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Evolution of wall convergence along the tunnel axis (x)

Radial displacement
reaches its final value
at about one and one
half tunnel diameters
behind the face

l Radial displacement reaches
about one third of its final value

at the tunnel face

mPooWPIVT Direction of
umosTpiEn tunnel advance

pa oiavorg

ADVAIEJCE |

Radial displacement starts about one half a
tunnel diameter ahead of the advancing face

NOTE: Floor rise is equal to crest settlement

« Convergence starts at distance 0.5-0.75 D ahead of the tunnel face
» 30% - 50% of the total convergence has occurred at the tunnel face
« Wall convergence ceases to increase beyond about 1.5 D behind the tunnel face



Evolution of wall convergence along the tunnel axis (x)

Tunnel advance and wall support in steps with length (p).

The front part of the tunnel, close to the tunnel face (length d,), remains unsupported
for construction purposes (access limitation of machinery). The maximum unsupported
length close to the tunnel faceisd, =d; + p

Initial state
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Evolution of wall
convergence along the
tunnel axis

Wall convergence at the
unnel face (x=0) is about
31% of the maximum
value

The maximum value

increases in weaker

ground, larger tunnel
depth and larger tunnel

size.
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Reference Analytical Solution Medium Behaviour
Pane and Guenot el =028+ 0.72[1 - (= D'de )2 I:lasto-Plastic
(1982) Umax 0.84 + .IIIIIH

Corbeta et al Uy 0.7 Elastic
i —(—15(x
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2
Panet u, _ 0.75 Elastic
(1993, 1995) Uy Q.15¥ 0750 = (0.25 + X/p ]
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{(1998) T [1+ Erp( 1.1 ) ]
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Wi Winex
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” = + Ap[1 — ((By + C/8))°), e 20
Unlu and Gercek uﬂ' ' Elastic
(20031 = = 0.22v + 0.19, fp=10
Frax
A, = —0.22v +0.19 8, = 0.73r + 0.B1
"qlr = —0.22v + 0.81 HllJ = 0.39r + 0.65
LU, _ L g I..Ilr T -
LT RS B Wimmr o5 JIIrH =0
Viachopoulos and | it —ax i TP
Diederichs Vengs 1-(1 - Hm‘::JE[ /Rl C5n), *fe 20 I:lasto-plastic
2004
I: J s _ 1 _oas¢™iy oy
= gemors(lp), /r=0
Umae 3 r, — plastic radius



Evolution of wall convergence along the tunnel axis (x) (Chern, 1998)
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Tunnel face: x=0

- At the tunnel face:

(onvergence Uy
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17 Chern (1998): Empirical relationship from the
_ X results of a set of 3D finite element analyses with a
=|1+exp| 0.91— :
wide range of ground parameters and tunnel
geometries (size and depth)




Evolution of wall convergence along the tunnel axis (x) (Chern, 1998)

Wall convergence u, (x) of an unsupported tunnel at distance ( x ) from
the tunnel face (located at x=0):

( ) _1.7 . ., (x) ~0.588 '
el :{1+exp(0.9lﬁﬂ or ==1.10In ( I ] -1

U, R R

o0

R = tunnel radius

Up., = the final (maximum) wall convergence at large distance from the
tunnel face (x = -0). Can be calculated with analytical methods (present
section), but more accurately with finite element analyses

up(0) = wall convergence at the tunnel face (location x = 0)
According to Chern: ug(0)= 0.308 uy,,




Stresses and deformations around a cylindrical tunnel - Assumptions

e 2D model of tunnel excavation: The initial geostatic pressure (p,) gradually
reduces to (p) and eventually becomes zero. As the stress reduces, the
tunnel wall converges (Ug) up to a maximum value Ug .., (When p=0).
Deconfinement = Reduction of pressure p

Deconfinement coefficient: A =1— v — p = (1 — i) P,

A=0=2p=p, , A=12p=10

Po

Wall convergence U, reaches a

, maximum value Ug .., and does not
..... B continue to increase more. Why ?
Because the stress change (p in 2D
models) that causes ground
deformation, only occurs close to the
tunnel face, i.e., along the length

