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Evolution of wall convergence along the tunnel axis (x)

Radial displacement
reaches its final value
at about one and one
half tunnel diameters
behind the face

Radial displacement reaches
about one third of its final value

mpoawpnT Direction of at the tunnel face

umooTipiEn tunnel advance
pa OIavoIL
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Radial displacement starts about one half a
tunnel diameter ahead of the advancing face

NOTE: Floor rise is equal to crest settlement

» Convergence starts at distance 0.5-0.75 D ahead of the tunnel face
« 30% - 50% of the total convergence has occurred at the tunnel face
« Wall convergence ceases to increase beyond about 1.5 D behind the tunnel face



Evolution of wall convergence along the tunnel axis (x)

Tunnel advance and wall support in steps with length (p).

The front part of the tunnel, close to the tunnel face (length d,), remains unsupported
for construction purposes (access limitation of machinery). The maximum unsupported
length close to the tunnel faceisd, =d; + p

Initial state
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element analyses
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Evolution of wall
convergence along the
tunnel axis

Wall convergence at the
tunnel face (x=0) is about
31% of the maximum
value

The maximum value

increases in weaker

ground, larger tunnel
depth and larger tunnel

size.
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Evolution of wall convergence along the tunnel axis (x) (Chern, 1998)
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Tunnel face: x=0

- At the tunnel face:

Convergence Uy
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17 Chern (1998): Empirical relationship from the
UR(X) _|14expl 0 91§ results of a set of 3D finite element analyses with a
U, B Pl wide range of ground parameters and tunnel
geometries (size and depth)
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Evolution of wall convergence along the tunnel axis (x)

(Chern, 1998)

Wall convergence ug (x) of an unsupported tunnel at distance ( x ) from

the tunnel face (located at x=0) :

1.7
UR(X) _ {14_ exp (O_gllj} or X =1.10 In
Ug R R

o0

R = tunnel radius

|

Ug (X)

Ug

0 0]

—0.588 ]
] i

Ur,, = the final (maximum) wall convergence at large distance from the
tunnel face (x = -0). Can be calculated with analytical methods (present
section), but more accurately with finite element analyses

Ug(0) = wall convergence at the tunnel face (location x = 0)

According to Chern: Ug(0)= 0.308 ug,,



Stresses and deformations around a cylindrical tunnel — 2D analysis

e 2D model of tunnel excavation: The initial geostatic pressure (p,) gradually
reduces to (p) and eventually becomes zero. As the stress reduces, the

tunnel wall converges (Ug) up to a maximum value Ug, ..., (when p=0).
Deconfinement = Reduction of pressure p D

Deconfinement coefficient: A =1—— = p=(1A—-A41) p,
i=0>p=p, , i=12p=0

Wall convergence Ug, reaches a
maximum value Uy, .., and does not
Bl continue to increase more. Why ?

Because the stress change (p in 2D
models) that causes ground
deformation, only occurs close to the
tunnel face, i.e., along the length
between A=0 and 1.

2D & 3D models are linked with a

’ p p reIation between p (or A) and (x),
obtained by eliminating Uy

Relation Ug and x (from Chern) } Elimination of U, >

4

Relation U, and p (or A): from 2D analysis (next) Relation p (or A) and x



Stresses and deformations around a cylindrical tunnel — 2D model assumptions

2D (plane) strain (no change along tunnel axis z )

Cylindrical unsupported tunnel, with radius R

Hydrostatic initial (geostatic) stress state (K, =1 > o0, = 0,, = p,)

Elastic — perfectly plastic ground, yielding with Mohr-Coulomb criterion (strength

parameters: ¢, ¢ ) g +¢&, volumetric strain
Constant dilatancy (d) in the plastic domain: tano =-—"——% =

S—, shear strain

Original curve Mohr-Coulomb criterion:

Elastic-perfectly ,
plastic 1dealization T = C + O tan ¢ :> Gl — 63 N ® + 2C N 0

2
N, =k= Lsing _ n2(45+?j: COS.¢
1-sing 2 1-sing

TepIRaAAouca Mohr-Coulomb

r=crotang\ Strength 6,,: o, for 6;=0
—oedk = ic COSZ
sin

o,=ko,+0,,



Stresses and deformations around a cylindrical tunnel - Assumptions
Definitions:

