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NOTE: Floor rise is equal to crest settlement 

Evolution of wall convergence along the tunnel axis (x)

CONVERGENCE

ADVANCE

D

• Convergence starts at distance 0.5-0.75 D ahead of the tunnel face

• 30% - 50% of the total convergence has occurred at the tunnel face

• Wall convergence ceases to increase beyond about 1.5 D behind the tunnel face



Evolution of wall convergence along the tunnel axis (x)

Tunnel advance and wall support in steps with length (p).

The front part of the tunnel, close to the tunnel face (length d1), remains unsupported 
for construction purposes (access limitation of machinery). The maximum unsupported 
length close to the tunnel face is d2 = d1 + p

p
d1d2



Evolution of wall 

convergence along the 

tunnel axis

Wall convergence at the 

tunnel face (x=0) is about 

31% of the maximum 

value

The maximum value 

increases in weaker 

ground, larger tunnel 

depth and larger tunnel 

size. 

TUNNEL

ADVANCE

TUNNEL FACE (x=0)

UR / R

Results of 3D finite 
element analyses



Evolution of wall convergence along the tunnel axis (x)

Empirical relationships 
obtained from the 
results of 3D finite 
element analyses with 
a wide range of 
ground parameters 
and tunnel geometries 
(size and depth) 
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Evolution of wall convergence along the tunnel axis (x)   (Chern, 1998)
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results of a set of 3D finite element analyses with a 
wide range of ground parameters and tunnel 
geometries (size and depth)  



Wall convergence uR (x) of an unsupported tunnel at distance ( x ) from 

the tunnel face (located at x = 0 ) :

R = tunnel radius

uR = the final (maximum) wall convergence at large distance from the 

tunnel face (x = -). Can be calculated with analytical methods (present 

section), but more accurately with finite element analyses

uR(o) = wall convergence at the tunnel face (location x = 0)

According to Chern:  uR(o)= 0.308 uR
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 2D model of tunnel excavation: The initial geostatic pressure (po) gradually

reduces to (p) and eventually becomes zero. As the stress reduces, the

tunnel wall converges (UR) up to a maximum value UR,max (when p=0).

Deconfinement coefficient: 1 (1 ) o

o

p
p p

p
     

λ = 0  p = po ,    λ = 1  p = 0
Wall convergence UR reaches a 
maximum value UR,max and does not 

continue to increase more. Why ?

Because the stress change (p in 2D 
models) that causes ground 
deformation, only occurs close to the 
tunnel face, i.e., along the length 
between λ=0 and 1.

Stresses and deformations around a cylindrical tunnel – 2D analysis

2D & 3D models are linked with a 
relation between p (or λ) and (x),
obtained by eliminating UR

Deconfinement = Reduction of pressure p

Relation UR and x (from Chern)
Relation UR and p (or λ): from 2D analysis (next)

Elimination of UR 

Relation p (or λ) and x 

3D model: UR = f(x)

2D model: UR = g(p or λ)

x



Stresses and deformations around a cylindrical tunnel – 2D model assumptions

 2D (plane) strain (no change along tunnel axis z )

 Cylindrical unsupported tunnel, with radius R

 Hydrostatic initial (geostatic) stress state (Ko = 1  σvo = σho = po)

 Elastic – perfectly plastic ground, yielding with Mohr-Coulomb criterion (strength
parameters: c, φ )

 Constant dilatancy (δ) in the plastic domain:
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Overstress factor:
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Stresses and deformations around a cylindrical tunnel - Assumptions

σci = strength of intact rock 

(for Ko = 1)
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Ground deformations in plastic domain (r < rp):

Strain definitions (u = radial displacement):
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In the plastic domain (i.e., for r < rp):
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up is the radial displacement at r = rp (calculated from the elastic zone)

At the tunnel wall (r = R) :
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TUNNEL

Elastic domain
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Stress-strain relationships in plane strain (cylindrical coordinates):
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Stresses and deformations around a cylindrical tunnel – Elastic domain (r > rp)

