
INTERDEPARTMENTAL POSTGRADUATE COURSE IN GEOINFORMATICS

Geospatial Databases

Lecture:

Introduction to PostgreSQL

Nikolas Mitrou, Professor ECE, NTUA

Anastasios Zafeiropoulos, Postdoc Researcher ECE, NTUA

INTERDEPARTMENTAL POSTGRADUATE COURSE IN GEOINFORMATICS

PostgreSQL Data Types

NUMERIC TYPES

• INTEGER, 4 bytes, range (-32768, 32767)

– SMALLINT, BIGINT

• REAL, 4 bytes, 6 decimal digits precision

• SERIAL, 4 bytes, autoincrementing integer (1, 214743647)

– SMALLSERIAL, BIGSERIAL

CHARACTER TYPES

• VARCHAR(n), variable length with limit

• CHAR(n), fixed length

• TEXT, variable unlimited length

INTERDEPARTMENTAL POSTGRADUATE COURSE IN GEOINFORMATICS

PostgreSQL Data Types

DATE/TIME TYPES

• DATE, 4 bytes, date (no time)

• TIME, 8/12 bytes time of day (with time zone)

• TIMESTAMP, 8 bytes, date and time

GEOMETRIC TYPES

• POINT, 16 bytes, point (x,y)

• LINE, 32 bytes, line {A,B,C}

• LINESEQ, 32 bytes, line segment ((x1,y1), (x2,y2))

• POLYGON, 40 + 16n bytes, [(x1,y1,…)]

• CIRCLE, 24 bytes, <(x,y), r> (center point and radius)

INTERDEPARTMENTAL POSTGRADUATE COURSE IN GEOINFORMATICS

PostgreSQL – Basic Commands

• PSQL commands (interactive terminal for Postgres)
– \list or \l - list all databases

– \l+ - list all databases with additional information

– \d – list tables in a database

– \d tablename - show table definition

– \d+ tablename - show extended table information

– \du – list all users

– \q quit

– \help

– create database dbname; - create a database

– drop database dbname; - delete a database

– \c dbname; - connect to a database

INTERDEPARTMENTAL POSTGRADUATE COURSE IN GEOINFORMATICS

PostgreSQL – Database Example

INTERDEPARTMENTAL POSTGRADUATE COURSE IN GEOINFORMATICS

PostgreSQL – Database Example

INTERDEPARTMENTAL POSTGRADUATE COURSE IN GEOINFORMATICS

PostgreSQL Basic Commands

• Create Table
– CREATE TABLE table_name;
– CREATE TABLE table_name

(column_name TYPE
column_constraint,
table_constraint
table_constraint) INHERITS
existing_table_name;

• CONSTRAINTS
– UNIQUE (column_list)
– PRIMARY KEY (column_list)
– CHECK (condition)
– REFERENCES

CREATE TABLE courses (
 c_no text PRIMARY KEY,
 title text,
 hours integer);

CREATE TABLE students (
s_id integer PRIMARY KEY,
name text,
start_year integer);

INTERDEPARTMENTAL POSTGRADUATE COURSE IN GEOINFORMATICS

PostgreSQL Basic Commands

INSERT INTO students (s_id,
name, start_year)
VALUES (1451, 'Anna', 2014),
(1432, 'Victor', 2014),
(1556, 'Nina', 2015);

• Insert Data
– INSERT INTO table_name

VALUES (values);

• Update Data
– UPDATE table_name SET

column1=value1,
column2=value2 WHERE
condition;

• Delete Data
– DELETE FROM table_name

WHERE condition;

INSERT INTO courses (c_no, title,
hours)
VALUES ('CS301', 'Databases', 30),
('CS305', 'Networks', 60);

UPDATE courses SET hours =
hours*0.8 WHERE hours > 45;

INTERDEPARTMENTAL POSTGRADUATE COURSE IN GEOINFORMATICS

PostgreSQL Basic Commands

CREATE TABLE exams(
s_id integer REFERENCES students(s_id) (ON DELETE
RESTRICT/CASCADE),
c_no text REFERENCES courses(c_no) (ON DELETE
RESTRICT/CASCADE),
score integer,
CONSTRAINT pk PRIMARY KEY(s_id, c_no));

INSERT INTO exams(s_id,
c_no, score)
VALUES (1451, 'CS301', 5),
(1556, 'CS301', 5),
(1451, 'CS305', 5),
(1432, 'CS305', 4);

UPDATE exams SET score =
score*1.1 FROM courses
WHERE (courses.c_no =
exams.c_no AND
courses.hours > 10) ;

