

NATIONAL TECHNICAL UNIVERSITY OF ATHENS School of Civil Engineering – Geotechnical Department

Computational Methods in the Analysis of Underground **Structures**

Spring Term 2023 – 24

Lecture Series in Postgraduate Programs:

- 1. Analysis and Design of Structures (DSAK)
- 2. Design and Construction of Underground Structures (SKYE)

Instructor: Michael Kavvadas, Emer. Professor NTUA

LECTURE 2: Stresses and deformations around a cylindrical tunnel (2D elasto-plastic analysis)

06.03.2024

Evolution of wall convergence along the tunnel axis (x)

NOTE: Floor rise is equal to crest settlement

- Convergence starts at distance 0.5-0.75 D ahead of the tunnel face
- 30% 50% of the total convergence has occurred at the tunnel face
- Wall convergence ceases to increase beyond about 1.5 D behind the tunnel face

Evolution of wall convergence along the tunnel axis (x)

Tunnel advance and wall support in steps with length (p).

The front part of the tunnel, close to the tunnel face (length d_1), remains unsupported for construction purposes (access limitation of machinery). The maximum unsupported length close to the tunnel face is $d_2 = d_1 + p$

Evolution of wall convergence along the tunnel axis

Wall convergence at the tunnel face (x=0) is about 31% of the maximum value

The maximum value increases in weaker ground, larger tunnel depth and larger tunnel size.

 P_{o}

Evolution of wall convergence along the tunnel axis (x)

Empirical relationships btained from the esults of 3D finite lement analyses with wide range of round parameters nd tunnel geometries size and depth)

Evolution of wall convergence along the tunnel axis (x) (Chern, 1998)

$$
\frac{u_R(x)}{u_{R\infty}} = \left[1 + exp\left(0.91\frac{x}{R}\right)\right]^{-1.7}
$$

Chern (1998): Empirical relationship from the results of a set of 3D finite element analyses with a wide range of ground parameters and tunnel geometries (size and depth)

Evolution of wall convergence along the tunnel axis (x) (Chern, 1998)

Wall convergence $u_R(x)$ of an unsupported tunnel at distance (x) from the tunnel face (located at $x = 0$):

$$
\frac{u_R(x)}{u_{R\infty}} = \left[1 + \exp\left(0.91\frac{x}{R}\right)\right]^{-1.7} \quad \text{or} \quad \frac{x}{R} = 1.10 \quad \ln\left[\frac{u_R(x)}{u_{R\infty}}\right]^{-0.588} - 1
$$

 L

R = tunnel radius

 $u_{R_{\infty}}$ = the final (maximum) wall convergence at large distance from the tunnel face $(x = -\infty)$. Can be calculated with analytical methods (present section), but more accurately with finite element analyses

 $u_R(o)$ = wall convergence at the tunnel face (location x = 0) According to Chern: $u_R(o)$ = 0.308 $u_{R^{\infty}}$

 \bullet 2D model of tunnel excavation: The initial geostatic pressure (p_o) gradually reduces to (*p*) and eventually becomes zero. As the stress reduces, the tunnel wall converges (U_R) up to a maximum value U_{R,max} (when p=0). a cylindrical tunnel - Assumptions
nitial geostatic pressure (p_o) gradually
nes zero. As the stress reduces, the
ximum value $U_{R,max}$ (when p=0).
 $\lambda = 1 - \frac{p}{p_o} \implies p = (1 - \lambda) p_o$
i ()
Wall convergence U_R reaches a
maximum Stresses and deformations around a cylindrical tunnel - Assumptions Deconfinement = Reduction of pressure p

Deconfinement coefficient: $\lambda =$

$$
-\frac{p}{p_o} \Rightarrow p = (1 - \lambda) p_o
$$

lindrical tunnel - Assumptions
geostatic pressure (p_o) gradually
zero. As the stress reduces, the
im value $U_{R,max}$ (when p=0).
 $1 - \frac{p}{p_o} \Rightarrow p = (1 - \lambda) p_o$
Wall convergence U_R reaches a
maximum value $U_{R,max}$ and does not
c p - Assumptions
 p p p gradually

stress reduces, the
 $p = (1 - \lambda) p_o$
 $p = (1 - \lambda) p_o$

nce U_R reaches a
 p = (θ_R reaches a
 p e D_{R,max} and does not

crease more. Why ?

tress change (*p* in 2D

causes Wall convergence U_R reaches a maximum value $U_{R,max}$ and does not continue to increase more. Why ? Because the stress change (p in 2D models) that causes ground deformation, only occurs close to the tunnel face, i.e., along the length between $\lambda=0$ and 1.

NOTE: Need a relation between p (i.e., λ) and location (x) to link 2D with 3D models

Relation U_R and p (or λ): from 2D analysis (next) Relation U_R and x (from Chern)

Relation p (or λ) and x

Stresses and deformations around a cylindrical tunnel - Assumptions

- 2D (plane) strain (no change along tunnel axis z)
- Cylindrical unsupported tunnel, with radius R
- Hydrostatic initial (geostatic) stress state (K_o = 1 $\rightarrow \sigma_{\nu 0} = \sigma_{\hbar 0} = \rho_{\rho}$)
- Elastic perfectly plastic ground, yielding with Mohr-Coulomb criterion (strength parameters: c, φ) *volumetric strain* $\delta \equiv \frac{\varepsilon_r + \varepsilon_\theta}{ } = \frac{$ $+\,\varepsilon_{\circ}\quad volumetr$
- Constant dilatancy (δ) in the plastic domain: $tan \delta = \frac{r_1 + r_2}{r_1}$

$$
\equiv \frac{1}{\varepsilon_r - \varepsilon_\theta} = \frac{1}{\varepsilon_r}
$$

Stresses and deformations around a cylindrical tunnel - Assumptions

Definitions:

\nOverstress factor:
$$
N_s = \frac{2p_o}{\sigma_{cm}}
$$
 (for $K_o = 1$)

\nGround strength: $\sigma_{cm} = 2c\sqrt{k} = \frac{2c\cos\phi}{1-\sin\phi}$ $\overrightarrow{K_o p_o}$

Rockmass strength (empirical correlation with GSI):

 $\sum_{i=1}^n\frac{1}{i}$ $\left| \frac{\partial \omega}{\partial x_i} \right|$ (25.5) $=\frac{\sigma_{ci}}{\sqrt{S}}$ exp $\left(\frac{GSI}{S}\right)$ 25.5 $\exp\left(-\frac{1}{2\pi\epsilon_0}\right)$ 50 ± 25.5) G_{G} GST \sim *cm* $\sigma_{\rm g}$ (g) \sim $\sigma_{\text{m}} = \frac{v}{\sqrt{2}} \exp(-\frac{1}{2}$

Stresses and deformations around a cylindrical tunnel - Assumptions

Ground deformations in plastic domain ($r < r_p$): Dilatancy is constant in plastic domain (parameter K):

$$
\tan \delta = \frac{\varepsilon_r + \varepsilon_\theta}{\varepsilon_r - \varepsilon_\theta} \quad \text{where:} \quad K = \frac{1 + \tan \delta}{1 - \tan \delta} \quad \text{where}
$$

