MANENIZTHMIO MEIPAIQX

[ ] ﬁ
i~ UNIVERSITY OF PIRAEUS

DATA »
STORIES 4

Data Science Lab. @ University of Piraeus

Mobility Data Analytics

Yannis Theodoridis
Data Science Lab.*, Univ. Piraeus

* Credits: Eva Chondrodima, Christos Doulkeridis, Harris Georgiou,
Yannis Kontoulis, Nikos Pelekis, Panagiotis Tampakis, George S. Theodoropoulos, Andreas Tritsarolis

MSc Geolnformatics @NTUA, May 2024



QOutline

1. Infroduction - Getting familiar with mobility data
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1.
Introduction —
Getting to know mobility data




Application domains

® Urban: movement of vehicles (private, taxis, buses), pedestrians,
etc.

= Maritime / Aviation: movement of ships/aircrafts (also,
challenges due to unmanned/autonomous objects)

m Examples:
m Detect typical vs. anomalous movements, hot spots/paths, etc.
m Forecast anticipated routes (or traffic), etc.
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Examples of datasets @ urbban

m Geolife (source: Microsoft Research Asia)

m 182 user movements (under various
transportation means) organized in 17,621
trajectories;

m 68 Kmin 2,7 hrs. per trajectory, avg.;
m dense sampling (1 sample every ~5 sec)

m T-Drive (source: Microsoft Research Asiq):

m 2,357 taxis in Beijing for 1 week (15 million
points, in fotal);

m 869 Km per taxi, avg.;

= sparse sampling (1 sample every ~3 min) image source: research.microsoft.com



Examples of datasets @ urban (cont.)

New York City Taxi Pickups
2009-2015

m NYC taxis (source: NYC Taxi & Limousine
Commission): 1.4 billion trips, Jan. 09 — Dec.17.
» Ride-hailing apps data are also provided
m Atftention: pickup — drop-off locations are only available

Brooklyn Monthly Taxi Pickups Manhattan Monthly Taxi Pickups

trailing 28 days, based on NYC TLC trip data Trailing 28 days

1,000,000
750,000
500,000

250,000 /

0

image source: toddwschneider.com



Examples of datasets @ maritime

= AIS (Automatic Identification System)

m >250,000 vessels tfracked daily (source:
marinetraffic.com)

m AlS signal transmitted: every 2 to 10 sec
depending on speed while underway;
every 3 min while at anchor

[ 2= Station 2782: University of Piraeus

Status: Operator: N/A

Area Covered: Elevation: N/A
1845km?

Coverage Map > | Average:2.92 Max: 25.84

VesselsinRange >

e T — image source: marinetraffic.com
' + top: global snapshot on May 26, 2022; vessel colors

correspond to different vessel types (e.g., cargo is
green, tanker is red)

+ left: vessels tracked by the Univ. Piraeus’ AlS station
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Examples of datasets @ aviation

= ADS-B (Automatic Detection System
- Broadcast)

m >15,000 aircrafts flying at the same time
worldwide (source: flightradar24.com)

m ADS-B signal fransmitted: every 1 sec
while on air; not transmitted while on
the ground

QID46

United States - US Air Force (USAF)  fligh

#6 Worldwide d by 60

Sango:

MHZ . N/A

MILDENHALL
BST (UTC +01:00

ACTUAL 07:56 ESTIMATED

@ flightradar24

image source: flightradar24.com

+ top: global snapshot on May 25, 2022; yellow vs. blue
planes if located by terrestrial vs. satellite stations

* left: the route of a military aircraft



2,
Pre-processing mobility data




Data pre-processing

= Definition: preparing data T={<p; 1> <pa2 1>, ..., <pn. 1>}
for analytics purposes -

m Data pre-processing includes:
® Cleansing (noise removal, smoothing, map matching, etc.)
» Transformation (frajectory segmentation, simplification, etc.)
= Enrichment (semantic annotation, data fusion, etc.)
etc.

10



Data pre-processing (cont.)

® An example: data pre-processing pipeline (urban traffic)
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Cleansed,

Streaming
GPS traces

integrated
GPS traces

Source: Track & Know EU project

map-matched,
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From GPS locations to trajectories

m GPS records correspond to samples (p;, 1) of our movement — inferring
‘continuous’ movement is not trivial.

m A typical representation of a moving object’s trajectory is a polyline (in 4D
space; x-, y-, z-, t-) — vertices correspond to (p;, 1)

= Typically, linear interpolation is assumed between
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GPS Data Cleansing

m Erroneous recordings: noise vs. random errors

m Noise corresponds to values that are ‘impossible’ to
appear

m Can be detected and removed using
appropriate filters

® e.g., maximum speed

m Potential Area of
Activity (PAA)

S(P;): Limited
Area of P,




GPS Data Cleansing (cont.)

m Erroneous recordings: noise vs. random errors

® Random errors correspond to ‘possible’ values that appear to be small

deviations from actual ones

m Can be smoothed using a
plethora of statistical methods

® e.g., least squares spline
approximation (de Boor, 1978)