/ UR / between A=0 and 1.
le\
7 % NOTE: Need a relation between p
— Pp= p=( A)p / ; //// (i.e., A) and location (x) to link 2D
| / with 3D models
77 / 777 / /

Relation Ug and p (or A): from 2D analysis (next) _
Relation U, and x (from Chern) Relation p (or A) and x




Stresses and deformations around a cylindrical tunnel - Assumptions

2D (plane) strain (no change along tunnel axis z )

Cylindrical unsupported tunnel, with radius R

Hydrostatic initial (geostatic) stress state (K, =1 > o0, = 0,, = p,)

Elastic — perfectly plastic ground, yielding with Mohr-Coulomb criterion (strength

parameters: ¢, ) g +¢&, volumetric strain
Constant dilatancy (d) in the plastic domain: tand =—+—% =

g =k, shear strain

Original curve Mohr-Coulomb criterion:

Elastic-perfectly ,
]-'lli'l.‘.i:lC iile:atlizat-it-u T=°¢C + O taIl ¢ :> Gl = 63 N 0 + 2C N

®
. 2
N Ek:1+s?n¢:tan2(45+?j: COS,¢
l-sing 2 l-sing

TepIRaAAouca Mohr-Coulomb

Strength 6, : o, for ;=0

o ek = 2c c.os¢
] —sin ¢

o =ko,+0,,




Stresses and deformations around a cylindrical tunnel - Assumptions
Definitions:

2
Overstress factor: [NV = P (for K, = 1)
GCWZ
2c cos
Ground strength: o, = 2ek = ; ?
—sin @
Rockmass strength (empirical correlation with GSI): K =1
o, GS1
o, = exp| ——
50 25.5
0, = strength of intact rock Qan = .02 exp| ——
Py 1o, 25.5
. _ %r 0
Dilatancy (3): tano = |
gr B 89
K = 1+tano
1—-tan o
0=0 2 K=1




Stresses and deformations around a cylindrical tunnel - Assumptions
Plastic domain

Ground deformations in plastic domain (r <r):
Dilatancy is constant in plastic domain (parameter K):

E + |
tans =22"%  where: zl+:ang /'
o — 8 —tan
r o / /

Strain definitions (u = radial displacement): Elastic domarm
du U
8,/, —_ — 86 —_ — 82 p— O
dr r

The above formulae give (inside the plastic domain (i.e., for r <r):

du K K K r *
+—u=0=u=cr =>Cc=uU,r, = u=u,| = For R<r<r,

dr r r
(atr=r, 2 u=u,)

u, is the radial displacement at r = r, (calculated from the elastic zone)

K

v
Atthe tunnelwall (r=R): u; =u —a

R



Stresses and deformations around a cylindrical tunnel — Elastic domain (r > r,)
Stress-strain relationships in plane strain (cylindrical coordinates):

E Vv
— A= K =—
r (+v)i-v) ° 1-v
eez—A {6,—K 6.} G =6 —p  6,=0,—p,

Solving for the stress increments:
6.=D{e, +Ke,f &6,=Dlg,+Ke,} D=

& ds,  &,-5,

Equilibrium equation (along axis r): 2 =0

dr

Strain definitions (u = radial displacement):

du u 1?
gr:_ g = — 8Z: d_?+lﬂ__ﬂ:0
dr v rdr
Boundary conditions: c¢; = 0 (u cannot increase with r) ;
If plastic zone exists: Atr=r, > u=u,>c,=u,r, > “=Y, [f (in elastic zone)

2
If plastic zone does not exist: At r=R > o,=p 2> ¢, =41 ng > U= m(f&jﬁ



Deformations around a cylindrical tunnel

1. Linearly elastic ground, K, =1 g
2

The differential equation of equilibrium gives: U = —
r

Constant c, is determined from the stress boundary condition:
o,(r=R)=p=p,(1-2)