Strain definitions (u = radial displacement):

$$
\varepsilon_r = \frac{du}{dr} \qquad \varepsilon_0 = \frac{u}{r} \qquad \varepsilon_z = 0
$$

The above formulae give (inside the plastic domain (i.e., for $r < r_{\rm p}$):

$$
\frac{du}{dr} + \frac{K}{r}u = 0 \Rightarrow u = cr^{-K} \Rightarrow c = u_p r_p^K \Rightarrow u = u_p \left(\frac{r_p}{r}\right)^K \text{ For } R < r < r_p
$$
\n
$$
(\text{at } r = r_p \Rightarrow u = u_p)
$$

 ${\sf u}_{\sf p}$ is the radial displacement at r = ${\sf r}_{\sf p}^{}$ (calculated from the elastic zone)

At the tunnel wall (r = R) : $u_p = u_p \left(\frac{r_p}{r}\right)^K$ *p* $R \sim p \left(R\right)$ *r* $u_R = u_p \left| \frac{P}{D} \right|$ \int and \int \bigwedge and \bigwedge $\begin{array}{|c|c|c|}\n\hline\nD\n\end{array}$ (R) $\left(\frac{r_n}{r_n}\right)^K$ an di Kabupatén Ba

Stress-strain relationships in plane strain (cylindrical coordinates): bases and deformations around a cylindrical tunnel – Elastic domain (r > r_p)
 K_c = $\frac{1}{\Lambda} \left\{ \dot{c} \begin{pmatrix} \dot{c} \\ \dot{c} \end{pmatrix} \right\}$ $\Lambda = \frac{E}{(1+v)(1-v)}$ $K_o = \frac{v}{1-v}$
 $\epsilon_e = \frac{1}{\Lambda} \left\{ \dot{\sigma}_e - K_o \dot{\sigma}_r \right\}$ $\dot{\sigma}_r = \sigma_r - p_o$ Stresses and deformations around a cylindrical tunnel – Elastic domain (r > $\sf r_{\sf p}$)

$$
\varepsilon_r = \frac{1}{\Lambda} \left\{ \dot{\mathbf{C}} \cdot \mathbf{K}_0 \right\} \qquad \Lambda \equiv \frac{E}{(1 + v)(1 - v)} \qquad K_o \equiv \frac{v}{1 - v}
$$
\n
$$
\varepsilon_{\theta} = \frac{1}{\Lambda} \left\{ \dot{\mathbf{C}}_{\theta} - K_o \dot{\mathbf{C}}_{r} \right\} \qquad \dot{\mathbf{C}}_{r} = \mathbf{C}_{r} - p_o \qquad \dot{\mathbf{C}}_{\theta} = \mathbf{C}_{\theta} - p_o
$$

 \equiv

 $(1-\nu)$

 $\frac{E(1-\nu)}{(1+\nu)(1-2\nu)}$

 $D \equiv \frac{E(1-\nu)}{2}$

 $d\dot{\sigma}_r$, $\dot{\sigma}_r$ – $\dot{\sigma}_\theta$ – α

dr ^r

 $1 + v(1 - 2v)$

 $+\frac{\sigma_r - \sigma_{\theta}}{1} = 0$

Solving for the stress increments:

$$
\dot{\sigma}_r = D\{\varepsilon_r + K_o \varepsilon_\theta\} \qquad \dot{\sigma}_\theta = D\{\varepsilon_\theta + K_o \varepsilon_r\} \qquad D = \frac{E(1-\varepsilon)}{(1+\nu)(1-\varepsilon)}
$$

Equilibrium equation (along axis r):

Strain definitions (u = radial displacement):

$$
\varepsilon_r = \frac{du}{dr} \qquad \varepsilon_\theta = \frac{u}{r} \qquad \varepsilon_z = 0 \qquad \Longrightarrow \qquad \frac{d^2u}{dr^2} + \frac{1}{r}\frac{du}{dr} - \frac{u}{r^2} = 0 \quad \Longrightarrow \qquad u = c_1r + \frac{c_2}{r}
$$

Boundary conditions: $c_1 = 0$ (u cannot increase with r) If plastic zone exists: At $r = r_p \rightarrow u = u_p \rightarrow c_2 = u_p r_p \rightarrow$ If plastic zone does not exist: At r=R \rightarrow σ_{r} =p \rightarrow *p* | *f*: | | *p*₁, 1</sub>, \mathbf{v} *r* 1 *u u r* (r_n) . . . $\frac{1}{2} = u_p \left(\frac{p}{r} \right)$ (in elastic $2^{-\kappa}$ 2G \rightarrow \cdots $c_0 = \lambda \frac{p_o R^2}{2}$ $\lambda u = \lambda R \frac{1}{2}$ *G* (2*G*) $= \lambda \frac{P_0}{2G}$ $\rightarrow u = \lambda R \left(\frac{P_0}{2G} \right)^{-1}$ $u = \lambda R \left(\frac{P_o}{P} \right) \frac{R}{P}$ *G ^r* $\lambda R \sim 1$ $= \lambda R \bigg(\frac{p_o}{2G}\bigg)\frac{R}{r}$ (in elastic zone)

Deformations around a cylindrical tunnel

The differential equation of equilibrium gives: *c c*_o $u = \frac{c_2}{c_1}$ 1. Linearly elastic ground, $K_0 = 1$

Constant \mathbf{c}_2 is determined from the stress boundary condition: $\sigma_r(r=R) = p = p_o(1-\lambda)$

Thus, the radial displacement at distance (r) is:

Deformations around a cylindrical tunnel
\nnearly elastic ground, K_o = 1
\ndifferential equation of equilibrium gives:
$$
u = \frac{c_2}{r}
$$

\ntant c₂ is determined from the stress boundary condition:
\n $\sigma_r (r = R) = p = p_o (1 - \lambda)$
\nthe radial displacement at distance (r) is:
\n $u = \lambda R \left(\frac{p_o}{2G}\right) \left(\frac{R}{r}\right) \implies u = \left(1 - \frac{p}{p_o}\right) R \left(\frac{p_o}{2G}\right) \left(\frac{R}{r}\right)$ NOTE:
\ne tunnel wall (r=R): $u_R = \lambda R \left(\frac{p_o}{2G}\right)$
\nor complete deconfinement ($\lambda = I, r=R$): $u_{R\infty} = R \left(\frac{p_o}{2G}\right)$

At the tunnel wall $(r=R):$ $\|u_R=\lambda\|R\| \frac{P_o}{\lambda}\|$ $\left(2G\right)$ $=$ λ $R\left(\frac{p_o}{p}\right)$ \sim *p*₀ | *p*₀ $u_{\nu} = \lambda R |\frac{F_{\nu}}{2}|$ $R - \frac{R}{2G}$ λ R $\frac{P_o}{\sim}$ \sim

and for complete deconfinement ($\lambda=I,$ $r=R$) : $\left| \begin{array}{c} u_{R \infty} = R \left| \begin{array}{c} P_{\text{o}} \end{array} \right| \right|$ ∞ <u> a se</u>

$$
\frac{u_R}{u_{R\infty}} = \lambda
$$
 Convel

Convergence-confinement curve in linearly elastic ground

=

 $\begin{picture}(20,20) \put(0,0){\dashbox{0.5}(5,0){ }} \put(15,0){\dashbox{0.5}(5,0){ }}$) and \overline{a}

