής στο [a, b] και
παραγωγίσιμη στο (a, b) με h′(x) = f ′(x) − λg′(x) για κάθε x ∈ (a, b). Επειδή h(a) = 0 = h(b) από το
Θεώρημα Rolle έπεται ότι υπάρχει ξ ∈ (a, b) με h′(ξ) = 0. Επειδή h′(ξ) = f ′(ξ) − λg′(ξ) έπεται ότι
f ′(ξ)
g′(ξ)

= λ =
f (b) − f (a)
g(b) − g(a)

. □

Παρατήρηση 4.6.2. Παρατηρείστε ότι το Θεώρημα 4.6.1 δίνει το κλασικό Θεώρηαμ Μέσης Τιμής για
g(x) = x. Επίσης σημειώνουμε εδώ ότι γενικά δεν ισχύει ότι για δύο παραγωγίσιμες συναρτήσεις
f , g : [a, b] → R υπάρχει κοινό ξ ∈ (a, b) με f (b) − f (a) = f ′(ξ)(b − a) και g(b) − g(a) = g′(ξ)(b − a). Π.χ.
αν f , g : [0, 1] → R, f (x) = x2 και g(x) = x3 τότε f (1) − f (0) = 1 = 2ξ ⇒ ξ = 1/2 ενώ g(1) − g(0) = 1 =
3ξ2 ⇒ ξ = 1/

√
3. Παρόλα αυτά, το Θεώρημα 4.6.1 λέει ότι υπάρχει ξ ∈ (0, 1) τέτοιο ώστε

f (1) − f (0)
g(1) − g(0)

=
f ′(ξ)
g′(ξ)

⇔ 1 =
2ξ
3ξ2
⇔ ξ =

2
3

4.7 Αντίστροφες τριγωνομετρικές συναρτήσεις

4.7.1 Η συνάρτηση τόξο εφαπτομένης

´Εστω η συνάρτηση
f (x) = tan x, για κάθε x ∈

(
−
π

2
,
π

2

)
. Ισχύει ότι

f ′(x) = f 2(x) + 1

για κάθε x ∈
(
−
π

2
,
π

2

)
. Πράγματι, έστω x ∈

(
−
π

2
,
π

2

)
. ´Εχουμε f ′(x) =

(
sin x
cos x

)′
=

(sin x)′ cos x − sin x(cos x)′

cos2 x
=

cos2 x + sin2 x
cos2 x

=
sin2 x
cos2 x

+
cos2 x
cos2 x

= tan2 x + 1 = f 2(x) + 1.

Επίσης η f είναι γνησίως αύξουσα και επί. Πράγματι, f ′(x) = f 2(x) + 1 > 0 και άρα η f είναι
γνησίως αύξουσα. Επίσης, limx→ π

2
tan x = +∞ και limx→− π2 tan x = −∞. Άρα η f λαμβάνει απεριόριστα
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μεγάλες κατά μέτρο ϑετικές και αρνητικές τιμές. Άρα για κάθε y ∈ R μπορούμε να βρούμε f (x1) < 0
και f (x2) > 0 με f (x1) < y < f (x2). Επειδή τώρα η f είναι συνεχής, από το Θεώρημα Ενδιάμεσων Τιμών
υπάρχει x μεταξύ των x1 και x2 με f (x) = y.

Η f −1(x) συμβολίζεται με arctan x. Παρατηρείστε ότι η arctan x είναι μια γνησίως αύξουσα συνάρτηση
από όλο το R επί του ανοικτού φραγμένου διαστήματος

(
−
π

2
,
π

2

)
. Η συνάρτηση arccos x αντιστοιχεί

σε κάθε x ∈ [−1, 1] το μοναδικό y ∈ [0, π] με cos y = x. Πχ. arccos 0 = π/2, arccos(−1) = π, arccos 1 = 0,

arccos
 √2

2

 = π

4
.

Πρόταση 4.7.1. Για κάθε y ∈ R ισχύει (arctan y)′ =
1

y2 + 1
.

Απόδειξη. ´Εστω y ∈ R και έστω x ∈
(
−
π

2
,
π

2

)
τέτοιο ώστε y = f (x) = tan x. ´Εχουμε

(
f −1

)′
(y) =

1
f ′(x)

=
1

f 2(x) + 1
=

1
y2 + 1

□

4.7.2 Η συνάρτηση τόξο συνημιτόνου.

´Εστω
f (x) = cos x, x ∈ [0, π]

Η f είναι συνεχής, γνησίως φθίνουσα και με σύνολο τιμών το [−1, 1]. Άρα ορίζεται η αντίστροφή της
που την συμβολίζουμε με arccos x, (διαβάζεται “τόξο συνημιτόνου x”). Η συνάρτηση arccos x έχει πεδίο
ορισμού το [−1, 1], σύνολο τιμών το [0, π], είναι συνεχής και γνησίως φθίνουσα.

Η συνάρτηση arccos x αντιστοιχεί σε κάθε x ∈ [−1, 1] το μοναδικό y ∈ [0, π] με cos y = x. Πχ.

arccos 0 = π/2, arccos(−1) = π, arccos 1 = 0, arccos
 √2

2

 = π

4
.

Πρόταση 4.7.2. Για κάθε y ∈ (−1, 1) ισχύει ότι (arccos y)′ = −
1√

1 − y2
.

Απόδειξη. ´Εστω y ∈ (−1, 1) και έστω x ∈ (0, π) με y = f (x) = cos x. ´Εχουμε −1 < sin x < 0 οπότε

f ′(x) = (cos x)′ = sin x = −
√

1 − cos2 x , 0

και άρα από το Θεώρημα 4.4.1 παίρνουμε

(
f −1

)′
(y) =

1
f ′(x)

= −
1

√
1 − cos2 x

= −
1√

1 − y2

□

4.7.3 Η συνάρτηση τόξο ημιτόνου.

´Εστω
f (x) = sin x, x ∈

[
−
π

2
,
π

2

]
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Η f είναι συνεχής, γνησίως αύξουσα και με σύνολο τιμών το [−1, 1]. Άρα ορίζεται η αντίστροφή της
που την συμβολίζουμε με arcsin x. Η συνάρτηση arcsin x έχει πεδίο ορισμού το [−1, 1], σύνολο τιμών το[
−
π

2
,
π

2

]
, είναι συνεχής και γνησίως αύξουσα.

Η συνάρτηση arcsin x αντιστοιχεί σε κάθε x ∈ [−1, 1] το μοναδικό τόξο y ∈
[
−
π

2
,
π

2

]
με sin y = x. Πχ.

arcsin 0 = 0, arcsin(−1) = −
π

2
, arcsin 1 =

π

2
, arcsin

 √2
2

 = π

4
.

Πρόταση 4.7.3. Για κάθε y ∈ (−1, 1) ισχύει ότι (arcsin y)′ =
1√

1 − y2
.

Απόδειξη. ´Εστω y ∈ (−1, 1) και x ∈
(
−
π

2
,
π

2

)
με f (x) = sin x = y. ´Εχουμε 0 < cos x < 1 και άρα

f ′(x) = cos x =
√

1 − sin2 x , 0

Άρα από το Θεώρημα 4.4.1, παίρνουμε

(
f −1

)′
(y) =

1
f ′(x)

=
1√

1 − sin2 x
=

1√
1 − y2

□

4.8 Οι υπερβολικές τριγωνομετρικές συναρτήσεις

Στην παράγραφο αυτή ϑα ορίσουμε τις υπερβολικές συναρτήσεις. Οι συναρτήσεις αυτές καλούνται
συνήθως υπερβολικές τριγωνομετρικές διότι μπορούν να ορισθούν μέσω της ισοσκελούς υπερβολής
x2 − y2 = 1 με έναν τρόπο ανάλογο με εκείνον με τον οποίο ορίζονται οι τριγωνομετρικές συναρτήσεις
μέσω του μοναδιαίου κύκλου.

4.8.1 Η συνάρτηση υπερβολικό συνημίτονο.

Η συνάρτηση

(4.8.1) cosh x =
ex + e−x

2

καλείται υπερβολικό συνημίτονο και ορίζεται για κάθε x ∈ R.
Η συνάρτηση cosh x είναι άρτια συνάρτηση δηλαδή

(4.8.2) cosh(−x) = cosh x, ∀x ∈ R

αφού,

cosh(−x) =
e−x + e−(−x)

2
=

e−x + ex

2
= cosh x

Επίσης,

(4.8.3) cosh x ≥ 1, ∀x ∈ R
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αφού αν ϑέσουμε y = ex τότε y > 0 και

cosh x =
y + 1

y

2
=

y2 + 1
2y

≥ 1⇔ y2 + 1 ≥ 2y⇔ y2 − 2y + 1 ≥ 0⇔ (y − 1)2 ≥ 0

Ακόμη, επειδή ο μέσος όρος δύο πραγματικών αριθμών είναι πάντα μεταξύ των αριθμών αυτών έχουμε
ότι

(4.8.4) e−x < cosh x < ex, ∀x > 0

και αντίστοιχα

(4.8.5) ex < cosh x < e−x, ∀x < 0

Επίσης,

(4.8.6) (cosh x)′ =
ex − e−x

2

Παρατηρούμε ότι (cosh x)′ < 0 για x < 0 και (cosh x)′ > 0 για x > 0. Άρα η cosh x είναι γνησίως
φθίνουσα στο (−∞, 0] και γνησίως αύξουσα στο [0,+∞) με cosh(0) = 1 να είναι η ελάχιστη τιμή της.
Επιπλέον είναι εύκολο να δούμε ότι

(4.8.7) lim
x→−∞

cosh x = lim
x→+∞

cosh x = +∞.

και άρα το σύνολο τιμών της cosh x (δηλαδή το σύνολο {cosh x : x ∈ R}) είναι το [1,+∞). Η καμπύλη που
σχηματίζει η γραφική παράσταση της cosh x μοιάζει με παραβολή (δηλαδή σαν αυτήν της συνάρτησης
x2) και καλείται αλυσσοειδής γιατί είναι το σχήμα που παίρνει μια αλυσίδα όταν την κρεμάσουμε
οριζόντια από τα δύο άκρα της.

4.8.2 Η συνάρτηση υπερβολικό ημίτονο.

Η συνάρτηση

(4.8.8) sinh x =
ex − e−x

2

καλείται υπερβολικό ημίτονο και ορίζεται για κάθε x ∈ R.
Η συνάρτηση sinh x, x ∈ R είναι περιττή συνάρτηση δηλαδή

(4.8.9) sinh(−x) = − sinh x

´Εχουμε

(4.8.10) (sinh x)′ =
ex + e−x

2
= cosh x

και άρα η sinh x είναι γνησίως αύξουσα. Επειδή επιπλέον

(4.8.11) lim
x→−∞

sinh x = −∞ και lim
x→+∞

sinh x = +∞
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το σύνολο τιμών της είναι όλο το R. Η γραφική της παράσταση μοιάζει με της συνάρτησης f (x) = x3.
Παρατηρείστε ότι από την (4.8.6) έχουμε

(4.8.12) (cosh x)′ =
ex − e−x

2
= sinh x

Επίσης είναι εύκολο να επαληθεύσουμε με πράξεις την εξής ταυτότητα

(4.8.13) cosh2 x − sinh2 x = 1, ∀x ∈ R

και άρα αφού cosh x > 0,

(4.8.14) cosh x =
√

1 + sinh2 x

Παρατήρηση 4.8.1. Η (4.8.13), δείχνει την σχέση των συναρτήσεων cosh x και sinh x με την ισοσκελή
υπερβολή, δηλαδή την καμπύλη του επιπέδου που αποτελείται από όλα τα σημεία (x, y) που ικανο-
ποιούν την σχέση x2 − y2 = 1. Πράγματι, αποδεικνύεται ότι ένα σημείο (x, y) του επιπέδου ανήκει στον
δεξί κλάδο της ισοσκελούς υπερβολής αν και μόνο αν τα x, y γράφονται υπό την μορφή

(4.8.15)

x = cosh t

y = sinh t

όπου το t ισούται με το διπλάσιο εμβαδό του χωρίου που φράσεται από την ακτίνα που ενώνει το
κέντρο των αξόνων O(0, 0) με το σημείο (x, y) της υπερβολής, την υπερβολή και τον x-άξονα. Αυτό το
γεγονός έρχεται σε αναλογία με τα σημεία (x, y) του μοναδιαίου κύκλου του οποίου τα σημεία δίνονται
από τις εξισώσεις

(4.8.16)

x = cos t

y = sin t

4.8.3 Η συνάρτηση υπερβολική εφαπτομένη.

Η συνάρτηση

(4.8.17) tanh x =
sinh x
cosh x

=
ex − e−x

ex + e−x , x ∈ R

καλείται υπερβολική εφαπτομένη. Η tanh x είναι περιττή,

(4.8.18) tanh(−x) = − tanh x, ∀x ∈ R

Είναι εύκολο να δούμε ότι

(tanh x)′ =
(

sinh x
cosh x

)′
=

(sinh x)′ cosh x − sinh x(cosh x)′

cosh2 x

=
cosh2 x − sinh2 x

cosh2 x

=
1

cosh2 x
> 0

(4.8.19)
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και άρα η tanh x είναι γνησίως αύξουσα. Επίσης,

(4.8.20) lim
x→+∞

tanh x = +1

Πράγματι

lim
x→+∞

tanh x = lim
x→+∞

ex − e−x

ex + e−x = lim
x→+∞

ex(1 − e−2x)
ex(1 + e−2x)

= lim
x→+∞

1 − e−2x

1 + e−2x = 1

Παρόμοια, έχουμε

(4.8.21) lim
x→−∞

tanh x = −1

Με άλλα λόγια οι ευθείες y = ±1 αποτελούν οριζόντιες ασύμπτωτες της γραφικής της παράστασης της
tanh x. Η γραφική παράσταση της tanh x μοιάζει με αυτήν της arctan x.

