Postgraduate program: Environment and Development

Course: Energy and Environment

Solar power-Biomass

Nikos Mamassis, Andreas Efstratiadis, Department of Water Resources & Environmental Engineering, School of Civil Engineering, NTUA

Solar Radiation Basic figures

The total area of Earth is calculated as $4\pi R^2$. This means that the average solar irradiance in Earth is equal to 25% of the solar constant

In any moment the solar constant (1367 W/m^2) affects a part of the Earth that corresponds to an area of πR^2

Also, there is a spatial variation depending on the latitude, as the same irradiance affects areas with different sizes

In relation to the equator, the area at 45° latitude is 40% larger, it is double at 60° and it is six times larger at 80°

Solar radiation

8% ultra violet (<400 nm), **39%** visible (400-700 nm), **53%** ultra red (>700 nm), Maximum: 500 nm

Source: H.W. Wu, A. Emadi, G. de Graaf, J. Leijtens and R. F. Wolffenbuttel, Design and fabrication of an albedo insensitive analog sun sensor, Procedia Engineering 25, 527 – 530, 1877-7058 2011

Solar Radiation

Solar Radiation

Factors that influence the ground solar radiation

Solar energy emmited

Depends on solar activity

Solar altitude

Depends on time (hour, day of the year) and latitude

Distance of Earth-Sun

The distance is 3/1 147*10⁶ and at 4/7 152*10⁶ km, The difference in distance is 3.4% and this leads to a difference of extraterrestrial irradiance of about 6.5 %

ce is trial Relief

GROUND

Depends on the surface. Indicative values: water: 0.06, ground: 0.25, snow: 0.95

Surface albedo

Solar radiation in the atmosphere

Mean annual irradiance at ground level (W/m²)

Πηγή: Christopherson, 2000

Solar radiation in the atmosphere

Mean annual irradiance at ground level (kWh/m²)

DIRECT NORMAL IRRADIATION

GeoModel

Solar radiation

Solar panels efficiency

Example panel

- Installed power: 210 W
- **Dimensions:** 1650.5×951.3×46 mm
- The nominal power is achieved at 1000 W/m²

Calculation of efficiency

- Panel area:
- 1650.5×951.3 mm=1.57 m²
- At 1000 W/m² each panel receives 1570 W and produces 210 W.
- Efficiency: 210/1570=13.4%

PVGIS © European Communities, 2001-2007 http://re.jrc.ec.europa.eu/pvgis/

Expected annual electrical energy production (kWh per kWp of installed power)

http://re.jrc.ec.europa.eu/pvgis/

Biomass

Definition and types

Dead plant and animal material suitable for using as fuel. Roughly 2.5 tn of dry biomass correspond to 1 toe.

- Wood or forest residues
- Waste from food crops
- Energy crops

- Food processing
- Animal farming
- Solid waste and wastewater

Woody biomass	Non-woody biomass	Processed Waste	Processed fuels
 Trees Shrubs and scrub Bushes such as coffee and tea Sweepings from forest floor Bamboo Palms 	 Energy crops such as sugarcane Cereal straw Cotton, cassava, tobacco stems and roots Grass Bananas, plantains and the like Soft stems such as pulses and potatoes Swamp and water plants 	 Cereal husks and cobs Bagasse Wastes from pineapple and other fruits Nut shells, flesh and the like Plant oil cake Sawmill wastes Industrial wood bark and logging wastes Black liquor from pulp mills Municipal Waste 	 Charcoal from wood and residues Briquette and densified biomass Methanol and ethanol Plant oils from palms, rape, sunflower and the like Producer gas Biogas

Source: Thomas B. JohanssonThomas B. JohanssonKes McCormickKes McCormickLena NeijLena NeijW.C. TurkenburgW.C. Turkenburg, The Potentials of Renewable Energy, January 2012

Biomass

Indicative characteristics

Сгор	Part	Humidity (%)	Production of dry biomass (tn/1000 m ²)	Calorific value (MJ/kg)
Wheat	Straw	10	217	18.5
Barley	Straw	10	120	18.2
Corn	Stem	15	1010	18
Oat	Straw	8.5	355	18
Rye	Straw	8	200	18.3
Cotton	Stem Residuals	40 15	350 100	18 17.5
Olive tree	Pruning Core	43 48	37 120	19 19.7
Peach tree	Pruning Core	41 20	52 180	19,8 19.3
Vineyard	Pruning	39	32	18.7
Apricot tree	Pruning	38	53	17.8
Pear tree	Pruning	39	49	18.7
Almond tree	Shells	20	220	19.1

Biomass

Energy crops

	Production of dry	Calorific values
Сгор	biomass (tn/1000 m ²)	(MJ/kg)
Cardoon	1 - 2	18
Cane	2 - 3	18.6
Miscanthus	1 - 2	17.3
Eukalyptus	1.8 - 3.2	19
Switchgrass	1.4 - 2.5	17.4
Kenaf	0,7 - 2	17
Sorghum	1 - 3	17.2

Cardoon

