Convolutional Neural
Networks

Based on Lecture 4: Neural Networks and Backpropagation and

Lecture 5: Image Classification with CNNs

CS231n: Deep Learning for Computer Vision
Stanford - Spring 2023,

http://cs231n.stanford.edu/slides/2023/lecture_4.pdf
http://cs231n.stanford.edu/slides/2023/lecture_5.pdf

1st 2nd

Beginnings Neural Neural %PU
Winter Winter -
Thresholded) XOR Multilayer Deep
Logic Unit PR AR Problem Backprop Nets
1960 1986 1989 1997 2006 2012
1940 1950 1960 1970 1980 1990 2000 2010

‘.
S. McCulloch - W. Pitts R. Rosenblatt B‘,\\lllv'a':f‘;v g M. Minsky - S. Papert | P. Werbos D. Rumelhart - Y. Lecun C. Cortes - R. Salakhutdinov - J. Hinton -
' G. Hinton - J. Schmidhuber V. Vapnik A. Krizhevsky - |. Sutskever
Inguts R. Williams
XAND Y XORY NOT X DD lL = n 5
ﬁ) Hidden). v — = |
' .;A'
+1'4] 2 #1741 -] a % x K/ ety
/ l \ | I S [} * ok .o.. .0
X Y +1 X Y X s O .
2 <4 - o
= 2

< erorpopapues saswws][]

NEW NAVY DRVICE
LEARNS BY DOING

Psychologist Shows Embryo
of Computer Designed to
Read and Grow Wiser

WASHINGTON, July 7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer
today that it expects will be
abla to walk, talk, see, write,
reproduce itself and be con-
scious of its exlstence,

The embryo—the Weather
Bureau's $2,000,000 “704" com-
puter—learned to differentiate
between right and left after
fifty attempts in the Navy's
demonstration for newsmen,,

The service said it would use
this principle to build the first
of its Perceptron thinking ma-
chines that will be able to read
and write, It is expected to be
'finished in about a year at a
cost of $100,000.

Dr. Frank Rosenblatt, de-
signer of the Perceptron, con-
|ducted the demonstration. He
said ‘the machine would be the
first device to think as the hu-

ings, Perceptron will make mis-

eg at first, but will grow
wiser as it gains experience, he
said, ;

Dr. Rosenblatt, a research
psychologist at the -Cornell
Aeronautical Laboratory, Buf-
falo, said Perceptrons might be
fired to the planets as mechani-
cal space explorers.

Withont Human Controls

The Navy said the perceptron
would be the. first non-living!
mechanism ‘“capable of receiv-|
ing, recognizing and identifying.
its surroundings without -any
human tra.ining or control.”

The “brain” is designed to
remember images and informa-
tion it has perceived itself. Ordi-
nary computers remember only
what ig fed into them on punch
cards or magnetic tape.

Later Perceptrons will be able
to recognize people and call out
‘their names and instantly trans-
late speech in one language to
speech or writing in another
language, it was predicted,

Mr. Rosenblatt said in prin-
ciple it would be possible to
'build brains that could repro-
duce themselves on an assembly
line and which would be con-

man brain, As do hyman be-

scious of their existence,

19258 New York
Times...

In today's demonstration, the
“704"” was fed two cards, one
with squares marked on the left
side and the other with squares
on the right side.

Learng by Doing

In the first ﬂ(t.{\; trials, the
machine made no distinction be-
tween them. It then started
registering a “Q" for the left
squares and “O" for the right

squares.
Dr. Rosenblatt said he could
explain why the machine

learned only in highly technical
terms. But he said the computer
had undergone a “self-induced
change in the wiring diagram.”
The first Perceptron will
have about 1,000 electronic
“association cells” recelving
electrical impulses from an eye-
like scanning device with 400

hoto-cells. human brain

as 10,000,000,000 responsive
cells, including 100,000,000 con-

nections with the eyes.

Biological Neurons: Neurons in a neural network:
Complex connectivity patterns Organized into regular layers for
RN LAY AL Y computational efficiency

N B " YN - ViAY
?'z_"'w'"’iy }‘“""’" WAR S

SOOI

XL NIIREN —
ERIER
, ‘\“'//A\\ . output layer

input layer
hidden layer 1 hidden layer 2

Biological Neurons: But neural networks with random
Complex connectivity patterns connections can work too!

% 7,

Xie et al, "Exploring Randomly Wired Neural Networks for Image Recognition®, arXiv 2019

Be very careful with your brain analogies!

