

Course: Energy and Environment

Exercise instructions: Design of Small Hydroelectric Power Plants

Nikos Mamassis, Andreas Efstratiadis,
Department of Water Resources & Environmental Engineering,
School of Civil Engineering, NTUA

Exercise

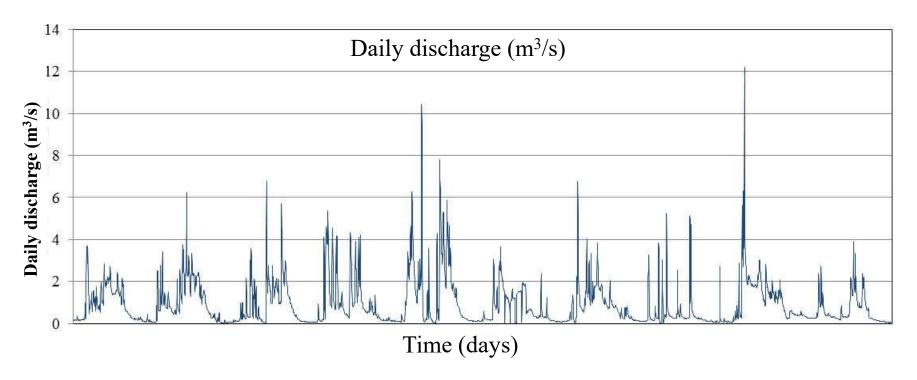
The construction of a small hydropower plant with a net head of 260 m is considered in a specific river location. Daily flow data are available at the location of the intake for a period of 10 hydrologic years (Excel file), whereas Table 1 contains the corresponding values of the mean monthly flows.

Table 1 Mean Monthly Flows (m³/s)

Month	10	11	12	1	2	3	4	5	6	7	8	9	Annual
Mean value	0.48	1.37	1.46	0.99	1.40	1.53	1.66	1.03	0.42	0.23	0.15	0.12	0.90

Requested:

- 1. The estimation of the environmental flow and the timeseries of the daily volume of water exploitable for hydropower production
- 2. The initial estimation of the mean annual potential electrical energy, assuming a total efficiency of 0.85
- 3. The development of the exploitable daily flow duration curve
- 4. The development of a spreadsheet for the simulation of the hydropower plant's daily operation and the calculation of the electricity produced. Assume that the turbine starts operating with a flow higher than 10% of the maximum flow and has a **constant total efficiency** of 0.85. Considering that one turbine is going to be installed, estimate its nominal flow, so that the production of electrical energy is maximised.
- 5. The development of a spreadsheet for the simulation of the hydropower plant's daily operation and the calculation of the electricity produced. Assume that the turbine has a **variable efficiency** (that can be estimated via the curves supplied), whereas the efficiency of the electromechanical equipment is 0.96. Considering that one turbine is going to be installed, estimate its nominal flow, so that the production of electrical energy is maximised. Use the performance curves of the three turbine types (Francis, Pelton, Kaplan), which are supplied in the Excel file. Assume that the following conditions will need to apply: a) the volume of water utilised, after the deduction of the environmental flow, needs to be at least 75% of the total, and b) the exploitation index of the plant needs to be at least 30%
- 6. Investigate the installation of two turbines. Calculate the electrical energy produced from different turbine combinations and identify the most efficient ones in terms of electricity production
- 7. The final selection of **two** turbines, after taking into account other factors besides the maximisation of electrical energy production