 G = ground shear modulus R = tunnel radius , p_o = geostatic stress $\lambda = \lambda(x)$ = deconfinement coefficient

NOTE: Strains and stresses calculated by differentiation

r

 $2(1+\nu)$

 V) and the set of the set of V

 $+$ $\boldsymbol{\mathcal{V}}$) and the set of the set of $\boldsymbol{\mathcal{V}}$

 $\lambda=1-$

 $0 < \lambda < 1$

p^o

Stresses and deformations around a cylindrical tunnel – Only elasticity

Linearity elastic ground
\n
$$
K_o = 1
$$
\n
$$
\sigma_r = p_o \left[1 - \lambda \left(\frac{R}{r} \right)^2 \right]
$$
\n
$$
\sigma_{\theta} = p_o \left[1 + \lambda \left(\frac{R}{r} \right)^2 \right]
$$
\n
$$
\lambda = 1 - \frac{p}{p_o}
$$

At tunnel wall (r=R): $\sigma_r = p = (1 - \lambda)p_o$ $p = (1 - \lambda)p_o$ $\sigma_{\theta} = 2p_o - p = (1 + \lambda)p_o$ and for λ=1: $\sigma_{\rm r} = 0$, $\sigma_{\theta} = 2p_{\rm o}$

Linearly elastic ground – $K_0 \neq 1$ (Kirsch solution) Stresses and deformations around a cylindrical tunnel – Only elasticity

Circular tunnel (radius r_o) at depth (H), unit weight of ground (γ), horizontal stress coefficient K (σ_h = K σ_v). Geostatic stresses: σ_v = γH , σ_h = K γH (do not vary with depth). Angle (θ) is measured from tunnel center, with respect to the vertical (θ =0)

Tunnel is unsupported and $\lambda = 1$ ($\sigma_{rr} = 0$ at r = r_{o})

Kirsch solution (for $p=0$):

$$
\sigma_{rr} = \gamma H \left[\frac{1+K}{2} \left(1 - \frac{r_0^2}{r^2} \right) \right] + \gamma H \left[\frac{1-K}{2} \left(1 + 3\frac{r_0^4}{r^4} - 4\frac{r_0^2}{r^2} \right) \cos 2\vartheta \right]
$$

$$
\sigma_{\vartheta\vartheta} = \gamma H \left[\frac{1+K}{2} \left(1 + \frac{r_0^2}{r^2} \right) \right] - \gamma H \left[\frac{1-K}{2} \left(1 + 3\frac{r_0^4}{r^4} \right) \cos 2\vartheta \right]
$$

$$
\sigma_{r\vartheta} = -\gamma H \frac{1-K}{2} \left(1 - 3\frac{r_0^4}{r^4} + 2\frac{r_0^2}{r^2} \right) \sin 2\vartheta
$$

Circumferential stress at springline (θ=90°): $\sigma_{\theta\theta}$ = (3-K)γH $-$ Initial value: $\sigma_{\theta\theta}$ = γH For K = $0.5 \rightarrow \sigma_{\theta\theta} = 2.5$ γH $K = 1$ -> $σ_{θθ} = 2 yH$

Circumferential stress at crest and invert (θ=0 & 180°): $\sigma_{\theta\theta}$ = (3K-1)γH - Initial value: $\sigma_{\theta\theta}$ = KγH For K = $0.5 \rightarrow \sigma_{\theta\theta} = 0.5 \text{ yH}$ (initial value 0.5 yH) $K = 1$ -> $σ_{\theta\theta} = 2$ γH (initial value γH)

Linearly elastic ground – $K_0 \neq 1$ (Kirsch solution) Stresses and deformations around a cylindrical tunnel – Only elasticity

Stresses and deformations around a cylindrical tunnel

2. Elastic – perfectly plastic ground, $K_0 = 1$

The limit of the plastic zone (*rp*) depends on:

- •The tunnel radius (R)
- •the ground strength parameters (c,φ)
- the initial geostatic stress (*po*)
- the deconfinement coefficient (λ), i.e., the internal pressure (*p*)

Convergence – confinement curve in elasto-plastic ground Influence of the σ-ε curve

The ground pressure (p) on the tunnel lining decreases with increasing tunnel wall convergence

Convergence – confinement curve in elasto-plastic ground Influence of the σ-ε curve

If ground continuity is preserved, the convergence-confinement curve does NOT turn upward (collapse) even in strongly strain softening ground. If, however, ground continuity is lost (e.g. rock block contact is lost) due to large ground deformations, then the convergence-confinement curve may turn upwards (collapse).

This means that ground pressure on the tunnel lining will increase at large ground deformations.

Stresses around a cylindrical tunnel

2. Elastic – perfectly plastic ground, $K_0 = 1$

Calculation of the minimum internal pressure $p = p_{cr}$ to maintain elasticity in the ground:

Stress distribution in the elastic domain:

$$
\sigma_r = p_o \left[1 - \lambda \left(\frac{R}{r} \right)^2 \right] \qquad \sigma_\theta = p_o \left[1 + \lambda \left(\frac{R}{r} \right)^2 \right] \qquad \lambda = 1 - \frac{p_{cr}}{p_o}
$$

Stresses (elastic) at the tunnel wall (r=R):

 $\sigma_3 = \sigma_r = p_{cr}$ Marginal fulfillment of the M-C failure criterion at the tunnel wall:

$$
\sigma_1 = k \sigma_3 + \sigma_{cm} \quad \implies \quad \frac{p_{cr}}{p_o} = \left(\frac{2}{1+k}\right) \left(\frac{N_s - 1}{N_s}\right)
$$

Critical deconfinement coefficient:

CONCLUSION: There is no plastic zone around the tunnel, If: $\Lambda_{cr} \ge 1$ (i.e., $N_s \le 1$) or if: λ_{cr} < 1 and $\lambda \leq \lambda_{cr}$

Plastic zone develops around the tunnel if: λ_{cr} < 1 (i.e., N_s > 1) and $\lambda > \lambda_{cr}$

$$
\begin{array}{ccc}\n & \text{ELASTIC} & \text{PLASTIC} \\
\lambda=0 & \lambda_{cr} & \lambda=1\n\end{array}
$$

Contract Contract и производство на селото на се
Становите селото на селото на

 $\frac{1}{N}$ $\left(\begin{array}{cc} N_s \end{array}\right)$

s

s / *s*

 $\begin{array}{|c|c|c|c|c|c|}\n\hline\n & & S & 1 \\
\hline\n & & 1 & 1\n\end{array}$ $\left\langle N_{s}\right\rangle$