Overstress factor: NS = D, (for K, = 1)
Gcm
2C COS
Ground strength: o, = 2ck = : ?
1-sing
Rockmass strength (empirical correlation with GSI): K =1

o GSlI
o, =—2% exp| ——
50 25.5

O, = strength of intact rock

Dilatancy (0): tano =—

0=0 = K=1

0




Stresses and deformations around a cylindrical tunnel - Assumptions
Plastic domain

Ground deformations in plastic domain (r <r):

Strain definitions (u = radial displacement):

s—du e = — e =0
r— g 0 z
ar r /

Elastic domam

In the plastic domain (i.e., for r <r):

du K _
& +Ke,=0=> —+—u=0=>u=cr“=c=u,r;
dr r

p
r K

Butatr:rpéu:up :u:up(—p] for R<r<r
r p

u, Is the radial displacement at r = r, (calculated from the elastic zone)

K
I

Atthe tunnelwall (r=R): Ug =U, B

R



Stresses and deformations around a cylindrical tunnel — Elastic domain (r > )
Stress-strain relationships in plane strain (cylindrical coordinates):

1. . E v
& =— Gr_KoG = =1
A{ o} (1+v)1-v) o l-v
1 .. . : -
89:X{66_Kosr} Gr:Gr_po GOZGG_pO

Solving for the stress increments:
G, = D{gr + Koge} 5 E(1-v)

6Dl +K,e) LB o

Equilibrium equation (along axis r):

Strain definitions (u = radial displacement):

u 72
gr:d_u 892— 8Z: d_{f‘_}_lﬂ_—_‘:ﬂ
dr I rdr r
Boundary conditions: ¢, = 0 (u cannot increase with r) :
If plastic zone exists: Atr=r, > u=u,>c,=u,r, > U=, [fj (in elastic zone)
2
. . R
If plastic zone does not exist: At r=R > o,=p > ¢,=41 PR u= /IR(Zpé j—
-



Deformations around a cylindrical tunnel
1. Linearly elastic ground with K, =1

Radial displacement at distance (r) from center of tunnel (r>R):

=2R/(Z)7) = o<1 2 )7

NOTE: Strains and stresses are calculated by differentiation of u

D fLporai
At the tunnel wall (r=R): U, =4 R| =2 —_— g A=0
2 G Convergence-confinement curve
' =R Po ~u :iR(poj
and for complete deconfinement (i1=1, r=R): Ui, = G R 2G
Uy _2
Ug. Convergence-confinement curve in
linearly elastic ground
G = ground shear modulus G = 2(1E ) A=1— P
+Vv
R =tunnel radius,  Po = geostatic stress P,

A = A (x) = deconfinement coefficient 0<A <1



Stresses and deformations around a cylindrical tunnel — Only elasticity

O .—R

ZHPAITA

-
-

-7 KukAog Mohr

/ OTO TOiXWHA

Linearly elastic ground
K,=1

At tunnel wall (r=R):

o, =p=[1-2)p,
o, =2p,— pP=1+2)p,
and for A=1.

c, =0, o=2p,




Stresses and deformations around a cylindrical tunnel

Linearly elastic ground — K, # 1 (Kirsch solution)

Circular tunnel (radius r,) at depth (H), unit weight of ground (y), horizontal stress coefficient K
(0, = K 0,). Geostatic stresses: o, = yH, o, = K yH (do not vary with depth).

Angle (8) is measured from tunnel center, with respect to the vertical (6=0)
Tunnel is unsupported and A =1 (o, =0atr =r,)

Kirsch solution (for p=0):

Circumferential stress at springline (6=90°): 0gg = (3-K)YH - Initial value: ogg = YH
For K=0.5 -> 099 = 2.5 YH
K=1 ->0g= 2YH

Circumferential stress at crest and invert (6=0 & 180°): Ogg = (3K-1)yH - Initial value: 0gg = KyH
For K= 0.5 -> 0gg = 0.5 yH (initial value 0.5 yH)
K=1 ->0g=2VYH (initial value yH)



Stresses and deformations around a cylindrical tunnel — Only elasticity
Linearly elastic ground — K, # 1 (Kirsch solution)




Stresses and deformations around a cylindrical tunnel

2. Elastic — perfectly plastic ground, K, =1

The limit of the plastic

zone (I'p) depends
on:

*The tunnel radius (R)

the ground strength
parameters (c,9)

0O
TUNNEL T~

* the initial geostatic
stress (Po)

chl)arr?;iicn dE;ars;ii% | * the deconfinement
coefficient (A), i.e., the
- Internal pressure (p)