4.8.4 Αντίστροφες Υπερβολικές Συναρτήσεις

´Οπως είδαμε η συνάρτηση sinh x : R→ R είναι μια γνησίως αύξουσα και άρα αντιστρέψιμη συνάρτηση.
Η αντίστροφή της συμβολίζεται με sinh−1 x.

Πρόταση 4.8.2. Η αντίστροφη της συνάρτησης sinh x δίνεται από τον τύπο

(4.8.22) sinh−1 x = ln
(
x +
√

x2 + 1
)
, ∀x ∈ R

Η συνάρτηση sinh−1 x, x ∈ R είναι παραγωγίσιμη και ισχύει ότι

(4.8.23)
(
sinh−1 x

)′
=

1
√
1 + x2

Απόδειξη. ´Εστω x ∈ R και έστω

(4.8.24) y = sinh−1 x

Άρα x = sinh y =
ey − e−y

2
. Θέτοντας w = ey, έχουμε

(4.8.25) x =
w − 1

w

2
=

w2 − 1
2w

⇔ w2 − 2xw − 1 = 0

Η (4.8.25) έχει λύσεις
w1,2 = x ±

√
x2 + 1

Επειδή w = ey > 0 και x −
√

x2 + 1 < 0 παίρνουμε ότι

w = x +
√

x2 + 1⇔ ey = x +
√

x2 + 1

⇔ y = ln
(
x +
√

x2 + 1
)

Άρα
sinh−1 x = ln

(
x +
√

x2 + 1
)

για κάθε x ∈ R. Χρησιμοποιώντας το Θεώρημα της Παραγώγου της Αντίστροφης συνάρτησης: ´Εστω



66 · Παράγωγος

y ∈ R και έστω y = sinh x. Τότε

(
sinh−1 y

)′
=

1
(sinh x)′

=
1

cosh x
(4.8.14)
=

1√
1 + sinh2 x

=
1

1 + y2

και άρα ϑέτοντας “x” αντί για “y” πάιρνουμε ότι

(
sinh−1 x

)′
=

1
√
1 + x2

□

Η συνάρτηση cosh x, x ∈ R ως άρτια δεν είναι 1 − 1 και άρα δεν αντιστρέφεται. ´Ομως αν πε-
ριοριστούμε στα x ≥ 0 η cosh x είναι μια γνησίως αύξουσα συνάρτηση από το [0,+∞) στο [1,+∞).
Αν συμβολίσουμε με cosh−1 x την αντίστροφη της cosh x στο διάστημα [0,+∞) παίρνουμε την εξής
πρόταση.

Πρόταση 4.8.3. Η αντίστροφη της συνάρτησης cosh x στο διάστημα [0,+∞), δίνεται από τον τύπο

(4.8.26) cosh−1 x = ln
(
x +
√

x2 − 1
)
, ∀x ∈ [1,+∞)

Η συνάρτηση cosh−1 x, x ∈ [1,+∞) είναι παραγωγίσιμη και ισχύει ότι

(4.8.27)
(
cosh−1 x

)′
=

1
√

x2 − 1

Η απόδειξη της Πρότασης 4.8.3 είναοι ανάλογη με εκείνη της Πρότασης 4.8.2 και αφήνεται ως
άσκηση.

Τέλος, όπως είδαμε η tanh x είναι μια γνησιως αύξουσα συνάρτηση από το R στο (−1, 1). Η
αντίστροφή της συμβολίζεται με tanh−1 x και είναι μια γνησίως αύξουσα συνάρτηση από το (−1, 1) στο
R.

Πρόταση 4.8.4. Η αντίστροφη της συνάρτησης tanh x στο διάστημα [0,+∞), δίνεται από τον τύπο

(4.8.28) tanh−1 x =
1
2

ln
(
1 + x
1 − x

)
, ∀x ∈ (−1, 1)

Η συνάρτηση tanh−1 x, x ∈ (−1, 1) είναι παραγωγίσιμη και ισχύει ότι

(4.8.29)
(
tanh−1 x

)′
=

1
1 − x2

Απόδειξη. ´Εστω x ∈ R. Τότε

y = tanh−1 x⇔ x = tanh y =
ey − e−y

ey + e−y =
e2y − 1
e2y + 1

⇔ e2y =
1 + x
1 − x

⇔ y =
1
2

ln
(
1 + x
1 − x

)
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Επίσης

(
tanh−1 x

)′
=

1
2

ln
(
1 + x
1 − x

)′
=

1
2
·
1 − x
1 + x

·

(
1 + x
1 − x

)′
=

1
2
·
1 − x
1 + x

·
2

(1 − x)2
=

1
1 − x2

□

4.9 Απροσδιόριστες μορφές - Κανόνες de l’ Hospital

Θεώρημα 4.9.1. ´Εστω −∞ ≤ a < b ≤ +∞ και f , g : (a, b)→ R παραγωγίσιμες συναρτήσεις τέτοιες ώστε
για κάθε x ∈ (a, b) ισχύει ότι g(x) , 0 και g′(x) , 0.

(α) Αν lim
x→a+

f (x) = lim
x→a+

g(x) = 0 τότε lim
x→a+

f (x)
g(x)

= lim
x→a+

f ′(x)
g′(x)

υπό την προυπόθεση ότι το lim
x→a+

f ′(x)
g′(x)

υπάρχει (πεπερασμένο ή άπειρο).

(β) Αντίστοιχα αν lim
x→b−

f (x) = lim
x→b−

g(x) = 0 τότε lim
x→b−

f (x)
g(x)

= lim
x→b−

f ′(x)
g′(x)

υπό την προυπόθεση ότι το

lim
x→b−

f ′(x)
g′(x)

υπάρχει (πεπερασμένο ή άπειρο).

Απόδειξη. Θα δείξουμε μόνο το (α) (το (β) αποδεικνύεται ομοίως). Διακρίνουμε δύο περιπτώσεις.

Περίπτωση 1: a ∈ R.
Στην περίπτωση αυτή επεκτείνουμε τις συναρτήσεις f και g στο x = a ϑέτοντας f (a) = g(a) = 0.

´Εστω (xn) ακολουθία στο (a, b) με xn → a. Από το Θεώρημα Μέσης Τιμής του Cauchy (Θεώρημα 4.6.1),
για κάθε n ∈ N υπάρχει ξn ∈ (a, xn) τέτοιο ώστε

f (xn)
g(xn)

=
f (a) − f (xn)
g(a) − g(xn)

=
f ′(ξn)
g′(ξn)

Επειδή a < ξn < xn και xn → a από το Κριτήριο των Ισοσυγκλινουσών ακολουθιών έπεται ότι ξn → a.

Άρα
f (xn)
g(xn)

=
f ′(ξn)
g′(ξn)

→ L, αφού lim
x→a+

f ′(x)
g′(x)

= L.

Άρα για κάθε ακολουθία (xn) στο (a, b) με xn → a έπεται ότι
f (xn)
g(xn)

= L. Από Αρχή Μεταφοράς για

όρια αυτό σημαίνει ότι lim
x→a+

f (x)
g(x)

= L.

Περίπτωση 2: a = −∞.
Στην περίπτωση αυτή, χωρίς βλάβη της γενικότητας υποθέτουμε ότι b < 0 και ϑεωρούμε τις

συναρτήσεις F,G :
(
1
b
, 0

)
→ R με τύπο

F(x) = f
(
1
x

)
και G(x) = g

(
1
x

)

´Εχουμε lim
x→0−

F(x) = lim
x→0−

f
(
1
x

)
= lim

x→−∞
f (x) = 0 και ομοίως lim

x→0−
G(x) = 0. Επιπλέον, για κάθε x ∈

(
1
b
, 0

)
,

από τον κανόνα Αλυσίδας έχουμε F′(x) = − f ′
(
1
x

)
·

1
x2 και αντίστοιχα G′(x) = −g′

(
1
x

)
·

1
x2 , 0.
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Με βάση τα παραπάνω και την Περίπτωση 1 για a = 0, έχουμε

lim
x→−∞

f (x)
g(x)

= lim
x→0−

f
(
1
x

)
g
(
1
x

) = lim
x→0−

F(x)
G(x)

= lim
x→0−

F′(x)
G′(x)

= lim
x→0−

− f ′
(
1
x

)
·

1
x2

−g′
(
1
x

)
·

1
x2

= lim
x→−∞

f ′(x)
g′(x)

□

Το Θεώρημα 4.9.1 έχει ανάλογες εκδοχές για απροσδιοριστίες της μορφής ±∞
±∞

ή πιο γενικότερα για
περιπτώσεις όπου lim g(x) = ±∞. Αναφέρουμε χωρίς απόδειξη το παρακάτω ανάλογο του Θεωρήματος
4.9.1.

Θεώρημα 4.9.2. ´Εστω −∞ ≤ a < b ≤ +∞ και f , g : (a, b)→ R παραγωγίσιμες συναρτήσεις τέτοιες ώστε
για κάθε x ∈ (a, b) ισχύει ότι g(x) , 0 και g′(x) , 0.

(α) Αν limx→a+ |g(x)| = +∞ τότε lim
x→a+

f (x)
g(x)

= lim
x→a+

f ′(x)
g′(x)

υπό την προυπόθεση ότι το lim
x→a+

f ′(x)
g′(x)

υπάρχει

(πεπερασμένο ή άπειρο).

(β) Αντίστοιχα αν lim
x→b−
|g(x)| = +∞ τότε lim

x→b−

f (x)
g(x)

= lim
x→b−

f ′(x)
g′(x)

υπό την προυπόθεση ότι το lim
x→b−

f ′(x)
g′(x)

υπάρχει (πεπερασμένο ή άπειρο).

4.10 Πολυώνυμα Taylor

Οι πιο απλές πραγματικές συναρτήσεις είναι οι πολυωνυμικές, δηλαδή οι συναρτήσεις της μορφής

p(x) = a0 + a1x + · · · + anxn

όπου a0, a1, . . . , an σταθεροί πραγματικοί αριθμοί. Στις πολυωνυμικές συναρτήσεις μπορούμε να βρούμε
σχετικά εύκολα τις τιμές τους και γενικά να μελετήσουμε τις ιδιότητές τους. ´Ομως η πλειονότητα των
συναρτήσεων που χρησιμοποιούμε στην πράξη είναι συναρτήσεις που δεν μπορούν να γραφούν ως
πολυώνυμα όπως πχ. η εκθετική συνάρτηση ex, η λογαριθμική συνάρτηση ln x, οι τριγωνομετρικές συ-
ναρτήσεις cos x (συνημίτονο του x), sin x (ημίτονο του x) tan x (εφαπτομένη του x) κλπ. Τα πολυώνυμα
Taylor αποτελούν πολυωνυμικές προσεγγίσεις αυτών των συναρτήσεων.

Ορισμός 4.10.1. ´Εστω f : I → R, όπου I διάστημα του R, a ∈ I και n ∈ N. ´Εστω ότι η f είναι n-φορές
παραγωγίσιμη στο a. Το πολυώνυμο

(4.10.1) Tn(x) = f (a) +
f ′(a)
1!

(x − a) + · · · +
f (n)(a)

n!
(x − a)n

καλείται πολυώνυμο Taylor της f το τάξης n με κέντρο το a.
Επίσης ορίζουμε το πολυώνυμο Taylor της f μηδενικής τάξης με κέντρο το a να είναι το σταθερό

πολυώνυμο

(4.10.2) T0(x) = f (a)

Για παράδειγμα αν f : R→ R δύο φορές παραγωγίσιμη και a ∈ R τότε τα πολυώνυμα Taylor τάξης
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n = 0, 1, 2 της f με κέντρο το a είναι τα εξής :

T0(x) = f (a), T1(x) = f (a) + f ′(a)(x − a), T2(x) = f (a) + f ′(a)(x − a) +
f ′′(a)
2!

(x − a)2

Παράδειγμα 4.10.2. Τα πολυώνυμα Taylor της συνάρτησης f (x) = ex, x ∈ R, με κέντρο το a = 0
δίνονται από τον τύπο

Tn(x) = 1 +
x
1!
+

x2

2!
+ · · · +

xn

n!
Ομοίως τα πολυώνυμα Taylor της συνάρτησης g(x) = ln(1+ x), x ∈ (−1,+∞) με κέντρο το a = 0 δίνονται
από τον τύπο

Tn(x) =
x
1
−

x2

2
+ · · · + (−1)n+1 xn

n

Πρόταση 4.10.3. ´Εστω n ≥ 0 ακέραιος, f : I → R (n + 1)-φορές παραγωγίσιμη συνάρτηση και a ∈ I.
Τότε η παράγωγος του πολυωνύμου Taylor τάξης n+ 1 της f με κέντρο το a είναι ίση με το πολυώνυμο
Taylor τάξης n της f ′ με κέντρο το a, δηλαδή αν με Tn+1, f συμβολίσουμε το πολυώνυμο Taylor τάξης
n + 1 της f και αντίστοιχα με Tn, f ′ το πολυώνυμο Taylor τάξης n της f ′ με κέντρο το a, τότε

(4.10.3) T ′n+1, f (x) = Tn, f ′(x)

Απόδειξη. ´Εχουμε

T ′n+1, f (x) =
(

f (a) +
f ′(a)
1!