1. Environmental flow estimation

4	А	В	С	D	Е	F	G	Н	1	J	К	L	М	N	0	
1			-								K	_				
 2	Έκταση	42.8	km2													
3	Απορροή	28.4														
1	Απορροή	663.3														
5																
6																
7		10	11	12	1	2	3	4	5	6	7	8	9	Έτος		
3	1971-72	0.18	0.77	1.32	1.02	1.73	1.78	1.55	1.00	0.31	0.21	0.13	0.08	0.84		
9	1972-73	1.20	1.17	0.59	1.43	2.61	2.14	1.74	0.91	0.28	0.11	0.05	0.09	1.03		
0	1973-74	0.32	0.81	1.13	0.20	1.89	1.71	2.17	1.57	0.42	0.11	0.07	0.17	0.88		
1	1974-75	0.90	2.81	1.57	0.76	1.54	1.92	1.06	0.67	0.43	0.15	0.15	0.09	1.00		
2	1975-76	0.77	3.45	2.22	1.11	0.44	2.45	3.62	2.18	0.76	0.22	0.12	0.12	1.45		
3	1976-77	0.22	0.94	1.99	1.05	0.87	1.45	0.99	0.42	0.49	0.32	0.11	0.08	0.74		
4	1977-78	0.18	1.19	0.89	1.80	1.95	1.40	0.98	0.72	0.39	0.40	0.14	0.11	0.85		
5	1978-79	0.57	0.63	0.82	0.39	0.53	0.31	1.28	0.26	0.16	0.09	0.26	0.10	0.45		
6	1979-80	0.15	0.80	3.67	1.88	2.13	1.49	1.37	1.32	0.42	0.48	0.41	0.30	1.20		
7	1980-81	0.28	1.16	0.40	0.28	0.34	0.61	1.80	1.28	0.57	0.18	0.10	0.05	0.59		
8	Μέση τιμή	0.48	1.37	1.46	0.99	1.40	1.53	1.66	1.03	0.42	0.23	0.15	0.12	0.90		
9																
0	ΟΙΚΟΛΟΓΙΚΗ	1	0.08		Estin	nation	of envir	ronme	ntal fl	ow as	the m	aximu	m of:			
1	ΟΙΚΟΛΟΓΙΚΗ	2	0.06	K					_					.1. 1.		
2	ΟΙΚΟΛΟΓΙΚΗ	3	0.03	'	1.30	% OJ 11	he mean	aiscno	arge oj	summ	ier mo	nıns (J	une, J	uty, At	igusi)	or
23					2.50	% of the	he mean	dische	arge of	f Sente	mber o	or				
4	ΟΙΚΟΛΟΓΙΚΗ		0.08						3 3	A SP 11						
5	V hm3		25.9		3.30	II/sec	in any c	ase.								
26	75%*V		19.4													
27										F1	ow du	ration	CHEVA			
28		0.90	0.08	0.82			ΚΑΜΠΥΛΗ ΔΙ	ΑΡΚΕΙΑΣ		1.0	ow uu	luuon	curve	SB1		
9			ΟΙΚΟΛΟΓΙ	EKMETA//	ΛΕΥΣΗ		ΣΥΧΝΟΤΗΤΑ	ΕΚΜΕΤΑΛ	ΛΕΥΣΗ	— 1.	Rankii	ng dail	y disci	iarges	in de	escend
0	1/10/1971	0.17	0.08	0.09		1	0.03	12.10			order					
1	2/10/1971	0.17	0.08	0.09		2	0.05	10.36								
2	3/10/1971	0.17	0.08	0.09		3	0.08	10.32		— 2.	Calcul	ation c	of emp	irical	proba	bility c
3	4/10/1971	0.15	0.08	0.07		4	0.11	9.31					1		L	,
4	5/10/1971	0.12	0.08	0.04		5	0.14	7.81			exceed	iance				

Slide 3

SB1 "Flow duration curve" instead of "duration curve" or "Flow duration curve for hydropower production" Sandra Baki, 28-Mar-19

2.Initial estimations

Mean discharge available for hydropower exploitation: 0.82 m/s (the envrinomental flow has been abstracted)

Mean annual water volume available for hydropower exploitation: 25.9 hm³

Assuming:

 ρ 1000 kg/m³

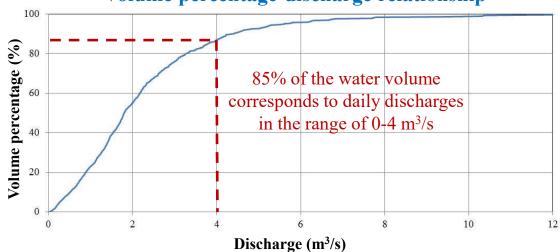
 $g = 9.81 \text{ m/s}^2$

H 260 m

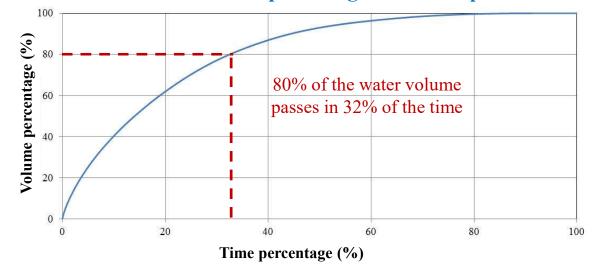
n = 0.85

Potential values assuming complete exploitation:

Mean annual energy produced: 15 624 MWh


Installed power for continuous operation: 1.8 MW

Installed power for operation of 3000 h: 5.2 MW

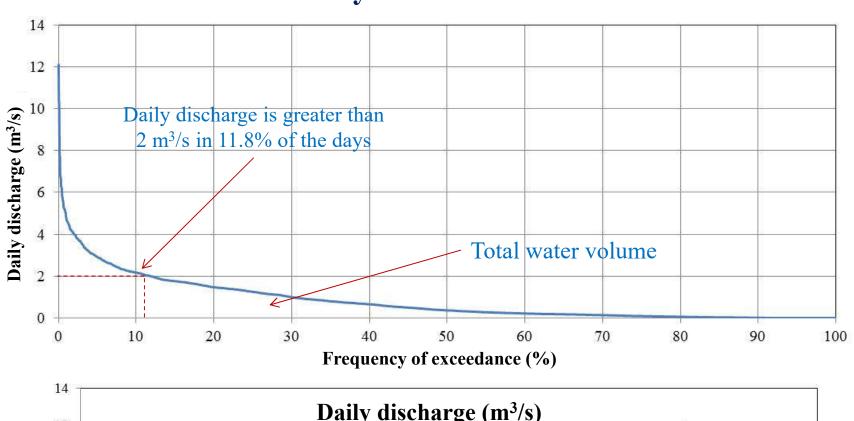

2. Initial estimations

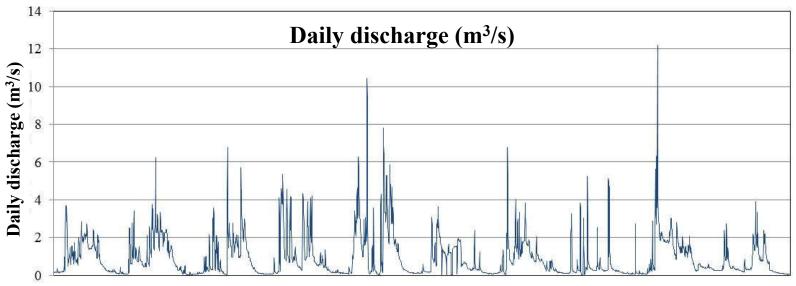
Mean discharge available for exploitation: 0.82 m/s
Mean annual water volume available for exploitation: 25.9 hm³

Volume percentage-discharge relationship

Volume-time percentage relationship

$ho = 1000 \text{ kg/m}^3$ g = 9.81 m/s²

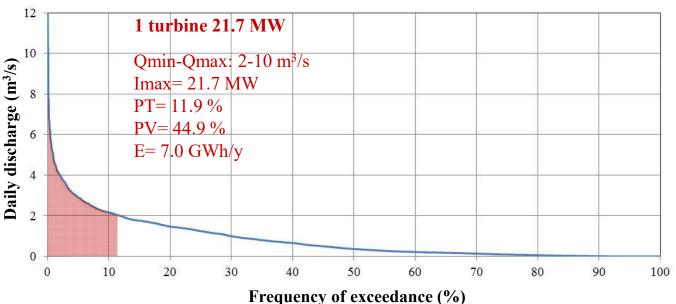

H 260 m


n 0.85

Discharge-installed power relationship

 $Q(m^3/s)$ I(MW)0.5 1.1 2.2 1.5 3.3 2 4.3 2.5 5.4 3 6.5 8.7 5 10.8 10 21.7

3. Daily flow duration curve



4. Examples with 1 turbine (n=0.85, Qmin=0.2*Qmax)

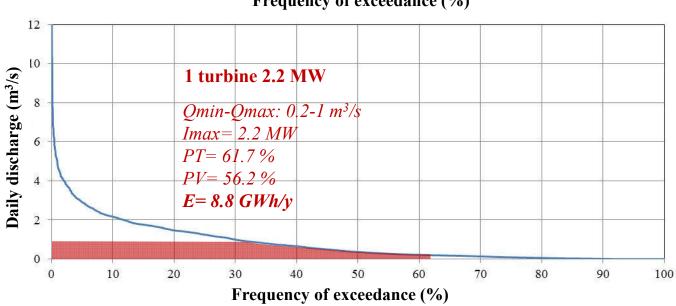
Theoretical power for various discharges

Warning: In exercise Qmin=0.1*Qmax

Data	$Q (m^3/s)$	I (MW)
H=260 m	0.5	1.1
$\rho = 1000 \text{ kg/m}^3$	1	2.2
$g=9.81 \text{ m/s}^2$	1.5	3.3
n=0.85	2	4.3
11-0.83	2.5	5.4
	3	6.5
	4	8.7
	5	10.8
	10	21.7

Legend

Qmin, Qmax:

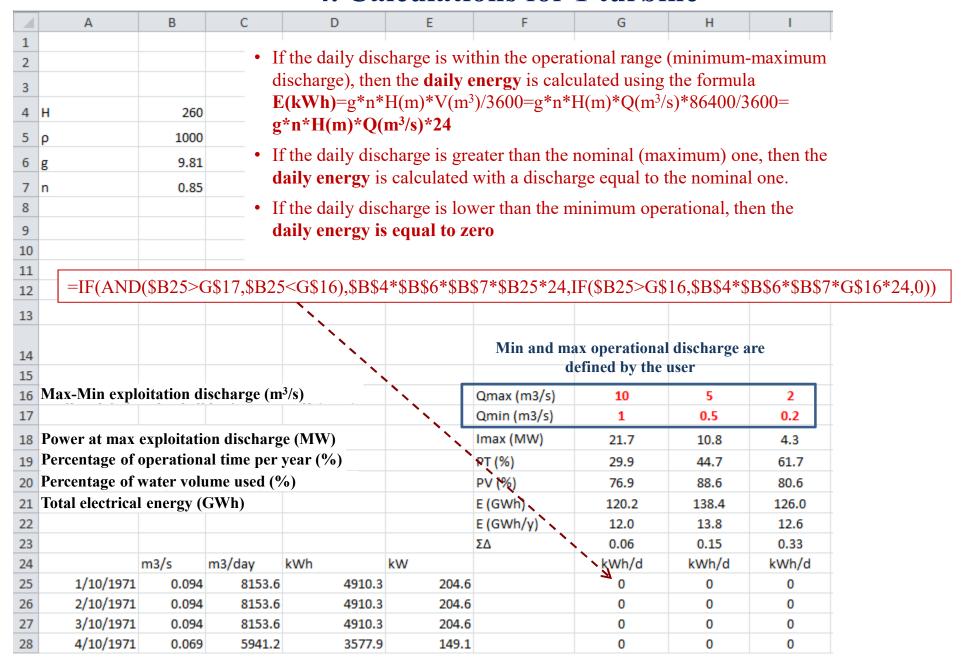

Minimum, maximum exploitation discharge (m³/s)

Imax: Power at maximum exploitation discharge (MW)

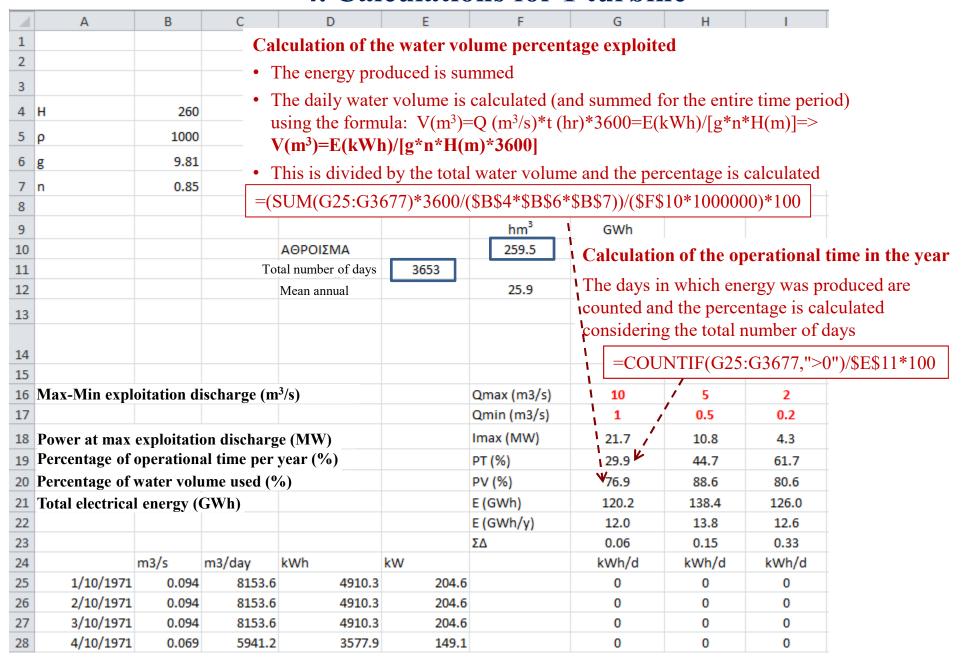
PT: Percentage of operational time in a typical year (%)

PV: Percentage of water volume used (%)

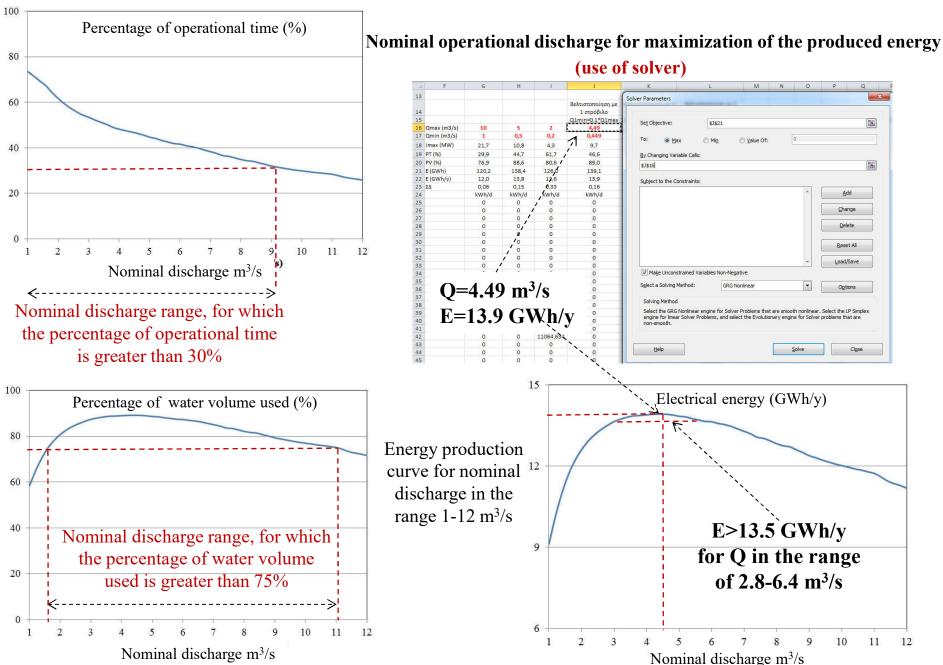
E: Total annual electrical energy produced (GWh/y)


