
Algorithmic Game Theory

Algorithms for normal-form games and
approximate Nash equilibria

Vangelis Markakis
markakis@gmail.com

Outline

• Algorithms for finding equilibria in general normal
form games

– The support theorem

– Analysis of 2x2 and 2xn games

– Complexity of general nxm games

• Approximate Nash equilibria

– A subexponential algorithm for any constant ε>0

– Polynomial time algorithms

2

Nash equilibria: Existence and
computation

• In 0-sum games

– von Neumann’s theorem establishes both existence and an
algorithm for finding an equilibrium

– Boils down to solving one linear program

• In general games?

– Nash’s theorem guarantees only existence

– Big research question over the last 25 years

3

The support of a strategy

• To come up with efficient algorithms, we need to understand
better the properties of Nash equilibria

• Definition: For a mixed strategy p = (p1, p2,..., pn), the
support of p is the set of pure strategies that have a positive
probability of being selected, when we play p

Supp(p) = {i: pi > 0}

• E.g. if p = (2/7, 0, 0, 3/7, 0, 2/7), then Supp(p) = {1, 4, 6}

– For pl. 1, Supp(p) shows us which rows have a chance to be selected
according to p

– Respectively, for a strategy of pl. 2, it shows the columns

4

Utility functions revisited

• Let (p, q) be a strategy profile in a nxm game
– p = (p1, p2,..., pn), q = (q1, q2,..., qm)

• Analyzing the utility function of pl. 1:

• The last term can also be written in terms of the support of
p, hence:

5

Support properties at Nash equilibria

• Let (p, q) be a Nash equilibrium and let i, j  Supp(p)
– pi > 0, pj > 0

• How are the quantities u1(ei, q) and u1(ej, q) related?

• If u1(ei, q) > u1(ej, q), then pl. 1 has an incentive to reduce
the probability pj and increase the probability pi

– But then (p, q) would not be a Nash equilibrium

– Similarly, if u1(ei, q) < u1(ej, q)

– The only choice at an equilibrium is to have u1(ei, q) = u1(ej, q)

• If i  Supp(p) and j  Supp(p)?
– Then it must hold that u1(ei, q) ≥ u1(ej, q), otherwise (p, q) is not an

equilibrium

6

Support properties at Nash equilibria

Support theorem: A profile (p, q) is a Nash equilibrium if and
only if

i. i, j  Supp(p), u1(ei, q) = u1(ej, q)

ii. i, j  Supp(q), u2(p, ei) = u2(p, ej)

iii. i  Supp(p) and j  Supp(p), u1(ei, q) ≥ u1(ej, q)

iv. i  Supp(q) and j  Supp(q), u2(p, ei) ≥ u2(p, ej)

7

Support properties at Nash equilibria

In other words:
– If a pure strategy is used with positive probability at a Nash

equilibrium, then this strategy should be at least as good as any
other pure strategy, given the other player’s strategy

– 2 pure strategies that have positive probability at a Nash equilibrium
must have the same utility, given the other player’s strategy

• The theorem yields a way to check if a profile is a Nash
equilibrium

• And helps us understand why some profiles cannot form an
equilibrium

8

Example
Use the support theorem to check if the profile (p,
q) with p = (3/4, 0, 1/4), q = (0, 1/3, 2/3) is an
equilibrium in the following game

1, 2 3, 3 1, 1

3, 2 0, 1 2, 5

2, 4 5, 1 0, 7

s1

s2

s3

t1 t2 t3

9

Finding Nash equilibria

Corollary: If we knew the support of the strategies in one
equilibrium profile, then we could compute a Nash equilibrium
in polynomial time

In other words: if we only knew which rows and columns are
needed in an equilibrium, we could then compute the
probabilities of the mixed strategies

Proof:
– Suppose that someone guesses the support for both players

– All the conditions of the support theorem are linear functions of p1,
p2,..., pn, q1, q2,...,qm

– We would also need to add that Σi pi = 1, Σi qi = 1

– By solving a single linear program (or a system of linear inequalities)
we can compute the probabilities of the mixed strategies

10

Finding Nash equilibria

• At the end, finding a Nash equilibrium is a combinatorial
problem

• It suffices to find the right supports

• Brute-force algorithm:
– Enumerate all possible pairs of supports for the two players

– For each pair of supports, check if the corresponding linear program
has a solution

• Complexity of brute-force in nxm games: prohibitive!
– 2n choices for pl. 1

– 2m choices for pl. 2

– We need to run O(2n+m) linear programs

11

Finding Nash equilibria

• Can we reduce it to solving only a few linear programs?