Stresses around a cylindrical tunnel

2. Elastic — perfectly plastic ground, K, =1

Calculation of the minimum internal pressure p = p., to maintain
elasticity in the ground:

Stress distribution in the elastic domain:

2 2
O, = po|:l_/1(|?j :l Oy = po|:1+ l[%j :l A=1- r;cr

Stresses (elastic) at the tunnel wall (r=R): 0, =0, =2P, = Pq
: : : o O3 =0, = P
Marginal fulfillment of the M-C failure criterion at the tunnel wall:

_ P [ 2 Y N,-1 N = 2P
o,=ko,+o,_, ‘ ; _(ij( . ] =

0 S

Critical deconfinement coefficient: A =1- Per :1_( 2 j N, -1
P, 1+ k \

S
CONCLUSION: There is no plastic zone around the tunnel:
If: Ay =1 (e, N.<1) orifi A, <1(i.e., Ng>1)and A<A,
Plastic zone develops around the tunnel if: Acr <1(.e,N,>1)and A> A,

ELASTIC PLASTIC

O ————)
A=0 A< )\cr Acr A> )\cr A=1



Stresses around a cylindrical tunnel — elastoplastic ground

Critical deconfinement coefficient — ground remains elastic but M-C failure
criterion is marginally fulfilled at the tunnel wall (i.e., r,=R):

ﬂ“cr:]'_

pCf
Po

= /Icrzl—(

2

el

N

N, —1j

S

Om = ZA ~n
52.63

N.=2p, /o,

k=tan2(45+%)

Gci

o )
20

Values of A, (plastic zone around the tunnel develops if A>A,)

(d:’g) No=1 | No=25 | N.=5 | N=10 | Ny=15 | N, =20
40) 1.0 0.61 0.47 0.41 0.41 0.39
25 1.0 0.65 0.54 0.48 0.48 0.46
30 1.0 0.70 0.60 0.55 0.55 0.53
35 1.0 0.74 0.66 0.62 0.62 0.60
40 1.0 0.79 0.71 0.68 0.68 0.67

ELASTIC

PLASTIC

O e e —)

A=0

A<A,

)\>)\CI’

A=1




Stresses around a cylindrical tunnel — elastoplastic ground

Example:
y =22 kN/m3, H=100m, K,=0.60 = p,=0.5(1+K,)yH =1.76 MPa
GSI =25, o,=12 MPa, E;=13.5GPa = o,,=0.64 MPa, E =821MPa

v=030 = G-=316MPa
@ =32° = k=3.2546

— —_— | - “) \
8=7° = K=1.28 E.n = E; ((1.()2 + %)
1+tano LFein o
_ 2 P K=
K =tan (45+ 2) 1_tans D = damage factor (=0)
Calculations:
2 2 N. -1
N ==Po_55  ; _1- -— |=0.615
O, 1+ Kk 5
Result: For A>0.615, i.e., for p/p, < 0.385 plastic zone develops around the tunnel

P=Po p=0
ELASTIC PLASTIC

O e ——
A=0 - A=1




CASE 1: Ground remains elastic (no plastic zone)

« If N, <1 > forall A P :1( 2 J(NSIJ
+ IfNg>1>forA< A, ) l+k N N,

Stresses around the tunnel:

2
o, =, 1_1(Rj :|
I
2
o, =P, 1+/’L($j :l

Displacement around the tunnel:

u=lR(p°(Rj g /e
2G r O/ P4 -

- KukAog Mohr
/ OTO ToiXwHa

At the tunnel wall (r=R):

U, =4 R(ng;j




CASE 2: Plastic zone develops in the ground
If N, >1and A> A,

ELASTIC PLASTIC
OO

A=0 Acr A> A A=1

Radius of plastic zone (r,) :

I 1
¢ . exp[z( : )}

1

oo g :{(kilj{2+2N1(Nki(k1)EfL)}}“

. K—1
And in full deconfinement (A=1) : % = {(LJ[Z + Ns(k —l)]}




CASE 2: Plastic zone develops in the ground
If N, >1and A> A,

Proof of formulae for ¢, and o, :