4. Calculations for 1 turbine

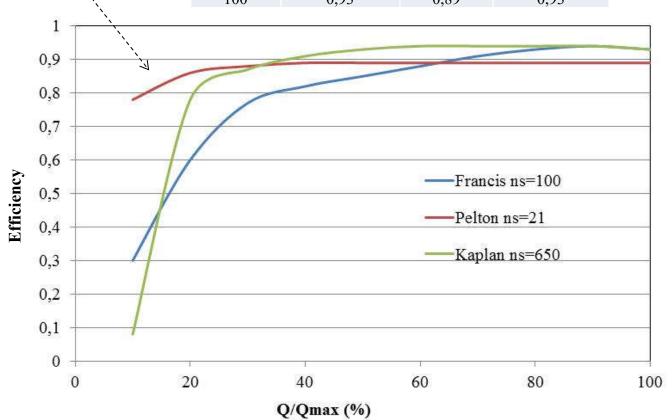
- 1		-	_	_		_	_			
	Α	В	С	D		Е	F	G	Н	1
1			D	.:		404in4ing (a) d	lashawas (h) w		(a) matamtial	
2			D:	any umeseri	ies s	N /	lischarge, (b) w		(c) potential	
3						energy and	d (d) required _l	power		
4	Н	260		For 10 years	S	m³/s	m³/day	kWh	kW	
5	ρ	1000		Maximum		12.1	1045256.9	629479.8	26228.3	
6	g	9.81		Minimum		0	0	0	0	
7	n	0.85		Mean		0.822	71029.3	42775.6	1782.3	
8										
9							hm³	GWh		
10				Total			259.5	156.3		
11				Total days		3653				
12				Mean annu	al		25.9	15.6		
13		Daily e	lectrical ene	erov E(kWh)=σ	*n*H(m)*V(ı	m ³)/3600			
							iii)/2000			
14			=\$B\$6*\$I	B\$7*\$B\$4*	*C2	25/3600				
15										
16	Max-Min explo	oitation di	scharge (m	³ /s)	i		Qmax (m3/s)	10	5	2
17					-		Qmin (m3/s)	1	0.5	0.2
18	Power at max	exploitatio	on discharg	e (MW)	i		Imax (MW)	21.7	10.8	4.3
19	Percentage of	operation	al time per	year (%)	-		PT (%)	29.9	44.7	61.7
20	Percentage of	water volu	ıme used (%	(o)	i i		PV (%)	76.9	88.6	80.6
21	Total electrical	l energy (GWh)		!		E (GWh)	120.2	138.4	126.0
22					i		E (GWh/y)	12.0	13.8	12.6
23					ļ.		ΣΔ	0.06	0.15	0.33
24		m3/s	m3/day	kWh	 }	kW		kWh/d	kWh/d	kWh/d
25	1/10/1971	0.094	8153.6	491	0.3	204.6		0	0	0
26	2/10/1971	0.094	8153.6	491	LO.3	204.6	K.	0	0	0
27	3/10/1971	0.094	8153.6	491	LO.3	204.6		0	0	0
28	4/10/1971	0.069	5941.2	357	77.9	149.1		0	0	0
Da	nily volume (m ³) =B	25*86400				=D25/24	Daily powe	er I(kW)=E(kV	Wh)/24h


Data-Constants

Datadaily discharge timeseries


4. Calculations for 1 turbine

4. Calculations for 1 turbine


4. Examples with 1 turbine (n=0.85, Qmin=0.1*Qmax)

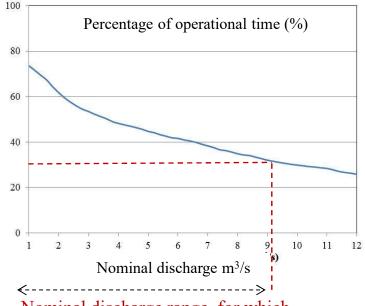
5. Turbine efficiency curves

- Assuming an efficiency for the electromechanical equipment of **0.96**,
- the total efficiency of **0.85** corresponds to:
- a turbine efficiency of 0.85/0.96 = 0.885

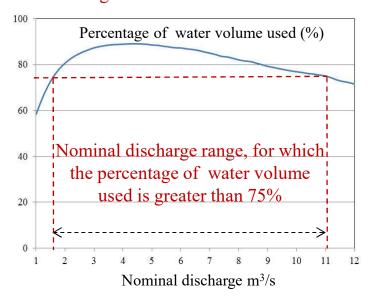
Q/Qmax	Francis ns=100	Pelton ns=21	Kaplan ns=650
10	0,3	0,78	0,08
20	0,6	0,86	0,78
30	0,77	0,88	0,87
40	0,82	0,89	0,91
50	0,85	0,89	0,93
60	0,88	0,89	0,94
70	0,91	0,89	0,94
80	0,93	0,89	0,94
90	0,94	0,89	0,94
100	0.93	0.89	0.93