• Or a single LP?

• Probably no...

• Note: If the problem is solvable in polynomial time, then it can
be reduced to a 0-sum game, by what we said in previous
lecture

• It turns out that finding Nash equilibria is a special case of a
“linear complementarity problem” [Cottle, Dantzig, 1960s]

12

Finding Nash equilibria

Linear Complementarity Problems (LCP)

• They arise in various contexts in Operations Research

• A class of non-linear programs

• Non-linear constraints for Nash equilibria:

– By the support theorem, we need to express the fact that if pi > 0 at an
equilibrium, then the i-th pure strategy gives maximum payoff among all
pure strategies

• We cannot express such “if” statements with a linear program

• Instead: let w be the expected payoff of pl. 1 at an equilibrium
(p, q)

• Support theorem  if pi > 0, then u1(ei, q) = w

• Equivalently: pi  (u1(ei, q) – w) = 0 [complementarity condition]
13

Nash equilibria as a LCP
• Variables:

– p1, p2, ..., pn, q1, q2,...,qm: for the probabilities of the mixed strategies

– w, w’: for the expected utilities of the 2 players

• Constraints:

– Σi pi = 1, Σi qi = 1

– p1 ≥ 0, p2 ≥ 0, ..., q1 ≥ 0,..., qm ≥ 0

– w ≥ u1(ei, q) for i=1,..., n

– w' ≥ u2(p, ej) for j=1,..., m

– pi  (u1(ei, q) – w) = 0, for i=1,..., n

– qj  (u2(p, ej) – w’) = 0, for j=1,..., m

• Algorithm for solving LCPs: [Lemke, Howson ’64]

– Exponential time in worst case, but relatively ok on average

– Based on ideas similar to simplex but for non-linear problems
• see GAMBIT http://www.gambit-project.org/ 14

Finding Nash equilibria

• So far, we have only seen exponential time algorithms...

• In what cases can the support theorem help us in having
better algorithms?

• 2x2 games:
– If there is a mixed strategy equilibrium then the support for pl. 1

must contain both rows

– The support of pl. 2 must contain both columns

– Applying the support theorem, it must hold that

u1(e1, q) = u1(e2, q), and u2(p, e1) = u2(p, e2)

15

Applying the support theorem to
Bach-or-Stravinsky (BoS)

2, 1 0, 0

0, 0 1, 2

B S

B

S

If there exists a Nash equilibrium with mixed strategies, in the form ((p1,
1-p1), (q1, 1-q1)), with p1, q1  (0, 1), it should hold that

• 2q1 = 1- q1  q1 = 1/3
• p1 = 2(1- p1)  p1 = 2/3
• The conditions for pl. 1 give us the mixed strategy of pl. 2
• Similarly the conditions for pl. 2 give the strategy of pl. 1
• Hence we have the mixed equilibrium ((2/3, 1/3), (1/3, 2/3))

16

From 2x2 to 2xn games

• What are the Nash equilibria in this game?