 $\bigvee N_{\epsilon}-1$

 $+$ K \land N \rightarrow N \rightarrow

 p_{cr} 1 $\left(2 \right) \left\langle N_s - 1 \right\rangle$

 $\sum_{i=1}^n a_i$

 $(N, -1)$

N

 $\sigma_1 = \sigma_\theta = 2 p_o - p_{cr}$

 $\left| \frac{Z}{Z} \right| \frac{1 \sqrt{S}}{Z}$ $(1+k)$ N_s

 $p_{\scriptscriptstyle o}$ $(1+k)$ $N_{\scriptscriptstyle s}$ $)$

cr D $\left(1+k \sqrt{N}\right)$ $\left(1+2k \sqrt{N}\right)$

 $1+k$ N \quad \quad

 $\lambda_{-} = 1 - \frac{p_{cr}}{r} = 1 - \left(\frac{2}{r_{-}}\right)\left(\frac{N_s - 1}{r_s}\right)$

o

cr

 $\left(2 \right) \left(N_{s} -$

Stresses around a cylindrical tunnel – elastoplastic ground

Critical deconfinement coefficient – ground remains elastic but M-C failure criterion is marginally fulfilled at the tunnel wall (i.e., $r_p = R$):

$$
\left| \lambda_{cr} = 1 - \frac{p_{cr}}{p_o} \implies \lambda_{cr} = 1 - \left(\frac{2}{1+k} \right) \left(\frac{N_s - 1}{N_s} \right) \right| \qquad \lambda_s = \tan^2 \left(45 + \frac{\varphi}{2} \right)
$$

$$
N_s = 2p_o / \sigma_{cm}
$$

$$
k = \tan^2 \left(45 + \frac{\varphi}{2} \right)
$$

$$
\sigma_{cm} = \frac{\sigma_{ci}}{52.63} \exp \left(\frac{GSI}{20} \right)
$$

Values of λ_{cr} (plastic zone around the tunnel develops if $\lambda > \lambda_{cr}$)

Stresses around a cylindrical tunnel – elastoplastic ground

Example: γ = 22 kN/m³, H = 100 m, K_o = 0.60 ⇒ p_o = 0.5 (1+K_o) γ H = 1.76 MPa GSI = 25, σ_{ci} = 12 MPa, E_i = 13.5 GPa $\Rightarrow \sigma_{cm}$ = 0.64 MPa, E = 821 MPa $v = 0.30 \Rightarrow G = 316 \text{ MPa}$ $\overline{\varphi} = 32^{\circ} \Rightarrow k = 3.2546$ δ = 7° \Rightarrow K = 1.28 $\exp\left(-\frac{1}{2} \right)$ 52.63 $\sqrt{20}$ *ci* $cm \sim$ \sim \sim σ (*GSI*) $\sigma_{\dots} = \frac{c}{c}$ exp $rac{E}{2(1+v)}$ $\sigma_{cm} = \frac{\sigma_{ci}}{52.63} \exp\left(\frac{GSI}{20}\right)$ $D =$ damage factor $(=0)$ $G = \frac{E}{\sqrt{E}}$ $G = \frac{C}{\sqrt{E}}$ V \sim \sim \sim \sim \sim $=\frac{1}{2(1+\nu)}$ $\sigma_{cm} = \frac{1}{5}$ $K \equiv \frac{1}{2}$ $\sqrt{1-t}$ $\sum_{\mathbf{r}}$ 1+ta $\left| 45 + \frac{\varphi}{2} \right|$ K $\binom{1}{1}$ 2 $=$ tan² $\left(45+\frac{\varphi}{\epsilon}\right)$ $K \equiv \frac{1+\tan \pi}{\epsilon}$ 2 l l $-$ tan l $k = \tan^2 \left(45 + \frac{\varphi}{\pi} \right)$ $K = \frac{1 + \tan \theta}{\pi}$ 1 – tan δ and the set of δ $E_{\rm rm} = E_{\rm i} \left(0.02 + \frac{1 - D/2}{1 + e^{((60 + 15D - \text{GSD})/11)}} \right)$ $1+ \tan\delta$ and the state of δ $K = \frac{1 + \tan \phi}{\sqrt{1 - \frac{1}{\phi^2}}}$

Calculations:

$$
N_s = \frac{2 p_o}{\sigma_{cm}} = 5.5 \qquad \lambda_{cr} = 1 - \left(\frac{2}{1+k}\right) \left(\frac{N_s - 1}{N_s}\right) = 0.615
$$

Result: For $\lambda > 0.615$, i.e., for $p/p_0 < 0.385$ plastic zone develops around the tunnel

CASE 1: Ground remains elastic (no plastic zone) $\lambda_{cr} = 1 - \left(\frac{2}{1+k}\right)\left(\frac{N_s-1}{N_s}\right)$

- If $N_s \leq 1$ \rightarrow for all λ
- If $N_s > 1 \rightarrow$ for $\lambda \leq \lambda_{cr}$

Stresses around the tunnel:

$$
\sigma_r = p_o \left[1 - \lambda \left(\frac{R}{r} \right)^2 \right]
$$

$$
\sigma_\theta = p_o \left[1 + \lambda \left(\frac{R}{r} \right)^2 \right]
$$

Displacement around the tunnel:

$$
u = \lambda \ R \left(\frac{p_o}{2G}\right) \left(\frac{R}{r}\right) \qquad \qquad \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} \frac{p_i}{n}
$$

At the tunnel wall (*r=R*):

$$
u_R = \lambda \ R \left(\frac{p_o}{2G} \right)
$$

CASE 2: Plastic zone develops in the ground
\nIf N_s > 1 and
$$
\lambda > \lambda_{cr}
$$

\n
$$
\frac{EIASTIC}{\lambda_{c0}} = \frac{0}{R} = \frac{PIASTIC}{\lambda_{cr}}
$$
\nRadius of plastic zone (r_p) :
\n1. If $\varphi = 0$: $\frac{r_p}{R} = \exp\left[\frac{1}{2}(\lambda N_s - 1)\right]$
\n2. If $\varphi > 0$: $\frac{r_p}{R} = \left\{\left(\frac{2}{k+1}\right)\left[\frac{2+N_s(k-1)}{2+N_s(k-1)(1-\lambda)}\right]\right\}^{\frac{1}{k-1}}$
\nAnd in full deconfinement $(\lambda = 1)$: $\frac{r_{p\infty}}{R} = \left\{\left(\frac{1}{k+1}\right)[2+N_s(k-1)]\right\}^{\frac{1}{k-1}}$

Proof of formulae for σ_r and σ_θ :

Επίλυση στην πλαστική ζώνη, δηλαδή για R < r < r_p

Εξίσωση ισορροπίας:

$$
\frac{d\sigma_r}{dr} + \frac{\sigma_r - \sigma_\theta}{r} = 0
$$

Κριτήριο αστοχίας Mohr-Coulomb : $\sigma_{\theta} = k \sigma_r + \sigma_{cm}$

Απαλειφή του σ_θ δίνει: $\frac{a}{2}$

$$
\frac{d\sigma_r}{dr} - \frac{1}{r}(k-1)\sigma_r - \frac{1}{r}\sigma_{cm} = 0
$$

Επίλυση της ανωτέρω διαφορικής εξίσωσης:

(α) Περίπτωση: $k \neq 1 \Rightarrow \varphi \neq 0$:

Με συνοριακή συνθήκη: $\sigma_r(r=R) = p = (1 - \lambda)p_o$

$$
\sigma_r = \left[(1 - \lambda)p_o + \left(\frac{\sigma_{cm}}{k - 1}\right) \right] \left(\frac{r}{R}\right)^{k - 1} - \left(\frac{\sigma_{cm}}{k - 1}\right)
$$

$$
\delta \eta \lambda \alpha \delta \eta : \frac{\sigma_r}{p_o} = \left[(1 - \lambda) + \frac{2}{(k - 1)N_s} \right] \left(\frac{r}{R}\right)^{k - 1} - \frac{2}{(k - 1)N_s}
$$

$$
\sigma_\theta = k \sigma_r + \sigma_{cm} \implies \frac{\sigma_\theta}{p_o} = k \frac{\sigma_r}{p_o} + \frac{2}{N_s}
$$

Proof of formulae for r_p/R :

Εξίσωση των τιμών των σ_ε και σ_θ στο όριο μεταξύ ελαστικής και πλαστικής ζώνης (r = r_p) δίνει τις τιμές των c_2 και r_p :

(α) Περίπτωση $k \neq 1 \Rightarrow \varphi \neq 0$:

$$
\frac{\sigma_r}{p_o} = \left[(1 - \lambda) + \frac{2}{(k - 1)N_s} \right] \left(\frac{r_p}{R} \right)^{k - 1} - \frac{2}{(k - 1)N_s} = 1 - c_2 \left(\frac{2G}{p_o} \right) \frac{1}{r_p^2}
$$

$$
\frac{\sigma_o}{p_o} = k \frac{\sigma_r}{p_o} + \frac{2}{N_s} = 1 + c_2 \left(\frac{2G}{p_o} \right) \frac{1}{r_p^2}
$$

$$
\text{orote: } \frac{r_p}{R} = \left[\left(\frac{2}{k + 1} \right) \frac{N_s + \frac{2}{k - 1}}{(1 - \lambda)N_s + \frac{2}{k - 1}} \right]^{\frac{1}{k - 1}}
$$

(β) Περίπτωση : $k = 1 \Rightarrow \varphi = 0$:

Stresses around a cylindrical tunnel – elastoplastic ground

Ground remains elastic, always (for all λ) if: $\;\;N_{_S} \leq 1$

Schematic size of the plastic zone (r_p) around the tunnel

Stresses around a cylindrical tunnel – elastoplastic ground Classification of tunnel excavation problems with N_{s} value

Hoek E and Marinos P 2000 Predicting Tunnel Squeezing Problems in Weak Heterogeneous Rock Masses. Tunnels and Tunnelling International 32(11) 45-51

Stresses around a cylindrical tunnel – elastoplastic ground

Radius of the plastic zone r_p (unsupported tunnel)

p^o = geostatic stress *λ* = deconfinement coefficient *σcm* = ground strength *Ν^s* = overstress factor

$$
p = p_o(1 - \lambda)
$$

$$
N_s = \frac{2 p_o}{\sigma_{cm}}
$$

Graph is valid for common values of the relevant parameters

Stresses around a cylindrical tunnel – elastoplastic ground

Radius of the plastic zone r_p (supported tunnel, p_i = support pressure)

 p_o = geostatic stress *λ* = deconfinement coefficient *σcm* = ground strength *Ν^s* = overstress factor

$$
p = p_o(1 - \lambda)
$$

Graph is valid for common values of the relevant parameters

CASE 2: Plastic zone develops in the ground

If N_s > 1 and λ > λ_{cr}

ELASTIC PLASTIC $\lambda = 0$ $\lambda = 1$ $\lambda_{\rm cr}$

<mark>a</mark> sa salawan и производство и село в с
Село в село в село

<mark>a</mark> sa salawan и производство и село в с
Село в село в село

r

R $\lfloor r \rfloor$. The set of $\lfloor r \rfloor$

 $\begin{array}{|c|c|c|c|c|}\n\hline\n\textbf{r} & \textbf{r} & \textbf{r} & \textbf{r} \\
\hline\n\textbf{r} & \textbf{r} & \textbf{r} & \textbf{r} & \textbf{r} \\
\hline\n\textbf{r} & \textbf{r} & \textbf{r} & \textbf{r} & \textbf{r} & \textbf{r}\n\end{array}$ $\binom{r}{r}$

 $\left(\frac{r_n}{r_n}\right)^{\Lambda}$

r

K

Contract Contract June 1999

 \bigwedge and \bigwedge and \bigwedge and \bigwedge

 $\binom{r}{r}$

u v v v

p | *p* |

R

 u_n u_n

 $\overline{}$

r

r

 $\binom{r_n}{r_n}$

 $\sum_{i=1}^n a_i$

 $\sum_{i=1}^n a_i$

Ground displacement :

(a) Displacement (u_p) at the limit of the plastic zone (r = r_p) :

Calculated for a tunnel with radius $R=r_p$ and critical deconfinement (λ_{cr}), in which case ground displacements are elastic for r > $\sf r_{\sf p}$:

$$
\frac{u_p}{R} = \lambda_{cr} \left(\frac{r_p}{R}\right) \left(\frac{p_o}{2G}\right) \qquad \lambda_{cr} = 1 - \left(\frac{2}{1+k}\right) \left(\frac{N_s - 1}{N_s}\right)
$$

(b) Displacement (u) in the elastic zone (r > r_p) : $u = u_{p} \left| \frac{p}{n} \right|$ Calculated by the elastic formula: <u>a matana</u> $u = u$ $\frac{p}{q}$

r c $u = \frac{c_2}{c_1}$ with boundary condition: $u = u_p$ at $r=r_p$ (c) Displacement (u) in the plastic zone $(r < r_p)$: $\frac{a}{p} = \frac{p}{p} \left| \frac{p}{p} \right|$ and at the tunnel wall ($r = R$) : $\frac{R}{P} = \frac{P}{P}$ $\frac{p}{P}$ *K R r R u R* u_n , u_n , r_n , r_n **Contract Contract** и производство и село в с
Село в село $\begin{array}{|c|c|c|c|c|}\n\hline\nD & \mbox{ } & \mbox{ } \n\end{array}$ (R) $\left(r_{n}\right)^{\Lambda}$ \equiv

(d) Displacement (u_{R∞}) at tunnel wall at full deconfinement (λ=1):

$$
\frac{u_{R\infty}}{R} = \lambda_{cr} \left(\frac{p_o}{2G}\right) \left(\frac{r_{p\infty}}{R}\right)^{K+1} \lambda_{cr} = 1 - \left(\frac{2}{1+k}\right) \left(\frac{N_s - 1}{N_s}\right)
$$
\n
$$
\frac{r_{p\infty}}{R} = \left\{ \left(\frac{1}{k+1}\right) \left[2 + N_s(k-1)\right] \right\}^{\frac{1}{k-1}}
$$
\ni.e.,:
$$
\frac{u_{R\infty}}{R} = f\left(\frac{p_o}{2G}, N_s, \phi, \delta\right)
$$

Displacement (u_R) at tunnel wall, for any deconfinement $\lambda > \lambda_{cr}$):

$$
\frac{u_R}{u_{R\infty}} = \left\{\frac{1}{1 + \frac{N_s}{2}(k-1)(1-\lambda)}\right\}^{\left(\frac{K+1}{k-1}\right)} = f(\lambda)
$$

$$
\begin{cases}\n\left(\frac{K+1}{k-1}\right) \\
= f\left(\lambda \right), N_s, \phi, \delta\n\end{cases}
$$