Thus, the radial displacement at distance (r) is:

j2 R B P p, |[ R NOTE: Strains and stresses
u=A R ( ZGJ( B j » u= (1 N pj R [ 2Gj(7j calculated by differentiation

At the tunnel wall (»=R) : U, = y) R( P, j \ P
2G

P
and for complete deconfinement ( A=1, r=R) : Uy, =R( j

2G
Hr _
Up, Convergence-confinement curve in
linearly elastic ground
G = ground shear modulus oo 2

2(1+v)

R = tunnel radius , Do = geostatic stress
A = A4 (x) = deconfinement coefficient 0<A <1



Stresses and deformations around a cylindrical tunnel — Only elasticity

Linearly elastic ground
K, =1

O .—R

ZHPAITA

-
-

-7 KukAog Mohr

/ OTO TOiXWHA

At tunnel wall (r=R):
c,=p=(1-4)p,
o,=2p,—p=(1+4)p,

and for A=1:
c,=0, 65=2p,




Stresses and deformations around a cylindrical tunnel — Only elasticity

Linearly elastic ground — K, # 1 (Kirsch solution)

Circular tunnel (radius r,) at depth (H), unit weight of ground (y), horizontal stress coefficient K
(0, = K 0,). Geostatic stresses: 0, = yH, o, = K yH (do not vary with depth).

Angle (8) is measured from tunnel center, with respect to the vertical (6=0)
Tunnel is unsupported and A =1 (o, =0atr =r,)

Kirsch solution (for p=0):

Circumferential stress at springline (6=90°): ggg = (3-K)yH - Initial value: ogg = YH
For K=0.5 -> 0'99 = 2.5 YH
K=1 ->0g= 2YH

Circumferential stress at crest and invert (6=0 & 180°): gy = (3K-1)yH - Initial value: gz = KyH
For K= 0.5 -> 0gg = 0.5 yH (initial value 0.5 yH)
K=1 ->0g =2VH (initial value yH)



Stresses and deformations around a cylindrical tunnel — Only elasticity
Linearly elastic ground — K, # 1 (Kirsch solution)




Stresses and deformations around a cylindrical tunnel

2. Elastic — perfectly plastic ground, K, =1

The limit of the plastic

zone (r,) depends
on:

*The tunnel radius (R)

*the ground strength
parameters (c,9)

0O
TUNNEL ~/

r, M ° the initial geostatic
stress (p,)

Plastic Elastic | « the deconfinement
domain domain .. )
coefficient (A), i.e., the

nd internal pressure (p)




Convergence — confinement curve in elasto-plastic ground
Influence of the o-¢ curve

Note: Curve III does
not turn upwards

The ground pressure (p) on the tunnel lining decreases with increasing tunnel wall convergence



Convergence — confinement curve in elasto-plastic ground
Influence of the o-€ curve

If ground continuity is preserved, the convergence-confinement curve does NOT turn
upward (collapse) even in strongly strain softening ground. If, however, ground
continuity is lost (e.g. rock block contact is lost) due to large ground deformations, then
the convergence-confinement curve may turn upwards (collapse).

This means that ground pressure on the tunnel lining will increase at large ground
deformations.




Stresses around a cylindrical tunnel

2. Elastic — perfectly plastic ground, K, =1

Calculation of the minimum internal pressure p = p_.. to maintain
elasticity in the ground:

Stress distribution in the elastic domain:

2 2
Gr:po{l_ﬂ“(fj :| 09:p0|:1+1[§j} ﬂ,:l_%

Gl :GH :2p0 _pcr
_ _ _ ) _ 03 — Jr — pcr
Marginal fulfillment of the M-C failure criterion at the tunnel wall:

_ p, [ 2 | N,-1
o =ko,+0,, ‘ _(ij( - ]

P, s

Stresses (elastic) at the tunnel wall (r=R):