EmiAuon ornv mAaotiki {wvn, dnAadn yia R<r < r,

do, o©,—0,
Egiowaon 1coppoTriag : ar + -

=0

Kpitrpio acToyiac Mohr-Coulomb : &, =ko, +o

o

O ELASTIC . PLASTIC
do. 1 1

et
ATraAeign Tou gp Oivel: t——(k-1)o,--0,, =0 A=0 Ay A > )\cr

r F r

EmiAuan Tn¢ avwTépw dlagpoplkic eicwanc :
(a) Mepimrwon: kK #1= @ #0,

Me ouvoplakiy ouveikn: o, (r=R)=p=(1-1)p,

V&1

( cm | ¥ ..
J,.={(1 2) [uk l][EI E-1) (B) Mepimrwon: k=1=¢=0;

Me ouvopiakr] guverkn: &, (r=R)= P=

=(1-2 1 ]
R




CASE 2: Plastic zone develops in the ground
If N, >1and A> A,

Proof of formulae for ii /R:

Efiocwaon Twv TIHWV TWV Or KAl 0g OTO OPIO METACU EAQCTIKAC KAl TTAQCTIKAC CWVNE (I =

I'p) QIVEI TIC TINEC TWV C2 KAI I

(a) Nepimmrwon k#1=¢@#0

}123‘
(k—1)N, _|[ R

% _ 19

P, Po




Convergence — confinement curve in elasto-plastic ground
Influence of the o-€ curve

Note: Curve III does
not turn upwards

The ground pressure (p) on the tunnel lining decreases with increasing tunnel wall convergence



Convergence — confinement curve in elasto-plastic ground
Influence of the o-€ curve

If ground continuity is preserved, the convergence-confinement curve does NOT turn
upward (collapse) even in strongly strain softening ground. If, however, ground
continuity is lost (e.g. rock block contact is lost) due to large ground deformations, then
the convergence-confinement curve may turn upwards (collapse).

This means that ground pressure on the tunnel lining will increase at large ground
deformations.




Stresses around a cylindrical tunnel — elastoplastic ground

N, =2p,/ 0, 1<Ng<2

//////ng % 4/
IS /////////

2< Ns <5




—
(&)
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Stresses around a cylindrical tunnel — elastoplastic ground

Classification of tunnel excavation problems with N, value

Few support problems

E | Strain greater than 10%
S 14f Extreme squeezing problems
. 13}
5 1| N.=2p, /o
© S 0 cm
= 11
<
T 10
ﬂé of Fac_e.
3 glinstability
@ 7} D Strain between 5 and 10%
2 Very severe squeezing problems
o 8
= &
FCJ Strain between 2.5 and 5%
c 4 h Severe squeezing problems
5 Face A
W 3} instab |itvE Strain between 1 and 2.5%
w L[ Minor squeezing problems gy -in less than 1%
£ B
= A
(D 0 1 L L L J
0.1 0.2 03 04 05 0.6
Ns= 20 3.3

cscm/;;]'O Q rock maZs'6strength / ?1 situ stresél

Strain e %

Geotechnical issues

Less than 1

Ns < 4.5

Few stability problems and very simple
tunnel support design methods can be
used. Tunnel support recommendations
based upon rock mass classifications
provide an adequate basis for design.

1t025

Ns =4.5to 8

Convergence confinement methods are
used to predict the formation of a

‘plastic’

Zone

in

the

rock mass

surrounding a

tunnel

and of

the

interaction between

the progressive

development of this zone and different
types of support.

25t05

Ns = 8 to 10

Two-dimensional finite element analysis,
incorporating support elements and
excavation sequence, are normally used
for this type of problem. Face stability is
generally not a major problem.

51010

Ns = 10 to 16

The design of the tunnel is dominated by
face stability issues and, while two-
dimensional finite analyses are generally
carried out, some estimates of the
effects of forepoling and face
reinforcement are required.

More than 10

Ns > 16

Hoek E and Marinos P 2000 Predicting Tunnel Squeezing Problems in Weak Heterogeneous

Rock Masses. Tunnels and Tunnelling International 32(11) 45-51

Severe face instability as well as
squeezing of the tunnel make this an
extremely difficult three-dimensional
problem for which no effective design
methods are currently available. Most
solutions are based on experience.



Stresses around a cylindrical tunnel — elastoplastic ground

Radius of the plastic zone 7, (unsupported tunnel)

Po = geostatic stress
A = deconfinement coefficient
Ocm = ground strength

Ns = overstress factor

[79)
=)
[72]
®|3
=10
Q| @©
CL
O—
N2
Ll c
w2
ja
Q.