_____ o----- Original trace
—&——  Smoothed trace
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GPS Data Cleansing (cont.)

m Special case: network-constrained movement
m Requires an additional step: map-matching

m Several techniques (Quddus et al. 2003; 2007):
m Geometric map-matching
® Topological map-matching
® Probabilistic map-matching
= Hybrid map-matching
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Trajectory segmentation

m Goal: Segment sequences of points in homogeneous sub-sequences (hereafter,
called trajectories or routes)

= Various approaches:
m Segmentation via raw (spatial / temporal) gap or via stop discovery
m Segmentation via prior knowledge (e.g., office / sleeping hours, arrival at ports)

D I e
W

stops
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Trajectory simplification

® The need for simplification: efficiency in storage, processing time, etc.
= Simplification is a form of data compression

‘'signature’ as much as possible by

= Goal: maintain the original % \
only keeping the set of critical points = '

m Approaches
m Offline (i.e., multi-pass), vs.
® Online (i.e., single-pass)

CRITICAL POINTS

image source: aminess.eu
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Trajectory simplification (cont.)

m Offline approaches:
m top-down vs. bottom-up vs. sliding window vs. opening window

® e.9., Synchronous Euclidean Distance - SED (Meratnia & de By, 2004)

m Adapts the popular Douglas & Peucker polyline simplification (1973) to the mobility
domain

P,'('.\',',_l"',t,')Q O
W | O

image source:
https://commons.wikimedia.org/wiki
/File:Douglas-Peucker_animated.gif

P.(xpYets)

Ps(x5,y5.t5)
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Trajectory simplification (cont.)

= Online approaches, e.g., Trajectory Synopses o SN s alh
(Patroumpas et al. 2015; 2017) 5
= Maintains a velocity vector
per moving object in order : \ BN
to detect instantaneous N XIS A 0 i
events \\ N Gap end =

® stop; change in velocity
vector; etc.

Stop
Slow motion

» Tradeoff: degree of
compression vs. quality of >
approximation  Takeoff

“ 4. Landing

-4 Change in Heading
u Gap start

Gap end

* Change in Speed
* Change in Altitude
¢ Slow motion ‘
® Stop

0‘72‘ 2
- «

images source:
DATACRON EU project

,.
il
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Trajectory enrichment

= From “raw” sequences (p.t) of
time-stamped locations

® ... fo meaningful mobility tuples
<where, when, what>

= Semantic trajectory (Parent et
al. 2015)

= semantically-annotated
representation of the motion path
of a moving object

m sequence of episodes (stop/move
segments of routes) along with
appropriate tags

--------

nnnnn

A 6:30pm-9pm

@_L et -
A "W @ .Noise XPricerange
7\

Heart qiace of

Temperature Reviews
rate
sleep

Air polution Open-close hours

Heart Emotional
rate status

Image source:
MASTER EU project
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3.
Analyzing mobility data




Types of mobility data analytics

® Discovering groups and outliers

m Discovering frequent routes (hot paths) and
frequent locations (hot spofts)

» Prediction/forecasting tasks

VALUE

OUTPUT | CORRECT VALUE | OBJECTIVE FUN.
o L ﬁ Far from

: L\‘(# reality

Bes | Bw Closer

ﬁ ﬁ Very close

image source: kdnuggets.com




Orthogonal issue: Trajectory similarity

® How do we measure similarity between two trajectories A, B2
m not so trivial as it sounds

A Yo

B .\\.}

. .
= Alternative approaches: .-:. ‘ A
= Trajectory as a 2D time-series e 0@ -
» Trajectory as a 2D polyline q.}.-\
= Tragjectory as a movement function L.\g
()



Trajectory as a tfime series

® Time series similarity has been studied extensively (e.g., Vlachos et al. 2002;
Chen et al. 2005). Examples:

® Fuclidean distance, Chebyshev distance, Dynamic Time Warping (DTW),
m L ongest Common SubSequence (LCSS),

m Edit Distance on Real sequences (EDR),

m Edit distance with Real Penalty (ERP), etc.
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Trajectory as a polyline

® DISSIM (Nanni & Pedreschi, 2006; Frentzos et al. 2007)
m Extension of Euclidean distance:

t, Euclidean M

DISSIM(R,S) = j tan(R(t),S(t))dt

n—1

1
DISSIM(R, S) ~ Ez ((LZ(R(tkLS(tk)) + Ly (R (tis1), S(tisn)) )
k=1
(1 — tk))
m DISSIM function is a metric 1. d(z,y) >0
m Conditions: (1) non-negativity; (2) identity of indiscernibles; 2 d(x’ v) ; loz=y
(3) symmetry; (4) triangle inequality 3 d(a:,y) o)
4. d(z,z) < d(z,y) +d(y, 2)



From point clustering ...