Biological Neurons:
e Many different types
e Dendrites can perform complex non-linear computations
e Synapses are not a single weight but a complex non-linear dynamical system

[Dendritic Computation. London and Hausser]

Image Classification: A core task in Computer Vision

(assume given a set of labels)
{dog, cat, truck, plane, ...}

> cat

This image by Nikita is
licensed under CC-BY 2.0

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Image Classification with Linear Classifier

Image
X o, W) —— 10 numbers giving f(X,W) =Wx+b
: ? class scores
A:,rr‘)?’y2 of 32x32x3 numbers T
(numbers total) W
parameters
or weights
Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint
f(x,W) = Wx One template Hyperplanes
per class cutting up space
Sreter prans o ook } Pane @ fery o P
e > # u‘u uul -m—.,.ia; = 'w.o.o.,m
T‘:;I 02 03 e 12

a5 $ug forie 3 ruce
| T o 195 | Shp soone
: |2
W b

Problem: Linear Classifiers are not very powerful

Visual Viewpoint Geometric Viewpoint

plane car bird cat deer
. y
[}
W ¥ e
@
® (]
[

dog frog horse ship truck i - .
X LIPS
- ; ® P
o o
Linear classifiers learn Linear classifiers
one template per class can only draw linear

decision boundaries

Neural Networks

Linear score function: 2-layer Neural Network

f=Wgz
f = Womax(0, Wix)
x Wi |h| w2 s
-
07211 400 0

plane car bird cat deer dog frog horse ship ; truck_
&
L
= e N
! 3 LA
| i e =4

Pixel space

» (Class
scores

f(x) = Wx

plane car bird cat deer

Image features

f(x) = Wx

—_—> —_— Class

_ scores
Feature Representation

Example: Color Histogram

Example: Histogram of Oriented Gradients (HoG)

Example: 320x240 image gets divided
into 40x30 bins; in each bin there are
9 numbers so feature vector has
30*40*9 = 10,800 numbers

Divide image into 8x8 pixel regions
Within each region quantize edge
direction into 9 bins

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection,” CVPR 2005

Example: Bag of Words

Step 1: Build codebook

Cluster patches to 1 I g

form “codebook”
of “visual words”

7 FalE™

Extract random
patches -

Fei-Fei and Perona, “A bayesian hierarchical model for learning natural scene categories”, CVPR 2005

Image Features

Image features vs. ConvNets

f

Feature Extraction — 10 numbers giving

scores for classes
ﬂuﬂﬂﬂﬂﬂﬂﬂuuﬂuﬂuﬂﬂu”””uﬂﬂuﬂnuﬂﬂuﬂ -

training

Krizhevsky, Sutskever, and Hinton, “Imagenet classification
with deep convolutional neural networks”, NIPS 2012.
Figure copyright Krizhevsky, Sutskever, and Hinton, 2012.
Reproduced with permission.

10 numbers giving
— training scores for classes

A bit of history...

The Mark | Perceptron machine was the first
implementation of the perceptron algorithm.

The machine was connected to a camera that used 20x20
cadmium sulfide photocells to produce a 400-pixel image.

SEQUENCE INDICATORS

)

recognized (&)
letters of the alphabet

1 fw-z24+b6>0
0 otherwise

MAIN
SEQUENCE

update rule:
STEP BUTTONS

wi(t+ 1) = wi(t) + a(d; — y;(t))xj.

Frank Rosenblatt, ~1957: Perceptron

This image by Rocky Acosta is licensed under CC-BY 3.0

https://creativecommons.org/licenses/by/3.0/us/

A bit of history...

+|

o

Quantizer

Input J
lines —>—oQutput

d's are adjustable

Widrow and Hoff, ~1960:
Adaline/Madaline

e

soerce

AMeption

= gontrol
-+ I

=

PR "cfc.rcn(c
yeuuuw))

VWA
Dl i)
s 7 oy

switches E‘:::l:s Mesistor

Tinited AAA

v

I Level control
R A

(_/

) of these

AA

switch

LOT o) Reforence

Desired
o
cutput
ANA
\r

Susming

* Tesistor

on-off-on

These figures are reproduced from

Widrow 1960, Stanford Electronics Laboratories

Technical Report with permission from Stanford University Special Collections.

http://www-isl.stanford.edu/~widrow/papers/c1960adaptiveswitching.pdf
http://www-isl.stanford.edu/~widrow/papers/c1960adaptiveswitching.pdf
http://www-isl.stanford.edu/~widrow/papers/c1960adaptiveswitching.pdf

A bit of history...

recognizable math

input
pattern

output
pattern p

error

Rumelhart et al., 1986: First time back-propagation became popular

A bit of history...

[Hinton and Salakhutdinov 2006]

2000 units

SauUIyoB|\ UueWZ)0g PaloLIsay

Reinvigorated research in

Deep Learning

Fine-tuning with backprop

RBM:-initialized autoencoder

Pretraining

lllustration of Hinton and Salakhutdinov 2006 by Lane
MclIntosh, copyright CS231n 2017

First strong results))

HMM
pre-training
Acoustic Modeling using Deep Belief Networks Y |
Abdel-rahman Mohamed, George Dahl, Geoffrey Hinton, 2010 B |
35
S
Context-Dependent Pre-trained Deep Neural Networks ?}g | |
for Large Vocabulary Speech Recognition a | |
George Dahl, Dong Yu, Li Deng, Alex Acero, 2012 I
Spect
Imagenet classification with deep convolutional il

neural networks
Alex Krizhevsky, llya Sutskever, Geoffrey E Hinton, 2012

- =k 3t k.

lllustration of Dahl et al. 2012 by Lane Mclintosh, copyright
CS231n 2017

Lis 1%

dense

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

A bit of history: by

¢ ! ¢ Electrical
signal from
= <> .
Hubel & Wiesel, \ & brain
RECEPTIVE FIELDS OF SINGLE NEURONS IN o T (
THE CAT'S STRIATE CORTEX uius
1962 L—ﬂ -
RECEPTIVE FIELDS, BINOCULAR INTERACTION y
AND FUNCTIONAL ARCHITECTURE IN THE Stimulus Response

CAT'S VISUAL CORTEX

Cat image by CNX OpenStax is licensed
under CC BY 4.0; changes made

1968...