Proof of formulae for u_r :

Β.3 Υπολογισμός των μετακινήσεων στην πλαστική ζώνη (r < rp) :

Ορισμός διαστολικότητας στην πλαστική ζώνη : $\tan \delta = \frac{\varepsilon_r + \varepsilon_\theta}{\varepsilon_r - \varepsilon_a} \ge 0$

$$
\text{otherwise:} \quad K \equiv \frac{1 + \tan \delta}{1 - \tan \delta} = -\frac{\varepsilon_r}{\varepsilon_\theta} \ge
$$

$$
A\lambda\lambda\dot{\alpha}:\quad \varepsilon_r=\frac{du}{dr}\quad,\ \varepsilon_\theta=\frac{u}{r}
$$

Orπότε:
$$
\varepsilon_{\theta} K + \varepsilon_r = 0
$$
 ⇒ $\frac{u}{r} K + \frac{du}{dr} = 0$ ⇒ $u = \alpha \frac{1}{r} K$

Συνοριακή συνθήκη: $r = r_p \implies u = u_p \implies u = u_p \left(\frac{r_p}{r}\right)^2$

Αλλά το u_p έχει υπολογισθεί από την ελαστική ζώνη. Συνεπώς:

(α) Περίπτωση $k \neq 1 \Rightarrow \varphi \neq 0$:

$$
u = u_p \left(\frac{r_p}{r}\right)^K \Rightarrow \frac{u_R}{R} = \frac{u_p}{R} \left(\frac{r_p}{R}\right)^K
$$

όπου:

$$
u_p = r_p \left(\frac{p_o}{2G}\right)\left(1 - \frac{2}{k+1}\right)\left[1 + \frac{2}{(k-1)N_s}\right] \implies u_p = r_p \left(\frac{p_o}{2G}\right)\frac{(k-1)N_s + 2}{(k+1)N_s}
$$

Proof of formulae for u_r :

$$
\kappa \alpha l : \frac{r_p}{R} = \left[\left(\frac{2}{k+1} \right) \frac{N_s + \frac{2}{k-1}}{(1-\lambda)N_s + \frac{2}{k-1}} \right]^{k-1}
$$

$$
\Gamma \alpha \lambda = 1 :
$$

$$
\frac{r_{p\infty}}{R} = \left[\frac{(k-1)N_s + 2}{k+1} \right]^{k-1} \kappa \alpha l \frac{u_{p\infty}}{R} = \frac{r_{p\infty}}{R} \left(\frac{p_o}{2G} \right) \frac{(k-1)N_s + 2}{(k+1)N_s}
$$

 -1

Προσδιορισμός της τελικής (για λ=1) σύγκλισης του τοιχώματος της σήραγγας $(u_{\kappa_{\infty}})$:

$$
\frac{u_{R\infty}}{R} = \frac{u_{P\infty}}{R} \left(\frac{r_{P\infty}}{R}\right)^K \Rightarrow \frac{u_{R\infty}}{R} = \frac{1}{N_s} \left(\frac{p_o}{2G}\right) \left[\frac{(k-1)N_s + 2}{k+1}\right]^{\frac{K+k}{k-1}}
$$

Παρατήρηση:

Επειδή στην ελαστική περίπτωση η τελική (για λ=1) σύγκλιση του

τοιχώματος της σήραγγας ($u_{R\infty,e}$) είναι : $\displaystyle{\frac{u_{R\infty,e}}{R} \!=\!\! \left(\frac{p_o}{2G}\right)}$ προκύπτει ότι :

$$
\frac{u_{R\infty}}{u_{R\infty,e}} = \frac{1}{N_s} \left[\frac{(k-1)N_s + 2}{k+1} \right]^{\frac{K+k}{k-1}} \quad \text{if} \quad \frac{u_{R\infty}}{u_{R\infty,e}} = \frac{1}{N_s} \left[\frac{r_{p\infty}}{R} \right]^{K+k}
$$

Proof of formulae for u_r:

$$
u = u_p \left(\frac{r_p}{r}\right)^K \Rightarrow \frac{u_R}{R} = \frac{u_p}{R} \left(\frac{r_p}{R}\right)^K
$$

όπου: $u_p = r_p \left(\frac{p_o}{2G}\right) \frac{1}{N_s}$
\n
$$
\kappa \alpha \text{I:} \quad r_p = R \, \exp\left[\frac{1}{2}(N_s \lambda - 1)\right] \kappa \alpha \text{I} \quad r_{p\infty} = R \, \exp\left[\frac{1}{2}(N_s - 1)\right]
$$
\n
\nΠροσδιορισμός της τελικής (για λ=1) σύγκλισης του τοιχώματος της
\nσήραγγας (*u_R*₀) :

$$
\frac{u_{R\infty}}{R} = \frac{u_{p\infty}}{R} \left(\frac{r_{p\infty}}{R}\right)^K \Rightarrow
$$
\n
$$
\frac{u_{R\infty}}{R} = \frac{1}{N_s} \left(\frac{p_o}{2G}\right) \exp\left[\frac{1}{2}(N_s - 1)(K + 1)\right]
$$

$$
\delta \eta \lambda \alpha \delta \eta : \frac{u_{R\infty}}{u_{R\infty,e}} = \frac{1}{N_s} \exp \left[\frac{1}{2} (N_s - 1)(K + 1) \right] \quad \eta \frac{u_{R\infty}}{u_{R\infty,e}} = \frac{1}{N_s} \left[\frac{r_{p\infty}}{R} \right]
$$

 $\neg K+1$

Displacement of tunnel wall *(u^R)*

Unsupported tunnel

Supported tunnel

• *Data points for common values of the relevant parameters*

• *Significant reduction of wall displacement with increasing support pressure*

Stresses at the tunnel wall (r=R)

Combining the Chern u_R -x curve (1), with the convergence-confinement u_R -p curve (2), one can develop the Chern-Panet curves λ-x (3). The Chern-Panet curves are useful in 3D numerical analyses (to compute λ from x)

Chern-Panet curves

1. Displacement u_R at tunnel wall as a function of deconfinement (λ):

 $\left|\frac{K+1}{2}\right|$ $\left(k-1\right)$ $(K+1)$

For deconfinement $\lambda > \lambda_{cr}$ (plasticity):

 $2 \left[\begin{array}{ccc} 2 & 2 & 2 \end{array} \right]$

 $+$ $(k - 1)$ λ)

 $1+\frac{1+s}{s}(k-1)(1-1)$

 $1+\frac{N_s}{(k-1)(1-1)}$ $\begin{pmatrix} 1 & 2 & \sqrt{k} & 1 \end{pmatrix}$

二 くーーーー、 ――――――

 \sim \sim \sim \sim \sim \sim $\left\{\frac{1}{N}\right\}$

 $\int_{\mathbb{R}^d} |u(x)|^2 dx$

 (λ) and λ and λ

 $u_{\rm n}(\lambda)$ and $u_{\rm n}(\lambda)$

 λ and λ and λ

For deconfinement $\lambda < \lambda_{cr}$ (elasticity):

