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Nash equilibria: Computation

• Nash’s theorem only guarantees the existence of 
Nash equilibria

– Proof via Brouwer’s fixed point theorem

• The proof does not imply an efficient algorithm for 
computing equilibria

– Because we do not have efficient algorithms for finding 
fixed points of continuous functions

• Can we design polynomial time algorithms for 2-
player games?

– For games with more players?
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Zero-sum Games
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A special case: 0-sum games

• Games where for every profile (si, tj) 
we have

 u1(si, tj) + u2(si, tj) = 0

– The payoff of one player is the 
payment made by the other

• Also referred to as strictly competitive

• It suffices to use only the matrix of 
player 1 to represent such a game
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• How should we play in such a game?



A special case: 0-sum games

• Idea: Pessimistic play

• Assume that no matter what you choose 
the other player will pick the worst 
outcome for you

• Reasoning of player 1: 
– If I pick row 1, in worst case I get 2

– If I pick row 2, in worst case I get 1

– I will pick the row that has the best worst case

– Payoff = maxi minj Aij = 2
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• Reasoning of player 2:
− If I pick column 1, in worst case I pay 4
− If I pick column 2, in worst case I pay 3
− I will pick the column that has the smallest worst case payment
− Payment = minj maxi Aij = 3



0-sum games
Definitions
• For pl. 1:

– The best of the worst-case scenarios:

v1 = maxi minj Aij 

– We take the minimum of each row and select the best minimum

• For pl. 2:
– Again the best of the worst-case scenarios

v2 = minj maxi Aij 

– We take the max in each column and then select the best maximum

• In the example:
– v1 = 2, v2 = 3

• The game also does not have pure Nash equilibria

6



Example 2
• Computing v1 for pl. 1: 

– Row 1, min = 4

– Row 2, min = 1

– Row 3, min = 0

– Row 4, min = 4

– v1 = max {4, 1, 0, 4} = 4

• Computing v2 for pl. 2: 

– Column 1, max = 4

– Column 2, max = 6

– Column 3, max = 7

– Column 4, max = 4

– v2 = min {4, 6, 7, 4} = 4
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Example 2
• In contrast to the first example, here 

we have v1 = v2

• Recommended strategies: 
– s1 or s4 for pl. 1

– t1 or t4 for pl. 2

• Pessimistic play can lead to 4 different 
profiles

• Observations:
i. Same utility in all 4 profiles

ii. All 4 profiles are Nash equilibria!

iii. There is no other Nash equilibrium
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Nash equilibria in 0-sum games

Theorem: For every finite 2-player 0-sum game:
• v1 ≤ v2

• There exists a Nash equilibrium with pure strategies if and only if  
v1 = v2

• If (s, t) and (s’, t’) are pure equilibria, then the profiles (s, t’), (s’, t) 
are also equilibria

• When we have multiple Nash equilibria, the utility is the same for 
both players in all equilibria (v1 for pl. 1 and -v1 for pl. 2) 

Corollary: In games where v1 < v2, there is no Nash equilibrium with 
pure strategies
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Nash equilibria in 0-sum games

• In general v1 ≠ v2

• Pessimistic play with pure strategies does not always lead 
to a Nash equilibrium

• Idea (von Neumann): Use pessimistic play with mixed 
strategies!

• Definitions:
– w1 = maxp minq u1(p, q) 

– w2 = minq maxp u1(p, q)

• We can easily show that: v1 ≤  w1 ≤  w2 ≤  v2

– Because we are optimizing over a larger strategy space

• How can we compute w1 and w2?
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Back to Example 1

• We will find first w1 = maxp minq u1(p, q)

• We need to look for a strategy p = (p1, p2) = 
(p1, 1 – p1) of pl. 1

• We need to look better at the 2 consecutive 
optimization steps

• Lemma: Given a strategy p of pl. 1, the term 
minq u1(p, q) is minimized at a pure strategy 
of pl. 2
– Hence, no need to have both optimization steps 

over mixed strategies
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Analysis of Example 1
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• The lemma simplifies the process as 
follows:

w1 = maxp minq u1(p, q)