• There is no Nash equilibrium with pure strategies, hence, there
must be one with mixed strategies

• We will start with pl. 1
– i.e., with the player who has 2 pure strategies

• We are looking for a strategy p = (p1, p2) = (p1, 1 – p1) of pl. 1

17

3, -2 1, 2 4, 6 2, 8

1, 12 5, 10 2, 4 3, -4

t1 t2 t3 t4

s1

s2

Analysis of 2xn games

• Step 1: We look at pl. 2 and compute the terms
– u2(p, e1) = f1(p1) = -14p1 + 12,

– u2(p, e2) = f2(p1) = -8p1 + 10,

– u2(p, e3) = f3(p1) = 2p1 + 4

– u2(p, e4) = f4(p1) = 12p1 - 4

18

3, -2 1, 2 4, 6 2, 8

1, 12 5, 10 2, 4 3, -4

t1 t2 t3 t4

s1

s2

Analysis of 2xn games

– f1(p1) = -14p1 + 12,

– f2(p1) = -8p1 + 10,

– f3(p1) = 2p1 + 4

– f4(p1) = 12p1 - 4

p111/3

-4
19

-2

0

2

4

6

8

4/5
f4

f3

f1

f2

Step 2: Graphical representation

10

12

3/5

Analysis of 2xn games

– Because pl. 2 will play a best
response, we look at
max{f1(p1), f2(p1), f3(p1), f4(p1)}

– Candidate strategies for pl. 1
only at the intersection points
of the max function

– 3 candidate strategies for pl.
1: (1/3, 2/3), (3/5, 2/5), (4/5,
1/5)

p111/3

-4
20

-2

0

2

4

6

8

4/5
f4

f3

f1

f2

Step 3: Candidate strategies for pl. 1

10

12

3/5

Analysis of 2xn games

• Step 4: We check all the candidate strategies to see if they can
yield an equilibrium

1st candidate strategy of pl. 1: (1/3, 2/3)
– We will search for a strategy of pl. 2 in the form: q = (q1, 1 – q1, 0, 0)

– Since from the diagram, the 1st and 2nd columns are the best responses
of pl. 2 to the strategy of pl. 1

– From the support theorem, it must hold that u1(e1, q) = u1(e2, q)

– 3q1 + 1-q1 = q1 + 5(1-q1)  q1 = 2/3

– Since we found a valid probability, we have found a Nash equilibrium 21

3, -2 1, 2 4, 6 2, 8

1, 12 5, 10 2, 4 3, -4

t1 t2 t3 t4

s1

s2

Analysis of 2xn games

• Step 4: We check all the candidate strategies to see if they can
yield an equilibrium

2nd candidate strategy of pl. 1: (3/5, 2/5)
– We will search for a strategy of pl. 2 in the form: q = (0, q2, 1 – q2, 0)

– Since from the diagram, the 2nd and 3rd columns are the best responses
against the strategy of pl. 1

– From the support theorem, it should hold that u1(e2, q) = u1(e3, q)

– By solving this, we get q2 = 1/3

– Since we found a valid probability, we have found one more equilibrium22

3, -2 1, 2 4, 6 2, 8

1, 12 5, 10 2, 4 3, -4

t1 t2 t3 t4

s1

s2

Analysis of 2xn games

• Step 4: We check all the candidate strategies to see if they can
yield an equilibrium

3rd candidate strategy of pl. 1: (4/5, 1/5)
– We will search for a strategy of pl. 2 of the form: q = (0, 0, q3, 1 – q3)

– In a similar way, we get q3 = 1/3

– Hence we have a 3rd Nash equilibrium

23

3, -2 1, 2 4, 6 2, 8

1, 12 5, 10 2, 4 3, -4

t1 t2 t3 t4

s1

s2

Analysis of 2xn games

• In total: 3 Nash equilibria
– ((1/3, 2/3), (2/3, 1/3, 0, 0))

– ((3/5, 2/5), (0, 1/3, 2/3, 0))

– ((4/5, 1/5), (0, 0, 1/3, 2/3,))

24

3, -2 1, 2 4, 6 2, 8

1, 12 5, 10 2, 4 3, -4

t1 t2 t3 t4

s1

s2

A modified example

• Suppose we change some of the payoffs of pl. 1 (here we
changed the 2nd column)

• Which parts of the analysis change?
– Observation: The candidate mixed strategies of pl. 1 were determined by

the payoff matrix of pl. 2!

