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Solution concepts
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Choosing a strategy... 
• Given a game, how should a player choose his 

strategy?
– Recall: we assume each player knows the other players’ 

preferences but not what the other players will choose

• The most fundamental question of game theory
– Clearly, the answer is not always clear

• We will start with 2-player games

3



Prisoner’s Dilemma: 
The Rational Outcome 

3, 3 0, 4

4, 0 1, 1

• Let’s revisit prisoner’s dilemma
• Reasoning of pl. 1: 
– If pl. 2 does not confess, then

I should confess
– If pl. 2 confesses, then

I should also confess
• Similarly for pl. 2
• Expected outcome for rational players: they will both confess, 

and they will go to jail for 3 years each
– Observation: If they had both chosen not to confess, they would go to jail 

only for 1 year, each of them would have a strictly better utility

C D

C

D

4



Dominant strategies

• Ideally, we would like a strategy that would provide the best 
possible outcome, regardless of what other players choose

• Definition: A strategy si of pl. 1 is dominant if
     u1(si, tj) ≥ u1(s’, tj) 
for every strategy s’ Î S1 and every strategy tj Î S2

• Similarly for pl. 2, a strategy tj is dominant if
      u2(si, tj) ≥ u2(si, t’) 

for every strategy t’ Î S2 and for every strategy si Î S1
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Dominant strategies

Even better:
• Definition: A strategy si of pl. 1 is strictly dominant if

     u1 (si, tj) > u1 (s’, tj) 
for every strategy s’ Î S1 and every strategy tj Î S2

• Similarly for pl. 2
• In prisoner’s dilemma, strategy D (confess) is strictly dominant
Observations:
• There may be more than one dominant strategies for a player, but 

then they should yield the same utility under all profiles
• Every player can have at most one strictly dominant strategy
• A strictly dominant strategy is also dominant
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Existence of dominant strategies
• Few games possess dominant 

strategies
• It may be too much to ask for
• E.g. in the Bach-or-Stravinsky game, 

there is no dominant strategy:
– Strategy B is not dominant for pl. 1:

If pl. 2 chooses S, pl. 1 should choose S
– Strategy S is also not dominant for pl. 1:

If pl. 2 chooses B, pl. 1 should choose B

• In all the examples we have seen so far, 
only prisoner’s dilemma possesses 
dominant strategies

(2, 1) (0, 0)

(0, 0) (1, 2)

SB

S

B
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Back to choosing a strategy... 
• Hence, the question of how to choose strategies still 

remains for the majority of games
• Model of rational choice: if a player knows or has a 

strong belief for the choice of the other player, then he 
should choose the strategy that maximizes his utility

• Thought experiment: Suppose that someone suggests to 
the 2 players a strategy profile (s, t)

• When would the players be willing to follow this profile?
– For pl. 1 to agree, it should hold that

u1(s, t) ≥ u1(s’, t) for every other strategy s’ of pl. 1
– For pl. 2 to agree, it should hold that

u2(s, t) ≥ u2(s, t’) for every other strategy t’ of pl. 2
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Nash Equilibria
• Definition (Nash 1950): A strategy profile (s, t) is a (pure) 

Nash equilibrium, if no player has a unilateral incentive to 
deviate, given the other player’s choice

• This means that the following conditions should be 
satisfied:
1. u1(s, t) ≥ u1(s’, t) for every strategy s’ Î S1

2. u2(s, t) ≥ u2(s, t’) for every strategy t’ Î S2 

• One of the dominant concepts in game theory from 1950s till 
now

• Most other concepts in noncooperative game theory are 
variations/extensions/generalizations of Nash equilibria
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Pictorially:

(  ,  ) (  ,  ) (x1,   ) (  ,  ) (  ,  )
(  ,  ) (  ,  ) (x2,   ) (  ,  ) (  ,  )
(  ,  ) (  ,  ) (x3,   ) (  ,  ) (  ,  )
(  ,y1) (  ,y2) (x, y) (  ,y4) (  ,y5)
(  ,  ) (  ,  ) (x5,   ) (  ,  ) (  ,  )