Critical deconfinement coefficient: A =1- Per _q _( 2 j N, -1
D, 1+ k N

CONCLUSION: There is no plastic zone around the tunnel, If: Acr >1(i.e., N, 1) or
if: A;; <1and A<A,
Plastic zone develops around the tunnel if: A, <1 (i.e., Ng>1)and A> A

ELASTIC PLASTIC
Oo— Ll 0

A=0 - A=1




Stresses around a cylindrical tunnel — elastoplastic ground

Critical deconfinement coefficient — ground remains elastic but M-C failure
criterion is marginally fulfilled at the tunnel wall (i.e., r,=R):

2 N 1 NS — 2p0 /Gcm
A,=1-f= = 3 —1- : Y.
D, 1+ k N, k = tan 45+5
o, (GSIJ
Gcm = N A eXp AN
52.63 20
Values of A, (plastic zone around the tunnel develops if A>A_,)
¢
(deg) Ng = Ng=2.5 Ng =25 Ne=10 | Ng=15 | Ng=20
20 1.0 0.61 0.47 0.41 0.41 0.39
25 1.0 0.65 0.54 0.48 0.48 0.46
30 1.0 0.70 0.60 0.55 0.55 0.53
35 1.0 0.74 0.66 0.62 0.62 0.60
40 1.0 0.79 0.71 0.68 0.68 0.67

ELASTIC

O e e —)

A=0

PLASTIC




Stresses around a cylindrical tunnel — elastoplastic ground

Example:
y=22kN/m3, H=100m,K,=0.60 = p,=0.5(1+K,)yH =1.76 MPa
GSI=25, 0,=12MPa, E;=13.5GPa = o.,,=0.64 MPa, E =821 MPa

v=030 = G=316 MPa
©=320 = k=23.2546

—AY — | 1 —-D/2 )
1+tan s ] 4+ e((60+13D—GS1)/ }_,
k=tan®| 45+ 2 K =
2 l—tano D = damage factor (=0)
Calculations:
2 ) N -1
N ==fe_s55 ) - s~ 120615
o, 1+k )\ N,
Result: For A>0.615, i.e., for p/p, < 0.385 plastic zone develops around the tunnel

P=Po p=0
ELASTIC PLASTIC

O e ——
A=0 - A=1




CASE 1: Ground remains elastic (no plastic zone)

» IfNg< 1> forall A P :1[ 2 J(NSIJ
« IfFN,>1>for A< A, l+k )\ N,

Stresses around the tunnel:

2
o.=p, I—E(Rj }
r
2
c,=p, 1+/1(£j :l
r

Displacement around the tunnel:

=y R( P j(Rj v WIAY:

- KukAog Mohr
/ OTO ToiXwHa

At the tunnel wall (¥=R):

U, =A R(f&j




CASE 2: Plastic zone develops in the ground
IfN,>1and A> A,

ELASTIC PLASTIC
O —————)

1

e g :{(kilj{z+zz{f§_("{)&)}“

And in full deconfinement (A=1): L= = —



CASE 2: Plastic zone develops in the ground
IfN,>1and A> A,

Proof of formulae for ¢, and o, :

EmiAuon ormv mAaorikn {wvn, dnAadn yia R<r < rp

do, o0,—-0,
E¢icwarn) icoppoTriag : ar + - =0 o ELASTIC . PLASTIC

et
Kpimpio agtoyiac Mohr-Coulomb : T4 = fm',. +a A=0 ?\c

om r

do

1 1
ATIaAEIR ToU O Bivel: —* -—(k-1)o, ——0,, =0
r ¥

I

EmiAuon Tn¢ avwTépw BIAQOPIKNC £CICWIONG :

(a) MepitrTwon : k1= ¢@=#0,

Me ouvopiakr owenkn: o, (r=R)=p=(1-41)p, (B) Nepimiwon: k=1=¢=0;

Me ouvopiakr ouverikn: o, (r=R)=p=(1-2)p,

=(1-2 1 i]
o-i' ( /L)po_l_o-mf ll(RJ

o,=ko,+0o

L=




CASE 2: Plastic zone develops in the ground
IfN,>1and A> A,

Proof of formulae for I, /R

Eiowaon Twv TIHWV TWV Or KAl 0g OTO OPIO HETAEU EATTTIKAC Kl TTAACTIKIC CWVNC (I =

I'x) OIVEI TIC TIMEC TWV C2 KAl I

(a) Nepimrwon k#1=@ =0

OTTOTE ©

(B) Nepitrrwon: k=1= ¢ =0.