– Hence, steps 1-3 remain exactly the same

– Again, 3 candidate strategies for pl. 1

25

3, -2 5, 2 4, 6 2, 8

1, 12 1, 10 2, 4 3, -4

t1 t2 t3 t4

s1

s2

A modified example

• Step 4: We check all the candidate strategies to see if they can
yield an equilibrium

1st candidate strategy of pl. 1: (1/3, 2/3)
– We will search for a strategy of pl. 2 in the form: q = (q1, 1 – q1, 0, 0)

– From the support theorem, it must hold that u1(e1, q) = u1(e2, q)

– 3q1 + 5(1-q1) = q1 + 1-q1  q1 = 2

– Not a valid probability!

– Hence, this candidate strategy does not yield an equilibrium
26

3, -2 5, 2 4, 6 2, 8

1, 12 1, 10 2, 4 3, -4

t1 t2 t3 t4

s1

s2

A modified example

• Step 4: We check all the candidate strategies to see if they can
yield an equilibrium

2nd candidate strategy of pl. 1: (3/5, 2/5)
– We will search for a strategy of pl. 2 in the form : q = (0, q2, 1 – q2, 0)

– From the support theorem, it should hold that u1(e2, q) = u1(e3, q)

– 5q2 + 4(1-q2) = q2 + 2(1-q2)  q2 = -1

– Not a valid probability

– Hence, no equilibrium
27

3, -2 5, 2 4, 6 2, 8

1, 12 1, 10 2, 4 3, -4

t1 t2 t3 t4

s1

s2

A modified example

• Step 4: We check all the candidate strategies to see if they can
yield an equilibrium

3rd candidate strategy of pl. 1: (4/5, 1/5)
– Since we have not found any other equilibrium, Nash’s theorem

guarantees that now we will find one

– We will search for a strategy of pl. 2 of the form: q = (0, 0, q3, 1 – q3)

– In the modified example, columns 3 and 4 have not changed

– Hence, we will arrive at the same result: q3 = 1/3

– Unique Nash equilibrium: ((4/5, 1/5), (0, 0, 1/3, 2/3,)) 28

3, -2 5, 2 4, 6 2, 8

1, 12 1, 10 2, 4 3, -4

t1 t2 t3 t4

s1

s2

Back to nxm games

• Summarizing known algorithms:
– Brute-force, based on the support theorem, worst case: need to solve

Ο(2n+m) linear programs

– [Lemke, Howson ’64], worst case: still exponential

– Other approaches: [Kuhn ’61, Mangasarian ’64, Lemke ’65], also
exponential worst case running time

• Polynomial time algorithms only for special cases
– 0-sum games

– 2xn games

– Games with constant rank payoff matrices

• We are not aware of any polynomial time algorithm for general
nxm normal form games!

29

Algorithms for normal form games
• Could it be that the problem is NP-complete?

• Probably not

– [Megiddo, Papadimitriou ’89]: strong evidence that it cannot be NP-complete

– If it were  NP = co-NP (highly unlikely to be true)

• It is NP-complete if we add more requirements

– E.g. Find a Nash equilibrium that maximizes the sum of the utilities
[Gilboa, Zemel ’89, Conitzer, Sandholm ’03]

– A different problem than just finding a Nash equilibrium

• Further issues
– There exist games, with integer payoff matrices, and with ≥ 3 players,

where the probabilities in their Nash equilibria are irrational numbers
[Nash ’51]

– Hence, we cannot even represent the mixed strategies by a finite number
of bits

30

Back to the proof of Nash’s theorem

• Theorem [Nash 1951]: Every finite game possesses at least one
equilibrium when we allow mixed strategies

• Nash’s proof reduces to using Brouwer’s fixed point theorem

• Brouwer’s theorem reduces to using Sperner’s lemma

31

Brouwer’s theorem

• Brouwer’s theorem: Let f:D➝D, be a continuous
function, and suppose D is convex and compact.
Then there exists x such that f(x) = x

32

33

Flip?

Illustrations of Brouwer’s theorem

Suppose D is a disc

34

Rotate?