(x − a) +
f ′′(a)
2!

(x − a)2 + · · · +
f (n+1)(a)

n!
(x − a)n+1

)′
=

f ′(a)
1!
+

f ′′(a)
2!

2(x − a) + · · · + +
f (n+1)(a)
(n + 1)!

(n + 1)(x − a)n

= f ′(a) +
f ′′(a)
1!

(x − a) + · · · +
f (n+1)(a)

n!
(x − a)n = Tn, f ′(x)

□

Θεώρημα 4.10.4. (Taylor) ´Εστω n ≥ 0 ακέραιος. ´Εστω I διάστημα του R, a ∈ I και f : I → R,
(n + 1)-φορές παραγωγίσιμη συνάρτηση. Τότε για κάθε x ∈ I με x , a υπάρχει ένας αριθμός ξ στο
ανοικτό διάστημα με άκρα τα a και x τέτοιος ώστε

(4.10.4) f (x) = Tn(x) +
f (n+1)(ξ)
(n + 1)!

(x − a)n+1

όπου Tn είναι το πολυώνυμο Taylor της f το τάξης n με κέντρο το a.

Απόδειξη. Το ϑεώρημα ϑα αποδειχθεί με επαγωγή. Για n = 0 το ϑεώρημα ισχύει, αφού από το κλασικό
Θεώρημα Μέσης Τιμής έχουμε ότι για κάθε x , a υπάρχει ξ στο ανοικτό διάστημα με άκρα τα a και x
τέτοιο ώστε

f (x) = f (a) + f ′(ξ)(x − a) = T0(x) +
f ′(ξ)
1!

(x − a)

´Εστω ότι το ϑεώρημα ισχύει για κάποιο n ∈ N. ´Εστω I διάστημα του R, a ∈ I και f : I → R,
(n + 2)-φορές παραγωγίσιμη συνάρτηση. ´Εστω T f ,n+1(x) το πολυώνυμο Taylor της f το τάξης n + 1 με
κέντρο το a. ´Εστω x ∈ I με x , a. Από το Θεώρημα Μέσης Τιμής του Cauchy (Θεώρημα 4.6.1) και την
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Πρόταση 4.10.3, υπάρχει ξ′ μεταξύ των x και a τέτοιο ώστε

(4.10.5)
f (x) − T f ,n+1(x)

(x − a)n+2 =
f ′(ξ′) − T ′f ,n+1(ξ

′)

(n + 2)(ξ′ − a)n+1 =
1

n + 2
f ′(ξ′) − T f ′,n(ξ′)

(ξ′ − a)n+1

Εφαρμόζωντας τώρα την Επαγωγική Υπόθεση για x = ξ′ και f = f ′ παίρνουμε ότι υπάρχει ξ μεταξύ
των a και ξ′ τέτοιο ώστε

f ′(ξ′) − T f ′,n(ξ′)
(ξ′ − a)n+1 =

( f ′)(n+1)(ξ)
(n + 1)!

=
f (n+2)(ξ)
(n + 1)!

Αντικαθιστώντας στην (4.10.5) παίρνουμε ότι

f (x) − T f ,n+1(x)
(x − a)n+2 =

1
n + 2

·
f (n+2)(ξ)
(n + 1)!

=
f (n+2)(ξ)
(n + 2)!

που δίνει την (4.10.4). □

Παράδειγμα 4.10.5. Για κάθε n ∈ N και κάθε x ∈ R με 0 < x ≤ 1 ισχύει ότι

(4.10.6) 1 +
x
1!
+

x2

2!
+ · · · +

xn

n!
< ex < 1 +

x
1!
+

x2

2!
+ · · · +

xn

n!
+

3
(n + 1)!

Π. χ. για n = 9 και x = 1 παίρνουμε την εξής πολύ καλή προσσέγγιση του e:

2, 718281 < e < 2, 718282

Απόδειξη. Από το Παράδειγμα 4.10.2 έχουμε ότι το πολυώνυμο Taylor τάξης n της f (x) = ex με κέντρο
το a = 0 δίνεται από τον τύπο

Tn(x) = 1 +
x
1!
+

x2

2!
+ · · · +

xn

n!
´Εστω n ≥ 1 ακέραιος και έστω x ∈ (0, 1]. Από το Θεώρημα 4.10.4 υπάρχει ξ ∈ (0, x) τέτοιο ώστε

(4.10.7) ex = Tn(x) +
f (n+1)(ξ)
(n + 1)!

xn+1 = Tn(x) +
eξ

(n + 1)!
xn+1

Επειδή η ex > 0 και 0 < x ≤ 1 έχουμε ότι
eξ

(n + 1)!
xn+1 > 0 και άρα από την (4.10.7) προκύπτει ότι

(4.10.8) Tn(x) < ex

Από την άλλη μεριά η συνάρτηση ex είναι γνησίως αύξουσα και επειδή 0 ≤ x ≤ 1 έχουμε ότι eξ < e < 3
και άρα από την (4.10.7) παίρνουμε ότι

(4.10.9) ex < Tn(x) +
3

(n + 1)!
.

Από τις (4.10.8) και (4.10.9) προκύπτει τώρα άμεσα η (4.10.6). □

Θεώρημα 4.10.6. (Taylor) ´Εστω n ≥ 1 ακέραιος. ´Εστω I διάστημα του R, a ∈ I και f : I → R τέτοια
ώστε η f είναι n-φορές παραγωγίσιμη στο a. Τότε

(4.10.10) lim
x→a

f (x) − Tn(x)
(x − a)n = 0
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Ισοδύναμα, για κάθε x ∈ I με x , a

(4.10.11) f (x) = Tn(x) + ε(x)(x − a)n με lim
x→a

ε(x) = 0

όπου Tn είναι το πολυώνυμο Taylor της f το τάξης n με κέντρο το a.

Απόδειξη. Θα αποδείξουμε το ϑεώρημα με Επαγωγή στο n ∈ N. Για n = 1 προκύπτει άμεσα από την
παραγωγισιμότητα της f στο a. Πράγματι,

lim
x→a

f (x) − T1(x)
x − a

= lim
x→a

f (x) − f (a) − f ′(a)(x − a)
x − a

= lim
x→a

f (x) − f (a)
x − a

− f ′(a) = 0

´Εστω k ∈ N και έστω ότι το Θεώρημα 4.10.6 ισχύει για κάποιο n ∈ N.
´Εστω f : I → R μια (n + 1)-φορές παραγωγίσιμη συνάρτηση σε ένα a ∈ I. Θα δείξουμε ότι

lim
x→a

f (x) − Tn+1, f ,a(x)
(x − a)n+1 = 0

Επειδή
lim
x→a

( f (x) − Tn(x)) = f (a) − f (a) = 0

το όριο lim
x→a

f (x) − Tn+1, f ,a(x)
(x − a)n+1 είναι απροσδιοριστία της μορφής 0

0 . Άρα από τον κανόνα De l’Hospital

και την Πρόταση 4.10.3 έχουμε

lim
x→a

f (x) − Tn+1(x)
(x − a)n+1 = lim

x→a

[ f (x) − Tn+1(x)]′

[(x − a)n+1]′
=

1
n + 1

lim
x→a

f ′(x) − Tn, f ′(x)
(x − a)n = 0

όπου η τελευταία ισότητα προκύπτει από την επαγωγική υπόθεση αφού η f ′ είναι n-φορές παραγω-
γίσιμη στο a. □

Πόρισμα 4.10.7. (Κριτήριο για τοπικά ακρότατα) ´Εστω n ∈ N, I διάστημα του R, f : I → R και a ∈ R
τέτοιο ώστε η f είναι 2n-φορές παραγωγίσιμη στο a. Αν f ′(a) = f ′′(a) = · · · = f 2n−1(a) = 0 και f 2n(a) > 0
(αντ. f 2n(a) < 0) τότε το a είναι γνήσιο τοπικό ελάχιστο (αντ. μέγιστο) της f , δηλαδή υπάρχει δ > 0
τέτοιο ώστε f (a) < f (x) (αντ. f (a) > f (x)) για κάθε x ∈ I με |x − a| < δ.

Απόδειξη. ´Εστω f 2n(a) > 0 (αν f 2n(a) < 0 η απόδειξη είναι παρόμοια ή μπορούμε να ϑεωρήσουμε την
− f ). Επειδή f ′(a) = f ′′(a) = · · · = f 2n−1(a) = 0 έπεται οτι

T2n, f ,a(x) = f (a) + f ′(a)(x − a) + · · · +
f (2n−1)(a)
(2n − 1)!

(x − a)2n−1 +
f (2n)(a)
(2n)!

(x − a)2n = f (a) +
f (2n)(a)
(2n)!

(x − a)2n

και άρα από το Θεώρημα 4.10.6, έχουμε

lim
x→a

f (x) − T2n, f ,a(x)
(x − a)2n = lim

x→a

f (x) − f (a) − f (2n)(a)(x − a)2n

(x − a)2n = 0⇒ lim
x→a

f (x) − f (a)
(x − a)2n = f (2n)(a) > 0

Αυτό σημαίνει ότι το πηλίκο
f (x) − f (a)
(x − a)2n είναι ϑετικό όταν το x είναι αρκετά κοντά στο a. Συνεπώς,

επειδή (x − a)2n > 0 για κάθε x , a, ϑα πρέπει και ο αριθμητής f (x) − f (a) να είναι ϑετικός όταν το
x είναι αρκετά κοντά στο a. Με άλλα λόγια υπάρχει δ > 0 τέτοιο ώστε f (x) > f (a) για κάθε x ∈ I με
|x − a| < δ. □





ΚΕΦΑΛΑΙΟ 5

Το ολοκλήρωμα Riemann

5.1 Ορισμός του Ολοκληρώματος

Σταθεροποιούμνε για τα επόμενα ένα κλειστό και φραγμένο διάστημα [a, b] του R και μια φραγμένη
συνάρτηση f : [a, b]→ R.

5.1.1 Διαμερίσεις

Κάθε πεπερασμένο υποσύνολο P του [a, b] που περιέχει τα σημεία a, b καλείται διαμέριση του [a, b].
Συνήθως τις διαμερίσεις του [a, b] τις συμβολίζουμε απαριθμώντας τα σημεία τους σε αύξουσα μορφή.
Αν P = {a = x0 < x1 < x2 < · · · < xn = b} μια διαμέριση του [a, b] τότε για κάθε 1 ≤ i ≤ n συμβολίζουμε
με ∆xi το μήκος του διαστήματος [xi−1, xi], δηλαδή

∆xi = xi − xi−1

Ο ϑετικός αριθμός
λ(P) = max{∆xi : 1 ≤ i ≤ n}

καλείται λεπτότητα της διαμέρισης P. Η λεπτότητα δείχνει κατά κάποιο τρόπο πόσο πυκνά είναι
τοποθετημένα τα σημεία της διαμέρισης μέσα στο διάστημα [a, b]. ´Οσο πιο μικρή είναι η λ(P) τόσο
πιο μικρά κενά υπάρχουν μεταξύ δύο διαδοχικών σημείων της P.

Παρατηρείστε ότι

[a, b] =
n⋃

i=1
[xi−1, xi]

και

b − a =
n∑

i=1
∆xi

5.1.2 Κάτω και άνω αθροίσματα

Το άθροισμα

L( f , P) =
n∑

i=1
mi∆xi =

n∑
i=1

mi(xi − xi−1)
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όπου για κάθε 1 ≤ i ≤ n,
mi = inf{ f (x) : x ∈ [xi−1, xi]}

καλείται κάτω άθροισμα της f ως προς την P. Αντίστοιχα, το άθροισμα,

U( f , P) =
n∑

i=1
Mi∆xi =

n∑
i=1

Mi(xi − xi−1)

όπου 1 ≤ i ≤ n,
Mi = sup{ f (x) : x ∈ [xi−1, xi]}

καλείται άνω άθροισμα της f ως προς την P.

Πρόταση 5.1.1. (α) Για κάθε διαμέριση P του [a, b] έχουμε

(5.1.1) L( f , P) ≤ U( f , P)

(β) ´Εστω P,R δύο διαμερίσεις του [a, b] τέτοιες ώστε P ⊆ R. Τότε

(5.1.2) L( f , P) ≤ L( f ,R) ≤ U( f ,R) ≤ U( f , P)

Απόδειξη. (α) ´Εστω P = {a = x0 < x1 < · · · < xn = b}. ´Εχουμε

L( f , P) =
n∑

i=1
mi∆xi και U( f , P) =

n∑
i=1

Mi∆xi

όπου mi = inf{ f (x) : x ∈ [xi−1, xi]} και Mi = sup{ f (x) : x ∈ [xi−1, xi]} , για κάθε 1 ≤ i ≤ n. Επειδή mi ≤ Mi

και ∆xi > 0 έχουμε ότι mi∆xi ≤ Mi∆xi για κάθε 1 ≤ i ≤ n και άρα

L( f , P) =
n∑

i=1
mi∆xi ≤

n∑
i=1

Mi∆xi = U( f , P)

(β) Είναι εύκολο να δούμε ότι αρκεί να δειχθεί η πρόταση στην περίπτωση που η R έχει ένα μόνο
σημείο παραπάνω από την P (ύστερα η απόδειξη προχωρά εύκολα με επαγωγή). ´Εστω P = {a = x0 <

x1 < · · · < xn = b} μια διαμέριση του [a, b] και έστω R = P ∪ {y} όπου y < P. Τότε υπάρχει μοναδικό
i0 ∈ {1, . . . , n} με xi0−1 < y < xi0 . Συνεπώς,

L( f ,R) =
∑
i<i0

mi∆xi + m′i0(y − xi0−1) + m′′i0(xi − y) +
∑
i<i0

mi∆xi

όπου m′i0 = inf{ f (x) : x ∈ [xi0−1, y]} και m′′i0 = inf{ f (x) : x ∈ [y, xi0]}. Θυμίζουμε τώρα ότι αν A, B ⊆ R
κάτω φραγμένα τότε έχουμε inf(A ∪ B) = min{inf A, inf B} (δείτε Ασκήσεις Φψλλαδίου 1). Άρα

mi0 = min{m′i0 ,m
′′
i0}
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Άρα m′i0 − mi0 ≥ 0, m′′i0 − mi0 ≥ 0, οπότε

L( f ,R) − L( f , P) = m′i0(y − xi0−1) + m′′i0(xi − y) − mi0(xi0 − xi0−1)

= m′i0(y − xi0) + m′′i0(xi0 − y) − mi0(y − xi0) − mi0(xi − y)

= (m′i0 − mi0)(y − xi0−1) + (m′′i0 − mi0)(xi0 − y) ≥ 0

(5.1.3)

Με όμοιο τρόπο δείχνουμε και την αντίστοιχη ανισότητα για τα U( f , P) και U( f ,R). □

Παρατήρηση 5.1.2. Η ανισότητα (5.1.2) δείχνει ότι το κάτω άθροισμα μεγαλώνει ενώ το άνω άθροισμα
μικραίνει όταν από μια διαμέριση περνάμε σε μια άλλη που μεγαλύτερη την περιέχει.