= maxp min{ u1(p, e1), u1(p, e2) } 

= maxp1 min{ 4p1 + 1-p1, 2p1 + 3(1-p1) } 

= maxp1 min{ 3p1 + 1, 3 – p1 }



Analysis of Example 1

• w1 = maxp1 min { 3p1 + 1, 3 – p1 }

• We need to maximize the minimum of 2 
lines 4 2

1 3
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Analysis of Example 1
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• One line is increasing
• The other is decreasing
• The min. is achieved at the 

intersection point ➔ p1 = 
1/2

• w1 = maxp1 min { 3p1 + 1, 3 – p1 }

• We need to maximize the minimum of 2 
lines

14



Analysis of Example 1

Summing up:

• w1 = maxp minq u1(p, q) = maxp1 min { 3p1 + 1, 
3 – p1 } = 3*1/2 + 1 = 5/2

• If pl. 1 plays strategy p = (1/2, 1/2), he can  
guarantee on average 5/2, independent of 
the choice of pl. 2

• Thus, with mixed strategies, pessimistic play 
provides a better guarantee than with pure 
(v1 = 2 < 2.5)
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Analysis of Example 1

With a similar analysis for pl. 2: 

w2 = minq maxp u1(p, q)

= minq max{ u1(e1, q), u1(e2, q) } 

= minq1 max{ 4q1 + 2(1-q1), q1 + 3(1-q1) } 

= minq1 max{ 2q1 + 2, 3 – 2q1 }

• We now want to minimize the max among 2 
lines
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Analysis of Example 1

• w2 = minq1 max{ 2q1 + 2, 3 – 2q1 }

• Again, one is increasing, the other is 
decreasing 4 2

1 3

q111/40 17

• The max. is achieved at the 
intersection point ➔ q1 = 1/4

• min-max strategy: (1/4, 3/4)



Analysis of Example 1
Final conclusions:

• We found the profile

• p = (1/2, 1/2), q = (1/4, 3/4)

• w1 = w2 = 5/2

• Both players guarantee something better to 
themselves by using mixed strategies

• With pure strategies:

maxi minj Αij ≠ minj maxi Αij

• With mixed strategies, we have equality

         maxp minq u1(p, q) = minq maxp u1(p, q)

• Also, (p, q) is a Nash equilibrium! (check)
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Nash equilibria in 0-sum games

Theorem (von Neumann, 1928): For every finite 2-
player 0-sum game:

1. w1 = w2 (referred to as the value of the game)

2. The profile (p, q), where w1 and w2 are achieved forms a 
Nash equilibrium

3. If (p, q) and (p’, q’) are equilibria, then the profiles (p, q’), 
(p’, q) are also equilibria

4. In every Nash equilibrium, the utility to each player is the 
same (w1 for pl. 1 and -w1 for pl. 2) 
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Nash equilibria in 0-sum games

Conclusions from von Neumann’s theorem 

• For the family of 2-player 0-sum games, all the problematic 
issues we had identified for normal form games are resolved

- Existence: guaranteed

- Non-uniqueness: not a problem, because all equilibria 
yield the same utility to each player

- If there are multiple equilibria, all of them are equally 
acceptable
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Nash equilibria in 0-sum games

Computation of Nash equilibria

• Till now we saw how to find Nash equilibria in 2x2 0-sum 
games

• The previous reasoning cannot be generalized
• We get problems with more variables, cannot visualize as before

• Can we find an equilibrium for arbitrary nxm 0-sum games?
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Nash equilibria in 0-sum games

• We need a different approach

• Initial proof of von Neumann’s theorem (1928) is not 
constructive
– Based on fixed point theorems

• Fortunately: there is an alternative algorithmic proof of 
existence

• Finding w1 and the strategy of pl. 1 can be modeled as a linear 
programming problem

• Finding the equilibrium strategy of pl. 2 can be modeled as the 
dual problem to that of pl. 1
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Linear Programming
• What is a linear program? 

• Any optimization problem where
– The objective function is linear

– The constraints are also linear
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• We can also have inequalities with ≥ or equalities in the constraints
• We can solve linear programs very fast, even with hunderds of variables 

and constraints (Matlab, AMPL,...)