0,933 0,932 0,931 0,93

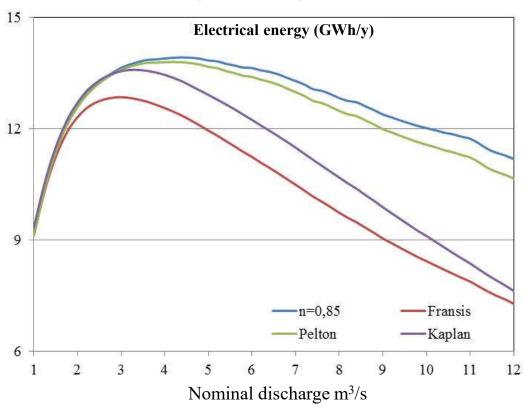
5. Example with 1 turbine (with efficiency curve)


- 4	A	В	С	D	E	F	G	Н	1	J
1	Н	260		I (kW) = 9.8	1 * Q (m ³ /s) * H (n	ı) * n		Tì	ırbine effici	iency curve
2	ρ	1000						Fr	ancis ns=100	,
3	g	9,81					3. Acco	rding to the	Q/Qmax	n
4	n	0,96	Efficiency	of the ele	ctromechanica	l equipment		ge of the daily	0	
5							-	arge to the	1	
6	1. The ene			_		percentage		al one, the	2	
7	account the e	fficiency	of the ele	ctromecha		ne daily		sponding	3	
8	equipment.	It will lat	er be corr	ected with	the discha	rge to the			4	
9 10	efficiency o	f the turb	ines that c	correspond	ls to nomin	al one, is	_	is located in	5	
10	the daily dis	charge by	y taking in	ito account	t the calc	culated -	the effic	ciency curve	6	
	•		ciency cu			T(100*B99/F	\$17).1)		7	
12					TVI/YX(IIV	1(100 D)//1	p1/ <i>J</i> ,1 <i>J</i>		8	
13 14	=IF(AND(\$)								9 10	0,3
15	\$1*\$B\$3*\$E	3\$4*\$B99	9*24;IF(\$1	B99>F\$1		=L(OOKUP(F99	;\$I\$5:\$J\$104)	11	0,33
16	7;\$B\$1*\$	3B\$3*\$B\$	\$4*F\$17*	24;0))		Francis ns=100	1		12	0,36
	Max-Min exp	loitation	disahara	(m3/c)	Qmax (m3/s)	3,00			13	0,39
18	Max-Min exp	nonanon	uischarg	(m ² /s) \	Qmin (m3/s)	0,30	4. The	daily energy is		0,42
	Power at max	evnloits	ation disc	harge	Imax (MW)	7,3	-	d according to t		0,45
	Percentage of				1	53,4	1	ine efficiency	16	0,48
		_			,	87,3		ine enforcine y	17	
	Percentage of			ea _	PV (%)	128,5	1			0,51
23	Total electric	ai energy	y (Gwn)		E (GWh) E (GWh/y)	128,5	=	G99*E99	18 19	0,54 0,57
24					1	0,20	<u> </u>	1	20	0,57
25					ΣΔ	0,20	i	1	21	0,617
26		m3/s	m3/day		kWh/d	Q/Qmx	Efficiency	kWh/d	22	0,634
				l		1	i			
99	12/12/1971	0,620	53561,1		₹ 36430,1	V 20	V _{0,60}	21858,1	95	0,935
100	13/12/1971	0,708	61146,6		41589,5	23	0,65	27074,7	96	0,934
101	14/12/1971	0,794	68626,7		46677,1	26	0,70	32767,4	97	0,933
102	15/12/1971	0,860	74315,8		50546,6	28	0,74	37202,3	98	0,932

WARNING: The calculation of the percentage of the used water volume changes. Initially, the efficiency of the turbines is calculated as the quotient of the final energy to the initial energy that was calculated by taking into account the efficiency of the electromechanical equipment.