Stresses around a cylindrical tunnel — elastoplastic ground

P

S 4 Pl TuNNEL — —
72
“ 7 777
N.=2p /o, 1< Ng<2

2< Ns <5

//////ZE
A

TUNNEL

/////////




Stresses around a cylindrical tunnel — elastoplastic ground

Classification of tunnel excavation problems with N, value

E | Strain greater than 10%
g 14 Extreme sgueezing problems
. 13}
5 1ol =2p /
5 1 N, p,lo..
E 11
T 10
©
g o} Fac'e'
S g |instability
2 7 p\ Strain between 5 and 10%
§ " Very severe squeezing problems
L 5
EJ ) Strain between 2.5 and 5%
- 4 Face A Severe squeezing problems
" 3} instab Iitv( Strain between 1 and 2.5%
w o, Minor squeezing problems gy .0 |ass than 1%
-% i B Few support problems
= A
w U 1 1 1 1 ]
0.1 0.2 0.3 0.4 0.5 0.6
Ns = 20 7.65 3.3

cm

(4] ;&:}Q rock mass

trength / ?1 situ strersgl

Strain e %

Geotechnical issues

Less than 1

Ns < 4.5

Few stability problems and very simple
tunnel support design methods can be
used. Tunnel support recommendations
based upon rock mass classifications
provide an adequate basis for design.

1t025

Ns =4.5to 8

Convergence confinement methods are
used to predict the formation of a
‘plastic’ zone in the rock mass
surrounding a tunnel and of the
interaction between the progressive
development of this zone and different
types of support.

25t05

Ns = 8 to 10

Two-dimensional finite element analysis,
incorporating support elements and
excavation sequence, are normally used
for this type of problem. Face stability is
generally not a major problem.

51010

Ns = 10 to 16

The design of the tunnel is dominated by
face stability issues and, while two-
dimensional finite analyses are generally
carried out, some estimates of the
effects of forepoling and face
reinforcement are required.

More than 10

Ns > 16

Hoek E and Marinos P 2000 Predicting Tunnel Squeezing Problems in Weak Heterogeneous

Rock Masses. Tunnels and Tunnelling International 32(11) 45-51

Severe face instability as well as
squeezing of the tunnel make this an
extremely difficult three-dimensional
problem for which no effective design
methods are currently available. Most
solutions are based on experience.



Stresses around a cylindrical tunnel — elastoplastic ground

Radius of the plastic zone 7, (unsupported tunnel)

Po = geostatic stress

A = deconfinement coefficient
O, = ground strength

N, = overstress factor

[79)
=)
[72]
®|3
=10
Q| @©
CL
O—
N2
Ll c
w2
ja
Q.

6.7 5 4 33 29 25 22

2*(in situ stress) N = 2p |G
rock mass strength S O ¢Cm

Graph is valid for common values of
the relevant parameters




Stresses around a cylindrical tunnel — elastoplastic ground

Radius of the plastic zone r, (supported tunnel, p; = support pressure)

Po = geostatic stress
A = deconfinement coefficient

14
o O.m = ground strength
2 N = overstress factor
Tl w
8|2

o
g8 B 1-2
ﬁ £ P = po( i )
7|3
©
= N _ 2P

4 e
o)

Cin

20 10 67 5 4 33 29 25 22 20 Graph is valid for common values of

2*(in situ stress) — the relevant parameters
Znswswess)  N=2pl/o,.