Illustrations of Brouwer’s theorem

Suppose D is a disc

Sperner’s lemma

In 2 dimensions

• Let D be the 2-dimensional simplex
– D = {(x1, x2, x3): x1 + x2 + x3 = 1, xi ≥ 0, for i=1, 2, 3 }

– D is a triangle

• Consider a triangulation of D

• Color all the vertices of the small triangles, using 3 colors such
that:

– The 3 vertices of D have a different color

– Along each edge of D, we use only the colors of the 2
vertices of the edge (1 color forbidden)

– No restriction for the interior of D

35

36

Sperner’s
Lemma: Any
such coloring has
at least one
trichromatic
triangle

!

Sperner’s lemma

Algorithms for normal form games

Let us look at the computational problems:

• SPERNER: Given a coloring satisfying the conditions of Sperner’s
lemma, find a trichromatic triangle

• BROUWER: Given a function satisfying the conditions of
Brouwer’s theorem, find a fixed point

• NASH: Given a finite normal form game, find a Nash equilibrium

What is common with all 3?

• They are search problems, where we know a solution always
exists

37

Complexity classes for search
problems

Informal descriptions

• FP (Function P): The version of P for search problems

• FNP (Function NP): The version of NP for search problems

• TFNP (Total FNP): The class of search problems that always have
a solution

Fact: FP ⊆ TFNP ⊆ FNP

38

Complexity classes for search
problems

• TFNP has several interesting subclasses

• Depending on how the proof of existence is established

• PLS (Polynomial time Local Search)

• PPA (Polynomial time Parity Argument)

• PPAD (Polynomial time Parity Argument, Directed)

• PPP (Polynomial time Pigeonhole Principle)

• And more…

In fact, our problems belong to one of these subclasses

39

40

The class PPAD
[Papadimitriou ’94]
➢ Consists of problems where the existence of a solution can be

established by a particular kind of parity argument
➢ Namely, PPAD contains all problems that can be reduced to:
END OF THE LINE:
• We are given a directed graph with in-degree(u) ≤ 1,

out-degree(u) ≤ 1 for every vertex u
• The graph is given implicitly by two circuits P, C

– (u,v) is an edge iff u = P(v) and v = C(u)
– i.e., we are only allowed to ask queries for the successor or the

predecessor of a node (at most polynomially many queries)

• We are also given a source node (in-degree=0, out-degree=1)
• Goal: Find the sink, or another source

– existence of such a node is guaranteed, by a parity argument: the total
number of sources and sinks is even

41

The class PPAD

...

you are

given this

Q: Is there an
efficient algorithm
for finding another
unbalanced node
without actually
following the path?

Complexity of finding a Nash
equilibrium

• Open problem for many years

• Eventually:
– The problem belongs to PPAD

• Membership in PPAD is established via the Lemke-Howson algorithm

– [Daskalakis, Goldberg, Papadimitriou, September 2005]: PPAD-complete
for 4-player games, conjectured that for 2 players there is an efficient
algorithm

– [Chen, Deng, November 2005]: PPAD-complete even for 2-player games!

– [Chen, Deng, Teng, February 2006]: PPAD-complete even for some
approximate versions of equilibria

– Current belief is that problems in PPAD are not poly-time solvable

– Finding an exact Nash equilibrium is most probably intractable

42

Other PPAD-complete problems
How can we define BROUWER as a computational problem?
• Consider a function f that satisfies the conditions of Brouwer’s theorem

– It may not be easy to succinctly describe f as input to the algorithm

– Also, the fixed point may contain irrational numbers

• Thus, the function is given implicitly via a circuit (only allowed to ask queries
for the value of the function at any point of the domain)

• Goal: Find an approximate fixed point: a point x such that |f(x) – x| < ε

Theorem: BROUWER is PPAD-complete

Finding a Nash equilibrium is equivalent to finding approximate
fixed points of continuous functions

– Note that the proof of Nash’s theorem only showed that finding an
equilibrium is at most as difficult as finding fixed points

43

Approximate Nash equilibria

44

Approximate Nash equilibria

• Since the problem of computing equilibria is hard, we can consider
possible relaxations of the initial definition

• Recall the definition of Nash equilibria: A profile of mixed
strategies (p, q) is a Nash equilibrium if