A bit of hiStory Human brain

Topographical mapping in the cortex:

nearby cells in cortex represent
nearby regions in the visual field

Visual
cortex

Retinotopy images courtesy of Jesse Gomez in the
Stanford Vision & Perception Neuroscience Lab.

Hierarchical organization Simple cells

Response to light
orientation

Retinal ganglion cell LGN and V1
receptive fields simple cells Complex cells:

Response to light
orientation and movement

Hypercomplex cells:
response to movement
with an end point

N\

lllustration of hierarchical
organization in early visual pathways No response Response

by Lane Mclintosh, copyright CS231n

o017 (end point)

A bit of history:

Neocognitron
[Fukushima 1980]

“sandwich” architecture (SCSCSC...)
simple cells: modifiable parameters
complex cells: perform pooling

(AT
L&

A bit of history:

Gradient-based learning applied to document recognition
[LeCun, Bottou, Bengio, Haffner 1998]

Image Maps
Input

Fully Connected

Convolutlons
Subsamplmg

LeNet-5

CIFAR | ICRA

CANADIAN | INSTITUT CIFAR: Canadian Institute for Advanced Research.
INSTITUTE CANADIEN

FOR DE : : : P
abvanced | RecHercHes CIFAR encourages basic research without direct application

RESEARCH | AVANCEES

« motivated Hinton to move to Canada in 1987 and funded his work

. the funding was ended in the mid 90s just as sentiment towards
neural nets was becoming negative again

 rather than relenting and switching his focus, Hinton fought to
continue work on neural nets,and managed to secure more funding
from CIFAR

A ‘Brief’ History of Neural Nets and Deep Learning - Andrey Kurenkov

https://medium.com/%40andreykurenkov/a-brief-history-of-neural-nets-and-deep-learning-part-4-61be90639182

CIFAR | ICRA

But in 2004, Hinton asked to lead a new program on neural computation.
The mainstream machine learning community could not have been less interested in neural

nets.

‘It was the worst possible time,” says Bengio, a professor at the Université de Montréal and
co-director of the CIFAR program since it was renewed last year.
“‘Everyone else was doing something different. Somehow, Geoff convinced them. We should

give (CIFAR) a lot of credit for making that gamble.”

CIFAR “had a huge impact in forming a community around deep learning,” adds LeCun,

the CIFAR program’s other co-director.

A ‘Brief’ History of Neural Nets and Deep Learning - Andrey Kurenkov

https://medium.com/%40andreykurenkov/a-brief-history-of-neural-nets-and-deep-learning-part-4-61be90639182

2019 A.M. Turing Award: Bengio, Hinton, LeCun (& CIFAR)
C I FAR CIFAR convenes extraordinary minds to address
e science and humanity’s most important questions.

,/""\'X\\\ N

Turing Award honours CIFAR’S
‘pioneers of Al

CIFAR Fellows Yoshua Bengio, Geoffrey Hinton and Yann LeCun were
jointly awarded the prestigious A.M. Turing Award

https://www.cifar.ca/

CIFAR | ICRA

The CIFAR-10 dataset

The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training

images and 10000 test images.

The dataset is divided into five training batches and one test batch, each with 10000 images. The test batch contains exactly 1000
randomly-selected images from each class. The training batches contain the remaining images in random order, but some training
batches may contain more images from one class than another. Between them, the training batches contain exactly 5000 images

from each class.

Here are the classes in the dataset, as well as 10 random images from each:

oriene o P - N B
automobile Em. B‘

bird =. ﬂ ‘ , -.
cat Bh -.;:!
deer ;j 3 HE!
404 A<= BT A &
frog ..-. 1" -..
horse 7 -mm m
ship el T e

The CIFAR-10 and CIFAR-100 are labeled
subsets of the 80 million tiny images
dataset.

They were collected by Alex Krizhevsky,
Vinod Nair, and Geoffrey Hinton.

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://groups.csail.mit.edu/vision/TinyImages/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

In July 2008, ImageNet had zero images.

By December, it had categorized three million images across 6,000+ synsets.

In April 2010, there were more than 11 million images in 15,000+ synsets.

They were made possible through crowdsourcing on Amazon’s Mechanical Turk platform.

In 2010, the first ever ImageNet Large Scale Visual Recognition Challenge (ILSVRC) was
organized.

Software programs competed to correctly classify and detect objects and scenes.
ImageNet has given researchers a common set of images to benchmark their models and algorithms.

In turn, this has driven research in machine learning and deep neural networks, making it easier to
classify images and complete other tasks associated with computer vision.