rock mass strength



CASE 2: Plastic zone develops in the ground
IfN,>1and A> A,

ELASTIC PLASTIC
O e e @ e O

'h: 0 }l.(_ r .h: 1

Ground displacement :

(a) Displacement (u,) at the limit of the plastic zone (r=r,) :
Calculated for a tunnel with radius R=r, and critical deconfinement (A), in which
case ground displacements are elastic forr>r :

u, _, (L)L /16,,=1—( 2 j N, -1
R “\ R )\ 2G 1+k ) N,

v
(b) Displacement (u) in the elastic zone (r > rp) C oY= MP[P]
Calculated by the elastic formula: r

u =— with boundary condition: u=u, at r=r,

r 7 - K
(c) Displacement (u) in the plastic zone (r <r): % - g(:j

K

u_(r

and at the tunnel wall (r = R) : Up _Zp| Ip
R R\ R



CASE 2: Plastic zone develops in the ground
IfNg>1and A> A,

(d) Displacement (ug.) at tunnel wall at full deconfinement (A=1):

U, :lcr(poj e | lcrzl_(lfkj[NJi’zlj 1
i : (Rj N _{(klﬂj[z”v(k 1)]}“

. uRoo p
ie.,: = 5 ,P,0
R f(2G 9 j

Displacement (ug) at tunnel wall, for any deconfinement A > A,):

"R = N : - =/ N, 4,5)
“ro 1142 (k-1)1-4)

\ J




CASE 2: Plastic zone develops in the ground

fN,>1and A> A,

Proof of formulae for u, :

B.3 YmoAoyiouog rwv UETaKiviioswy otnv mAaotikn {wvn (r<ry) :

IF:F .

OpION6E BIAGTOAIKOTNTAC OTNY TIAQCTIKA Jivn © tan o =

. l+tano
omore ;. K=—"—
I-tano

du
£ =—

dr

1

. . du 1= —
Omore: &K+¢g, =0 = —K T = UTQ K

P F 7

Suvoplaki ouverkn: F=1, = U=U, = u=1u,

"p l

AMAG TO Up €XE1 UTTOAOYICOET ATTO TNV EAQTTIKN) JWVIN. ZUVETTWC :

(a) Nepirrwon k=1 =@ =0

OTToU

P\ 2

2 i . '-.I i k_ _ % J.I_‘h;r + 2
U, =r, =2 ‘ l+—— | = wu =r L'L
o2 k1 (R-DN, oA 26) (k+1)N,




CASE 2: Plastic zone develops in the ground
IfN,>1and A> A,

Proof of formulae for u, :

Mah=1:

1
oo _ [(ﬁ — I)NS +2 T'l Upe Ty p, \(k=1)N, +2
R e +1 TR TR 26 (k+1)N,

MpoadiopIGHOg TNEG TEMIKNS (Yo A=1) GUYKAIONC TOU TOIXWHATOC TNG
ORPAYYAS (g, )

r

K K+k
g, Uy [Ty e, 1 ( p, [(A ~1)N,_ + 2} 1
R R{R) ~ R NI\2G k+1

£
Mapartrpnon :
Emeidr otnv eAaaTIKi TTERITITWAON N TEAIKN (yia A=1) oUykAIOT Tou
HRI_S ‘,r;n
TOIXWHATOC TNG ONpayyag (u,, ) eivai : R = e TIPOKUTITEI OTI :
\ 2T

K+k

K+k K<k
e, 1 [(k=1)N,+2 ]k g, _ 1 | Tpe
U, . N, k+1 T rre N, | R

Reoe




CASE 2: Plastic zone develops in the ground

fN,>1and A> A,

Proof of formulae for u, : KHALLELY k=1=¢=0

L :

2G

omou: U, = ,J[

(v, - 1)}

| A
kai: 7, =R EKP[; (VA - 1)} Kol Ty = R ‘f\P[

MpocdlopIcUOg TNES TEMIKNC (VIa A=1) gUYKAIGNC TOU TOIXWHATOC TN
onpayyag (uy, ) :