Boundary conditions:

If plastic zone exists: At r = rp  u = up  c2 = up rp 

If plastic zone does not exist: At r=R  σr=p 
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At the tunnel wall (r=R) :

Radial displacement at distance (r) from center of tunnel (r>R):
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G = ground shear modulus

R = tunnel radius ,      po = geostatic stress

λ = λ (x) = deconfinement coefficient

and for complete deconfinement ( λ=1, r=R) : 
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Convergence-confinement curve in 
linearly elastic ground

1.  Linearly elastic ground with Ko = 1

Deformations around a cylindrical tunnel
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Linearly elastic ground

Ko = 1
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στο τοίχωμα

Stresses and deformations around a cylindrical tunnel – Only elasticity

and for λ=1:

σr = 0 , σθ = 2pο



Linearly elastic ground – Κο ≠ 1 (Kirsch solution)

Circular tunnel (radius ro) at depth (H), unit weight of ground (γ), horizontal stress coefficient Κ 
(σh = K σv). Geostatic stresses: σv = γΗ,  σh = K γΗ (do not vary with depth).

Angle (θ) is measured from tunnel center, with respect to the vertical (θ=0)

Tunnel is unsupported and λ = 1 (σrr = 0 at r = ro)

Kirsch solution (for p=0):

Circumferential stress at springline (θ=90ο):  σθθ = (3-Κ)γΗ - Initial value: σθθ = γΗ
For K = 0.5 -> σθθ = 2.5 γΗ

K = 1 -> σθθ =  2 γΗ

Circumferential stress at crest and invert (θ=0 & 180ο):  σθθ = (3Κ-1)γΗ - Initial value: σθθ = ΚγΗ
For K = 0.5 -> σθθ = 0.5 γΗ (initial value 0.5 γΗ)

K = 1 -> σθθ = 2 γΗ (initial value γΗ)

σθθ

σθθ

Stresses and deformations around a cylindrical tunnel



Ko = 1

Ko = 0.25

Linearly elastic ground – Κο ≠ 1 (Kirsch solution)

Stresses and deformations around a cylindrical tunnel – Only elasticity



The limit of the plastic 

zone (rp) depends 

on:

•The tunnel radius (R)

•the ground strength 

parameters (c,φ)

• the initial geostatic 

stress (po)

• the deconfinement 

coefficient (λ), i.e., the 

internal pressure (p)

2. Elastic – perfectly plastic ground,  Ko = 1

Stresses and deformations around a cylindrical tunnel

Plastic 
domain

Elastic 
domain

TUNNEL

M-C failure envelope



Calculation of the minimum internal pressure p = pcr to maintain 

elasticity in the ground:
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CONCLUSION: There is no plastic zone around the tunnel:

If: λcr  1 (i.e., Ns ≤ 1) or if: λcr < 1 (i.e., Ns > 1) and λ  λcr

Plastic zone develops around the tunnel if:  λcr < 1 (i.e., Ns > 1) and λ > λcr

Marginal fulfillment of the M-C failure criterion at the tunnel wall:

2. Elastic – perfectly plastic ground,  Ko = 1

Stresses around a cylindrical tunnel
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Stresses around a cylindrical tunnel – elastoplastic ground

Critical deconfinement coefficient – ground remains elastic but M-C failure 

criterion is marginally fulfilled at the tunnel wall (i.e., rp=R):
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Example:

γ = 22 kN/m3, H = 100 m, Ko = 0.60     po = 0.5 (1+Ko) γ Η = 1.76 MPa

GSI = 25,  σci = 12 MPa, Ei = 13.5 GPa  σcm = 0.64 MPa ,    Ε = 821 MPa

ν = 0.30    G = 316 MPa

φ = 32ο  k = 3.2546

δ = 7ο  Κ = 1.28
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Calculations:

Result: For λ>0.615, i.e., for p/po < 0.385 plastic zone develops around the tunnel

