MSC IN ANALYSIS AND DESIGN OF EARTHQUAKE RESISTANT STRUCTURES (ADERS)

Course: Geotechnical Engineering in the Design of Structures

1. Plot the following oedometer test data as e against ln σ_v and calculate indices c_c and c_s

е	σν'
1,2	1,5
1,177	27,5
1,153	56
1,121	202,2
1,1	344,5
1,103	210,3
1,095	337,7
0,879	888,3
0,722	1605,9
0,8	100

2. Table 1 gives data from an oedometer test on a clay sample of initial height H_0 =18mm. The initial reading of the dial gauge was 0mm. The data refers to a load increment from 150 to 300kPa. Plot a graph of \sqrt{t} against settlement, and determine the values of c_v (m²/year) and D (kN/m²) for the soil.

time (min)	dial gauge reading (mm*10-2)
0	159
0.25	173
1	184
2.25	196
4	207
6.25	218
9	227
12.25	235
16	240
25	248
36	254
64	259
100	260
1440	260

3. Show that the average degree of consolidation U relates to settlement through the following expression, where $\delta(t)$ is the current value of settlement and $\delta(f)$ the final value.

$$\frac{\delta_{(t)}}{\delta_{(f)}} = \frac{1}{H} \int_{0}^{H} U_{z} dz = U$$