The data is available for free to researchers for non-commercial use.

A bit of history:
ImageNet Classification with Deep Convolutional Neural
Networks [Krizhevsky, Sutskever, Hinton, 2012]

Figure copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

“AlexNet”

28.2

152 layers

\ 16.4

\ 11.7
l 22 layers 19 layers ’

\67

357

8 layers 8 layers

.

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

The evolution of the winning entries on the ImageNet Large Scale Visual..

https://www.researchgate.net/figure/The-evolution-of-the-winning-entries-on-the-ImageNet-Large-Scale-Visual-Recognition_fig1_321896881

Fast-forward to today: ConvNets are everywhere

Classification

Retrieval

black widow
cockroach

tick
starfish

amphibian
fireboat
drilling platform

mushroom

vertible

| agaric

grille | mushroom grape spider monkey

pickup jelly fungus elderberry titi

beach wagon gill fungus r‘loﬂlshln buliterrier indri
fire engine | dead-man's-fingers currant howler monkey

C el monkey

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Fast-forward to today: ConvNets are everywhere

Segmentation

e W O S _\
Figures copyright Clement Farabet, 2012. i icci
Figures copyright Shaoqing Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with permission. & pyrie Reproduced with permission.

[Faster R-CNN: Ren, He, Girshick, Sun 2015]
[Farabet et al., 2012]

Fast-forward to today: ConvNets are everywhere

This image by GBPublic_PR is
licensed under CC-BY 2.0

NVIDIA Tesla line

(these are the GPUs on rye01.stanford.edu)

Note that for embedded systems a typical setup
would involve NVIDIA Tegras, with integrated
GPU and ARM-based CPU cores.

Photo by Lane Mclntosh. Copyright CS231n 2017.

self-driving cars

https://www.flickr.com/photos/gbpublic/8178512552
https://creativecommons.org/licenses/by/2.0/

Fast-forward to today: ConvNets are everywhere

Score
!
[@F
©
»
N Dy
a4 R
—' A g— i
- @ . i
Y o l
: §il

"

Originalimage RGB channels conv0 conv4 --- mixed3/conv -+« mixed10/conv --:- Softmax

[Taigman et a/_ 2014] Activations of inception-v3 architecture [Szegedy et al. 2015] to image of Emma Mclintosh,

used with permission. Figure and architecture not from Taigman et al. 2014.

Spatial stream ConvNet

convi || conv2 || conv3 || conv4 || conv5 || fullé full7 |lsoftmax|
7x7x96 (|5x5x256 || 3x3x512 |[3x3x512 |[3x3x512|| 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
norm. norm. pool 2x2
pool 2x2 || pool 2x2 class

Temporal stream ConvNet

conv1 || conv2 || conv3 || conv4 || conv5 || fullé full7 ft
7xTx96 ||5x5x256 || 3x3x512 || 3x3x512 || 3x3x512|| 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
norm. 22 2x2
multi-frame pool 2x2 e i
_optical flow

input &

Illustration by Lane Mcintosh,

[Simonyan et al 2014] Figures copyright Simonyan et al., 2014. photos of Katie Cumnock used

Reproduced with permission. with permission.

conv2

conv3

https://github.com/tensorflow/models/tree/master/inception

Fast-forward to today: ConvNets are everywhere

[Toshev, Szegedy 2014]

frame: t-3 t-2 t-1 t

HSmearine" . .

[Guo et al. 2014]

Figures copyright Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard Lewis,
and Xiaoshi Wang, 2014. Reproduced with permission.

Fast-forward to today: ConvNets are everywhere

Malignant Malignant

""f'

1%

[Levy et al. 2016] copyright Levy et a. 2016,

R eproduced with permission.

%

NO
PARKINGI{%

Photos by Lane Mclintosh.

[Sermanet et al. Copyright CS231n 2017.

[Dieleman et al. 2014] " EsAttuble, bl coman tuiren mapnicaonan. 2011] [Ciresan et al.]

https://pixabay.com/en/galaxies-overlapping-galaxies-601015/

This image by Christin Khan is in the public domain Photo and figure by Lane Mclntosh; not actual
and originally came from the U.S. NOAA. example from Mnih and Hinton, 2010 paper.

y

Whale recognition, Kaggle Challenge Mnih and Hinton, 2010

No errors

Image
Captioning
[Vinyals et al., 2015]

[Karpathy and Fei-Fei,
2015]

A white teddy bear sitting in A man in a baseball A woman is holding a cat
the grass uniform throwing a ball in her hand

All images are CCO Public domain:
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/surf-wave-summer-sport-litoral-1668716/
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/handstand-lake-meditation-496008/

A man riding a wave on A cat Sitting on a A woman Standing on a https://pixabay.com/en/baseball-player-shortstop-infield-1045263/
top of a surfboard suitcase on the floor beach holding a surfboard Captions generated by Justin Johnson using Neuraltalk?

https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/surf-wave-summer-sport-litoral-1668716/
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/handstand-lake-meditation-496008/
https://pixabay.com/en/baseball-player-shortstop-infield-1045263/
https://github.com/karpathy/neuraltalk2