Contract Contract

$$
\frac{u_R(\lambda)}{u_{R\infty}} = \frac{1}{1 + \frac{N_s}{2}(k-1)(1-\lambda)} \qquad \qquad = f(\lambda \ ; N_s \ , \phi \ , \delta \) \qquad \qquad \frac{u_R}{u}
$$

$$
\frac{u_R(\lambda)}{u_{R_{\infty}}} = \lambda
$$

2. Displacement u_R at tunnel wall along the tunnel axis (x) (Chern, 1998) : $\left(x\right)$ $\left[\begin{array}{c} \overline{1} & \overline{1} & \overline{1} \\ 1 & \overline{1} & \overline{1} \end{array}\right]$ 1.7 $1 + exp|0.91 - 1$ ∞ **Contract Contract** a sa salawan $\int_{0}^{\frac{1}{2}}$ $1 + exp 0.9$ $\begin{array}{ccc} \begin{array}{ccc} \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \end{array} \end{array}$ $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ **Maria Bara** \bigcap \bigcap $|0.91 \frac{\lambda}{2}|$ $\begin{pmatrix} 1 & R & R & R \end{pmatrix}$ $\left(\begin{array}{c} x \\ y \end{array} \right)$ $= 1 + exp[0.9 - 1]$ *R x* 1 and *x* 1 and *x* 1 and *x* 1 and *x exp* | \cup .91 \pm | | $u_{\rm max}$. The set of $u_{\rm max}$ $u_n(x)$ | \ldots | *R∞* Letter in $R \vee V$ 1 1

je poznata za ostali se ostali
Dogodki se ostali se

1 *k* 1) and the second state \sim

 $\left(\overline{k-1}\right)$

 $K+1$) and $K+1$

 $+$ 100 $-$ 100 $-$ 100 $-$

Contract Contract Jan Barbara (1980) $\sum_{i=1}^n a_i$

Combination of (1), (2) gives the Chern-Panet curves, in the form:

$$
\lambda = f\left(\frac{x}{R}; N_s, \varphi, \delta\right)
$$

These curves calculate the deconfinement coefficient (λ) at any location (x) along the tunnel axis. They are used in numerical analyses for the calculation of (λ) at the location (x) of support application

Example:

 γ = 22 kN/m 3 , K $_{\rm o}$ = 0.60 \implies p $_{\rm o}$ = 0.5 (1+K $_{\rm o}$) γ H = 1.76 MPa $v = 0.30 \Rightarrow G = 316 \text{ MPa}$ $G = \frac{E}{2(1 + 1)}$ $\overline{\varphi} = 32^{\circ} \Rightarrow k = 3.2546$ δ = 7° \Rightarrow K = 1.28 Tunnel radius $D = 6m -$ tunnel depth $H = 100m$ <u>in de la provincia de la p</u> $\begin{array}{c} +\frac{1}{2} \\ \end{array}$ $45 + \frac{\varphi}{2}$ $\binom{16}{1}$ 2 $k = \tan^2\left(45 + \frac{\varphi}{\sqrt{2}}\right)$ 2 decree \sim \sim δ and δ in the set of δ $1 + \tan \delta$ and $\sin \theta$ $K \equiv \frac{1 + \tan \phi}{\sqrt{1 - \frac{1}{\phi^2}}}$ GSI = 25, σ_{ci} = 12 MPa, E_i = 13.5 GPa $\Rightarrow \sigma_{cm}$ = 0.64 MPa, E = 821 MPa $\exp\left(-\frac{1}{2} \right)$ 52.63 \rightarrow 20 \rightarrow *ci* $cm \sim$ \sim \sim \sim \sim $\sigma_{\rm s}$ *(GSI*) $\sigma_{\mu} = \frac{a}{2}$ expi - $\frac{E}{2(1+\nu)}$ $\sigma_{cm} = \frac{\sigma_{ci}}{52.63} \exp\left(\frac{GSI}{20}\right)$ ╊

> δ and δ and δ $1 - \tan \delta$ and \sim 1 $D =$ damage factor $(=0)$

Calculations:

$$
N_s = \frac{2 p_o}{\sigma_{cm}} = 5.5 \qquad \lambda_{cr} = 1 - \left(\frac{2}{1+k}\right) \left(\frac{N_s - 1}{N_s}\right) = 0.615
$$

$$
\frac{r_{p\infty}}{R} = \left\{ \left(\frac{1}{k+1} \right) \left[2 + N_s \left(k-1 \right) \right] \right\}^{\frac{1}{k-1}} = 1.72 \qquad \frac{u_{R\infty}}{R} = \lambda_{cr} \left(\frac{p_o}{2G} \right) \left(\frac{r_{p\infty}}{R} \right)^{K+1}
$$

 $u_{\text{max}} = 0.000 \times 0.000 \times 0.000 \times 0.000$ *R* $u_{\rm m}$, we have a set $u_{\rm m}$ $R\infty$ \cup \cup \sim \sim R^{∞} Ω^{∞} $=0.00588 \, \Rightarrow \, u_{{}_{R\infty}}=600\!\times\!0.00588\!=\!3.53$ $\frac{\infty}{6}$ = 0.00588 \Rightarrow $u_{n_{1}}$ = 600 × 0.00588 = 3.53 cm

 $GRC =$ Ground Reaction Curve: $\bigcup_{r}(x) / U_{r,max}$ versus p_i / p_o LDP = Longitudinal Displacement Profile or Chern curve: U_r(x) / U_{r,max} versus x / R Combination of the GRC and LDP curves provides the relation: p_i / p_o versus x / R which is required in 2D numerical analyses. Convergence - Confinement (or Ground Reaction) curve: Ground Reaction and Longitudinal Displacement (Chern) curves

EXCEL spreadsheet for the calculation of the GRC and LDP curves

Input data: R, p_o,
$$
\sigma_{cm}
$$
, φ , δ , G
\nCalculate N_s, k, K and λ_{cr}
\n
$$
K = \frac{1 + \tan \delta}{1 - \tan \delta} \quad \lambda_{cr} = 1 - \left(\frac{2}{1 + k}\right) \left(\frac{N_s - 1}{N_s}\right)
$$
\n
$$
Col 1: p/po between 1 ... 0\nCol 2: λ (between 0 ... 1)
\n
$$
\lambda = 1 - \frac{p}{p_o}
$$
$$

Col 3: Plastic region ? (Y/N) \longrightarrow If $\lambda > \lambda_{cr}$ then Y else N

Col 4: $r_p / R \longrightarrow$ If $\lambda < \lambda_{cr}$ (no plastic region) then $r_p / R = 1$ else: If $\varphi = 0:$ $\frac{r_p}{R} = \exp \left[\frac{1}{2} (\lambda N_s - 1) \right]$ If $\varphi > 0$: $\frac{r_p}{R} = \left\{ \left(\frac{2}{k+1} \right) \left[\frac{2+N_s(k-1)}{2+N_s(k-1)(1-\lambda)} \right] \right\}^{\frac{1}{k-1}}$