In order for (s, t) to be a Nash equilibrium:
• x must be greater than or equal to any xi in column t
• y must be greater than or equal to any yj in row s

s

t

10



Nash Equilibria
• We should think of Nash equilibria as “stable” profiles of a 

game
– At an equilibrium, each player thinks that if the other player does 

not change her strategy, then he also does not want to change his 
own strategy

• Hence, no player would regret for his choice at an 
equilibrium profile (s, t)
– If the profile (s, t) is realized, pl. 1 sees that he did the best 

possible, against strategy t of pl. 2,
– Similarly, pl. 2 sees that she did the best possible against strategy s 

of pl. 1 
• Attention: If both players decide to change 

simultaneously, then we may have profiles where they 
are both better off
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Examples of finding Nash equilibria in 
simple games
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Example 1: Prisoner’s Dilemma

3, 3 0, 4

4, 0 1, 1

In small games, we can examine all possible profiles and check if 
they form an equilibrium
• (C, C): both players have an incentive to

deviate to another strategy
• (C, D): pl. 1 has an incentive to deviate
• (D, C): Same for pl. 2
• (D, D): Nobody has an incentive to change

Hence: The profile (D, D) is the unique Nash equilibrium of this 
game

– Recall that D is a dominant strategy for both players in this game
Corollary: If s is a dominant strategy of pl. 1, and t is a dominant 
strategy for pl. 2, then the profile (s, t) is a Nash equilibrium

C D

C

D
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Example 2: Bach or Stravinsky (BoS)

2, 1 0, 0

0, 0 1, 2

B S

B

S

2 Nash equilibria:
• (Β, Β) and (S, S)
• Both derive the same total utility (3 units)
• But each player has a preference for a different equilibrium
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Example 2a: Coordination games

2, 2 0, 0

0, 0 1, 1

B S

B

S

Again 2 Nash equilibria:
• (Β, Β) and (S, S)
• But now (B, B) is clearly the most preferable for both players
• Still the profile (S, S) is a valid equilibrium, no player has a unilateral 

incentive to deviate
• At the profile (S, S), both players could deviate together in order to 

reach a better outcome

Variation of Bach 
or Stravinsky
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Example 3: The Hawk-Dove game

2, 2 0, 4

4, 0 -1, -1

• The most fair solution (D, D) is not an equilibrium
• 2 Nash equilibria: (D, H), (H, D) 
• We have a stable situation only when one population 

dominates or destroys the other
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Example 4: Matching Pennies

• In every profile, some player has an incentive to 
deviate

• There is no Nash equilibrium!
• Note: The same is true for Rock-Paper-Scissors

1, -1 -1, 1

-1, 1 1, -1

H T

H

T
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Mixed strategies in games
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Existence of Nash equilibria 

• We saw that not all games possess Nash equilibria

• E.g. Matching Pennies, Rock-Paper-Scissors, and 
many others

• What would constitute a good solution in such 
games?
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Example of a game without equilibria: 
Matching Pennies

• In every profile, some player has an incentive to change
• Hence, no Nash equilibrium!

Q: How would we play this game in practice?

A: Maybe randomly

1, -1 -1, 1

-1, 1 1, -1

H T

H

T
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Matching Pennies: Randomized 
strategies
• Main idea: Enlarge the strategy 

space so that players are allowed 
to play non-deterministically

• Suppose both players play
• H with probability 1/2
• T with probability 1/2

• Then every outcome has a probability 
of ¼

• For pl. 1: 
– P[win] = P[lose] = ½
– Average utility = 0

• Similarly for pl. 2

H T

H

T

½ ½

1, -1 -1, 1

-1, 1 1, -1

½

½
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Mixed strategies

• Definition: A mixed strategy of a player is a probability 
distribution on the set of his available choices

• If S = (s1, s2,..., sn) is the set of available strategies of a 
player, then a mixed strategy is a vector in the form   

p = (p1, ..., pn), where
      pi

  ≥ 0 for i=1, ..., n,  and p1 + ... + pn = 1
• pj = probability for selecting the j-th strategy
• We can write it also as pj=p(sj) = prob/ty of selecting sj