Πόρισμα 5.1.3. Για οποιεσδήποτε δύο διαμερίσεις P1, P2 του [a, b] ισχύει ότι

(5.1.4) L( f , P1) ≤ U( f , P2)

Απόδειξη. ´Εστω P1, P2 δύο διαμερίσεις του [a, b]. Θέτουμε

R = P1 ∪ P2

Τότε η R είναι μια διαμέριση του [a, b] με P1 ⊆ R και P2 ⊆ R. Από την Πρόταση 5.1.1 παίρνουμε ότι

L( f , P1) ≤ L( f ,R) και U( f ,R) ≤ U( f , P2)

Επειδή L( f ,R)] ≤ U( f ,R) συμπεραίνουμε ότι L( f , P1) ≤ U( f , P2). □

5.1.3 Κάτω και άνω ολοκλήρωμα

Θέτουμε
L( f ) = {L( f , P) : P διαμέριση του [a, b]}

και
U( f ) = {U( f , P) : P διαμέριση του [a, b]}

Από το Πόρισμα 5.1.3 έχουμε ότι κάθε στοιχείο του L( f ) είναι μικρότερο ή ίσο κάθε στοιχείου του
U( f ). Υπενθυμίζουμε εδώ ότι αν έχουμε A, B ⊆ R με την ιδιότητα a ≤ b για κάθε a ∈ A και για κάθε
b ∈ B τότε sup A ≤ inf B (δείτε Ασκήσεις Φυλλαδίου 1). Άρα

(5.1.5) sup L( f ) ≤ inf U( f )

Το sup L( f ) καλείται κάτω ολοκλήρωμα της f και συμβολίζεται με∫ b

a
f (x) dx

και το inf U( f ) καλείται άνω ολοκλήρωμα της f και συμβολίζεται με

∫ b

a
f (x) dx

Άρα για κάθε φραγμένη συνάρτηση f : [a, b] → R ορίζονται δύο ολοκληρώματα το κάτω και το
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άνω και για τα οποία ισχύει ότι

(5.1.6)
∫ b

a
f (x) dx ≤

∫ b

a
f (x) dx

5.1.4 Ολοκληρώσιμες συναρτήσεις

Είμαστε τώρα έτοιμοι να δώσουμε τον ορισμό του ολοκληρώματος.

Ορισμός 5.1.4. Η f ϑα καλείται ολοκληρώσιμη αν το κάτω ολοκλήρωμα της είναι ίσο με το άνω
ολοκλήρωμά της. Στην περίπτωση αυτή η κοινή τιμή του άνω και κάτω ολοκληρώματος καλείται

ολοκλήρωμα της f και συμβολίζεται με
∫ b

a
f (x) dx.

Παράδειγμα 5.1.5. Κάθε σταθερή συνάρτηση είναι ολοκληρώσιμη. Πράγματι, αν f : [a, b] → R με
f (x) = c τότε για κάθε διαμέριση P του [a, b] L( f , P) = U( f , P) = c(b − a). Άρα L( f ) = U( f ) = {c(b − a)},

οπότε
∫ b

a
c dx ≤

∫ b

a
c dx = c(b − a). Συνεπώς

∫ b

a
c dx = c(b − a)

Θα δούμε ότι όλες οι συνεχείς και όλες οι μονότονες συναρτήσεις (συνεχείς ή όχι) είναι ολοκληρώ-
σιμες. Υπάρχουν όμως και μη ολοκληρώσιμες συναρτήσεις.

Παράδειγμα 5.1.6. Η συνάρτηση Dirichlet f : [0, 1] → R με f (x) =

1 x ρητός

0 x άρρητος
δεν είναι ολοκλη-

ρώσιμη.
Πράγματι, έστω P = {0 = x0 < x1 < · · · < xn = 1} μια διαμέριση του [0, 1]. Λόγω πυκνότητας αρρήτων,

έχουμε ότι για κάθε 1 ≤ i ≤ n, mi = inf{ f (x) : x ∈ [xi−1, xi]} = 0 και άρα L( f , P) =
∑n

i=1 mi∆xi = 0. Από
την άλλη μεριά, λόγω πυκνότητας ρητών, έχουμε ότι για κάθε 1 ≤ i ≤ n, Mi = sup{ f (x) : x ∈ [xi−1, xi]} = 1

και άρα U( f , P) =
∑n

i=1 Mi∆xi =
∑n

i=1 ∆xi = 1. Άρα
∫ b

a
f (x) dx = 0 ενώ

∫ b

a
f (x) dx = 1.

´Ενα χρήσιμο κριτήριο ολοκληρωσιμότητας είναι το παρακάτω.

Πρόταση 5.1.7. (Κριτήριο Riemann) Μια συνάρτηση f : [a, b]→ R είναι ολοκληρώσιμη αν και μόνο αν
για κάθε ε > 0 υπάρχει διαμέριση P του [a, b] τέτοια ώστε U( f , P) − L( f , P) < ε.

Απόδειξη. (⇒) ´Εστω ότι η f είναι ολοκληρώσιμη και έστω I =
∫ b

a f (x) dx. ´Εστω ε > 0. ´Εχουμε

I =
∫ b

a
f (x) dx = sup{L( f , P) : P διαμέριση του [a, b]}

Άπό την χαρακτηριστική ιδιότητα του supremum υπάρχει διαμέριση P1 του [a, b] τέτοια ώστε

(5.1.7) I −
ε

2
< L( f , P1)

Ομοίως,

I =
∫ b

a
f (x) dx = inf{U( f , P) : P διαμέριση του [a, b]}
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και άρα υπάρχει διαμέριση P2 του [a, b] τέτοια ώστε

(5.1.8) U( f , P2) < I +
ε

2

Θέτουμε P = P1 ∪ P2. Τότε P1, P2 ⊆ P και άρα από την Πρόταση 5.1.1 έχουμε

(5.1.9) L( f , P1) ≤ L( f , P) ≤ U( f , P) ≤ U( f , P2)

Από τις (5.1.7)-(5.1.9) παίρνουμε τελικά ότι

I −
ε

2
< L( f , P) ≤ U( f , P) < I +

ε

2

που σημαίνει ότι U( f , P) − L( f , P) < ε.

(⇐) ´Εστω ότι για κάθε ε > 0 υπάρχει διαμέριση P του [a, b] τέτοια ώστε U( f , P)− L( f , P) < ε. Από
τον ορισμό του κάτω και άνω ολοκληρώματος έχουμε

L( f , P) ≤
∫ b

a
f (x) dx ≤

∫ b

a
f (x) dx ≤ U( f , P)

Άρα

(5.1.10) 0 ≤
∫ b

a
f (x) dx −

∫ b

a
f (x) dx ≤ U( f , P) − L( f , P) < ε

Συνεπώς για κάθε ε > 0 ισχύει ότι

0 ≤
∫ b

a
f (x) dx −

∫ b

a
f (x) dx < ε

και αυτό σημαίνει ότι αναγκαστικά
∫ b

a
f (x) dx =

∫ b

a
f (x) dx δηλαδή η f είναι ολοκληρώσιμη. □

Θεώρημα 5.1.8. Κάθε μονότονη συνάρτηση f : [a, b]→ R είναι ολοκληρώσιμη.

Απόδειξη. ´Εστω f : [a, b] → R μονότονη συνάρτηση. Χωρίς βλάβη της γενικότητας υποθέτουμε ότι η
f είναι αύξουσα. ´Εστω ε > 0. Παρατηρούμε ότι για κάθε διαμέριση P = {a = x0 < x1 < · · · < xn = b}
του [a, b] ισχύει ότι

Mi = sup{ f (x) : x ∈ [xi−1, xi]} = f (xi) και mi = inf{ f (x) : x ∈ [xi−1, xi]} = f (xi−1)

για όλα τα 1 ≤ i ≤ n. Επίσης,
n∑

i=1
( f (xi) − f (xi−1) = f (b) − f (a)
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Άρα

U( f , P) − L( f , P) =
n∑

i=1
(Mi − mi)∆xi

=

n∑
i=1

( f (xi) − f (xi−1)∆xi

≤

n∑
i=1

( f (xi) − f (xi−1) max
1≤i≤n
∆xi =

 n∑
i=1

( f (xi) − f (xi−1)

 λ(P) = ( f (b) − f (a))λ(P)

Διακρίνουμε τώρα δύο περιπτώσεις: Είτε f (b) − f (a) = 0 και άρα η f είναι σταθερή και

U( f , P) − L( f , P) = 0 < ε

για κάθε διαμέριση P, είτε f (b) − f (a) , 0 οπότε για κάθε P με

λ(P) <
ε

f (b) − f (a)

έχουμε ότι U( f , P) − L( f , P) < ε.
□

Θεώρημα 5.1.9. Κάθε συνεχής συνάρτηση f : [a, b]→ R είναι ολοκληρώσιμη.

Απόδειξη. Από το Θεώρημα 3.8.6 η f είναι ομοιόμορφα συνεχής. Άρα για κάθε ε > 0 υπάρχει δ > 0
τέτοιο ώστε για κάθε x, x′ ∈ [a, b],

(5.1.11) |x − x′| < δ⇒ | f (x) − f (x′)| < ε

´Εστω ε > 0 και έστω 0 < ε′ <
ε

b − a
. Από το Θεώρημα 3.8.6 η f είναι ομοιόμορφα συνεχής. Άρα

υπάρχει δ > 0 τέτοιο ώστε για κάθε x, x′ ∈ [a, b],

(5.1.12) |x − x′| < δ⇒ | f (x) − f (x′)| < ε′

´Εστω P = {a = x0 < x1 < · · · < xn = b} διαμέριση του [a, b] με

λ(P) < δ

Επειδή η f είναι συνεχής, από το Θεώρημα 3.5.8, για κάθε 1 ≤ i ≤ n υπάρχουν yi, y′i ∈ [xi−1, xi] τέτοια
ώστε

Mi = sup{ f (x) : x ∈ [xi−1, xi]} = f (yi) και mi = inf{ f (x) : x ∈ [xi−1, xi]} = f (y′i)

για όλα τα 1 ≤ i ≤ n. Επειδή yi, y′i ∈ [xi−1, xi] και xi − xi−1 < δ έπεται ότι και |yi − y′i | < δ. Άρα από την
(5.1.12) έχουμε

Mi − mi = f (yi) − f (y′i) < ε
′

Άρα

U( f , P) − L( f , P) =
n∑

i=1
(Mi − mi)∆xi =

n∑
i=1

(
f (yi) − f (y′i

)
∆xi < ε

′

n∑
i=1
∆xi = ε

′(b − a) < ε
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□

5.2 Ακολουθίες διαμερίσεων με λεπτότητα που τείνει στο μηδέν

Πρόταση 5.2.1. ´Εστω f : [a, b] → R φραγμένη συνάρτηση και έστω P,R δύο διαμερίσεις του [a, b]
τέτοιες ώστε P ⊆ R. ´Εστω n το πλήθος των σημείων της R που δεν ανήκουν στην P και έστω
M = sup{| f (x)| : x ∈ [a, b]}. Τότε

(5.2.1) L( f , P) ≤ L( f ,R) ≤ L( f , P) + 2Mnλ(P)

και

(5.2.2) U( f , P) − 2Mnλ(P) ≤ U( f ,R) ≤ U( f , P)

Απόδειξη. ´Οπως και στην Πρόταση 5.1.1 αρκεί να δειχθεί η πρόταση στην περίπτωση που n = 1
και μετά η απόδειξη προχωρά εύκολα με επαγωγή. ´Εστω λοιπόν P = {a = x0 < x1 < · · · < xn = b}
μια διαμέριση του [a, b] και έστω R = P ∪ {y} όπου y < P. Τότε υπάρχει μοναδικό i0 ∈ {1, . . . , n} με
xi0−1 < y < xi0 . Συνεπώς,

L( f ,R) =
∑
i<i0

mi∆xi + m′i0(y − xi0−1) + m′′i0(xi − y) +
∑
i<i0

mi∆xi

όπου m′i0 = inf{ f (x) : x ∈ [xi0−1, y]} και m′′i0 = inf{ f (x) : x ∈ [y, xi0]}. Τότε m′i0 ≥ mi0 , m′′i0 ≥ mi0 , οπότε

L( f ,R) − L( f , P) = m′i0(y − xi0−1) + m′′i0(xi − y) − mi0(xi0 − xi0−1)

= m′i0(y − xi0) + m′′i0(xi0 − y) − mi0(y − xi0) − mi0(xi − y)

= (m′i0 − mi0)(y − xi0−1) + (m′′i0 − mi0)(xi0 − y) ≥ 0

(5.2.3)

Από την άλλη μεριά m′i0 − mi0 ≤ |m
′
i0
| + |mi0 | ≤ 2M οπότε

L( f ,R) − L( f , P) = (m′i0 − mi0)(y − xi0−1) + (m′′i0 − mi0)(xi0 − y) ≤ 2M(xi0 − xi0−1) ≤ 2Mλ(P)

Με όμοιο τρόπο δείχνουμε και την αντίστοιχη ανισότητα για τα U( f , P) και U( f ,R). □

Παρατήρηση 5.2.2. Οι (5.2.1) και (5.2.2) δείχνουν ότι όταν από μια διαμέριση περνάμε σε μια άλλη
που την περιέχει η αύξηση του κάτω αθροίσματος (αντίστοιχα η μείωση του άνω αθροίσματος) είναι
ανάλογη της λεπτότητας της αρχικής διαμέρισης. Άρα το κάτω και άνω άθροισμα για μια διαμέριση
με πολύ μικρή λεπτότητα παραμένει σχεδόν σταθερό όταν περνάμε σε μεγαλύτερες διαμερίσεις αρκεί
βέβαια να μην έχουν πολλά παραπάνω σημεία από την αρχική διαμέριση.

