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Numerical Methods in the Analysis of Structures

The Finite Element method

Finite Element Method (FEM): Numerical solution of differential equations.
Since all problems in Continuum Mechanics (including geotechnical problems) 
are expressed via differential equations, they can be solved by FEM.

Applications of 
FEM

FEM initially developed for aeronautical applications, 
and later was extended to other mechanical and civil 
engineering problems.

The FEM is based on a discretization of the structure 
in “finite elements” which interact (via contacts). 
Each FE has a number of unknown variables (usually 
displacements) which are calculated in the solution.



The Finite Element Method in Tunnelling

3D analysis of tunnel excavation using the FEM



Analysis results: Total displacement contours

In relatively good ground In relatively poor ground

The Finite Element Method in Tunnelling

3D analysis of tunnel excavation using the FEM



The Finite Element Method

2D analysis of tunnel next to a deep excavation (software RS2). 
Discretisation with triangular finite elements

Finite elements in 2D and 3D problems.
Each FE has the nodal displacements as 
variables.



Application of the FEM in slope stability analysis

Limit equilibrium methods (e.g. method of 
slices): Many potential sliding surfaces are 
checked, and the surface providing 
minimum safety is the critical.
SF = overturning moment / stabilizing moment 

Analysis with the FEM: Ground properties 
are gradually reduced, and ground 
displacements are calculated. Abrupt 
increase of displacements indicates slope 
stability failure  corresponding ground 

properties are limiting. Comparison with 
actual ground properties provides the 
margin of safety (Safety Factor SF).
clim = c / SF,   tanφlim = tanφ / SF



The FEM is a generalization of the 

“matrix method” in structural analysis

Force equilibrium at node i :

  0 iFT

Force equilibrium at nodes 1, 2, 3 :
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The Finite Element Method (FEM)

Displacements

Spring forces

External forces

Matrix method in structural analysis:

u1
u2 u3



Force – Displacement relations:
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Replacing at force equilibrium equations:
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Matrix form of equations: K U = F Element stiffness matrices:
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Matrix method in structural analysis

1 2 3
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With known external forces (F), and known stiffness (K), displacements (U) 

cannot be computed, because the stiffness matrix (K) cannot be inverted (its 

determinant is zero):  U = K-1 F

The reason is that the homogeneous equation: K U = 0 has an infinite number 

of solutions (any vector U = {  a a a } ) i.e., any rigid body displacement.

Solution requires to remove rigid-body modes by applying suitable boundary 

conditions (i.e., fixing certain nodes).

FUK 

In the below system, a single boundary condition is required (e.g. u1 = 0)

Matrix method in structural analysis
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Apply boundary condition u1 = 0 :
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Solution, with inversion of the new 

stiffness matrix:

  



















































3

2

111

11

3

2

1 0

0

0

000

F

F

u

u

u

baa

aa

kkk

kkFKU
1

Matrix method in structural analysis



Compute reaction force at support (F1) :

1 1 2 2a a aF k u k u k u     F K U

Compute internal forces and strains:
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Matrix method in structural analysis
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The Finite Element Method

Application sequence of the FEM:

1. Discretization of the structure in finite elements

2. Determination of the stiffness matrix (Κi ) of each element

3. Form the global stiffness matrix (Κ) by inserting the (Κi ) at suitable locations

4. Form the external force vector (F)

5. Apply boundary conditions on (K), i.e., modify (K).

6. Invert (K) and compute nodal displacements U = K-1 F

7. Calculate the reaction forces at supports: F = K U

8. Calculate internal forces (e.g. stresses) and strains of the elements

The Finite Element Method has “finite elements” (instead of the structural elements), 
which are connected with neighbouring elements at nodes.
• Each node has variables (usually displacements) to be determined by the solution
• Each element has a stiffness matrix (which is calculated from the geometrical and 

material properties of the element



FEM in Geotechnical Applications

Governing equations:

Equivalent description of equilibrium via the principle of Virtual Work:

Tσn ˆ

Equilibrium equations in volume V

(σ = stress tensor, f = body force vector)

Stress boundary equations on surface S of V
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σ = actual (total) stress

σo = initial (geostatic) stress

Δσ = additional stress due to the applied actions

Body

forces

Surface

forces
(initial stresses)+ -

Additional 

stresses due 

to actions
=

V S

K U = F



The Finite Element Method

Problem discretization in Finite Elements

Model of a bridge (truss)

Model of ground with excavations



FE discretization in 2D ground problems



Structural (finite) elements

Degrees of freedom: 

Node displacements and 

rotations

Degrees of freedom: Node displacements

Types of Finite Elements



Triangular solid FE in 2D problems (e.g. plane strain)

Triangular elements can have more than 

3 nodes  higher order displacement 

distribution in each element  fewer 

elements are required

Node displacements (Ux , Uy)

are the unknown variables to be 

calculated

Types of Finite Elements



Quadrilateral solid FE in 2D problems 

(e.g. plane strain)

Node displacements (Ux , 

Uy) are the unknown 

variables to be calculated

Types of Finite Elements



Quadrilateral solid FE in 2D problems

Left : Plane strain Right : Plates (slabs) under bending

Types of Finite Elements



Quadrilateral solid FE

Left : Shells Right : 3D solids

Types of Finite Elements



Initial condition (Field Stress = Gravity)

p = γ ΔΗ = 0.027 x 3 = 0.081 MPa+18

+15



Finite Element discretization



Finite Element discretization



Finite Element solution of tunnel excavation and support – Analysis steps

Each excavation and support phase includes at least two steps:

(1) Deconfinement by applying a λ-coefficient (λ < 1) or modulus reduction
(Εο  Ε < Εο) in the area to be excavated – this models excavation up to 

the installation of the support

(2) Installation of the support and completion of the excavation (λ or E  0)

Note: If support is applied in several steps, No 2 is split in multiple sub-steps, 
each with some support and additional deconfinement.



Initial condition (stress field) of the model in the RS2 software
• Surface Tractions are computed using the surface forces and/or pressures

• Ground Body Forces (weight) are computed using the unit weight of the various 

ground layers.

• The initial (geostatic) stresses in the ground are computed using the “Field Stress” 

menu (options: “Constant” or “Gravity”) in the “Loading” tab 

If the “Ground surface elevation” is not equal to the actual ground surface of the 

model, the unit weight of the uppermost ground zone needs to be applied to the 

ground above the surface of the model (use  the “Advanced” option for this material)

• The horizontal stress ratio (Ko) is defined in the “Field Stress properties”



3D Finite Element analyses

• 2D Finite Element analyses cannot model the extrusion of the excavation face. Thus, 
an “assumption” is required  the deconfinement coefficient.

• 3D Finite Element analyses do not require such an assumption, since face extrusion is 
included in the model

NOTE: The deconfinement coefficient is calculated from 3D FE analyses (e.g. via the 
Chern curves) and is an input parameter in 2D analyses.



3D Finite Element model



3D Finite Element model



Use of Fiber Glass nails on 
the excavation face



Typical results of the analysis: Total displacements



Typical results of the analysis: Total displacements



Typical results of the analysis: Mises shear stress



Typical results of the analysis: Plastic shear strain