• Matching Pennies: the uniform distribution can be 
written as 
p = (1/2, 1/2) or p(H) = p(T) = ½
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Pure and mixed strategies
• From now on, we refer to the available choices of a player 

as pure strategies to distinguish them from mixed 
strategies

• Consider a 2-player game with S1 = {s1, s2,..., sn} and S2 = 
{t1, t2,..., tm}

• Every pure strategy can also be represented as a mixed 
strategy that gives probability 1 to only a single choice

• E.g., the pure strategy s1 can also be written as the mixed 
strategy (1, 0, 0, ..., 0) 

• More generally: each strategy si can be written in vector 
form as the mixed strategy ei = (0, 0, ..., 1, 0, ..., 0)
– 1 at position i, 0 everywhere else
– Some times, it is convenient in the analysis to use the vector form 

for a pure strategy
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Utility under mixed strategies

• Suppose that each player has chosen a mixed 
strategy in a game

• How does a player now evaluate the outcome of a 
game?

• We will assume that each player cares for his 
expected utility
– Justified when games are played repeatedly
– Not justified for more risk-averse or risk-seeking players

24



Expected utility (for 2 players)
• Consider a n x m game
• Pure strategies of pl. 1: S1 = {s1, s2,..., sn}
• Pure strategies of pl. 2: S2 = {t1, t2,..., tm} 
• Let p = (p1, ..., pn) be a mixed strategy of pl. 1
and q = (q1, ..., qm) be a mixed strategy of pl. 2
• Expected utility of pl. 1: 

• Similarly for pl. 2 (replace u1 by u2)
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Example
• Let p = (4/5, 1/5), 
q = (1/2, 1/2)

• u1(p, q) = 4/5 x 1/2 x 2 + 
1/5 x 1/2 x 1 = 0.9

• u2(p, q) = 4/5 x 1/2 x 1 + 
1/5 x 1/2 x 2 = 0.6

• When can we have an 
equilibrium with mixed 
strategies?

2, 1 0, 0

0, 0 1, 2

B S

B

S
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Nash equilibria with mixed strategies

• Definition: A profile of mixed strategies (p, q) is a Nash 
equilibrium if 
– u1(p, q) ≥ u1(p’, q) for any other mixed strategy p’ of pl. 1
– u2(p, q) ≥ u2(p, q’) for any other mixed strategy q’ of pl. 2

• Again, we just demand that no player has a unilateral incentive to 
deviate to another strategy

• How do we verify that a profile is a Nash equilibrium?
– There is an infinite number of mixed strategies!
– Infeasible to check all these deviations
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Nash equilibria with mixed strategies

• Corollary: It suffices to check only deviations to pure strategies
– Because each mixed strategy is a convex combination of pure strategies

• Equivalent definition: A profile of mixed strategies (p, q) is a Nash 
equilibrium if 
– u1(p, q) ≥ u1(ei, q) for every pure strategy ei of pl. 1
– u2(p, q) ≥ u2(p, ej) for every pure strategy ej of pl. 2

• Hence, we only need to check n+m inequalities as in the case of 
pure equilibria
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Multi-player games
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Games with more than 2 players
• All the definitions we have seen can be generalized for multi-

player games
– Dominant strategies, Nash equilibria

• But: we can no longer have a representation with 2-dimensional 
arrays

• For n-player games we would need n-dimensional arrays (unless 
there is a more concise representation)
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Definitions for n-player games
Definition: A game in normal form consists of

– A set of players N = {1, 2,..., n}
– For every player i, a set of available pure strategies Si

– For every player i, a utility function 
ui: S1 x ... x Sn → R

• Let p = (p1, ..., pn) be a profile of mixed strategies for the 
players

• Each pi is a probability distribution on Si

• Expected utility of pl. i under p =
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Notation

• Given a vector s = (s1, ..., sn), 
we denote by s–i the vector where we have removed 
the i-th coordinate:

s–i  = (s1, ..., si-1, si+1, ..., sn)
• E.g., if s = (3, 5, 7, 8), then
– s-3 = (3, 5, 8) 
– s-1 = (5, 7, 8) 

• We can write a strategy profile s as s = (si, s–i)
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Definitions for n-player games
• A strategy pi of pl. i is dominant if

     ui (pi, p-i) ≥ ui (ej, p-i) 
for every pure strategy ej of pl. i, and every profile p-i of the other 
players