INTERDEPARTMENTAL POSTGRADUATE COURSE IN GEOINFORMATICS

PostgreSQL Basic Commands

• Alter Table
– ALTER TABLE table_name action;
– ALTER TABLE table_name ADD

COLUMN new_column_name TYPE;
– ALTER TABLE table_name DROP

COLUMN column_name;
– ALTER TABLE table_name RENAME

COLUMN column_name TO
new_column_name;

– ALTER TABLE table_name ALTER
COLUMN column_name [SET NOT
NULL| DROP NOT NULL]

– ALTER TABLE table_name ADD
CHECK expression;

• Delete Table
– DROP TABLE table_name [CASCADE |

RESTRICT]

ALTER TABLE students ADD
COLUMN address text;

ALTER TABLE students ALTER
COLUMN name SET NOT NULL;

DROP TABLE students CASCADE;

ALTER TABLE exams ADD
CONSTRAINT constraint s_id_fk
FOREIGN KEY (s_id) REFERENCES
students(s_id);

UPDATE students SET
address = ‘……’ WHERE
name = ‘……’;

INTERDEPARTMENTAL POSTGRADUATE COURSE IN GEOINFORMATICS

PostgreSQL Basic Commands

• Retrieve Data

– SELECT * FROM
table_name;

– SELECT column1,
column2 FROM
table_name;

– SELECT DISTINCT column1
FROM table_name;

– SELECT column1 FROM
table_name WHERE
conditions;

– Condition (=, <> (or !=), >,
>=, <, <=, AND, OR)

SELECT * FROM courses;

SELECT title AS course_title, hours
FROM courses;

SELECT start_year FROM
students;

SELECT DISTINCT start_year
FROM students;

SELECT * FROM courses WHERE
hours > 45;

INTERDEPARTMENTAL POSTGRADUATE COURSE IN GEOINFORMATICS

PostgreSQL Basic Commands

• Retrieve Data

– SELECT column1,
column_2 FROM
table_name ORDER BY
column1 ASC, column2
DESC;

– SELECT * FROM
table_name LIMIT n
OFFSET m;

– SELECT column1,
aggregate_function(colu
mn2) FROM table_name
GROUP BY column1;

SELECT * FROM exams ORDER BY
score DESC;

SELECT * FROM exams ORDER BY
score DESC LIMIT 2 OFFSET 1;

SELECT s_id, avg(score) FROM
exams GROUP BY s_id;

The GROUP BY clause divides the rows

returned from the SELECT statement into

groups. For each group, you can apply

an aggregate function e.g., SUM to

calculate the sum of items or COUNT to

get the number of items in the groups.

INTERDEPARTMENTAL POSTGRADUATE COURSE IN GEOINFORMATICS

PostgreSQL Basic Commands

• INNER JOIN

– SELECT A.pka, A.c1,
B.pkb, B.c2 FROM A
INNER JOIN B ON A .pka
= B.fka;

SELECT students.s_id, name,
start_year, score FROM students
INNER JOIN exams ON
students.s_id = exams.s_id;

If you want to select rows from the A table that

have corresponding rows in the B table, you use

the INNER JOIN clause.

http://www.postgresqltutorial.com/postgresql-joins/

http://www.postgresqltutorial.com/postgresql-inner-join/

http://www.postgresqltutorial.com/postgresql-joins/
http://www.postgresqltutorial.com/postgresql-inner-join/

INTERDEPARTMENTAL POSTGRADUATE COURSE IN GEOINFORMATICS

PostgreSQL Basic Commands

• LEFT JOIN

– SELECT A.pka, A.c1,
B.pkb, B.c2 FROM A
LEFT JOIN B ON A .pka =
B.fka;

SELECT students.name,
exams.score
FROM students
LEFT JOIN exams
ON students.s_id = exams.s_id
AND exams.c_no = 'CS305';

If you want to select rows from the A table which

may or may not have corresponding rows in the B

table, you use the LEFT JOIN clause.

INTERDEPARTMENTAL POSTGRADUATE COURSE IN GEOINFORMATICS

PostgreSQL Basic Commands

• FULL OUTER JOIN

– SELECT * FROM A FULL
[OUTER] JOIN B on A.id
= B.id;

SELECT students.name,
exams.score
FROM students
FULL OUTER JOIN exams
ON students.s_id = exams.s_id
AND exams.c_no = 'CS305';The full outer join combines

the results of both left join

and right join.

INTERDEPARTMENTAL POSTGRADUATE COURSE IN GEOINFORMATICS

PostgreSQL Basic Commands

• UNION: combine result sets of two or
more select statements
– SELECT column1, column2 FROM

table_name_1 UNION SELECT column1,
column_2 FROM table_name_2;

– Both queries must return the same number
of columns.

– The corresponding columns in the queries
must have compatible data types.