Linear Programming

• Basic component for the alternative proof of von 
Neumann’s theorem: 

• Duality theorem: For every maximization LP, there is a 
corresponding dual minimization LP such that
– The primal LP has an optimal solution iff the dual LP has an 

optimal solution

– The optimal value (when it exists) for both the primal and the 
dual LP is the same

24
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Nash equilibria in 0-sum games
• Consider a 0-sum game with an nxm matrix Α for pl. 1

• Recall: w1 = maxp minq u1(p, q) = maxp min {u1(p, ek)} k=1,…,m

• LP-based proof of von Neumann’s theorem: The max-min and 
the min-max strategies of pl. 1 and pl. 2 are obtained by solving 
the linear programs:

25Primal LP Dual LP



Example
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Primal LP Dual LP
min  w

s.t.

w ≥ 6q1 + 5q2 + 3q3 + 5q4

w ≥ q1 + 2q2 + 6q3 + 4q4

w ≥ 3q1 + 8q2 + 3q3 + 2q4

q1 + q2 + q3 + q4 = 1

q1, q2, q3, q4 ≥ 0

max  w

s.t.

w ≤ 6p1 + p2 + 3p3

w ≤ 5p1 + 2p2 + 8p3

w ≤ 3p1 + 6p2 + 3p3

w ≤ 5p1 + 4p2 + 2p3

p1 + p2 + p3 = 1

p1, p2, p3 ≥ 0

• v1 = 3, v2 = 5, no pure Nash 
equilibrium

• We have to use linear 
programming to find the 
equilibrium profile



Summary on 0-sum games

• There always exists a Nash equilibrium in finite 0-sum games, 
when we allow mixed strategies

• w1 = w2 = value of the game

• If there are multiple equilibria, they all have the same utility for 
each player (w1 for pl. 1, -w1 for pl. 2) 

• The value of the game as well as the equilibrium profile can be 
computed in polynomial time by solving a pair of primal and 
dual linear programs
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0-sum games and optimization

Further connections with Computer Science and 
Algorithms:

1. Every linear program is “equivalent” to solving a 0-sum game
– Finding the optimal solution to any linear program can be reduced to 

finding an equilibrium in some 0-sum game

– Initially stated in [Dantzig ’51], complete proof in [Adler ’13]

2. Every problem solvable in polynomial time (class P), can be 
reduced to linear programming, and hence to finding a Nash 
equilibrium in some appropriately constructed 0-sum game! 
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0-sum games and complexity classes
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 

Shortest paths, 
minimum spanning 
trees, sorting, ... 

Matching Pennies, 
Rock-Paper-Scissors, 
...

Class P 0-sum games



And some more observations
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• Anything we have seen so far also hold for constant-sum 
games

• In a constant-sum game, for every profile (s, t) with s  S1, 
t  S2

     u1(s, t) + u2(s, t) = c, for some parameter c

• WHY?
• We can subtract c from the payoff matrix of pl. 1 (or pl. 2 but not 

both), so as to convert it to a 0-sum game
• Adding/subtracting the same parameter from every cell of a 

payoff matrix do not change the set of Nash equilibria



Learning Algorithms for Zero-sum 
Games
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0-sum games and learning
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Machine learning applications: deep learning models, training 
GANs (Generative Adversarial Networks), boosting, etc

➢[Goodfellow et al ’14]: training 2 antagonistic models 
(the Generator and the Discriminator) can be seen as a 0-
sum game

➢[Schuurmans, Zinkevich ’16]: deep learning games, 
reducing supervised learning to game playing

➢[Freund, Schapire ’96]: boosting via no-regret dynamics 
for solving 0-sum games



0-sum games and learning
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• Especially for GANs, it is infeasible to use a linear program 
to do the training

• What are we after then? 
➢ Iterative learning algorithms that converge to an (approximate) 

equilibrium

• What do people use in practice?
➢ Some versions of Stochastic Gradient Descent

• Any hope for better methods?