Original image is CCO public domain
Starry Night and Tree Roots by Van Gogh are in the public domain
Figures copyright Justin Johnson, 2015. Reproduced with permission. Generated using the Inceptionism Bokeh image is in the public domain gatys et a:, “Icmage Islfyle:ransfer uls::ng Conon’:‘JtlonaIISNelu?I Ne:wfrg/;)?/z':;;om
approach from a blog post by Google Research. Stylized images copyright Justin Johnson, 2017; atys et al, “Controlling Perceptual Factors in Neural Style Transfer”,
reproduced with permission

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://pixabay.com/en/san-francisco-california-city-210230/
https://pixabay.com/en/bokeh-abstract-background-blur-21951/

Dall-E 2

“Rabbits attending a college seminar on “A wise cat meditating in the Himalayas
; o in the 1980s ” WMiman anatomy . Ery ' ”
on the moon in the 1980s. human anatomy. searching for enlightenment.

Image source: Sam Altman, hitps.//openai.com/dall-e-2/, hitps./twitler com/samalstatus/1511724264629678084

vibeant porwas patssng of Suvador Dl wieh & nebotic BaY face o e s wearing o Do and Black turthesach & clone op of 4 Mandipelen wih lanes growing (e &

v v e Pt ket (dLeow S e madn wehdsdn

g i ek depe tmg 4 (@ derned o rm b rpeee

2 Boiphen 18 19 weas et o . W rrb v dprdenpey

B e

CLIP objective

“a corgi
playing a
flame =l
throwing
trumpet” 00000
- >
— —_l () -
prior decoder

Ramesh et al., Hierarchical Text-Conditional
Image Generation with CLIP Latents, 2022.

GPT-4

User What is unusual about this image? User Can you explain this meme?
Sometimes | just look at pictures of

the earth from space and | marvel at

how beautiful it all is.

GPT-4 This meme is a joke that combines two unrelated things: pictures of the earth from
space and chicken nuggets.
The text of the meme suggests that the image below is a beautiful picture of the earth
Source: amorams from space. However, the image is actually of chicken nuggets arranged to vaguely
: A " A .. resemble a map of the world,
GPT-4 The unusual thing about this image is that a man is ironing clothes on an ironing board The humor in this meme comes from the unexpected juxtaposition of the text and the
attached to the roof of a moving taxi. image. The text sets up an expectation of a majestic image of the earth, but the image is
actually something mundane and silly.

Image source: https://openai.com/research/gpt-4

Nl h A s) . y ¥ 4 ‘ L - - : 2 ’ . G . ‘ - .(- - . - = -' Y
VLRI F AP e b, oy 30 N T eSO G/ (L NN SR WO, iy € al

Convolutional Neural Networks

Fully Connected Layer
32x32x3 image -> stretch to 3072 x 1

input activation
Wz
1 10 x 3072 110
3072 * /4 10
weights
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

Convolution Layer

32x32x3 image -> preserve spatial structure

32 height

32 width

3 depth

Convolution Layer

32x32x3 image

32

32

5x5x3 filter

Il

Convolve the filter with the image

i.e. “slide over the image
spatially, computing dot
products”

COnVO| Ut|0n Layer Filters always extend the full
32x32x3 image depth of the input volume

e

5x5x3 filter

32

(7
Il Convolve the filter with the image

i.e. “slide over the image
spatially, computing dot
products”

32

Convolution Layer

__— 32x32x3 image

5x5x3 filter w
2
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

] wiz+b

~~ 1 number:

Convolution Layer

32

0

32

Convolution Layer

32

==

32

Convolution Layer

32

Convolution Layer

32

Convolution Layer

activation map

__— 32x32x3 image

5x5x3 filter /
2

=0)
convolve (slide) over all
spatial locations
32 28

Convolution Layer
consider a second, green filter

_— 32x32x3 image activation maps

5x5x3 filter %
=
@>@ :
convolve (slide) over all

spatial locations
32 / 28

Convolution Layer

3x32x32 image

Consider 6 filters,

each 3x5x5

Convolution
Layer

6 activation maps,
each 1x28x28

y

32

32 6Xx3x5x5
3 filters

Slide inspiration: Justin Johnson

il

-’-’-’-’-’-/

Stack activations to get a
6x28x28 output image!

Convolution Layer o
6 activation maps,

each 1x28x28
3x32x32 image Also 6-dim bias vector:

S

Convolution
Layer

32 T /
32 6x3x5x5 S UUU U

3 filters IIIIIIIII[II Stack activations to get a
6x28x28 output image!

Slide inspiration: Justin Johnson

Convolution Layer 28x28 grid, at each

point a 6-dim vector
3x32x32 image Also 6-dim bias vector:

S

Convolution
Layer

32 T /
32 6x3x5x5 S UUU U

3 filters IIIIIIIII[II Stack activations to get a
6x28x28 output image!