– ALL : does not remove duplicates

• INTERSECT: combine result sets of two or
more select statements
– SELECT column_list FROM A INTERSECT

SELECT column_list FROM B;

• EXCEPT: returns distinct rows from the first
(left) query that are not in the output of
the second (right) query.
– SELECT column_list FROM A WHERE

condition_a EXCEPT SELECT column_list
FROM B WHERE condition_b;

– The number of columns and their orders
must be the same in the two queries.

– The data types of the respective columns
must be compatible.

SELECT * FROM students UNION
(ALL) SELECT * FROM students2;

SELECT name FROM students
INTERSECT SELECT name FROM
students2;

SELECT s_id FROM students
EXCEPT SELECT s_id FROM exams
WHERE exams.score < 5;

INTERDEPARTMENTAL POSTGRADUATE COURSE IN GEOINFORMATICS

PostgreSQL Basic Commands

• SUBQUERY
– Construct complex queries
– PostgreSQL executes the

query that contains a
subquery in the following
sequence:
• First, executes the subquery.
• Second, gets the result and

passes it to the outer query.
• Third, executes the outer

query.

SELECT name, start_year
FROM students
WHERE s_id IN (SELECT s_id
FROM exams
WHERE c_no = 'CS305');

INTERDEPARTMENTAL POSTGRADUATE COURSE IN GEOINFORMATICS

PostgreSQL Basic Commands

• VIEWS

– CREATE VIEW
view_name AS query;

CREATE VIEW results AS
SELECT s_id , c_no, name, title
FROM exams
JOIN students USING (s_id)
JOIN courses USING (c_no);

INTERDEPARTMENTAL POSTGRADUATE COURSE IN GEOINFORMATICS

Data Input/Output

• By using the pgAdmin

– Data Input/Output from csv or txt files

– Database backup/restore

Extract SQL from a database via Pgadmin
Select Database --> Backup --> Provide filename
Select Format --> plain
Select Encoding --> UTF8
Backup

INTERDEPARTMENTAL POSTGRADUATE COURSE IN GEOINFORMATICS

PostgreSQL and Postgis

• POSTGIS data: representation of
geographical
characteristics/features

• Spatial data types: point, line,
polygon;

• PostGIS makes the PostgreSQL
Database Management System
able to manage spatial data and
functions, supporting: spatial
types, indexes, functions.

CREATE EXTENSION postgis;
//load the PostGIS spatial
extension
SELECT postgis_full_version();
//confirm that PostGIS is installed
by running a PostGIS function

INTERDEPARTMENTAL POSTGRADUATE COURSE IN GEOINFORMATICS

PostgreSQL and Postgis

CREATE TABLE cities (id int4 primary key, name varchar(50),
geom geometry(POINT,4326));
SELECT * from cities;

INSERT INTO cities (id, geom, name) VALUES
(1,ST_GeomFromText('POINT(-0.1257 51.508)',4326),'London,
England');
INSERT INTO cities (id, geom, name) VALUES
(2,ST_GeomFromText('POINT(-81.233 42.983)',4326),'London,
Ontario');
INSERT INTO cities (id, geom, name) VALUES
(3,ST_GeomFromText('POINT(27.91162491 -
33.01529)',4326),'East London,SA');

INTERDEPARTMENTAL POSTGRADUATE COURSE IN GEOINFORMATICS

PostgreSQL and Postgis

SELECT * FROM cities;

SELECT id, ST_AsText(geom), ST_AsEwkt(geom), ST_X(geom),
ST_Y(geom) FROM cities;

SELECT p1.name, p2.name,
ST_DistanceSphere(p1.geom,p2.geom) FROM cities AS p1,
cities AS p2 WHERE p1.id > p2.id;

http://www.postgis.us/downloads/postgis21_cheatsheet.pdf

http://www.postgis.us/downloads/postgis21_cheatsheet.pdf

	Slide 1
	Slide 2: PostgreSQL Data Types
	Slide 3: PostgreSQL Data Types
	Slide 4: PostgreSQL – Basic Commands
	Slide 5: PostgreSQL – Database Example
	Slide 6: PostgreSQL – Database Example
	Slide 7: PostgreSQL Basic Commands
	Slide 8: PostgreSQL Basic Commands
	Slide 9: PostgreSQL Basic Commands
	Slide 10: PostgreSQL Basic Commands
	Slide 11: PostgreSQL Basic Commands
	Slide 12: PostgreSQL Basic Commands
	Slide 13: PostgreSQL Basic Commands
	Slide 14: PostgreSQL Basic Commands
	Slide 15: PostgreSQL Basic Commands
	Slide 16: PostgreSQL Basic Commands
	Slide 17: PostgreSQL Basic Commands
	Slide 18: PostgreSQL Basic Commands
	Slide 19: Data Input/Output
	Slide 20: PostgreSQL and Postgis
	Slide 21: PostgreSQL and Postgis
	Slide 22: PostgreSQL and Postgis