6.7 5 4 33 29 25 22

2*(in situ stress) N = 2p |G
rock mass strength S O ¢Cm

Graph is valid for common values of
the relevant parameters




Stresses around a cylindrical tunnel — elastoplastic ground

Radius of the plastic zone r, (supported tunnel, p; = support pressure)

Po = geostatic stress
A = deconfinement coefficient

o
oo Ocm = ground strength
g Ns = overstress factor
T| w
HE
he
2| = 1- 1
O — — —
O c p - po( )
HE
ki
al
N _ 2P
iz e
o

Cin

20 10 6.7 5 4 33 29 25 22 20

Graph is valid for common values of
2*(iin situ stress) N = zp /0' the relevant parameters
rock mass strength S o c¢©m




CASE 2: Plastic zone develops in the ground
If N, >1and A> A,

ELASTIC PLASTIC
O e e @ e O

'h: 0 }l.(_ r .h: 1

Ground displacement :

(a) Displacement (u,) at the limit of the plastic zone (r =r) :
Calculated for a tunnel with radius R=r, and critical deconfinement (A,), in which
case ground displacements are elastic (sincer >R =r)

u_p — rp P, ﬂ'Crzl_(Zj Ns_l
R IR\ 2G 1+k )l N,

-
(b) Displacement (u) in the elastic zone (r>ry) @ U= up[P]
Calculated by the elastic formula: r

C
Uu=-% with boundary condition: u=u, at r=r,
r

K
u. (r
(c) Displacement (u) in the plastic zone (r <r) : %: _F\f (;’j

K

u I

and at the tunnel wall (r = R) : Ur —_P|_P
R R\R



CASE 2: Plastic zone develops in the ground

If N, >1and A> A,

(d) Displacement (ug.) at tunnel wall at full deconfinement (A=1):

K
U_U(h) m|Re _y
R R\ R

o0

( poj rp
“\2G )l R

]K+l

. uRoo
l.e.,. =

R

Koo

R

Po
(2n 000 )

iwzl_( 2 j N, -1
1+k N,

1

_{(kﬂj[” N 1)]}k1

Displacement (ug) at tunnel wall, for any deconfinement A > A_,):

-

1

uRoo 1_|_N_
2

\

>(k-1)1-2)

D

S

J

(

K+1

i)

k-1

=f(4:N,,¢,5)



CASE 2: Plastic zone develops in the ground

If Ng>1and A> A,

Proof of formulae for u, :

B.3 YmoAoyIouo¢ TwWV HETAKIVACEWY OThV MAAOTIKN {wvn (r<rp ) :

|‘;'i| -

OpIGHOC BINOTONKOTNTAC OTNY TIAQOTIKA Jivn © tan o =

_ l+tano £
K=——
l—tano

du

dr

P
& —
-

1

dl i I =y —

Omore: &K+¢6,=0 = -
r dr }

r,
AE-‘
Tuvoplak ouverkn: I'=1, = U=, = U=1u, - l

ANAG TO Up €XEI UTTOAOYICBET ATTO TNV EAQTTIKI) CUVI. ZUVETTWG :

(a) Nepirrwon k=1 =@ =0

OTToU

P\ 2

u,o=r,

y I- — ‘ l+;~ == U, r, -
poPl2g N k+1) (k-1)N, o 2G )

(P, ' (k-1)N, +2

{:_ﬂ.' | l}_:’\."';



CASE 2: Plastic zone develops in the ground
If Ng>1and A> A,

Proof of formulae for u, :

Mah=1:

1
oo _ [(ﬁ — I)NS +2 T'l Upe Ty p, \(k=1)N, +2
R e +1 TR TR 26 (k+1)N,

MpoadiopIGHOg TNEG TEMIKNS (Yo A=1) GUYKAIONC TOU TOIXWHATOC TNG
ORPAYYAS (g, )

r

K K+k
g, Uy [Ty e, 1 ( p, [(k_l)}..fs +2} 1
R RUR) =~ R N/I\2G k+1

Mapatripnon :
Emeidr otnv eAaaTIKi TTERITITWAON N TEAIKN (yia A=1) oUykAIOT Tou

i - ;n
TOIXWHATOC TNG ONpayyag (u,, ) eivai : 1 = ( ;{ ) TIPOKUTITEI OTI :
I

L

K+k

K+k K<k
e, 1 [(k=1)N,+2 ]k g, _ 1 | Tpe
U, . N, k+1 T rre N, | R

Reoe




CASE 2: Plastic zone develops in the ground

If Ng>1and A> A,

Sl X R O] VEER{I@IM (8) Nepimwon k=1=¢ =0

AR

2G )N

omou: U, = -*}J{

w, —1)}

| R
kan: T, =R ‘ffﬂp[; (VA - 1)} Kal T = R ‘f\P[

MpocdlopIcUOg TNES TEMIKNC (VIa A=1) gUYKAIGNC TOU TOIXWHATOC TN
onpayyag (uy, ) :