Πρόταση 5.2.3. ´Εστω f : [a, b] → R φραγμένη συνάρτηση και (Pn) μια ακολουθία διαμερίσεων του
[a, b] τέτοια ώστε λ(Pn)→ 0. Τότε

∫ b

a
f (x) dx = lim

n→+∞
L( f , Pn) και

∫ b

a
f (x) dx = lim

n→+∞
U( f , Pn)

Απόδειξη. ´Εστω ε > 0. Από τον ορισμό του κάτω ολοκληρώματος μπορούμε να βρούμε μια διαμέριση
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P του [a, b] τέτοια ώστε

(5.2.4)
∫ b

a
f (x) dx −

ε

2
< L( f , P)

´Εστω M = sup{| f (x)| : x ∈ [a, b]} και έστω |P| το πλήθος των στοιχείων της P. Επειδή λ(Pn) → 0
υπάρχει n0 ∈ N τέτοιος ώστε

(5.2.5) λ(Pn) <
ε

4|P|M
για κάθε n ≥ n0

Ισχυριζόμαστε ότι |
∫ b

a f (x) dx − L( f , Pn)| < ε γυα κάθε n ≥ n0. Πράγματι από την Πρόταση 5.1.1 έχουμε
ότι για κάθε n ≥ n0

(5.2.6) L( f , P) ≤ L( f , P ∪ Pn) ≤ L( f , Pn) + 2M|P|λ(Pn) ≤ L( f , Pn) +
ε

2

Από την (5.2.4) και την (5.2.6) παίρνουμε∫ b

a
f (x) dx −

ε

2
< L( f , Pn) +

ε

2

ισοδύναμα ∫ b

a
f (x) dx − ε < L( f , Pn)

για κάθε n ≥ n0. Επειδή L( f , P) ≤
∫ b

a f (x) dx για κάθε διαμέριση P του [a, b] έχουμε

|L( f , Pn) −
∫ b

a
f (x) dx| < ε

για κάθε n ≥ n0. Άρα L( f , Pn)→
∫ b

a f (x) dx. Ομοίως δείχνουμε ότι
∫ b

a f (x) dx = limn U( f , Pn). □

Από την Πρόταση 5.2.3 και τον Ορισμό 5.1.4 των ολοκληρώσιμων συναρτήσεων παίρνουμε άμεσα
την παρακάτω πρόταση.

Πρόταση 5.2.4. Μια συνάρτηση f : [a, b]→ R είναι ολοκληρώσιμη αν και μόνο αν για κάθε ακολουθία
διαμερίσεων (Pn) του [a, b] με λ(Pn)→ 0 ισχύει ότι

lim
n

L( f , Pn) = lim
n

U( f , Pn)

και στην περίπτωση αυτή το κοινό όριο των δύο ακολουθιών είναι το
∫ b

a
f (x) dx.

5.3 Αθροίσματα Riemann

Ορισμός 5.3.1. (α) ´Εστω P = {a = x0 < x1 < · · · < xn = b} μια διαμέριση του [a, b]. Με τον όρο επιλογή
ενδιάμεσων σημείων ως προς την P εννοούμε ένα υποσύνολο T = {t1 < t2 < · · · < tn} του [a, b] με την
ιδιότητα ti ∈ [xi−1, xi], για κάθε 1 ≤ i ≤ n.
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(β) ´Εστω f : [a, b] → R συνάρτηση, P = {a = x0 < x1 < · · · < xn = b} διαμέριση του [a, b] και
T = {t1 < t2 < · · · < tn} μια επιλογή ενδιάμεσων σημείων ως προς την P. Το άθροισμα

R( f , P,T ) =
n∑

i=1
f (ti)∆xi =

n∑
i=1

f (ti)(xi − xi−1)

καλείται άθροισμα Riemann της f (ως προς την διαμέριση P και την επιλογή T ).

Πρόταση 5.3.2. ´Εστω f : [a, b] → R φραγμένη συνάρτηση και (Pn) μια ακολουθία διαμερίσεων του
[a, b] τέτοια ώστε λ(Pn) → 0. Τότε για κάθε n ∈ N υπάρχουν δύο επιλογές Tn και Tn ενδιάμεσων
σημείων ως προς την Pn τέτοιες ώστε

∫ b

a
f (x) dx = lim

n→+∞
R( f , Pn,Tn) και

∫ b

a
f (x) dx = lim

n→+∞
R( f , Pn,Tn)

Απόδειξη. ´Εστω n ∈ N και Pn = {a = x0 < · · · < xkn = b}. Για κάθε 1 ≤ i ≤ kn επιλέγουμε ti ∈ [xi−1, xi]
τέτοιο ώστε

mi ≤ f (ti) < mi +
1

(b − a)n

Ομοίως για κάθε 1 ≤ i ≤ kn επιλέγουμε ti ∈ [xi−1, xi] τέτοιο ώστε

Mi −
1

(b − a)n
< f (ti) ≤ Mi

Τότε

kn∑
i=1

mi∆xi ≤

kn∑
i=1

f (ti)∆xi ≤

kn∑
i=1

(
mi +

1
(b − a)n

)
∆xi =

kn∑
i=1

mi∆xi +
1

(b − a)n

kn∑
i=1
∆xi =

kn∑
i=1

mi∆xi +
1
n

Άρα αν Tn = {t1, . . . , tmn}, έχουμε

L( f , Pn) ≤ R( f , Pn,Tn) ≤ L( f , Pn) +
1
n

Ομοίως αποδεικνύεται ότι αν Tn = {t1, . . . , tmn}, τότε

U( f , Pn) −
1
n
≤ R( f , Pn,Tn) ≤ U( f , Pn)

Από την Πρόταση (5.2.3) έχουμε ότι L( f , Pn) →
∫ b

a f (x) dx και αντίστοιχα U( f , Pn) →
∫ b

a f (x) dx.

Άρα από το Κριτήριο των Ισοσυγκλινουσών ακολουθιών έπεται ότι limn R( f , Pn,Tn) =
∫ b

a f (x) dx και

limn R( f , Pn,Tn) =
∫ b

a f (x) dx. □

Πρόταση 5.3.3. ´Εστω f : [a, b] → R φραγμένη συνάρτηση. Τότε η f είναι ολοκληρώσιμη αν και
μόνο αν υπάρχει I ∈ R τέτοιο ώστε για κάθε ακολουθία διαμερίσεων (Pn) με λ(Pn) → 0 και για κάθε
ακολουθία (Tn) πεπερασμένων υποσυνόλων του [a, b] τέτοια ώστε για κάθε n ∈ N το Tn είναι μια
επιλογή ενδιάμεσων σημείων ως προς την Pn, ισχύει ότι

I = lim
n

R( f , Pn,Tn)
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Στην περίπτωση αυτή I =
∫ b

a f (x) dx.

Απόδειξη. ´Εστω ότι η f είναι ολοκληρώσιμη. ´Εστω (Pn) ακολουθία διαμερίσεων με λ(Pn) → 0 και
έστω ακολουθία πεπερασμένων υποσυνόλων (Tn) του [a, b] τέτοια ώστε για κάθε n ∈ N το Tn είναι μια
επιλογή ενδιάμεσων σημείων ως προς την Pn. Παρατηρούμε ότι

L( f , Pn) ≤ R( f , Pn,Tn) ≤ U( f , Pn)

για κάθε n ∈ N. Από την Πρόταση 5.2.4

lim
n

L( f , Pn) = lim
n

U( f , Pn) =
∫ b

a
f (x) dx

Από το Θεώρημα των Ισοσυγκλινουσών ακολουθιών έπεται ότι

lim
n

R( f , Pn,Tn) =
∫ b

a
f (x) dx

Αντίστροφα, έστω ότι υπάρχει I ∈ R τέτοιο ώστε για κάθε ακολουθία διαμερίσεων (Pn) με λ(Pn) → 0
και για κάθε ακολουθία (Tn) πεπερασμένων υποσυνόλων του [a, b] τέτοια ώστε για κάθε n ∈ N το Tn

είναι μια επιλογή ενδιάμεσων σημείων ως προς την Pn, ισχύει ότι

I = lim
n

R( f , Pn,Tn)

Από την Πρόταση 5.3.2 έπεται ότι

I =
∫ b

a
f (x) dx =

∫ b

a
f (x) dx

και άρα η f είναι ολοκληρώσιμη. □

Πόρισμα 5.3.4. ´Εστω f : [0, 1]→ R ολοκληρώσιμη. Τότε

(5.3.1) lim
n→∞

f
(
1
n

)
+ f

(
2
n

)
+ · · · + f (1)

n
=

∫ 1

0
f (x) dx

Απόδειξη. Για κάθε n ∈ N ϑέτουμε Pn = {0 < 1
n < 2

n < · · · < 1} και Tn = {
1
n < 2

n < · · · < 1}. Τότε
λ(Pn) = 1

n → 0 και άρα από την Πρόταση 5.3.3 έπεται το συμπέρασμα. □

Παράδειγμα 5.3.5. ´Εστω k ∈ N. Τότε lim
n→∞

1k + 2k + · · · + nk

nk+1 =
1

k + 1
.

Πράγματι, έστω f : [0, 1]→ R με f (x) = xk, για κάθε x ∈ [0, 1]. Είναι εύκολο να δούμε ότι

f
(
1
n

)
+ f

(
2
n

)
+ · · · + f (1)

n
=

1k + 2k + · · · + nk

nk+1

και άρα από τον τύπο (5.3.1) παίρνουμε

lim
n→∞

1k + 2k + · · · + nk

nk+1 =

∫ 1

0
xk dx =

1
k + 1
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Σχόλιο 5.3.6. ´Ενας εναλλακτικός τρόπος για να ορίσουμε το ολοκλήρωμα είναι και ο εξής.

Ορισμός 5.3.7. ´Εστω f : [a, b]→ R και I ∈ R. Θα γράφουμε

I = lim
λ(P)→0

R( f , P,T )

αν για κάθε ε > 0 υπάρχει δ > 0 τέτοιο ώστε |R( f , P,T ) − I| < ε για κάθε διαμέριση P του [a, b] με
λ(P) < δ και για κάθε επιλογή T ενδιάμεσων σημείων ως προς την P.

Αν υπάρχει το limλ(P)→0 R( f , P,T ) τότε η f ϑα καλείται ολοκληρώσιμη και το όριο αυτό ϑα καλείται
το ολοκλήρωμα της f .

Αποδεικνύεται ότι ο παραπάνω ορισμός είναι ισοδύναμος με τον Ορισμό 5.1.4 με την έννοια ότι μια
συνάρτηση είναι ολοκληρώσιμη κατά τον Ορισμό 5.1.4 αν και μόνο αν είναι ολοκληρώσιμη κατά τον
Ορισμό 5.3.7 και στην περίπτωση αυτή τα δύο ολοκληρώματα είναι ίδια.

5.4 Βασικές Ιδιότητες του Ολοκληρώματος

Πρόταση 5.4.1. (Γραμμικότητα) (α) ´Εστω f , g : [a, b] → R ολοκληρώσιμες συναρτήσεις. Τότε η
συνάρτηση f + g είναι ολοκληρώσιμη και ισχύει ότι

(5.4.1)
∫ b

a
( f (x) + g(x)) dx =

∫ b

a
f (x) dx +

∫ b

a
g(x) dx

(β) ´Εστω f : [a, b] → R ολοκληρώσιμη συνάρτηση. Τότε για κάθε λ ∈ R η συνάρτηση λ f είναι
ολοκληρώσιμη και ισχύει ότι

(5.4.2)
∫ b

a
λ f (x) dx = λ

∫ b

a
f (x) dx

Πόρισμα 5.4.2. ´Εστω f , g : [a, b] → R ολοκληρώσιμες συναρτήσεις και λ, µ ∈ R. Τότε η συνάρτηση
λ f + µg είναι ολοκληρώσιμη και

(5.4.3)
∫ b

a
(λ f (x) + µg(x)) dx = λ

∫ b

a
f (x) dx + µ

∫ b

a
g(x) dx

Ισχύει επίσης ότι και το γινόμενο ολοκληρωσίμων συναρτήσεων είναι ολοκληρώσιμη συνάρτηση.