.
Up, _upr_ F
R R\ R ) ~

faJexpE-m —n(mlﬂ

.
1 N

Rre.e




Displacement of tunnel wall (uy)

Unsupported tunnel Supported tunnel
£ Wall convergence Di = support pressure
0.8 ”3} increases significantly 08 -

e J°%. for N.>5 o - p/p
— S ~ Ky, 1 0

o y o /S
5 06 5 06 - 3/

S
5| - 5 \\ 527;/
EE 047 EEM“ \ 0.10
3z 3 \ -
2|5 HER 4
3l 02+ E’ 02 - \\ '
_ 1l
0.8
—109
0.0 00 —
10 67 5 4 33 29 25 22 20 ' 20 10 67 5 4 33 29 25 22 20
2*(in situ stress) = 2%(in situ st —
NS 2polocm (in situ stress) Ns 2polacm

rock mass strength rock mass strength

» Data points for common values of the relevant parameters

 Significant reduction of wall displacement with increasing support pressure




Stresses at the tunnel wall (r=R)

1. Elastic ground (A <A_)): O, _ (1-1) %o _ (1+ A)
P, P,
2. Elasto-plastic ground (A > A,): =(1-1) 9o _ [ s j+ 2
po p, p,) N,
Proof:
Equilibrium equation: d(Tr + ©, "% =)
dr r
Mohr-Coulomb criterion: G, = ko .to,..
Combining the above: do, 1 ( ke — 1) o — l oc =0
7/ o
Boundary condition: r = R) —

Solution for #0 = O, { i lﬂ(%j _(kaimlj
==

Solution for ¢ =0 =



Combining the Chern ug-x curve (1), with the convergence-confinement ug-p

curve (2), one can develop the Chern-Panet curves A-x (3).
The Chern-Panet curves are useful in 3D numerical analyses (to compute A from x)

TUNNEL FACE (x=0)

-2 -1 x/R=-0.4 0 1 2 x/R
% ! @ % i -
04l s =
~~ N, =2 3
N, =3
=4
- pO pO
N = c, c\/N’
C COS T 4
0.7 c.= - 4
2=0.69 | * 1-sing
+ 08 c
109 ' 2,=0,

+1.0
Y A = Deconfinement '=1-p/p,




Chern-Panet curves

1. Displacement ug at tunnel wall as a function of deconfinement (A):

For deconfinement A > A, (plasticity): For deconfinement A < A,

K4l (elasticity):
. (k_lj
A
us(2) =1y : . =f(;N,,¢4.,5) a ):/1
Ugeo L+ (k—1)1-2) U

2. Displacement ug at tunnel wall along the tunnel axis (x) (Chern, 1998) :

( ) -1.7
Hrlt ={1+exp(0.911ﬂ
Up, R

Combination of (1), (2) gives the Chern-Panet curves, in the form:
X
/sz(E; NS,¢,§j

These curves calculate the deconfinement coefficient (A) at any location (x) along the
tunnel axis. They are used in numerical analyses for the calculation of (A) at the
location (x) of support application




Example:
Tunnel radius D = 6m - tunnel depth H=100m

v =22 kN/m3,K,=0.60 = p,=0.5(1+K )y H =1.76 MPa
GS| =25, 0, =12MPa, E =13.5GPa = 0. =0.64 MPa, E =821MPa

E
v=0.30 = G =316 MPa G:2(1+ ) o :iexp(@j
v ' 52.63 20
©=320 = k=3.2546 k:tanz(45+£j
o0=7° = K=1.28 2 L = £ (0'02 +¢)
) I+ tan S \ | + e((60+15D—GSI)y l“_..
1-tan & D = damage factor (=0)
Calculations:
7 2 N —1
N,=2Peoss 4 =1- ol L
o 1+ )\ N,

1

— K+1
rp_oo — I k_l_ uﬂ — ] (poj rp_oo
- {(kJrJ[erN(k 1)]} =1.72 . o 50 (R)
u

=~ =0.00588 = u,, =600x0.00588=3.53 cm




Ground Reaction and Longitudinal Displacement (Chern) curves
Convergence - Confinement (or Ground Reaction) curve:
GRC = Ground Reaction Curve: U/(X) / U ., versus p;/ p,
LDP = Longitudinal Displacement Profile or Chern curve: U/(x) / U, .« Vversus x /R

Combination of the GRC and LDP curves provides the relation: p,/ p, versus x /R
which is required in 2D numerical analyses.