• Replace ≥ with > for strictly dominant

• A profile p = (p1, ..., pn) of mixed strategies is a Nash equilibrium if 
for every player i and every pure strategy ej of pl. i, we have

ui(p) ≥ ui(ej, p-i)
– As in 2-player games, it suffices to check only deviations to pure strategies
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Nash equilibria in multi-player games

At a first glance:
• Even finding pure Nash equilibria looks already more 

difficult than in the 2-player case 
• We can try with brute force all possible profiles
• Suppose we have n players, and each of them has m 

strategies: |Si|= m
• There are mn pure strategy profiles! 
• However, in some cases, we can exploit symmetry or other 

properties to reduce our search space
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Example: Congestion games

A simple example of a congestion game:
• A set of network users wants to move from s to t
• 3 possible routes, A, B, C
• Time delay in a route: depends on the number of users 

who have chosen this route
• dA(x) = 5x, dB(x) = 7.5x, dC(x) = 10x, 

● ● s t

A

B

C

35



Example: Congestion games

• Suppose we have n = 5 players
• For each player i, Si = {A, B, C}
• Number of possible pure strategy profiles: 35 = 243
• Utility function of a player: should increase when delay 

decreases (e.g., we can define it as u = – delay)
• At profile s = (A, C, A, B, A)

• u1(s) = -15, u2(s) = -10, u3(s) = -15, u4(s) = -7.5, u5(s) = -15 

● ● s t

A

B

C
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Example: Congestion games

• There is no need to examine all 243 possible profiles to find a 
pure equilibrium

• Exploiting symmetry:
– In every route, the delay does not depend on who chose the route but 

only how many did so
• We can also exploit further properties

• E.g. There can be no equilibrium where one of the routes is not used 
by some player

Homework: Find the pure Nash equilibria of this game (if 
there are any)

● ● s t

A

B

C
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Game simplifications:
Strict and weak domination
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Strictly dominated strategies
• In Prisoner’s dilemma, we saw that strategy D is dominant
• Strategy C is “dominated” by D
• Definition: A (pure or mixed) strategy pi of pl. i strictly 

dominates some other strategy p’ if for every profile p-i of the 
other players, it holds that

 ui(pi, p-i) > ui(p’, p-i)
• Strategy p’ will be called strictly dominated
• Observation: it suffices to consider only profiles p-i with pure 

strategies
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Strictly dominated strategies

• Strictly dominated strategies cannot be used in any 
Nash equilibrium

• Hence, we can remove them and reduce the size of the 
game

• In some cases, this results in much simpler games to 
analyze
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Iterated Elimination of Strictly 
Dominated Actions 

• Action B of player 1 is 
dominated by T or C

• None of the actions of 
player 2 is dominated

• If player 1 is rational, 
she would never play B

4, 4 4, 1 3, 0

3, 1 3, 4 4, 0

2, 0 2, 0 2, 6

I should not play B

L            M             R

T

C

B             
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Iterated Elimination of Strictly 
Dominated Actions 

• If player 2 knows player 1 
is rational, he can assume 
player 1 does not play B
– then player 2 should not 

play R

4, 4 4, 1 3, 0

3, 1 3, 4 4, 0

2, 0 2, 0 2, 6

L            M             R

T

C

B             

So I should not 
play R

I should not 
play B
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Iterated Elimination of Strictly 
Dominated Actions 

4, 4 4, 1 3, 0

3, 1 3, 4 4, 0

2, 0 2, 0 2, 6

L            M             R

T

C

B             

So I should not play C

So I should 
not play R

I should 
not play B

Unique Nash equilibrium: (T, L)
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Strict domination by mixed strategies

• Attention: It is possible that some 
strategy is not strictly dominated by a 
pure strategy but it is dominated by a 
mixed strategy

• Strategy B of pl. 1 is not strictly 
dominated neither by T nor by C

• But, it is strictly dominated by the mixed 
strategy (1/2, 1/2, 0), i.e., 0.5T + 0.5C:
– Proof: Consider some arbitrary strategy of 

pl. 2 q = (q1, 1-q1)
– u1(B, q) = 2
– u1((1/2, 1/2, 0), q) = 1/2 x q1 x 5 +                

1/2 x (1-q1) x 5 = 2.5 > 2

5, 5 0, 0

0, 0 5, 5

2, 0 2, 0

L             R

T

C

B             



Iterated Elimination of Strictly 
Dominated Actions

• Given: an n-player game
– pick a player i that has a strictly dominated pure strategy 