Slide inspiration: Justin Johnson

Convolution Layer I%6x28x28

2x3x32x32 Batch of outputs
Batch of images Also 6-dim bias vector:
\ W
Convolution
> "
Layer
32 6X3X5X5 LHEEHE _a_z_z_z_z_/_z_z_z_z_z_

|

|

I

|

3 filters Il

Slide inspiration: Justin Johnson

Convolution Layer NXC_ x H x W

NxC xHxW Batch of outputs
Batch of images Also C_ -dim bias vector:
/ \ W
Convolution
> —
Layer

H
: T 4
/ LYY
W Cox Cx K, XK, Illlllllllll e
C. filters out

Slide inspiration: Justin Johnson

Preview: ConvNet is a sequence of Convolution Layers

32 28

CONV
e.g. 6
5x5x3

filters
32 28

Preview: ConvNet is a sequence of Convolution Layers

32 28 24
CONV CONV CONV
2-95- g e.g. 10
XoX 5x5x6
32 filters 28 filters 24

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation
functions

32 28 24
CONV CONV CONV
RelU RelLU RelLU
2-95- g e.g. 10
XOX 5x5x6
32 filters 28 filters 24

Preview: What do convolutional filters learn?

32 28 .
Linear classifier: One template per class

plane car bird cat deer
. J . . .
horse ship huck

dog frog

+»| Conv | ReLU p»

32

Preview: What do convolutional filters learn?

32

32

Conv

>

RelLU

28

28

MLP: Bank of whole-image templates

LJEA f*h :

Preview: What do convolutional filters learn?

32

32

Conv

>

RelLU

28

First-layer conv filters: local image templates
(Often learns oriented edges, opposing colors)

3x11x11

w

CINEESONIITAFNNE

one filter => one
activation map

Activations: ,

example 5x5 filters
(32 total)

We call the layer convolutional
because it is related to convolution
of two signals:

fleylsgleyl = Y, D fln.nl-glx—n,y—n,]

elementwise multiplication and sum of a
filter and the signal (image)

RELU RELU RELU RELU RELU RELU

CONV lCONVl CONV lCONVl CONV lCONVl FC

z

RNRRNNY

:

— — ’v'.‘

-4 | o i
#r
o)

e ulid -
.,.;_ _—;: = o I
- i

=R
|

R
=

7

[

Ll

A closer look at spatial dimensions:

activation map

32x32x3 image
5x5x3 filter

V

=0)
convolve (slide) over all

spatial locations

32 28

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter

=> 5x5 output

A closer look at spatial dimensions:

7
/X7 input (spatially)

assume 3x3 filter
applied with stride 2

A closer look at spatial dimensions:

7
/X7 input (spatially)

assume 3x3 filter
applied with stride 2

A closer look at spatial dimensions:

7
/X7 input (spatially)

assume 3x3 filter
applied with stride 2
=> 3x3 output!

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter
applied with stride 3?

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter
applied with stride 3?

doesn’t fit!
cannot apply 3x3 filter on
/X7 input with stride 3.

Output size:
(N - F) / stride + 1

eg.N=7,F=3:
stride1=>(7-3)/[1+1=5
stride2=>(7-3)/2+1=3
stride 3=>(7-3)/3+1=2.33:\

In practice;: Common to zero pad the border

e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?

(recall:)
(N - F)/ stride + 1

In practice;: Common to zero pad the border

e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?
0

7x7 output!

(recall:)

(N + 2P - F) / stride + 1

In practice;: Common to zero pad the border

e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?
0

7x7 output!

in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)

e.g. F = 3 => zero pad with 1
F =5 => zero pad with 2
F =7 => zero pad with 3

Remember back to...

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

32

32

CONV

RelLU
e.g. 6
ox5x3
filters

6

28

28

CONV

RelLU
e.g. 10
5x5x6
filters

10

24

CONV

RelLU
24

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?

N

N

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size:
(32+2%2-5)/1+1 = 32 spatially, so
32x32x10

AN

A\

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

N

N

Examples time: / /

Input volume: 32x32Xx
10 5x5 filters with stride 1, pad 2 i

<
<

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params (+1 for bias)
=> 7610 =760

Receptive Fields

For convolution with kernel size K, each element in the
output depends on a K x K receptive field in the input

Input Output

Slide inspiration: Justin Johnson

Receptive Fields

Each successive convolution adds K — 1 to the receptive field
size with L layers the receptive field sizeis 1 +L* (K- 1)

Input Output

Be careful — "receptive field in the input” vs. “receptive field in the previous layer”

Slide inspiration: Justin Johnson

Receptive Fields

Each successive convolution adds K — 1 to the receptive field
size With L layers the receptive field sizeis1+L* (K- 1)

Input Output

Problem: For large images we need many
layers for each output to “see” the whole image
image

Slide inspiration: Justin Johnson

Receptive Fields

Each successive convolution adds K — 1 to the receptive field
size With L layers the receptive field sizeis 1 +L* (K- 1)

Input problem: For large images we need many Output
layers for each output to “see” the whole image
image

Slide inspiration: Justin Johnson

Solution: Downsample inside the network

Solution: Strided Convolution

7
/X7 input (spatially)

assume 3x3 filter
applied with stride 2

Solution: Strided Convolution

7
/X7 input (spatially)

assume 3x3 filter
applied with stride 2

=> 3x3 output!