Πρόταση 5.4.3. ´Εστω f , g : [a, b] → R ολοκληρώσιμες συναρτήσεις. Τότε η συνάρτηση f g είναι
ολοκληρώσιμη.

Παρατήρηση 5.4.4. Η σχέση
∫ b

a
f (x)g(x) dx =

∫ b

a
f (x) dx ·

∫ b

a
g(x) dx δεν είναι γενικά σωστή. Πχ.

αν f (x) = g(x) = x τότε
∫ 1

0
f (x)g(x) dx =

∫ 1

0
x2 dx = 1/3 ενώ

∫ b

a
f (x) dx ·

∫ b

a
g(x) dx =

(∫ 1

0
x dx

)2
=

1
4
.

Μια πολύ χρήσιμη ιδιότητα του ολοκληρώματος είναι και η επόμενη.

Πρόταση 5.4.5. (Προσθετικότητα) ´Εστω f : [a, b] → R και έστω c ∈ (a, b). Τότε η f είναι ολο-
κληρώσιμη στο [a, b] αν και μόνο αν είναι ολοκληρώσιμη στα [a, c] και [c, b]. Στην περίπτωση αυτή
έχουμε

(5.4.4)
∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx
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Πρόταση 5.4.6. (Μονοτονία) ´Εστω f , g : [a, b]→ R ολοκληρώσιμες. Αν f (x) ≥ g(x) για κάθε x ∈ [a, b]
τότε ∫ b

a
f (x) dx ≥

∫ b

a
g(x) dx

Πόρισμα 5.4.7. Αν f : [a, b]→ R ολοκληρώσιμη με f (x) ≥ 0 τότε
∫ b

a
f (x) ≥ 0.

Απόδειξη. Θέτουμε g = 0 και εφαρμόζουμε την Πρόταση 5.4.6. □

Πρόταση 5.4.8. ´Εστω f : [a, b] → R ολοκληρώσιμη. Τότε η συνάρτηση | f | είναι ολοκληρώσιμη και
ισχύει ότι

(5.4.5)
∣∣∣∣ ∫ b

a
f (x) dx

∣∣∣∣ ≤ ∫ b

a
| f (x)| dx

5.5 Το Θεμελιώδες Θεώρημα του Ολοκληρωτικού Λογισμού

Το Θεμελιώδες Θεώρημα του Ολοκληρωτικού Λογισμού αποτελείται από δύο μέρη. Θα μπορούσαμε να
πούμε ότι το πρώτο μέρος του λέει ότι αν ολοκληρώσουμε την παράγωγο μιας συνάρτησης ϑα πάρουμε
σαν αποτέλεσμα στην ίδια την συνάρτηση, συμβολικά∫

f ′(x) dx = f (x)

ενώ το δεύτερο μέρος του λέει ότι το ίδιο ϑα συμβεί αν παραγωγίσουμε το ολοκλήρωμα μια συνάρτησης,
δηλαδή (∫

f (x) dx
)′
= f (x)

Με άλλα λόγια αυτό που εκφράζει το Θεμελιώδες Θεώρημα του Ολοκληρωτικού Λογισμού είναι ότι η
ολοκλήρωση και η διαφόριση είναι αντίστροφες διαδικασίες.

Θεώρημα 5.5.1. (Θεμεμελιώδες ϑεώρημα του Ολοκληρωτικού Λογισμού Ι) ´Εστω f : [a, b] → R ολο-
κληρώσιμη συνάρτηση. Αν υπάρχει F : [a, b] → R συνεχής στο [a, b] και παραγωγίσιμη στο (a, b) με
F′(x) = f (x) για κάθε x ∈ (a, b), τότε

(5.5.1)
∫ b

a
f (x) dx = F(b) − F(a)

Απόδειξη. Δείχνουμε πρώτα ότι για κάθε διαμέριση P του [a, b] ισχύει ότι

(5.5.2) L( f , P) ≤ F(b) − F(a) ≤ U( f , P)

Πράγματι, έστω P = {a = x0 < x1 < x2 < · · · < xn = b} μια τυχαία διαμέριση του [a, b]. Παρατηρούμε ότι
διαφορά F(b) − F(a) γράφεται

(5.5.3) F(b) − F(a) =
n∑

i=1
(F(xi) − F(xi−1))

Από το Θεώρημα Μέσης Τιμής, υπάρχει ti ∈ (xi−1, xi) (και άρα ti ∈ (a, b)) για κάθε i = 1, . . . , n, τέτοιο
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ώστε

(5.5.4)
F(xi) − F(xi−1)

xi − xi−1
= F′(ti) = f (ti)⇒ F(xi) − F(xi−1) = f (ti)∆xi

Άρα η (5.5.3) γράφεται

(5.5.5) F(b) − F(a) =
n∑

i=1
f (ti)∆xi.

Επειδή

(5.5.6) L( f , P) =
n∑

i=1
mi∆xi και U( f , P) =

n∑
i=1

Mi∆xi

όπου mi = inf{ f (x) : x ∈ [xi−1, xi]} και Mi = sup{ f (x) : x ∈ [xi−1, xi]} για κάθε i = 1, . . . , n. και
ti ∈ (xi−1, xi)⇒ mi ≤ f (ti) ≤ Mi για κάθε 1 ≤ i ≤ n, έπεται ότι

(5.5.7)
n∑

i=1
mi∆xi ≤

n∑
i=1

f (ti)∆xi ≤

n∑
i=1

Mi∆xi

Άρα από την (5.5.5) έχουμε τελικά ότι L( f , P) ≤ F(b) − F(a) ≤ U( f , P), για κάθε διαμέριση P του [a, b].
Συνεπώς η διαφορά F(a) − F(b) είναι άνω φράγμα του L( f ) = {L( f , P) : P διαμέριση του [a, b]} και
κάτω φράγμα του U( f ) = {U( f , P) : P διαμέριση του [a, b]}. Άρα

(5.5.8)
∫ b

a
f (x) dx = sup L( f ) ≤ F(b) − F(a) ≤ inf U( f ) =

∫ b

a
f (x) dx

(διότι το supremum ενός υποσυνόλου του R είναι εξ ορισμού το μικρότερο άνω φράγμα και αντίστοιχα
το infimum ενός υποσυνόλου του R είναι εξ ορισμού το μεγαλύτερο κάτω φράγμα.) ´Ομως επειδή η f

είναι ολοκληρώσιμη, έχουμε
∫ b

a
f (x) dx =

∫ b

a
f (x) dx =

∫ b

a
f (x) dx και συνεπώς η (5.5.8) γράφεται

(5.5.9)
∫ b

a
f (x) dx ≤ F(b) − F(a) ≤

∫ b

a
f (x) dx

δηλαδή
∫ b

a
f (x) dx = F(b) − F(a). □

Το Θεώρημα 5.5.1 δίνει και τα εξής πόρισμα.

Πόρισμα 5.5.2. ´Εστω F : [a, b]→ R παραγωγίσιμη συνάρτηση. Αν η F′ είναι ολοκληρώσιμη τότε

(5.5.10)
∫ b

a
F′(x) dx = F(b) − F(a)

Ορισμός 5.5.3. ´Εστω f : [a, b] → R. Μια συνάρτηση F : [a, b] → R ϑα καλείται αρχική (ή αντιπαρά-
γωγος) της f αν (α) είναι συνεχής στο [a, b] και (β) είναι παραγωγίσιμη στο (a, b) με F′(x) = f (x) για
κάθε x ∈ (a, b).

Η αρχική μιας συνάρτησης αν υπάρχει δεν είναι μοναδική, αλλά λόγω του Θεωρήματος Μέσης Τιμής
όλες οι αρχικές μιας συνάρτησης f παράγονται ουσιαστικά από μια μόνο συνάρτηση με πρόσθεση
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σταθεράς και άρα στην (5.5.1) δεν παίζει ρόλο ποιά αρχική συνάρτηση της f επιλέγουμε. Άρα το
Θεώρημα 5.5.1 λέει ότι αν μια ολοκληρώσιμη συνάρτηση έχει αρχική τότε το ολοκλήρωμά της ισούται
με την διαφορά των τιμών της αρχικής της συνάρτησης στα άκρα του διαστήματος ολοκλήρωσης.

´Οπως ϑα δούμε παρακάτω (Πόρισμα 5.5.7), κάθε συνεχής συνάρτηση f : [a, b] → R έχει αρχική.
Υπάρχουν όμως ολοκληρώσιμες συναρτήσεις που δεν έχουν αρχική.

Πρόταση 5.5.4. ´Εστω f : [a, b] → R μονότονη (και συνεπώς, από το Θεώρημα 5.5.1, ολοκληρώσιμη).
Αν η f δεν είναι συνεχής στο (a, b) τότε η f δεν έχει αρχική.

Απόδειξη. Προς απαγωγή σε άτοπο, έστω ότι η f είχε μια αρχική F. Από το Θεώρημα του Darboux
(Θεώρημα 4.3.1) το σύνολο τιμών T = {F′(x) : x ∈ (a, b)} της F′ είναι ένα διάστημα του R. Αφού
F′(x) = f (x) για κάθε x ∈ (a, b) το T είναι και το σύνολο τιμών του περιορισμού της f στο (a, b).
Συνεπώς η f : (a, b) → R είναι μονότονη συνάρτηση με σύνολο τιμών διάστημα του R. Αλλά τότε
(Θεώρημα 3.7.3) η f : (a, b)→ R ϑα πρέπει να είναι συνεχής, άτοπο. □

Παράδειγμα 5.5.5. Θυμηθείτε ότι η συνάρτηση arctan x (ή tan−1 x) ορίζεται ως η αντίστροφη της
f (x) = tan x στο διάστημα

(
−
π

2
,
π

2

)
και έχει παράγωγο

(arctan x)′ =
1

1 + x2

για κάθε x ∈ R. Άρα

(5.5.11)
∫ 1

0

1
x2 + 1

dx =
∫ 1

0
(arctan x)′ dx = arctan 1 − arctan 0 =

π

4
− 0 =

π

4
.

Θεώρημα 5.5.6. (Θεμεμελιώδες ϑεώρημα του Ολοκληρωτικού Λογισμού ΙΙ) ´Εστω f : [a, b] → R ολο-
κληρώσιμη συνάρτηση και έστω F : [a, b]→ R με

(5.5.12) F(x) =
∫ x

a
f (t) dt

για κάθε x ∈ [a, b] (για x = a κατά σύμβαση δεχόμαστε ότι F(a) =
∫ a

a
f (x) dx = 0).

(α) Η F είναι συνεχής. Ειδικότερα η F ικανοποιεί την ανισότητα

(5.5.13)
∣∣∣∣F(y) − F(x)

∣∣∣∣ ≤ M|y − x|

όπου M = sup{| f (x)| : x ∈ [a, b]} και συνεπώς είναι μία Lipschitz συνάρτηση .

(β) Αν η f είναι συνεχής σε κάποιο x0 ∈ [a, b] τότε η F είναι παραγωγίσιμη στο x0 και ισχύει ότι
F′(x0) = f (x0).

Απόδειξη. Καταρχάς παρατηρούμε ότι λόγω της ιδιότητας της Προσθετικότητας του ολοκληρώματος
(Πρόταση 5.4.5) η F είναι καλά ορισμένη.

(α) ´Εστω x, y ∈ [a, b]. Αν x = y τότε η ανισότητα είναι προφανής. ´Εστω x , y και έστω y > x (η
απόδειξη είναι παρόμοια αν y < x). Από την Προσθετικότητα του Ολοκληρώματος έχουμε

F(y) =
∫ y

a
f (t) dt =

∫ x

a
f (t) dt +

∫ y

x
f (t) dt = F(x) +

∫ y

x
f (t) dt
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και άρα από την (5.4.5) και την μονοτονία του ολοκληρώματος,∣∣∣∣F(y) − F(x)
∣∣∣∣ = ∣∣∣∣ ∫ y

x
f (t) dt

∣∣∣∣ ≤ ∫ y

x
| f (t)| dt ≤ M(y − x)

(β) Επειδή

F′(x0) = lim
x→x0

F(x) − F(x0)
x − x0

αρκεί να δείξουμε ότι

lim
x→x0

F(x) − F(x0)
x − x0

= f (x0)

Ισοδύναμα, σύμφωνα με τον ορισμό του ορίου συνάρτησης πρέπει να δείξουμε ότι για κάθε ε > 0
υπάρχει δ > 0 τέτοιο ώστε

(5.5.14) x ∈ [a, b] και 0 < |x − x0| < δ⇒
∣∣∣∣F(x) − F(x0)

x − x0
− f (x0)

∣∣∣∣ < ε
´Εστω λοιπόν ε > 0. Αφού η f είναι συνεχής στο x0 ∈ [a, b], υπάρχει δ > 0 τέτοιο ώστε

(5.5.15) x ∈ [a, b] και |x − x0| < δ⇒ | f (x) − f (x0)| < ε/2

Θα δείξουμε ότι το δ για το οποίο ισχύει η (5.5.15) ικανοποιεί και την (5.5.14).
Πράγματι, έστω x ∈ [a, b] με 0 < |x − x0| < δ. Ας υποθέσουμε ότι x > x0 (η απόδειξη είναι παρόμοια

για x < x0). Παρατηρούμε ότι

F(x) − F(x0)
x − x0

− f (x0) =

∫ x
x0

f (t) dt

x − x0
− f (x0) =

∫ x
x0

f (t) dt

x − x0
−

∫ x
x0

f (x0) dt

x − x0
=

∫ x
x0

( f (t) − f (x0)) dt

x − x0

Οπότε,

∣∣∣∣F(x) − F(x0)
x − x0

− f (x0)
∣∣∣∣ = ∣∣∣∣

∫ x
x0

( f (t) − f (x0)) dt

x − x0

∣∣∣∣
(5.4.5)
≤

∫ x
x0
| f (t) − f (x0)| dt

x − x0

(5.5.15)
≤

∫ x
x0

ε

2
dt

x − x0
=
ε

2
< ε

□

Πόρισμα 5.5.7. Κάθε συνεχής συνάρτηση f : [a, b]→ R έχει αρχική.