= DBSCAN (Ester et al. 1996), OPTICS (Ankerst et al. 1996), etc.:

A family of density-based point clustering methods

m Key parameters (recall that we talk about density-based methods):
® radius of an object’s neighborhood (e)
= minimum population within an object’s neighborhood (m)

m Classification of points: core points vs. borders vs. noise
m Clusters are built around core points wrt. density reachability

m=3 f
e @) P’
® o g
8‘ © ‘ @ 8"0—’0 ‘ Qk@v\ogo——v()

P

—
—
—

core-distance(0)
reachability-distance(p,o
reachability-distance(q,0
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... to Trgjectory clustering

m Objectives:
m Cluster trajectories w.r.t. similarity
m Eventually, detect outliers

m |ssues:
= Which similarity functione

m Upon the entire tfrajectories or
portions (sub-trajectories?

; "'&.‘ ’::T;‘:
Could you detect
clusters? outliers?

m State-of-the-art:
m Clustering on the entire trajectories: T-OPTICS (Nanni & Pedreschi, 2006)

m Clustering on sub-frajectories: TraClus (Lee et al. 2007); $2T-Clustering (Pelekis et al.
2017a, 2017b), DSC (Tampakis et al. 2019)
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... to Trgjectory clustering (cont.)

Time

m Clustering at entire trajectory level, e.g. T-OPTICS
m Builds upon OPTICS and DISSIM distance function

DISSIM(R,S) = f tnLZ(R(t),S(t))dt

t1

m Clustering at sub-trajectory level, e.g. $2T-Clustering

® Finds the most ‘popular’ sub-trajectories and builds clusters
around them

28



Location-based clustering

Note: these methods work on

m Detecting a large enough subset of time-aligned location sequences
. . - need for fixed re-sampling
objects moving along paths close to t:

each other for a certain time

m Spherical-like clustering: Flocks (Laube et al.
2005; Gudmundsson & van Kreveld, 2006) vs.

m Density-based clustering: Convoys (Jeung et
al. 2008); Swarms (Li et al. 2010), etc.

m [nteresting variants of the flock/convoy
methods:
= meeting/convergence points, leaders and O~ .

followers, evolving clusters (Tritsarolis et al.
2021), etfc.

conveTrgen ce
o 29



Location / Trajectory prediction

= Future location / trajectory prediction (FLP/TP) aims to
predict the future location(s) of a moving object
within a time horizon.

= Main approach: mathematical formulae- (Tao et al.
2004) vs. Pattern-based, i.e., patterns are built upon
the objects’ history
m urban (Trasarti et al. 2017);

» maritime (Chondrodima et al. 2022, 2023; Tritsarolis et al.
2024);

m aviation (Georgiou et al. 2018, 2020)

m [nteresting variants: fraffic flow forecasting, collision
risk assessment, estimated time of arrival (ETA)
prediction, etc.

.‘.

F2 G B
traffic jam __ p . to
R T
///V F1 X
./y = A ts
t1 .\_"/

A B




Location / Trajectory prediction (cont.)

» MyWay (Trasarti et al. 2017) maintains a Personal Mobility Data Store (PMDS) per
participating person
= How is a person moving? User’s Personal Mobility Data Store

m According to his/her past S ndidial l s N
movement patterns :“rz:;:“’/—/? “‘ Predictor /
» What if the personal datastore T

is not adequate?

m | ook into the collective
knowledge base

m 3 predictors: personal (red),
collective (blue), hybrid (green)

image source: kdd.isti.cnr.it 3 ]



Location / Trajectory prediction (cont.)

= (Fed)Nautilus (Tritsarolis et al. Iput Layer LT Layse il Comneced e
2024) trains an LSTM neural L s
network with past trajectories _L
of vessels ol @iy
= Two variants: centralized - -

(Nautilus) vs. Federated O oo
Layer  (p=0.25) -

learning- based (FedNautilus)

architecture Agaregation Server
= The FL approach achieves ~90% T ) ‘_
. . . . D — D
savings in communication cost P L B
@6\ \°‘¢°\°
® only model parameters are clen & %’ lent#2 ”

exchanged between data
silos and aggregation server

image source: datastories.org/maritime/ 32



Summary




Summary

= The Mobility Data Analytics field (Pelekis & Theodoridis 2014) includes many
success stories on:

= Data management - access methods & query processing techniques, DBMS
extensions (the so-called, Moving Object Databases), etc.

» Data mining — clusters, flocks, convoys, hot spots, etc.

m Current research trends revolve around:

= Semantically-enriched trajectory management and analytics e
(Parent et al. 2013): information about when / where / what B s u

» Extreme-scale mobility data processing (Vouros et al. 2018): it
voluminous, streaming, disperse information about objects’ Data Operations Toolbox
movement 11

= Mobility data spaces (Doulkeridis et al. 2023): exchanging bata Governance 7_’
data and models among actors (producers/consumers) e P

— the MobiSpaces.eu project
The MobiSpaces Ref. Architecture
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The Data Science Lab @ UniPi.GR

Our research agenda:

= Exireme-scale mobility
data processing

= Mobility data analytics
at the edge

= Time series analytics &
forecasting

= Data fusion & semantic
integration

m efc.

hitps://www.datastories.org