➢ YES! Better performance and theoretical guarantees for some 
variations of Gradient Descent

➢ Extra gradient, Optimistic gradient and their analogues for 
Multiplicative Weight Update methods



Min-max optimization
➢ The problem we are interested in:

miny maxx f(x, y)
Subject to:

• x  = (x1, x2,…, xn), is a probability distribution,  Σi xi = 1, xi ≥ 0

• y  = (y1, y2,…, yn) is a probability distribution

• f(x, y) is bilinear: f(x, y) = Σi Σj Rijxiyj 

Further variations/generalizations

➢ The domain of x and y may be some different convex set

➢ Or they can be unconstrained (domain = Rn x Rn)

➢ f(x, y) can range from bilinear to convex-concave or to more 
arbitrary smooth, non-convex, non-concave functions
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Gradient Descent and 
Multiplicative Weights 

Update methods
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Descent methods 

• First thoughts for solving the problem: use 
gradient descent/ascent (GDA)

• Caution: need to project to the simplex

xt = 𝝥Δ[xt-1 + η∇f(xt-1)] = argminx∊Δ ||x - [xt-1 + η∇f(xt-1)]|| 

yt = 𝝥Δ [y
t-1 – η∇f(yt-1)] = argminy∊Δ ||y - [yt-1 – η∇f(yt-1)]||

• For optimization over the simplex, we can opt for 
better algorithms

• Can we adapt gradient descent to the “geometry” 
of our problem? 
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Multiplicative Weights Update 
Method

• One of the most known learning algorithms [Littlestone, 
Warmuth ’94, Fudenberg, Levine ’95, Freund, Schapire ’99]

• It can be interpreted as the Mirror-Descent method with 
entropic regularization [Nemirovski, Yudin ’83]

• Main intuition of MWU:

– In each iteration, reward the pure strategies that perform better against 
the opponent’s strategy in the previous iteration

• Several other variations in the literature (e.g. linear instead 
of exponential updates)

• Also known by different names: FTRL, Hedge,…
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Multiplicative Weights Update 
Method

Dynamics for MWU:

Some notation:

• η = learning  rate parameter (step size)

• Let ei = (0, 0,…,1, 0,…,0) be the i-th pure strategy

• f(ei, y
t-1) = payoff of row player against yt-1, when selecting the i-th row
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Multiplicative Weights Update 
Method

Some known properties:

• MWU are no-regret algorithms

• They converge in an “average sense”:

• (1/T) Σt≤T (xt, yt) converges to the equilibrium as T→∞

• How about last-iterate convergence? 

• limt→∞ (xt, yt) = ?
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Multiplicative Weights Update 
Method

• limt→∞ (xt, yt) = ?

• [Bailey, Piliouras ’18]: MWU (and many of its variants) do not 
converge in the last-iterate sense, and enter limit cycles even 
for 2x2 0-sum games

Spiraling away from the 
equilibrium in the Matching 
Pennies game
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How can we “correct” MWU?
➢ Let’s first ask: how do we “correct” the dynamics of 

gradient descent? 

➢ Two well known tricks:

• Optimistic gradient descent (OG) [Popov ’80]

• Extra gradient (EG) [Korpelevich ’76]

xt-1/2 = xt-1 – η∇f(xt-1)

Intermediate step: 

xt = xt-1 – η∇f(xt-1/2)   (resp. for yt)

Update step: 

xt = xt-1 + 2η∇f(xt-1) – η∇f(xt-2)
(resp. for yt)

Optimistic Gradient: Extra Gradient: 

Can we define analogous versions for MWU?
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Optimistic MWU
[Daskalakis, Panageas ’19]: study of OMWU

• OMWU adds a negative momentum term to “correct” the MWU dynamics

Dynamics for OMWU:

Theorem [from DP ’19]: OMWU attains asymptotic last-
iterate convergence, when the game has a unique 
equilibrium

[Wei et al. ’21]: convergence rate analysis of OMWU
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Conclusions
• Very active research agenda (both experimentally and 

theoretically)

• Open questions: 
➢Q1: Are there other dynamics with last-iterate convergence?
➢Q2: Can we attain faster convergence rates? Especially when f is not 
bilinear (or not convex-concave but under other restrictions)

• Improved variants have potential to be deployed in practice
➢ An example with Optimistic Gradient: [Daskalakis, Ilyas, Syrgkanis, 

Zeng ’18], Training GANs with Optimism

• Beyond 0-sum?
• Recent progress for rank-1 games [Patris, Panageas ’24]
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