– u1(p, q) ≥ u1(ei, q) for every pure strategy ei of pl. 1

– u2(p, q) ≥ u2(p, ej) for every pure strategy ej of pl. 2

45

Approximate Nash equilibria

• Definition: A profile of mixed strategies (p, q) is an ε-Nash
equilibrium if

– u1(p, q) ≥ u1(ei, q) – ε, for every pure strategy ei of pl. 1

– u2(p, q) ≥ u2(p, ej) – ε, for every pure strategy ej of pl. 2

• In words: a profile of strategies is an ε-Nash equilibrium if no
player can gain more than ε by deviating

• When we study ε-Nash equilibria, we usually normalize the
utilities to be in [0, 1]

– Thus also ε  [0, 1]

46

Example of approximate Nash
equilibria

2/3, 1/3 0, 0

0, 0 1/3, 2/3

B S

B

S

Consider the profile (p, q) = ((0.6, 0.4), (0.4, 0.6))
• u1(p, q) = 0.6 x 0.4 x 2/3 + 0.4 x 0.6 x 1/3 = 0.24
• u1(e1, q) = 0.4 x 2/3 = 0.267 = u1(p, q) + 0.027
• u1(e2, q) = 0.6 x 1/3 = 0.2 < 0.24
• Similar analysis for pl. 2
• Hence, this profile is a 0.027-Nash equilibrium

None of the players can gain more than 0.027 by deviating to another
strategy 47

48

Searching for Approximate Equilibria

• We will focus on the simpler version of ε-Nash equilibria

• At the same time, we also want to focus on strategy
profiles that are simple, and easy to describe

Definition: A k-uniform strategy is a strategy where all
probabilities are integer multiples of 1/k

e.g. (3/k, 0, 0, 1/k, 5/k, 0,…, 6/k)

Important observation: Support size of a k-uniform strategy ≤ k

Can we have approximate equilibria with k-uniform
strategies for small values of k?

49

A Subexponential Algorithm
(Quasi-PTAS)

Theorem [Lipton, Markakis, Mehta ’03]: Consider a nxn game.
For any  in (0,1), and for every k  9logn/2, there exists a pair
of k-uniform strategies (p, q) that forms an -Nash equilibrium

Lesson learnt: there is no need to use a big support!
• For 0-sum games already proved in [Althofer ’94, Lipton, Young ’94]

Proof idea:
• Use of the ”Probabilistic Method”
• Sample a mixed strategy for each player according to the distribution

of a Nash equilibrium
• Feasible because of Nash’s theorem

• Then prove that with positive probability the desired property holds

50

A Subexponential Algorithm
(Quasi-PTAS)

Theorem [Lipton, Markakis, Mehta ’03]: Consider a nxn game.
For any  in (0,1), and for every k  9logn/2, there exists a pair
of k-uniform strategies (p, q) that forms an -Nash equilibrium

Corollary : We can compute an -Nash equilibrium in time

Proof of Corollary: There are nO(k) pairs of supports to
look at. Verify the ε-equilibrium condition.

51

An application

[McCarthy, Laan, Wang, Vayanos, Sinha, Tambe ’18]

• Threat Screening Games: Games for modeling decision problems
related to screening at airports, borders, and other areas

• Motivated by a collaboration of USC with the US Transportation
Security Administration

• Use of mixed strategies for selecting how to screen quite popular
during last years

• Main practical result: Simulations for screening in a large airport
(comparable to the Los Angeles International Airport) show that
approximate equilibria with k-uniform small support strategies
behave very well in terms of the airport security objectives

52

Moving on...

• How good is an algorithm with running time nO(logn/ε^2) ?

• For sure better than exponential

• Better than nn or 2n

• But still not polynomial running time

• Usually referred to as quasi-polynomial

• For what values of ε can we have polynomial time
algorithms?

53

Polynomial Time Approximation Algorithms

For  = 1/2:

Proposition: Τhis is a 1/2-approximate equilibrium with
support size ≤ 2 for both players!