Si \int $\sum_{i=1}^n a_i$ $\frac{P_o}{\sigma}$ $\left(2G\right)$ $\left(p_{_{\alpha}}\right)$ $\left(\frac{10}{20}\right)$ $\sqrt{2G/2}$ $\binom{p}{2}$ $\left| \frac{P}{D} \right| \left| \frac{10}{2C} \right|$ $(R)(2G)$ $(r_n)(p_n)$ $=$ A $_{cr}$ $\left(\frac{ }{R}\right)\left(\frac{ }{2G}\right)$ *p*⁰ | *R* 1 2*G* 1 *r* 1 *n* 1 *R R* 1 2 (u_p , v_p p_o *cr p* $2G$) and Col 5: $u_p/R \longrightarrow \text{If } \lambda < \lambda_{cr}$ then $u_p = n/a$ else: $\frac{p}{R} = \lambda_{cr} \left| \frac{p}{R} \right| \left| \frac{P_o}{2C} \right|$

on of the convergence – confinement curve

plastic region): $\frac{u_R}{R} = \lambda \left(\frac{p_o}{2G}\right)$

else: $\frac{u_R}{R} = \frac{u_p}{R} \left(\frac{r_p}{R}\right)^K$

for $\lambda = 1$
 $(u_{R\infty}/R)$
 $\left[\frac{u_R}{u_{R\infty}}\right]^{0.588} - 1$

R) vs (p/p_o), (x/R) vs (p/p_o) o calculation of the convergence – confinement curve
 $\langle \lambda_{cr}$ (no plastic region): $\frac{u_R}{R} = \lambda \left(\frac{p_o}{2G}\right)$

else: $\frac{u_R}{R} = \frac{u_p}{R} \left(\frac{r_p}{R}\right)^K$

1 to u_R/R for $\lambda = 1$
 $(u_R/R) / (u_{R\alpha}/R)$
 $= 1.10 \ln \left[\left(\frac{u_R}{u_{R\alpha}}\right)^$ calculation of the convergence – co
 λ_{cr} (no plastic region): $\frac{u_R}{R} = \lambda \left($

else: $\frac{u_R}{R} = \frac{u_p}{R}$

to u_R/R for $\lambda = 1$
 u_R/R / $(u_{R\infty}/R)$

1.10 $\ln \left[\left(\frac{u_R}{u_{R\infty}} \right)^{-0.588} - 1 \right]$

(b), $(r_p/R) \text{ vs } (p/p_o)$ **he calculation of the conver**
 $\lambda < \lambda_{cr}$ (no plastic region)

else:

ual to u_R/R for $\lambda=1$
 $\frac{u_R}{R} = 1.10 \ln \left[\left(\frac{u_R}{u_{R\infty}} \right)^{-0.588} -1 \right]$
 (p/p_0) , (r_p/R) vs (p/p_0) , (GRC) EXCEL spreadsheet for the calculation of the convergence – confinement curve $= \lambda \left(\frac{p_o}{2G}\right)$ u_R **o** $\begin{bmatrix} p_o \end{bmatrix}$ Col 6: $u_R / R \longrightarrow$ If $\lambda < \lambda_{cr}$ (no plastic region): $\frac{u_R}{R} = \lambda \left(\frac{p_o}{2G} \right)$ λ | $\frac{P_o}{\sim}$ | $\frac{1}{\sim}$ R *G* \setminus *2G* \setminus *2G* \setminus *3G* \setminus *3G* \setminus *3G* \setminus *3G* \setminus *5G* \setminus *K* $\left(r_{n}\right)^{\Lambda}$ \bigwedge and \bigwedge and \bigwedge *u r* u_n , u_n , u_n , u_n else: $\frac{R}{R} = \frac{p}{R} \left| \frac{p}{R} \right|$ $\begin{array}{|c|c|c|c|c|}\n\hline\nD & \multicolumn{1}{|c|}{c} \\
\hline\nD & \multicolumn{1}{|c|}{c} \\
\hline\n\end{array}$ **Contract Contract** \equiv (R) \int and \int and \int *R R R* Calculate $u_{R\infty}/R$: equal to u_R/R for $\lambda=1$ Col 7: $u_R / u_{R\infty} \longrightarrow (u_R / R) / (u_{R\infty} / R)$ -0.588 0.588 $x \left[\begin{array}{c} u_R \end{array} \right]$ $\left[\begin{array}{c} u_R \end{array} \right]$ Col 8: x / R ∞ , we have \sim R ∞ $\;$ $\;$ Plot curves: (u_R / R) vs (p/p_o) , (r_p / R) vs (p/p_o) , (x/R) vs (p/p_o) or (u_R / R) Ground Reaction (GRC) Longitudinal Diplacement (LDP) $u_{Roe} = \frac{p_o}{2G} R$ Limit of elastic behaviour $c_u = \frac{c \cos\varphi}{1 - \sin\varphi}$ Mote: Curve III does

 $\overline{u_R}$

Elastic ground

 λ = Deconfinement = 1 - p/p_a

EXCEL spreadsheet for the calculation of the convergence – confinement curve

else:

Col 9:
$$
\sigma_r / p_o \text{ (at r=R): } \longrightarrow \frac{\sigma_r}{p_o} = (1 - \lambda)
$$

Col 10: σ_{θ} / p_o (at r=R): \longrightarrow If $\lambda < \lambda_{cr}$ then: $\frac{\nu_{\theta}}{\nu} = (1 + \lambda)$ p_{o} $\frac{\sigma_{\theta}}{2} = (1 + \lambda)$

Plot curves: ($\sigma_r / p_o \& \sigma_{\theta} / p_o$) vs (p/p_o)

 $\begin{array}{c} \mathbf{r} \\ \mathbf{r} \end{array}$ 2 *r*

 p_{o} $\left(p_{o}^{+}\right)$ N_{s}

 $\left(\frac{r}{p_o}\right) + \frac{r}{N_s}$

o o s

 $k \rvert$ \rvert \rvert \rvert \rvert \rvert \rvert \rvert \rvert

 $\sigma_{\theta} = k \left(\sigma_r \right) + \frac{2}{k}$

Examples of Panet – Chern curves :

I \setminus $\bigg($ $\lambda = f\left| \frac{\mu}{\sigma} \right|; N_s, \varphi, \delta$ *R x f*

▎

 \int

Examples of Panet – Chern curves :

Examples of radius of plastic zone:

$$
\frac{r_{P}}{R}=f\left(\lambda \ ; \ N_{s}, \phi\right)
$$

Examples of tunnel wall displacement:

Example: Convergence – confinement curve (u_R) - (λ)

$$
\frac{u_R}{R} = f\left(\lambda, \frac{p_o}{2G} \ ; \ N_s, \varphi, \delta\right) \qquad \frac{u_R}{u_R}
$$

$$
\frac{u_R}{u_{R\infty}} = f(\lambda \ ; \ N_s, \varphi, \delta)
$$

Example: Radius of the plastic zone

г,

R

Example: Radius of plastic zone

Example: Panet - Chern curve

Example: wall displacement curve (A)

$$
\frac{u_R}{u_{R\infty}} = f\left(\frac{x}{R}\right) \qquad \text{(Chern)}
$$

$$
\frac{u_R(x)}{u_{R\infty}} = \left[1 + exp\left(0.91\frac{x}{R}\right)\right]^{-1.7}
$$

Example: wall displacement curve (B)