SUM(H27:H3679)/ SUM(E27:E3679) The new formula incorporates the efficiency of the turbines

=(SUM(H27:H3679)*3600/(\$B\$1*\$B\$3*\$B\$4***SUM(H27: H3679)/SUM(E27:E3679)**)/(\$C\$12*1000000)*100)


5. Example with 1 turbine (with efficiency

Nominal discharge range, for which the percentage of operational time is greater than 30%

Energy production curve for nominal discharge in the range 1-12 m³/s

Constant efficiency n=0.85

instant efficiency n=0.0

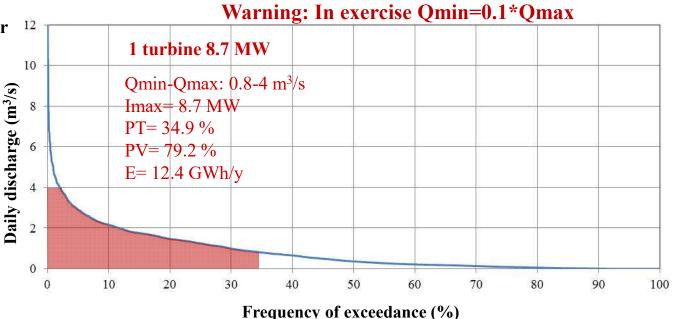
Pelton

Kaplan

Francis

 $Q=4.4 \text{ m}^3/\text{s}$ E=13.9 GWh/y

 $Q=4.2 \text{ m}^3/\text{s}$ E=13.8 GWh/y


 $Q=3.4 \text{ m}^3/\text{s}$ E=13.6 GWh/y

 $Q=3.0 \text{ m}^3/\text{s}$ E=12.8 GWh/y

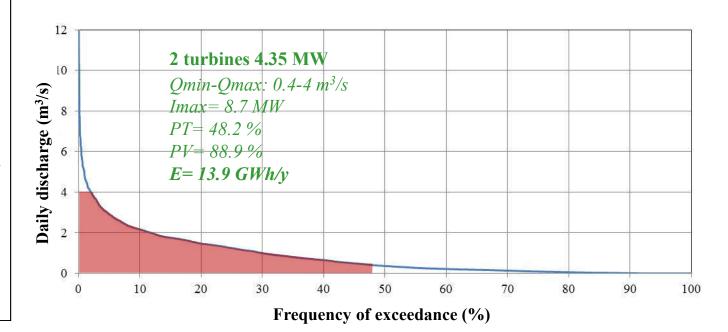
6. Examples with 2 turbines (n=0.85, Qmin=0.2*Qmax)

Theoretical power for various discharges

O (m^3/s) I (MW)H=260 m0.5 1.1 $\rho = 1000 \text{ kg/m}^3$ 2.2 1 $g=9.81 \text{ m/s}^2$ 1.5 3.3 n=0.854.3 2 2.5 5.4 3 6.5 4 8.7 5 10.8 10 21.7

Legend

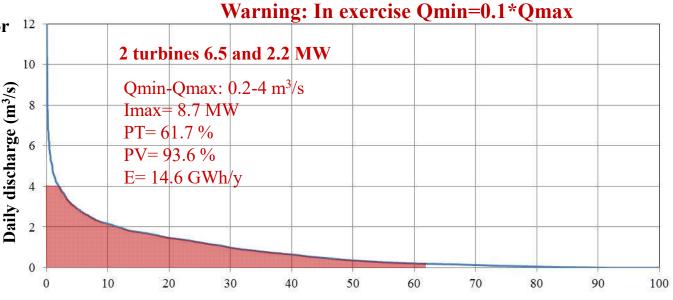
Qmin, Qmax:


Minimum, maximum exploitation discharge (m³/s)

Imax: Power at maximum exploitation discharge (MW)

PT: Percentage of operational time in a typical year (%)

PV: Percentage of water volume used (%)


E: Total annual electrical energy produced (GWh/y)

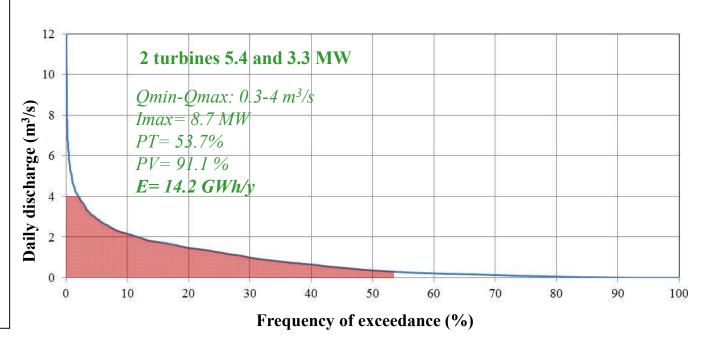
6. Examples with 2 turbines (n=0.85, Qmin=0.2*Qmax)

Theoretical power for 12 various discharges

 $Q (m^3/s) I (MW)$ H=260 m0.5 1.1 $\rho = 1000 \text{ kg/m}^3$ 2.2 1 $g=9.81 \text{ m/s}^2$ 1.5 3.3 n=0.852 4.3 2.5 5.4 6.5 3 8.7 10.8 5 21.7 10

Legend

Omin, Omax:


Minimum, maximum exploitation discharge (m³/s)

Imax: Power at maximum exploitation discharge (MW)