Convolution layer: summary

Let's assume inputis W, x H, x C Conv layer needs 4
hyperparameters:

- Number of filters K

- The filter size F

- The stride S

- The zero padding P

This will produce an output of W, x H,x K where:
- W,=(W,-F +2P)/S + 1
- H,=(H,-F +2P)/S + 1

Number of parameters: F? C K and K biases

Convolution layer: summary

Common settings:

,)) e K= (powers of 2, e.q. 32, 64, 128, 512)
Let's assume inputis W, x H, x C

Conv layer needs 4 hyperparameters:
- Number of filters K
- The filter size F
- The stride S
- The zero padding P

e F=3,S=1,P=1
e F=5S=1,P=2
e F=5 S=2 P=7(whatever fits)
e F=1,8S=1,P=0

This will produce an output of W, x H, x K
where:

- W,=(W,-F +2P)/S + 1

- H,=(H,-F +2P)/S + 1

Number of parameters: F°CK and K biases

(btw, 1x1 convolution layers make perfect sense)

64

56

56

1x1 CONV
with 32 filters

(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

32

56

56

(btw, 1x1 convolution layers make perfect sense)

L

64

56

56

1x1 CONV
with 32 filters

(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

32

56

56

Example: CONV layer in PyTorch

Conv layer needs 4 hyperparameters:

Number of filters K
The filter size F
The stride S

The zero padding P

Conv2d

CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0,

[SOURCE

dilation=1, groups=1, bias=Tzrue)
Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size (N, Ciy, H, W) and output
(N, Couty Houty Wyt) can be precisely described as:

Ciu—1
out(Ni, Cou,) = bias(Cour,) + Y, weight(Cou, , k) % input(N;, k)
k=0
where * is the valid 2D cross-correlation operator, N is a batch size, C' denotes a number of channels, Hisa height of

input planes in pixels,and W is width in pixels.

¢ stride controls the stride for the cross-correlation, a single number or a tuple.
* padding controls the amount of implicit zero-paddings on both sides for padding number of points for each
dimension.
¢ dilation controls the spacing between the kernel points; also known as the a trous algorithm. It is harder to
describe, but this link has a nice visualization of what dilation does.
e groups controls the connections between inputs and outputs. in_channels and out_channels must both be
divisible by groups. For example,
o Atgroups=1, all inputs are convolved to all outputs.
o At groups=2, the operation becomes equivalent to having two conv
layers side by side, each seeing half the input channels, and producing
half the output channels, and both subsequently concatenated.

o Atgroups= in_channels, each input channel is convolved with its

own set of filters, of size: [%‘kJ i

The parameters kernel_size, stride, padding, dilation can either be:

« asingle int - in which case the same value is used for the height and PyTorch is licensed under BSD 3-clause.
width dimension
* a tuple of two ints - in which case, the first int is used for the height

dimension, and the second int for the width dimension

https://pytorch.org/
https://github.com/pytorch/examples/blob/master/LICENSE

The brain/neuron view of CONV Layer

__— 32x32x3 image

5x5x3 filter
2
\ 1 number:

32 the result of taking a dot product between
the filter and this part of the image
(i.e. 5*5*3 = 75-dimensional dot product)

The brain/neuron view of CONV Layer

__— 32x32x3 image LW~
5x5x3 filter e
/j%f%//////’/////// cell body
Zwia:i+b

output axon

activation
function

1 number:

32 the result of taking a dot product between
the filter and this part of the image
(i.e. 5*5*3 = 75-dimensional dot product)

\ It's just a neuron with local
connectivity... p

The brain/neuron view of CONV Layer

32

L 28 E.g. with 5 filters,

Il O O O O () CONYV layer consists of
neurons arranged in a 3D grid
(28x28x5)

There will be 5 different
32 28 neurons all looking at the same
region in the input volume

Reminder: Fully Connected Layer
Each neuron

32x32x3 image -> stretch to 3072 x 1 looks at the full

iInput volume
input activation
Wz
1 10 x 3072 110
3072 * 10
weights
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

RELU RELU RELU RELU RELU RELU
CONV |CONV CONV [CONV CONV [CONV FC

My KN

-
= ¥

RN

§
|

E

R
=

7

[

Ll

https://cs231n.github.io/assets/conv-demo/index.html

Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently

224x224x64

112x112x64

pool

.—>

l

\

224

: =-l!!|112
downsampling
112

MAX POOLING

Single depth slice

11124
max pool with 2x2 filters
5| 6|7 |8 and stride 2
312|110
1123 | 4

MAX POOLING

Single depth slice

« 1112 | 4
max pool with 2x2 filters
5| 6 |7 |8 and stride 2 6 | 8
312]|1]0 3|4
1 2|3 |4 * No learnable parameters

* Introduces spatial invariance

Pooling layer: summary

Let's assume inputis W, x H, x C
Conv layer needs 2 hyperparameters:
- The spatial extent F
- The stride S