A

il I L.

<0
x-u curve (Chern) 3

Tunnel face

Pg = support pressure




EXCEL spreadsheet for the calculation of the GRC and LDP curves

2p 2 ¢j
: =2 k=t 45+ =
Input data: R, p,,6.,,¢,0,G N, = an ( 5
Calculate N, , k , K and A, g oittano 4 :1_(LJLNF1)
l-tano " I+k ) N,
Col 1: p/p, between 1 ... 0 b
Col 2: A (between O ... 1) A=1- 7

Col 3: Plastic region ? (Y/N) —> If A>A_thenY else N

Col4:1,/R ——> If A <A (no plastic region) then r /R = 1 else:

fo=0: % =exp|:%(i N, —1)}

|

. % _{(kilj{2+$$(ﬁ)zll)ﬁ)ﬂﬁ

Col 5:u_/R IFL <) thenu —n/a else: 2 =4 |2 |[ 2o
ULV o thenu, =n/a else: 2 el e 20




EXCEL spreadsheet for the calculation of the convergence — confinement curve
Col 6: ug /R —> If A <A_, (no plastic region): Ry (po j

ZR
R 2G

K
ase:  tr_lr (rp)
R R{R
Calculate ug /R : equal to uz/R for A=1
Col 7:ug /ug,, —> (uz /R)/ (ug,/R)

~0.588
Col8:x/R —> %21.10 In [M—Rj —1

Z/lRoo

Plot curves: (ug /R) vs (p/p,) , (r,/R) vs (p/p,), (x/R)vs (p/p,) or (uy /R)
N

Ground Reaction (GRC) Longitudinal Diplacement (LDP)

I Note: Curve III does
not turn upwards




EXCEL spreadsheet for the calculation of the convergence — confinement curve

Col 9: o, /p,(at =R): > Ir (1-4)

P,
Col 10: o4 /p,(atr=R): —> If A <A, then: %o _ =1+ 1)
P,
else: —gzk(ar}ti
p, p,) N

Plot curves: (o, /p, & o, /p,) vs (p/p,)

\ /
;?uﬂj_ N Plastic Elastic
i domain

domain

deco \A;%-L\A—e_wwli



Examples of Panet — Chern curves :
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Examples of Panet — Chern curves :

For ¢p=32° ,
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Examples of radius of plastic zone:

For ¢=32°, 0=/°

— Ns<=1
— Ns=2.5
— Ns=5
— Ns=7.5
Ns=10
— Ns=15
— Ns=20

4 x/R 5




For ¢p=32°

R Y XX
TPOCWPIVI

UTIOTTAPIEN
popd didvoiEng —l->
1 XO




Example: Convergence — confinement curve (ug) - (A)

P, . MR _ (1o N )
,2G,NS,(0,5 f( ’ Sagpa )

uR/R

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 : - - 0.8
0 T T T T T T T T T T T T T ! ' T T T

0.1 -

— clastic — gleastic

0.2 1 —— glastoplastic
0.3 -

0.4 -
0.5 -
0.6 1
0.7 -
0.8 -
0.9 -

1

— elastoplastic

A - deconfinement ratio
deconfinement ratio




Example: Radius of the plastic zone
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Example: Radius of plastic zone




Example: Panet - Chern curve

~1.10 1 ug(x)) 1 A= i;N, , 0
On( j |:> fR P

Up
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Example: wall displacement curve (A)

4 () _ {1 + exp(ogﬂﬂm .

Up R

o0

- Independentof N, ¢ , 0