Stresses around a cylindrical tunnel – elastoplastic ground
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CASE 1: Ground remains elastic (no plastic zone)

• If Νs ≤ 1  for all λ

• If Νs > 1  for λ ≤ λcr
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Stresses around the tunnel:

Displacement around the tunnel:
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At the tunnel wall (r=R):



CASE 2: Plastic zone develops in the ground

If Νs > 1 and λ > λcr

Radius of plastic zone (rp) :

1. If φ = 0 :

2. If φ > 0 :
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CASE 2: Plastic zone develops in the ground

If Νs > 1 and λ > λcr

Proof of formulae for σr and σθ :

λ > λcr



CASE 2: Plastic zone develops in the ground

If Νs > 1 and λ > λcr

Proof of formulae for rp / R :



Convergence – confinement curve in elasto-plastic ground
Influence of the σ-ε curve

uRoe

The ground pressure (p) on the tunnel lining decreases with increasing tunnel wall convergence



If ground continuity is preserved, the convergence-confinement curve does NOT turn

upward (collapse) even in strongly strain softening ground. If, however, ground

continuity is lost (e.g. rock block contact is lost) due to large ground deformations, then

the convergence-confinement curve may turn upwards (collapse).

This means that ground pressure on the tunnel lining will increase at large ground

deformations.

Convergence – confinement curve in elasto-plastic ground
Influence of the σ-ε curve

collapse

collapse



Ground remains elastic, always (for all λ) if: 1sN

Schematic size of the plastic zone (rp ) around the tunnel 

cmos pN /2

TUNNEL TUNNEL

TUNNEL
TUNNEL

Stresses around a cylindrical tunnel – elastoplastic ground



Ns =    20         10         7.6         5          4          3.3

cmos pN /2

Stresses around a cylindrical tunnel – elastoplastic ground
Classification of tunnel excavation problems with Ns value

Face 
instability

Ns < 4.5

Ns = 4.5 to 8

Ns = 8 to 10

Ns = 10 to 16

Ns > 16

Face 
instability



Radius of the plastic zone rp (unsupported tunnel)

po = geostatic stress

λ = deconfinement coefficient

σcm = ground strength

Νs = overstress factor

)1(  opp

Graph is valid for common values of 

the relevant parameters

Stresses around a cylindrical tunnel – elastoplastic ground



Radius of the plastic zone rp (supported tunnel, pi = support pressure)

po = geostatic stress

λ = deconfinement coefficient

σcm = ground strength

Νs = overstress factor

)1(  opp

Graph is valid for common values of 

the relevant parameters

Stresses around a cylindrical tunnel – elastoplastic ground



Ground displacement :

(a) Displacement (up) at the limit of the plastic zone (r = rp) :

Calculated for a tunnel with radius R=rp and critical deconfinement (λcr), in which 

case ground displacements are elastic (since r > R = rp) :
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(b) Displacement (u) in the elastic zone (r > rp) :

Calculated by the elastic formula:
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u 2 with boundary condition: u=up at r=rp

CASE 2: Plastic zone develops in the ground

If Νs > 1 and λ > λcr

(c) Displacement (u) in the plastic zone (r < rp) :
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K

ppR

R

r

R

u

R

u












  
 



,,;

11
2

1

1

1

1

s

k

K

sR

R Nf

k
Nu

u





































(d) Displacement (uR) at tunnel wall at full deconfinement (λ=1):
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Displacement (uR) at tunnel wall, for any deconfinement λ > λcr):

i.e.,: 
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CASE 2: Plastic zone develops in the ground

If Νs > 1 and λ > λcr
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CASE 2: Plastic zone develops in the ground

If Νs > 1 and λ > λcr

Proof of formulae for ur :



CASE 2: Plastic zone develops in the ground

If Νs > 1 and λ > λcr

Proof of formulae for ur :



CASE 2: Plastic zone develops in the ground

If Νs > 1 and λ > λcr

Proof of formulae for ur:



Example:

γ = 22 kN/m3, Ko = 0.60     po = 0.5 (1+Ko) γ Η = 1.76 MPa

ν = 0.30    G = 316 MPa

φ = 32ο  k = 3.2546

δ = 7ο  Κ = 1.28
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Displacement of tunnel wall (uR )

Unsupported tunnel

• Data points for common values of the relevant parameters

• Significant reduction of wall displacement with increasing support pressure

Supported tunnel

pi = support pressureWall convergence 

increases significantly 

for Νs>5



Stresses at the tunnel wall (r=R)

1. Elastic ground (λ < λcr): (1 )r
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
  (1 )
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2. Elasto-plastic ground (λ > λcr):

Equilibrium equation: 0rrd
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Mohr-Coulomb criterion:
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Combining the Chern uR-x curve (1), with the convergence-confinement uR-p 

curve (2), one can develop the Chern-Panet curves λ-x (3).
The Chern-Panet curves are useful in 3D numerical analyses (to compute λ from x)

3
21

TUNNEL FACE (x=0)
x/R = -0.4

λ=0.69

Deconfinement
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Combination of (1), (2) gives the Chern-Panet curves, in the form:

2. Displacement uR at tunnel wall along the tunnel axis (x) (Chern, 1998) :
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These curves calculate the deconfinement coefficient (λ) at any location (x) along the 

tunnel axis. They are used in numerical analyses for the calculation of (λ) at the 

location (x) of support application

1. Displacement uR at tunnel wall as a function of deconfinement (λ):

Development of the Chern-Panet curves: λ versus x
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u

u








For deconfinement λ < λcr

(elasticity):
For deconfinement λ > λcr (plasticity):



GRC = Ground Reaction Curve:  Ur(x) / Ur,max versus   pi / po

LDP = Longitudinal Displacement Profile or Chern curve: Ur(x) / Ur,max versus  x / R

Combination of the GRC and LDP curves provides the relation: pi / po versus  x / R 
which is required in 2D numerical analyses (for specific x find pi)

ADVANCE

Convergence - Confinement (or Ground Reaction) curve:

Ground Reaction and Longitudinal Displacement (Chern) curves

pS

pi = pS = support pressure

p-u curve

(Panet)

x-u curve (Chern)



EXCEL spreadsheet for the calculation of the GRC and LDP curves

Col 1: p/po between 1 ... 0

Col 2: λ (between 0 ... 1) 1
o

p

p
  

Calculate Ns , k , Κ and λcr

Input data: R , po , σcm , φ , δ , G
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Col 3: Plastic region ? (Y/N) If  λ > λcr then Y else N

Col 4: rp /R If λ < λcr (no plastic region) then rp/R = 1 else:
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Col 5: up /R If λ < λcr then up = n/a else:



EXCEL spreadsheet for the calculation of the convergence – confinement curve

Col 6: uR /R If λ < λcr (no plastic region):

else:
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Calculate uR∞/R :   equal to uR/R  for λ=1

Col 7: uR / uR∞ (uR /R) / (uR∞/R)

Col 8: x / R

0.588

1.10 ln 1R
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R u
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Plot curves: (uR /R) vs (p/po) ,  (rp /R) vs (p/po) ,   (x/R) vs (p/po) or (uR /R)

Ground Reaction (GRC) Longitudinal Diplacement (LDP)



EXCEL spreadsheet for the calculation of the convergence – confinement curve

Col 9:  σr /po (at r=R): 

Col 10:  σθ /po (at r=R): If  λ < λcr then:

else:
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Plot curves: (σr /po & σθ /po) vs (p/po)
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Examples of Panet – Chern curves :



Για φ=32ο  ,   δ=7ο

Examples of radius of plastic zone:   ,; s
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Examples of tunnel wall displacement: 
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Example: Convergence – confinement curve (uR) - (λ)
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Example: Radius of the plastic zone
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Example: Panet - Chern curve
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Example: wall displacement curve (Α)
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