Απόδειξη. Από το Θεώρημα 5.5.6 η συνάρτηση F(x) =
∫ x

a f (t) dt είναι παραγωγίσιμη με F′(x) = f (x)
για κάθε x ∈ [a, b]. Άρα η F είναι μια αρχική της f . □

Πόρισμα 5.5.8. (Θεώρημα Μέσης Τιμής του Ολοκληρωτικού Λογισμού) ´Εστω f : [a, b] → R συνεχής.
Τότε υπάρχει ξ ∈ (a, b) τέτοιο ώστε ∫ b

a
f (x) dx = f (ξ)(b − a)
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Απόδειξη. Από το Θεώρημα 5.5.6 η συνάρτηση F(x) =
∫ x

a f (t) dt είναι παραγωγίσιμη με F′(x) = f (x)
για κάθε x ∈ [a, b]. Εφαρμόζωντας το Θεώρημα Μέσης Τιμής για την συνάρτηση F παίρνουμε

F(b) − F(a)
b − a

= F′(ξ)⇔ F(b) − F(a) = F′(ξ)(b − a)⇔
∫ b

a
f (x) dx = f (ξ)(b − a)

για κάποιο ξ ∈ (a, b). □

Πόρισμα 5.5.9. ´Εστω f : [a, b] → R συνεχής με f (x) ≥ 0 για κάθε x ∈ [a, b]. Αν
∫ b

a
f (x) dx = 0 τότε

f = 0.

Απόδειξη. Από το Από το Θεώρημα 5.5.6 η συνάρτηση F(x) =
∫ x

a
f (t)dt είναι παραγωγίσιμη με F′(x) =

f (x) ≥ 0 για κάθε x ∈ [a, b] και άρα η F είναι αύξουσα. Ειδικότερα, F(a) ≤ F(x) ≤ F(b), για κάθε
x ∈ [a, b]. Άρα αφού F(a) = 0 και F(b) =

∫ b
a f (x) dx = 0, παίρνουμε ότι F(x) = 0 για κάθε x ∈ [a, b],

οπότε και f (x) = F′(x) = 0 για όλα τα x ∈ [a, b]. □

5.6 Μέθοδοι Ολοκλήρωσης

Υπάρχουν δύο μέθοδοι ολοκλήρωσης. Η πρώτη μέθοδος Ολοκλήρωσης προκύπτει από τον κανόνα
παραγώγισης του γινομένου δύο συναρτήσεων

( f g)′ = f ′g + f g′

και καλείται ολοκλήρωση κατά παράγοντες. Η δεύτερη μέθοδος είναι συνέπεια του κανόνα αλυσί-
δασ:

(F ◦ φ)′(t) = F′(φ(t))φ′(t)

και καλείται ολοκλήρωση με αντικατάσταση (ή ολοκλήρωση με αλλαγή μεταβλητής).

Θεώρημα 5.6.1. (Ολοκλήρωση κατά παράγοντες) ´Εστω f , g : [a, b] → R παραγωγίσιμες με f ′ και g′

ολοκληρώσιμες τότε

(5.6.1)
∫ b

a
f ′(x)g(x) dx =

[
f (x)g(x)

]b
a −

∫ b

a
f (x)g′(x) dx

Απόδειξη. Οι συναρτήσεις f , g είναι συνεχείς ως παραγωγίσιμες και άρα ολοκληρώσιμες. Συνεπώς οι
f g, f ′g και f g′ είναι ολοκληρώσιμες ως γινόμενο ολοκληρωσίμων. Επειδή ( f · g)′ = f ′ · g + f · g′ έχουμε
ότι f ′ · g = ( f · g)′ − f · g′. Άρα από την γραμμικότητα του ολοκληρώματος και το Θεώρημα 5.5.1,∫ b

a
f ′(x)g(x) dx =

∫ b

a
( f (x)g(x))′ dx −

∫ b

a
f (x) · g′(x) dx = [ f (x)g(x)]b

a −

∫ b

a
f (x) · g′(x) dx.

□
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Παράδειγμα 5.6.2.∫ e

1
ln x dx =

∫ e

1
(x)′ ln x dx = [x ln x]e

1 −

∫ e

1
x(ln x)′ dx = [x ln x]e

1 −

∫ e

1
x
1
x

dx

= [x ln x]e
1 −

∫ e

1
1 dx

= [x ln x]e
1 − [x]e

1 = [x ln x − x]e
1 = [x(ln x − 1)]e

1

Θεώρημα 5.6.3. (Ολοκλήρωση με αντικατάσταση) ´Εστω f : [a, b] → R συνεχής συνάρτηση και φ :
[c, d]→ [a, b] παραγωγίσιμη με φ′ ολοκληρώσιμη. Τότε

(5.6.2)
∫ d

c
f (φ(t)) · φ′(t) dt =

∫ φ(d)

φ(c)
f (x) dx

(όπου στην περίπτωση φ(d) < φ(c), ορίζουμε ότι
∫ φ(d)

φ(c)
f (x) dx = −

∫ φ(c)

φ(d)
f (x) dx).

Απόδειξη. ´Εστω F : [a, b]→ R μια αρχική της f (Πόρισμα 5.5.7). Τότε, από τον Κανόνα Αλυσίδας και
από το Θεμελιώδες Θεώρημα του Ολοκληρωτικού Λογισμού (Θεώρημα 5.5.1) έχουμε∫ d

c
f (φ(t)) · φ′(t) dt =

∫ d

c
F′(φ(t)) · φ′(t) dt

=

∫ d

c
(F ◦ φ)′(t) dt

= (F ◦ φ) (d) − (F ◦ φ) (c)

= F(φ(d)) − F(φ(c))

(5.6.3)

Τώρα αν φ(d) ⩾ φ(c) από το Θεμελιώδες Θεώρημα του Ολοκληρωτικού Λογισμού έχουμε

F(φ(d)) − F(φ(c)) =
∫ φ(d)

φ(c)
f (x) dx

αφού η F είναι μια αρχική της f . Αν τώρα συμβεί φ(d) < φ(c) τότε

F(φ(d)) − F(φ(c)) = − (F(φ(c)) − F(φ(d))) = −
∫ φ(c)

φ(d)
f (x) dx

Συνεπώς κάνοντας στην περίπτωση αυτή την σύμβαση ότι με το σύμβολο
∫ φ(d)
φ(c) f (x) dx ϑα εννοούμε το

−
∫ φ(c)
φ(d) f (x) dx το αποτέλεσμα και για τις δύο περιπτώσεις είναι το

∫ φ(d)
φ(c) f (x) dx. □

Παράδειγμα 5.6.4.
∫ π/2
0 sin t · cos t dt =

1
2
. Πράγματι,

∫ π/2

0
sin t cos t dt =

∫ π/2

0
sin t(sin t)′ dt

x=sin t
=

∫ 1

0
x dx =

x2

2

∣∣∣∣1
0
=

1
2
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Παράδειγμα 5.6.5.
∫ π/3
0 tan t dt = ln 2. Πράγματι,

∫ π/3

0
tan t dt =

∫ π/3

0

sin t
cos t

dt = −
∫ π/3

0

(cos t)′

cos t
dt

x=cos t
= −

(∫ 1/2

1

1
x

dx
)
=

∫ 1

1/2

dx
x
= ln x

∣∣∣∣1
1/2
= − ln

1
2
= ln 2

Πόρισμα 5.6.6. ´Εστω f : [a, b] → R συνεχής συνάρτηση. ´Εστω φ : [c, d] → [a, b] αύξουσα, επί και
παραγωγίσιμη με φ′ ολοκληρώσιμη. Τότε

(5.6.4)
∫ b

a
f (x) dx =

∫ d

c
f (φ(t)) · φ′(t) dt

Απόδειξη. Αφού η φ[c, d] → [a, b] είναι αύξουσα και επί, ϑα πρέπει φ(c) = a και φ(d) = b. Άρα από
την (5.6.2) έχουμε ∫ d

c
f (φ(t)) · φ′(t) dt =

∫ φ(d)

φ(c)
f (x) dx =

∫ b

a
f (x) dx

□

Παράδειγμα 5.6.7. Υπολογίστε το ολοκλήρωμα∫ 1

−1

√
1 − x2 dx

Απόδειξη. Θέτουμε x = sin t, t ∈
[
−π

2
,
π

2

]
. Τότε

∫ 1

−1

√
1 − x2 dx =

∫ π
2

−π
2

√
1 − sin2 t (sin t)′ dt

=

∫ π
2

−π
2

| cos t| cos t dt

=

∫ π
2

−π
2

cos t cos t dt =
∫ π

2

−π
2

cos2 t dt = I

´Εχουμε

I =
∫ π

2

−π
2

cos2 t dt =
∫ π

2

−π
2

cos t(sin t)′ dt

= (cos t sin t)
∣∣∣∣π/2
−π/2
−

∫ π
2

−π
2

(cos t)′ sin t dt

=

∫ π
2

−π
2

sin2 t dt

=

∫ π
2

−π
2

(1 − cos2 t dt

=

∫ π
2

−π
2

dt − I = π − I
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και άρα I =
π

2
. Συνεπώς ∫ 1

−1

√
1 − x2 dx =

π

2
□

Σημείωση 5.6.8. Αν η φ στο Πόρισμα 5.6.6 ειναι φθίνουσα και επί τότε a = φ(d) < φ(c) = b και άρα
από την (5.6.2) και την σύμβαση ότι

∫ φ(d)
φ(c) f (x) dx = −

∫ φ(c)
φ(d) f (x) dx έχουμε

(5.6.5)
∫ d

c
f (φ(t)) · φ′(t) dt =

∫ φ(d)

φ(c)
f (x) dx = −

∫ φ(c)

φ(d)
f (x) dx = −

∫ b

a
f (x) dx

Επειδή φ′|geq0 (αντ. φ′ ≤ 0) αν φ αύξουσα (αντ. φθίνουσα) από τις (5.6.4) και (5.6.5) έπεται ότι για
κάθε φ : [c, d]→ [a, b] μονότονη, επί και παραγωγίσιμη με φ′ ολοκληρώσιμη ισχύει ότι

(5.6.6)
∫ b

a
f (x) dx =

∫ d

c
f (φ(t)) · |φ′(t)| dt

5.7 Ολοκλήρωση ρητών συναρτήσεων

Με τον όρο ρητή συνάρτηση εννοούμε μια συνάρτηση της μορφής
P(x)
Q(x)

όπου P(x),Q(x) πολυώνυμα

με πραγματικο’υς συντελεστές. Αν ο βαθμός του πολυωνύμου P(x) που βρίσκεται στον αριθμητή είναι
γνήσια μεγαλύτερος από τον βαθμό του πολυωνύμου Q(x) που είναι στον παρονομαστή τότε από την
ταυτότητα της διαίρεσης των πολυωνύμων υπάρχουν δύο μοναδικά πολυώνυμα Π(x) (το πηλίκο) και
R(x) (το υπόλοιπο) με τον βαθμό του R(x) να είναι γνήσια μικρότερος του βαθμού του Q(x) τέτοια ώστε
P(x) = Π(x) · Q(x) + R(x) και άρα

P(x)
Q(x)

= Π(x) +
R(x)
Q(x)

Οπότε,

(5.7.1)
∫

P(x)
Q(x)

dx =
∫
Π(x) dx +

∫
R(x)
Q(x)

dx

Επειδή το ολοκλήρωμα ενός πολυωνύμου υπολογίζεται εύκολα,∫ (
anxn + · · · + a1x + a0

)
dx = an

∫
xn dx + · · · + a1

∫
x dx + a0

∫
dx

=
an

n + 1
xn+1 + · · · +

a1

2
x2 + a0x

από την σχέση (5.7.1) βλέπουμε ότι η ολοκλήρωση μιας ρητής συνάρτησης ανάγεται στην ολοκλή-
ρωση μιας ρητής συνάρτησης όπου ο βαθμός του αριθμητή είναι γνήσια μικρότερος του βαθμού του
παρονομαστή.

Ορισμός 5.7.1. Μια ρητή συνάρτηση
P(x)
Q(x)

καλείται γνήσια ρητή όταν ο βαθμός του P(x) είναι γνήσια

μικρότερος του βαθμού του Q(x).