(dominated either by a pure or mixed strategy)
– Remove one of the strictly dominated strategies of pl. i
– repeat until no player has a strictly dominated pure strategy

• Facts:
– the set of surviving actions is independent of the elimination 

order, i.e., which player was picked at each step
– Iterated elimination of strictly dominated actions cannot destroy 

Nash equilibria
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Weakly dominated strategies
• Definition: A (pure or mixed) strategy pi of pl. i weakly 

dominates some other strategy p’ if for every profile p-i of the 
other players, it holds that

 ui(pi, p-i) ≥ ui(p’, p-i)
and for at least one profile p-i we have

ui(pi, p-i) > ui(p’, p-i)
• Strategy p’ will be called weakly dominated
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Weakly dominated strategies

• When we remove weakly dominated strategies, we may lose 
some Nash equilibria 

• In the above games:
– Strategy T weakly dominates B
– Strategy L weakly dominates R 
– but (B, R) is an equilibrium

• Observation: In the 2nd game, we even have a better value for 
both players when they choose weakly dominated strategies

2, 2 3, 0

0, 3 3, 3

T

B             

L             R

1, 1 0, 0

0, 0 0, 0

T

B             

L             R
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Iterated Elimination of Weakly 
Dominated Actions and Nash Equilibria
• The elimination order matters in iterated deletion of weakly 

dominated strategies
• Each order may eliminate a different subset of Nash equilibria
• Can we lose all equilibria of the original game? 

• Theorem: For every game where each player has a finite 
strategy space, there is always at least one equilibrium that 
survives iterated elimination of weakly dominated strategies 
– thus: if we care for finding just one Nash equilibrium, no need to 

worry about elimination order
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Exercise

Execute all the possible ways of doing iterated 
elimination of weakly dominated strategies. Do we 
lose equilibria with this process?

3, 2 2, 2
1, 1  0, 0
0, 0  1, 1 

s1

s2

s3

t1  t2
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Existence of Nash equilibria
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Nash equilibria: Recap

Recall the problematic issues we have identified for 
pure Nash equilibria:
1. Non-existence: there exist games that do not possess an 

equilibrium with pure strategies
2. Non-uniqueness: there are games that have many Nash 

equilibria
3. Welfare guarantees: The equilibria of a game do not 

necessarily have the same utility for the players

Have we made any progress by considering equilibria with mixed 
strategies?
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Existence of Nash equilibria

• Theorem [Nash 1951]: Every finite game possesses at 
least one equilibrium when we allow mixed 
strategies
– Finite game: finite number of players, and finite number of pure 

strategies per player

• Corollary: if a game does not possess an equilibrium with pure 
strategies, then it definitely has one with mixed strategies

• One of the most important results in game theory
• Nash’s theorem resolves the issue of non-existence

– By allowing a richer strategy space, existence is guaranteed, no matter 
how big or complex the game might be
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Examples 
• In Prisoner’s dilemma or Bach-or-Stravinsky, there exist 

equilibria with pure strategies
– For such games, Nash’s theorem does not add any more 

information. However, in addition to pure equilibria, we 
may also have some mixed equilibria

• Matching-Pennies: For this game, Nash’s theorem guarantees 
that there exists an equilibrium with mixed strategies
– In fact, it is the profile we saw: ((1/2, 1/2), (1/2, 1/2))

• Rock-Paper-Scissors?
– Again the uniform distribution: ((1/3, 1/3, 1/3), (1/3, 1/3, 1/3))
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Nash equilibria: Computation
• Nash’s theorem only guarantees the existence of 

Nash equilibria
– Proof reduces to using Brouwer’s fixed point theorem

• Brouwer’s theorem: Let f:D➝D, be a continuous 
function, and suppose D is convex and compact. 
Then there exists x such that f(x) = x
– Many other versions of fixed point theorems also available

• Can we design polynomial time algorithms for 2-
player games?
– After all, it seems to be only a special case of the general 

problem of finding fixed points
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