.
Upy, _ Upo | T
R R\ R ) ~

Upe _ 1 (p“" ]exp[i (N —1](R+1J

i

K+l
Up, 1 1 . v
oA : = ﬁw[ (N, —l)(f‘xH)} R = {P}

i N

Re.e



Example:
Tunnel radius D = 6m - tunnel depth H = 100m

y=22kN/m3,K,=0.60 = p,=0.5(1+K,)yH=1.76 MPa
GSI =25, o,=12MPa, E,=13.5GPa = o,,=0.64 MPa, E =821 MPa

=
v=0.30 = G=316 MPa G:2(1+ o :iexp @
V) ™~ 5263 20
¢=32° = k=3.2546 k :tan2(45+£j
= _ 2 - _pfo0p—=Db2
6 7 — K 1 28 ) l+tans t-'rm - bl (\U‘U“ + | + e{((j[_)—i—]51.)—(351},.-"'l ]})
1-tans D = damage factor (=0)

Calculations:

2 2 N_ -1

N — pO :5 5 lcr:]_— S 20615
o, 1+k A N,

1

— K+1
- — —_— — ﬂ/ -
- j 2+ \ (k 1)]} 1.72 Cr( 26)( )

=0.00588 = u,, =600x0.00588 =3.53 cm

s




Displacement of tunnel wall (ug)

Unsupported tunnel Supported tunnel
i . -
fn Wall convergence Di = support pressure
0.8 ”3} Increases significantly 08 -
N R for Ng>5 v p/p
— S S~ Ky, 1 O
14 y4 o F/E
5 06 5 06 - 3/
S
5| - 5 \\ 527;/
EE 047 EEM“ \ 0.10
3z e \ -
EE R ;
3l 02+ E’ 02 \\ '
_ 1\
0.8
—109
0.0 00 -
10 67 5 4 33 29 25 22 20 ' 20 10 67 5 4 33 29 25 22 20
2*(in situ stress) = 2%(in situ st =
NS 2polocm (in situ stress) Ns 2polacm

rock mass strength rock mass strength

 Data points for common values of the relevant parameters

« Significant reduction of wall displacement with increasing support pressure




Stresses at the tunnel wall (r=R)

1. Elastic ground (A <2):  Zr = (1- 1) 25 - 1+ 1)

0 0]

2. Elasto-plastic ground (A > A):

Equilibrium equation: Or 4+ T =0
dr r
. o, o, 2
Mohr-Coulomb criterion: o, =Ko, +0,, = |[—=K|— [+—
pO pO NS
Combining the above: do, _l(k _1) o —Egcm =0
dr r r
Boundary condition: o, (r=R)=(1-1)p,
k-1
O O
Solution f 0= |o =|(1-4)p, +| —= Y
olution for ¢ # =l (1-1)p, (k—lﬂ( j (k—lj

Solutionfor =0= o, =(1-1) p, + o, In (—)




Combining the Chern ug-x curve (1), with the convergence-confinement ux-p

curve (2), one can develop the Chern-Panet curves A-x (3).
The Chern-Panet curves are useful in 3D numerical analyses (to compute A from x)

TUNNEL FACE (x=0)

2 4 XxXIR=-04 | 1 2 /R
; } @ % i -—
0.1 Ns < 1 /Jf’_j
~~ N, =2 3
N, =3
=4
- pO pO
N = c, c\/N’
C COS T 4
0.7 c.= —¢
=069 | ¥ 1I-sing
+ 0.8 c
109 ' 2,0,

+1.0
Y A = Deconfinement '=1-p/p,




Development of the Chern-Panet curves: A versus X

1. Displacement ug at tunnel wall as a function of deconfinement (A):

For deconfinement A > A, (plasticity): For deconfinement A <A,

K1 (elasticity):
f (52
U, (A
Up(2) _ N = L =f(1;N,,¢,5) () _
Uro, 1+25(k—1)(1—/1) Ur..