[Feder, Nazerzadeh, Saberi ’07]: For  < 1/2, we need in worst
case, support at least (log n)

i

k

j

• Pick arbitrary row i

• Let j = BR(i) = best response to i

• Find k = BR(j), pl. 1 plays i or k
with prob. 1/2 each

• Pl. 2 just plays j

Aij, Bij

Akj, Bkj

Improved Approximation Algorithms
for Approximate Nash equilibria

(ΕΚΤΟΣ ΥΛΗΣ)

54

55

Polynomial Time Approximation Algorithms

Better than ½-approximations in polynomial time

[Daskalakis, Mehta, Papadimitriou ’07]: polynomial time
algorithm for  = 1-1/φ = (3-5)/2  0.382 (φ = golden ratio)

- Βased on sampling + Linear Programming

- Need to solve polynomial number of linear programs

- Not a very fast algorithm

- Polynomial time algorithm but still a large number of linear
programs to be solved

56

Polynomial Time Approximation Algorithms

Recall: 0-sum games can be solved in polynomial time
(equivalent to linear programming)

- Given a game defined by the arrays (A, B), start
with an equilibrium of the 0-sum game (A-B, B-A)

- If incentives to deviate are “high”, players adjust
their strategies via best response moves

[Bosse, Byrka, Markakis ’07]: a different LP-based method with
the same approximation of 0.382

• Needs to solve only 1 linear program

• Similar idea in [Kontogiannis, Spirakis ’07] for well-
supported approximation

• A small tweak can also yield a better approximation of 0.36

57

A 0.382-approximation algorithm

1. Find an equilibrium x*, y* of the 0-sum game (A - B, B - A)

2. Let g1, g2 be the maximum gain by deviating to a pure
strategy for row and column player. Suppose g1  g2

3. If g1 , output x*, y*

4. Else: let b1 = best response to y*, b2 = best response to b1

5. Output:

 x = b1

 y = (1 - 2) y* + 2 b2

Theorem: The algorithm with  = 1-1/φ and 2 = (1-g1) / (2-g1)
achieves a (1-1/φ)-approximation

Parameters of the algorithm: , 2  [0,1]

58

Yet another approach
• [Spirakis, Tsaknakis ’07]: algorithm with an approximation of ε = 0.339

– Best known approximation for many years, till recently
– A different optimization approach, but yet another LP-based method
– It starts with a descent-based method to identify a stationary point
– Needs to solve a polynomial number of linear programs (one per each

iteration)

• [Deligkas, Fasoulakis, Markakis ’22]: Currently best approximation of ε =
1/3
– Based on a tweak of the Spirakis-Tsaknakis algorithm
– Improving the bottleneck case of their algorithm

• Big open problem:
– Can we find algorithms for lower values of ε, closer to 0?
– Is it possible to have a poly-time algorithm for any constant ε>0?

• Probably not... [Rubinstein ’16]

• So far, there have been further improvements for several special classes
of games
– Low-rank matrices, sparse matrices, symmetric games, win-lose games, …

59

Progress on other notions of approximation

• -well-supported equilibria:
– a profile of strategies (p, q) is an ε-well-supported Nash equilibrium if any

strategy from Supp(p) is an approximate best response to q and vice versa
– [Kontogiannis, Spirakis ’10]: Polynomial time only for ε = 2/3, based also

on solving 0-sum games
– More recently improved to 0.6528 [Czumaj et al. ’18]
– And even more recently improved to ½ [Deligkas, Fasoulakis, Markakis ’23]

• Even stronger notion of approximation: require that the profile
found is geometrically close to an exact Nash equilibrium
– [Etessami, Yannakakis ’07]: mostly negative results

• Open problem to provide more positive results, even for special
cases, for these concepts as well

The story so far for ε-ΝΕ

0.75

0.50.382

0.364

0.339

10

PPAD-complete

for 𝜺 < 𝒏−𝟔

[Kontogiannis,
Panagopoulou,
Spirakis ’06]

[Daskalakis, Mehta,
Papadimitriou ’06, ’07]

[Bosse, Byrka,
Markakis ’07]

[Tsaknakis, Spirakis ’07]

𝜺∗

[Rubinstein ’16]

[Deligkas, Fasoulakis,
Markakis ’22]