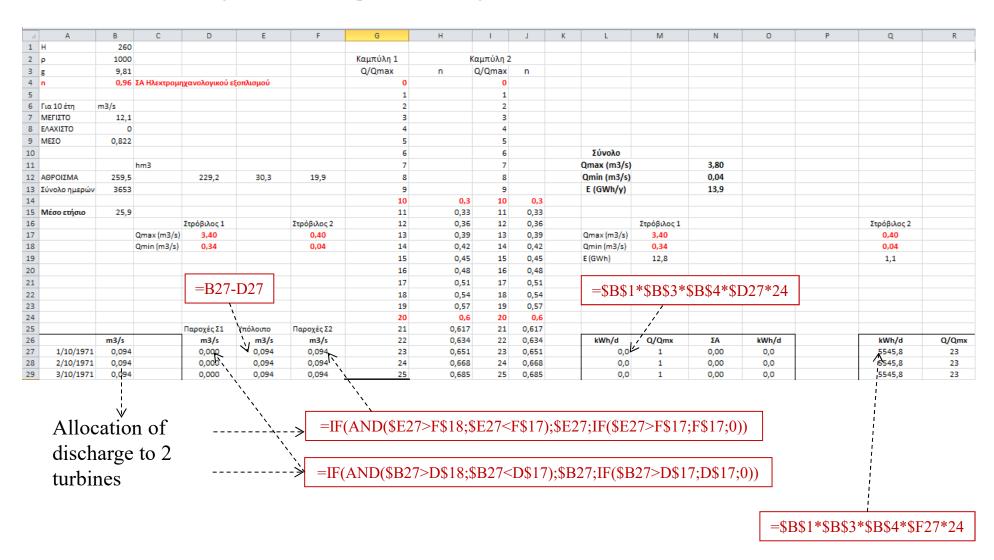
PT: Percentage of operational time in a typical year (%)

PV: Percentage of water volume used (%)

E: Total annual electrical energy produced (GWh/y)

Frequency of exceedance (%)

6. Optimization with 2 turbines (n=0.85 for Qmin=0.1*Qmax)


	Optimization with 1 turbine	Optimization with 2 same turbines	Optimization with 2 sequential turbines	
	Q1min=0.1*Q1max	Q1min=0.1*(Q2max/2)	Q1min=0.1*0.1*Q2max	
Qmax (m3/s)	4,49	5,08	8,71 =Q	1max+Q2max
Qmin (m3/s)	0,45	0,25	0,09 =C	1min
Imax (MW)	9,7	11,0	18,9 (16.9 and 2	MW)
PT (%)	46,6	56,4	75,8	
PV (%)	89,0	93,8	99,0	
E (GWh)	139,1	146,6	154,7	
E (GWh/y)	13,9	14,7	15,5	
ΣΔ	0,16	0,15	0,09	

Theoretical power for various discharges

DATA	$Q (m^3/s)$	I (MW)
	0.5	1.1
H=260 m	1	2.2
$\rho = 1000 \text{ kg/m}^3$	1.5	3.3
$g=9.81 \text{ m/s}^2$	2	4.3
n=0.85	2.5	5.4
	3	6.5
	4	8.7
	5	10.8
	10	21.7

6. Optimization with 2 turbines (considering efficiency curves)

We make the assumption, that initially the first turbine starts operating and in the case that the discharge is out of its operational range, then the flow is routed to the second turbine

7. Optimization with 2 turbines (considering efficiency curves)

We make the assumption, that initially the first turbine starts operating and in the case that the discharge is out of its operational range, then the flow is routed to the second turbine

2 Pelton turbines

2 Francis turbines

Qmax (m ³ /s)	4,2	4	1,2	4,	2	4,2			Qmax (m ³ /s)	3,0	0 3,0		3,0		3,0	
E (GWh/y)	13,8	14	4,6	14	,9	15	15,1		E (GWh/y)	12,9	14,2		14,0		13,9	
		Σ1	Σ2	Σ1	Σ2	Σ1	Σ2				Σ1	Σ2	Σ1	Σ2	Σ1	Σ2
Q _{1,2} max (m ³ /s)		2,1	2,1	3,0	1,2	3,8	0,4		Q _{1,2} max (m ³ /s)		1,5	1,5	2,0	1,0	2,7	0,3
E _{1,2} (GWh/y)		12,7	1,8	13,6	1,3	13,8	1,3		E _{1,2} (GWh/y)		11,2	3,0	12,3	1,7	12,8	1,0

Pelton-Francis Combination

Qmax (m ³ /s)	3	3,0	3,0		3.	,0	3,0		3.	,0	3,0	
E (GWh/y)	14,3		14,1		14,2		14,1		14,4		14,0	
	Pelton	Francis	Francis	Pelton	Pelton	Francis	Francis	Pelton	Pelton	Francis	Francis	Pelton
Q _{1,2} max (m ³ /s)	1,5	1,5	1,5	1,5	2,0	1,0	2,0	1,0	2,5	0,5	2,5	0,5
E _{1,2} (GWh/y)	11,4	3,0	11,2	2,9	12,6	1,7	12,3	1,7	13,2	1,1	12,7	1,2