2. Displacement ug at tunnel wall along the tunnel axis (x) (Chern, 1998) :

( ) -1.7
SeX)_ {1+ exp (o.gliﬂ
Ug.. R

Combination of (1), (2) gives the Chern-Panet curves, in the form:
X
= f(ﬁ’ NS,(D, é‘j

These curves calculate the deconfinement coefficient (A) at any location (x) along the
tunnel axis. They are used in numerical analyses for the calculation of (A) at the
location (x) of support application



Ground Reaction and Longitudinal Displacement (Chern) curves
Convergence - Confinement (or Ground Reaction) curve:
GRC = Ground Reaction Curve: U(x) / U ., versus p;/ p,
LDP = Longitudinal Displacement Profile or Chern curve: U/(x) / U, . Vversus x /R

Combination of the GRC and LDP curves provides the relation: p;/ p, versus x /R
which is required in 2D numerical analyses (for specific x find p;)

Pi A

X-u curve (Chern)
Tunnel face

(_“@ p;=0

P; = ps = Support pressure




EXCEL spreadsheet for the calculation of the GRC and LDP curves

_2p, _ tan? ¢
Input data: R, p,, 6y @, 06, G N, = o k = tan £45+§j
Calculate N, k , K and A, K —ittano Crzl_(LJL N, —1]
1-tano 1+k N,
Col 1: p/p, between 1 ... 0 o
Col 2: & (betweenO0 ... 1) A=1- >

Col 3: Plastic region ? (Y/N) ——> If A> ) thenY else N

Col4:r, /R —— If A <A (no plastic region) then r /R =1 else:

fo=0: %=exp|:%(iNs—l)}

S -{(;{‘LJL&{ZS(”;@”&JF

uIO rIO po
Col 5: uy /R —> If A < thenu, =n/a else: = =A,| =




EXCEL spreadsheet for the calculation of the convergence — confinement curve

Col 6: ug /R —> If X <), (no plastic region): UEF*:/I (Zpéj

K
else: S _ | Lo
R RLIR
Calculate ug /R : equal to ug/R for A=1
Col 7:ug/Ug, —> (Ur/R)/ (Ur/R)

—0.588
Col8:x/R —> %:1.10 In (U—Rj —1

uRoo

Plot curves: (ug /R) vs (p/p,) , (ry, /R) vs (p/p,) » (X/R) vs (p/p,) or (ug /R)
N

Ground Reaction (GRC) Longitudinal Diplacement (LDP)

I Note: Curve III does
not turn upwards




EXCEL spreadsheet for the calculation of the convergence — confinement curve

Col 9: o, /p, (at r=R): > =(1-A1)

0

Col 10: o, /p, (at r=R): —> If L <A then: %o _ (1+A1)

0

2
else: %o _ k(ﬂj+—

Po
Plot curves: (o, /p, & o, /p,) Vs (p/p,)

\ /
':guﬁ)— N Plastic Elastic
domain

domain

B\ ecow;@wmwk



Examples of Panet — Chern curves :
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Examples of Panet — Chern curves :

For ¢p=32° ,
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Examples of radius of plastic zone:

For ¢=32°, 0=/°

— Ns<=1
— Ns=2.5
= Ns=5
— Ns=7.5
Ns=10
— Ns=15
— Ns=20

4 x/R 5




X po.NS’w’é‘

— Ns<=1
— Ns=2.5
— Ns=5
— Ns=7.5
Ns=10
— Ns=15
— Ns=20

For @=32° , 0=7°

1 Y XX .
TPOCWPIVI uR I

UTIOTTAPIEN
popd didvoiEng —l->
i XO




Example: Convergence — confinement curve (ug) - (A)

Yr
R

D, |
:f i! > 1N31 15
2G v

uR/R

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035
O T T T T T T T T T T T T

0.1 1

m— c|astic — ¢leastic

0.2 - = elastoplastic
0.3 1

0.4
0.5
0.6
0.7
0.8 1
0.9 4

1

— elastoplastic

A - deconfinement ratio
deconfinement ratio




Example: Radius of the plastic zone
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Example: Radius of plastic zone




Example: Panet - Chern curve
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Example: wall displacement curve (A)

Ug (X) _ {1+ exp(0.9l%ﬂ”

Ug

o0

6 -4

A
I I I I | I I I I | I I J

- Independent of N, @ , 0




Up _ (X P .
=) R _
le: wall displacement curve (
Example:

Iy 1NS1€015
R R ' 2G