1/3

Under ETH for PPAD, ∃ very
small constant ε* s.t. no
poly-time algorithm for ε< ε*

ε-NE:

61

Post-Mortem

• Difficult to find exact Nash equilibria for an arbitrary 2-player game

• A bit less difficult to find approximate Nash equilibria
– But still challenging and not yet well understood

• Is it a catastrophe if we do not have efficient algorithms for every
game?
– Players in practice may also be able to adjust their strategies and gradually

converge to an equilibrium by observing each other’s actions

– Still, “if your laptop cannot find an equilibrium, then neither can the
market”, quote from Kamal Jain (2003)

• Despite the high complexity, the notion of a Nash equilibrium
remains among the most important notions in game theory

62

Post-Mortem

• Take-home story: Nash equilibria form a good starting point
from a conceptual point of view

• But when intractable, we should think towards alternative and
tractable variations of equilibrium concepts

• Ongoing research:
– Learning algorithms with convergence guarantees

– Also connected to training neural networks

– Many positive results for 0-sum games (starting with fictitious play
[Robinson ’51])

– Not as easy for general games

– No-regret algorithms provide convergence “on average”

– Several variations of gradient descent under consideration during last
5 years…

	Slide 1
	Slide 2: Outline
	Slide 3: Nash equilibria: Existence and computation
	Slide 4: The support of a strategy
	Slide 5: Utility functions revisited
	Slide 6: Support properties at Nash equilibria
	Slide 7: Support properties at Nash equilibria
	Slide 8: Support properties at Nash equilibria
	Slide 9: Example
	Slide 10: Finding Nash equilibria
	Slide 11: Finding Nash equilibria
	Slide 12: Finding Nash equilibria
	Slide 13: Finding Nash equilibria
	Slide 14: Nash equilibria as a LCP
	Slide 15: Finding Nash equilibria
	Slide 16: Applying the support theorem to Bach-or-Stravinsky (BoS)
	Slide 17: From 2x2 to 2xn games
	Slide 18: Analysis of 2xn games
	Slide 19: Analysis of 2xn games
	Slide 20: Analysis of 2xn games
	Slide 21: Analysis of 2xn games
	Slide 22: Analysis of 2xn games
	Slide 23: Analysis of 2xn games
	Slide 24: Analysis of 2xn games
	Slide 25: A modified example
	Slide 26: A modified example
	Slide 27: A modified example
	Slide 28: A modified example
	Slide 29: Back to nxm games
	Slide 30: Algorithms for normal form games
	Slide 31: Back to the proof of Nash’s theorem
	Slide 32: Brouwer’s theorem
	Slide 33
	Slide 34
	Slide 35: Sperner’s lemma
	Slide 36
	Slide 37: Algorithms for normal form games
	Slide 38: Complexity classes for search problems
	Slide 39: Complexity classes for search problems
	Slide 40: The class PPAD
	Slide 41: The class PPAD
	Slide 42: Complexity of finding a Nash equilibrium
	Slide 43: Other PPAD-complete problems
	Slide 44: Approximate Nash equilibria
	Slide 45: Approximate Nash equilibria
	Slide 46: Approximate Nash equilibria
	Slide 47: Example of approximate Nash equilibria
	Slide 48: Searching for Approximate Equilibria
	Slide 49: A Subexponential Algorithm (Quasi-PTAS)
	Slide 50: A Subexponential Algorithm (Quasi-PTAS)
	Slide 51: An application
	Slide 52: Moving on...
	Slide 53: Polynomial Time Approximation Algorithms
	Slide 54: Improved Approximation Algorithms for Approximate Nash equilibria (ΕΚΤΟΣ ΥΛΗΣ)
	Slide 55: Polynomial Time Approximation Algorithms
	Slide 56: Polynomial Time Approximation Algorithms
	Slide 57: A 0.382-approximation algorithm
	Slide 58: Yet another approach
	Slide 59: Progress on other notions of approximation
	Slide 60: The story so far for ε-ΝΕ
	Slide 61: Post-Mortem
	Slide 62: Post-Mortem