This will produce an output of W, x H, x C where:
- W,=(W,-F)/S+1
- H,=(H,-F)/S +1

Number of parameters: O

Fully Connected Layer (FC layer)

Contains neurons that connect to the entire input volume, as in ordinary Neural
Networks

ERARERL) RELU RELU RELU RELU
CONV | CONV CONVl CONVlCONVl

'

'

-
-
-
Y
i
s
|
-

[ConvNetdS demo: training on CIFAR-10]

ConvNetJS CIFAR-10 demo

Description

input (32x32x3)
max activation: 0.34313, min: -0.49608
max gradient: 0.04754, min: -0.0368

Activations:

¥

This demo trains a Convolutional Neural Network on the CIFAR-10 dataset in your browser, with nothing but
Javascript. The state of the art on this dataset is about 90% accuracy and human performance is at about 94%
(not perfect as the dataset can be a bit ambiguous). | used this python script to parse the original files (python
version) into batches of images that can be easily loaded into page DOM with img tags.

This dataset is more difficult and it takes longer to train a network. Data augmentation includes random flipping
and random image shifts by up to 2px horizontally and verically.

By default, in this demo we're using Adadelta which is one of per-parameter adaptive step size methods, so we
don't have to worry about changing learning rates or momentum over time. However, | still included the text fields
for changing these if you'd like to play around with SGD+Momentum trainer.

Report questions/bugs/suggestions to @karpathy.

conv (32x32x16)

filter size 5x5x3, stride 1

max activation: 1.42613, min: -1.28123
max gradient: 0.03521, min: -0.03962
parameters: 16x5x5x3+16 = 1216

Activations:

-HaeE

Activation Gradients:

Weights:
LIV TR BE]
Weight Gradients:

CLLTRL Ll ST L]

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

AlexNet

227

(227-11)/4 +1
=55

CONV
11x11,
stride=4,
96 kernels

—_—

CONV
3x3,pad=1

384 kernels
(13+2*1-3)1
+1 =13

13

13

384

Overlapping
Max POOL
3x3, 9
stride=2

—_

(55-3)/2 +1
=27

CONV
3x3,pad=1
256 kernels
(13+2*1-3)/1
+1 =13
13

(27+2°2-5)/1
+1 =27

Overlapping
CONV Max POOL CONV
5x5,pad=2 3x3, 256 3x3,pad=1
256 kernels stride=2 384 kernels
(27-3)/2 +1 (13+2°1-3)/1
=13 13 +1 =13
13

—_—

e Q) O
Max POOL
3x3, 256 O
stride=2
(13-3)/2 +1 FC : FC : :
- i ;

; Ol 10| |©

6
9216 O O 1000
Softmax
4096 4096

Conv1 Parameters

W.=K?xC x N
B.=N
P.=W,.+ B,

AlexNet Conv-1

227%227 X3

W, =112 x 3 x 96 = 34,848
B, =96
P. = 34,848 + 96 = 34, 944

FC layer parameters

MAX-POOL O
_' :) _’ .
-8 .
O
b 6x6 X256 9216

A &

v (=L
—_ i _’O
Softmax

1000
9216 4096 4096

QO

I/Ifff — F—l x F
Byp=F

I"ch = 0% x N x F
B.f=F
Puj=We + Bes

Wer = 62 x 256 x 4096 = 37,748,736
B.y = 4096
P.; =W, + By = 37,752,832

Wgr = 4096 x 1000 = 4,096,000
By =1,000
Pff = I’fo + Bff Psr=Wyp+ Bpp = 4,097,000

Total parameters

Layer Name
Input Image
Conv-1
MaxPool-1
Conv-2
MaxPool-2
Conv-3
Conv-4
Conv-5
MaxPool-3
FC-1

FC-2

FC-3
Output

Total

Tensor Size

227x227x3

55x55x96

27x27x96

27x27x256

13x13x256

13x13x384

13x13x384

13x13x256

6x6x256

4096x1

4096x1

1000x1

1000x1

Weights
0

34,848

614,400

0

884,736
1,327,104
884,736

0
37,748,736
16,777,216
4,096,000

0

Biases

96

256

384

384

256

4,096

4,096

1,000

0

Parameters

34,944

614,656

0

885,120
1,327,488
884,992

0
37,752,832
16,781,312
4,097,000
0

62,378,344

CNN Architectures

Image Maps

Input

Convolutions

Output

dense

128 Max -
Max 128 Max pooling 2 2048
pooling pooling

3
Fully Connected

Subsampling

Filter

concatenation
F E—
1x1 3x3 5x5 1x1
convolution convolution convolution convolution ‘
=4
t t ! A
1x1 1x1 3x3 max g- 3 : E
convolution convolution pooling 5 8
(5] K
o 2
Previous Layer - e

Summary

-ConvNets stack CONV,POOL,FC layers

- Trend towards smaller filters and deeper architectures

- Trend towards getting rid of POOL/FC layers (just CONV)

- Historically architectures looked like
[(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX
where N is usually up to ~5, M is large, 0 <= K <= 2.

-But recent advances such as ResNet/GooglLeNet have
challenged this paradigm