Για να ολοκληρώσουμε μια γνήσια ρητή συνάρτηση χρησιμοποιούμε μια μέθοδο που καλείται διά-
σπαση σε απλά κλάσματα. Το πρώτο βήμα αυτής της μεθόδου είναι η παραγοντοποίηση του παρονο-
μαστή.
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Αποδεικνύεται ότι ένα πολυώνυμο xn + an−1xn−1 + · · · + a1x + a0 με πραγματικούς συντελεστές και
συντελεστή μεγιστοβάθμιου όρου an+1 = 1 παραγοντοποιείται με μοναδικό τρόπο σε ένα γινόμενο πρω-
τοβαθμίων όρων της μορφής x − ρ, όπου ρ ∈ R και σε ένα γινόμενο δευτεροβαθμίων όρων (τριωνύμων)
της μορφής x2 + bx+ c, τα οποία δεν έχουν πραγματικές ρίζες, με άλλα λόγια η διακρίνουσά τους είναι
αρνητική. Πιο συγκεκριμένα έχουμε το εξής.

Θεώρημα 5.7.2. Κάθε πολυώνυμο Q(x) = xn + an−1xn−1 + · · · + a1x + a0 με πραγματικούς συντελεστές
και συντελεστή μεγιστοβάθμιου όρου an+1 = 1 γράφεται στην μορφή

Q(x) = Q1(x) · Q2(x)

όπου

(5.7.2) Q1(x) =
m∏

i=1
(x − ρi)ni και Q2(x) =

ℓ∏
j=1

(x2 + b jx + c j)k j

όπου ni, k j ∈ N, ρi, b j, c j ∈ R και ∆ j = b2
j − 4c j < 0.

Την μορφή Q(x) = Q1(x) ·Q2(x) με Q1(x),Q2(x) όπως στην (5.7.2) ϑα την καλούμε ανάλυση του Q(x).
Αντιστοιχεί κατά κάποιο τρόπο στην γνωστή ανάλυση των ακεραίων σε γινόμενο πρώτων παραγόντων.
´Οπως οι πρώτοι αριθμοί δεν γράφονται ως γινόμενο μικρότερων αριθμών, τα πρωτοβάθμια πολυώνυμα
καθώς και τα δευτεροβάθμια με αρνητική διακρίνουσα είναι τα μοναδικά πολυώνυμα με πραγματικούς
συντελεστές που δεν μπορούν να αναλυθούν σε γινόμενο άλλων απλούστερης μορφής.

Η διάσπαση τώρα μιας ρητής συνάρτησης σε απλά κλάσματα περιγράφεται στο επόμενο ϑεώρημα.

Θεώρημα 5.7.3. ´Εστω
P(x)
Q(x)

μία γνήσια ρητή συνάρτηση.

(i) Αν Q(x) = (x − ρ)n ·G(x), όπου ρ ∈ R και το x − ρ δεν διαιρεί το G(x) (ισοδύναμα G(ρ) , 0) τότε
υπάρχουν μοναδικοί A1, . . . , An ∈ R τέτοιοι ώστε

(5.7.3)
P(x)

(x − ρ)n ·G(x)
=

A1

x − ρ
+ · · · +

An

(x − ρ)n +
R(x)
G(x)

όπου ο βαθμός του R(x) είναι γνήσια μικρότερος του βαθμού του G(x).

(ii) Αν Q(x) = (x2 + bx + c)k · G(x) με ∆ = b2 − 4c < 0 και το x2 + bx + c δεν διαιρεί το G(x), τότε
υπάρχουν μοναδικοί B1,C1, . . . , Bk,Ck ∈ R τέτοιοι ώστε

(5.7.4)
P(x)

(x2 + bx + c)k ·G(x)
=

B1x +C1

x2 + bx + c
+ · · · +

Bkx +Ck

(x2 + bx + c)k +
R(x)
G(x)

όπου ο βαθμός του R(x) είναι γνήσια μικρότερος του βαθμού του G(x).

Παράδειγμα 5.7.4. Υπάρχουν μοναδικοί A1, . . . , A5 ∈ R τέτοιοι ώστε

x2 + 1
(x − 1)(x + 1)2(x2 + 2x + 5)

=
A1

x − 1
+

A2

x + 1
+

A3

(x + 1)2
+

A4x + A5

x2 + 2x + 5

Από το Θεώρημα 5.7.3 έχουμε ότι η ολοκλήρωση των γνήσια ρητών συναρτήσεων ανάγεται στην
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ολοκλήρωση κλασμάτων της μορφής

1
(x − ρ)n και

Bx +C
(x2 + bx + c)k με b2 − 4c < 0

Παράδειγμα 5.7.5. Να αναλυθεί η συνάρτηση
10x

(x + 1)(x2 + 9)
σε απλά κλάσματα και να βρεθεί το

ολοκλήρωμα
∫

10x
(x + 1)(x2 + 9)

dx.

Σύμφωνα με το Θεώρημα 5.7.3 έχουμε

(5.7.5)
10x

(x + 1)(x2 + 9)
=

A
x + 1

+
Bx +C
x2 + 9

όπου A, B,C ∈ R.
Για να βρούμε τις σταθερές A, B,C εργαζόμαστε ως εξής: Κάνοντας ομώνυμα τα κλάσματα και

εκτελώντας τις πράξεις στο δεξί μέλος της (5.7.5) παίρνουμε

10x
(x + 1)(x2 + 9)

=
A

x + 1
+

Bx +C
x2 + 9

=
A(x2 + 9) + (Bx +C)(x + 1)

(x + 1)(x2 + 9)

=
(A + B)x2 + (B +C)x + 9A +C

(x + 1)(x2 + 9)

και άρα
(A + B)x2 + (B +C)x + 9A +C = 10x

Συνεπώς έχουμε το σύστημα
A + B = 0, B +C = 10, 9A +C = 0

απ´ όπου συμπεραίνουμε ότι
A = −1, B = 1,C = 9

Άρα
10x

(x + 1)(x2 + 9)
= −

1
x + 1

+
x + 9
x2 + 9

Οπότε ∫
10x

(x + 1)(x2 + 9)
dx = −

∫
1

x + 1
dx +

∫
x + 9
x2 + 9

dx(5.7.6)

´Εχουμε ∫
1

x + 1
dx = ln |x + 1|
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και ∫
x + 9
x2 + 9

dx =
1
9

∫
x + 9(
x
3

)2
+ 1

dx

t=x/3,dx=3dt
=

1
9

∫
3t + 9
t2 + 1

3 dt

=

∫
t + 3
t2 + 1

dt

=

∫
t

t2 + 1
dt +

∫
3

t2 + 1
dt

u=t2+1,du=2t dt
=

1
2

∫
du
u
+ 3

∫
1

t2 + 1
dt

=
1
2

ln |u| + 3 arctan t =
1
2

ln(t2 + 1) + 3 arctan t

=
1
2

ln
(

x2

9
+ 1

)
+ 3 arctan

( x
3

)
= ln

√
x2

9
+ 1 + 3 arctan

( x
3

)
.

Συνεπώς

10x
(x + 1)(x2 + 9)

= − ln |x + 1| + ln

√
x2

9
+ 1 + 3 arctan

( x
3

)

= ln


√

x2

9 + 1

|x + 1|

 + 3 arctan
( x
3

)

5.8 Μερικές γεωμετρικές εφαρμογές του ολοκληρώματος

5.8.1 Εμβαδά επίπεδων χωρίων

Το βασικό κίνητρο για τον ορισμό του ολοκληρώματος ήταν ο υπολογισμός καμπψλόγραμων επίπεδων
σχημάτων. Βασικά παραδείγματα τέτοιων σχημάτων είναι τα χωρία κάτω από το γράφημα μιας ϑετικής
συνάρτησης. Πιο συγκεκριμμένα έχουμε το εξής.

Θεώρημα 5.8.1. ´Εστω f : [a, b]→ R συνεχής και μη αρνητική συνάρτηση. ´Εστω

S = {(x, y) ∈ R2 : a ≤ x ≤ b και 0 ≤ y ≤ f (x)}

το υπογράφημα της f , δηλαδή το χωρίο του επιπέδου που περιορίζεται από το γράφημα της συνάρ-
τησης, τον άξονα x και τις δύο κάθετες στον άξονα x στα σημεία x = a και x = b. Τότε το εμβαδό του

S ισούται με
∫ b

a
f (x) dx.

Παράδειγμα 5.8.2. Το εμβαδό E ενός κύκλου ακτίνας R δίνεται από τον τύπο E = πR2.

Απόδειξη. Ο κύκλος του R2 με κέντρο την αρχή των αξόνων και ακτίνα R αποτελείται από όλα τα
σημεία (x, y) που ικανοποιούν την σχέση

(5.8.1) x2 + y2 = R2

Θεωρώντας το άνω ημικύκλιο, δηλαδή τα σημεία (x, y) με y > 0 και λύνοντας την (5.8.1) ως προς y
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βλέπουμε ότι αυτό είναι η γραφική παράσταση της συνάρτησης

f (x) =
√

R2 − x2, −R ≤ x ≤ R

Παρατηρούμε ότι το εμβαδό του κύκλου με κέντρο το (0, 0) και ακτίνα R είναι το διπλάσιο του εμβαδού
του ημικυκλίου, το οποίο με την σειρά του είναι το εμβαδό του υπογραφήματος της συνάρτησης f .
Συνεπώς, από το Θεώρημα 5.8.1, έχουμε

(5.8.2) E = 2
∫ R

−R

√
R2 − x2 = 2R

∫ R

−R

√
1 −

( x
R

)2
dx

και κάνωντας την αντικατάσταση y = x/R dy = dx/R παίρνουμε

(5.8.3) E = 2R2
∫ 1

−1

√
1 − y2 dy

Από το Παράδειγμα 5.6.7 έχουμε
∫ 1
−1

√
1 − y2 dy = π/2 και άρα

E = 2
∫ R

−R

√
R2 − x2 = 2R2π

2
= πR2

□

5.8.2 Μήκος επίπεδης καμπύλης

Με τον όρο (επίπεδη) καμπύλη ϑα εννοούμε ένα υποσύνολο του C του R2 για το οποίο υπάρχουν
δύο συνεχείς συναρτήσεις

x(t), y(t) : I → R

όπου Ι ένα διάστημα του R τέτοιες ώστε

C = {(x, y) ∈ R2 : x = x(t) και y = y(t), t ∈ [a, b]}

Το ζεύγος (x(t), y(t)), t ∈ [a, b] αποτελεί όπως λέμε μια παραμετρική αναπαράσταση της καμπύλης.
Αν οι συναρτήσεις x(t), y(t) είναι επιπλέον και παραγωγίσιμες ως προς t με συνεχείς παραγώγους τότε
η παραμετρική αναπαράσταση ϑα καλείται συνεχώς διαφορίσιμη. Αν I = [a, b] τότε τα άκρα της
καμπύλης ορίζονται να είναι τα σημεία A = (x(a), y(a)) και B = (x(b), y(b)). Αν τα άκρα ταυτίζονται
η καμπύλη καλείται κλειστή. Αν για κάθε σημείο (x, y) της καμπύλης εκτός ίσως των άκρων υπάρχει
μοναδικό t ∈ (a, b) με x = x(t) και y = y(t) τότε η παραμετρική αναπαράσταση της καμπύλης ϑα
καλείται απλή.

Το μήκος της C ορίζεται μέσω των τεθλασμένων γραμμών με κορυφές σημεία της καμπύλης. Απο-
δεικνύεται ότι αν μια καμπύλη C έχει μια απλή και συνεχώς διαφορίσιμη παραμετρική αναπαράσταση
(x(t), y(t)) t ∈ [a, b] τότε το μήκος L(C) της καμπύλης δίνεται από τον τύπο

(5.8.4) L(C) =
∫ b

a

√
(x′(t))2 + (y′(t))2 dt

Παράδειγμα 5.8.3. Το μήκος L ενός κύκλου ακτίνας R δίνεται από τον τύπο L = 2πR.
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Πράγματι, οι συναρτήσεις

x(t) = R cos t, y(t) = R sin t, t ∈ [0, 2π]

αποτελούν παραμετρικές εξισώσεις ενός κύκλου ακτίνας R > 0 και κέντρου (0, 0). Άρα, από τον τύπο
(5.8.4), έχουμε

L =
∫ 2π

0

√
R2 sin2 t + R2 cos2 t dt = R2

∫ 2π

0

√
sin2 t + cos2 t dt = R2

∫ 2π

0
dt = 2πR.

Στην περίπτωση όπου η C είναι η γραφική παράσταση μιας συνάρτησης f : [a, b] → R με συνεχή
παράγωγο τότε μια απλή και συνεχώς διαφορίσιμη παραμετρική αναπαράσταση της C δίνεται από
τους τύπους x(t) = t και y(t) = f (t) για κάθε t ∈ [a, b] και άρα η (5.8.4) παίρνει την μορφή

(5.8.5) L(C) =
∫ b

a

√
1 + ( f ′(x))2 dx

Παράδειγμα 5.8.4. Να βρεθεί το μήκος της καμπύλης με εξίσωση y = ln(1 − x2), x ∈ [0, 1/2].

´Εχουμε f (x) = ln(1 − x2) και άρα

f ′(x) =
1

1 − x2 (1 − x2)′ =
−2x

1 − x2

για κάθε x ∈ [0, 1/2]. Συνεπώς

L =
∫ 1/2

0

√
1 +

4x2

(1 − x2)2
dx =

∫ 1/2

0

√
(1 + x2)2

(1 − x2)2
dx

=

∫ 1/2

0

1 + x2

1 − x2 dx

=

∫ 1/2

0

2 − (1 − x2)
1 − x2 dx

=

∫ 1/2

0

(
2

1 − x2 − 1
)

dx

=

∫ 1/2

0

(
1

1 − x
+

1
1 + x

− 1
)

dx

= [− ln(1 − x) + ln(1 + x) − x]1/20

=

[
ln

1 + x
1 − x

− x
]1/2
0
= ln 3 −

1
2
.
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