3 Basic Functional Analysis

Functional Analysis emerged as a coherent field of mathematics in the first four decades
of the 20th century. It provided a unified framework to treat different objects using ab-
straction and axiomatization. The main idea is to view functions as points, respectively
elements, of an abstract space endowed with certain structures that are axiomatically
defined. This way mathematicians were able to “escape” from the usual finite dimen-
sional Euclidean spaces and consider infinite dimensional function spaces. The starting
point was the thesis of Fréchet in 1906 who introduced the abstract notion of “metric
space” — a concept that was influential in the development of both functional analysis
and point set topology. The work of Fréchet was the culmination of the efforts and
contributions of many prominent mathematicians from France, Germany, and Italy.
Combined with the revolution of measure theory this provided a fertile ground for the
development of functional analysis. The prominent figure in the story is that of the
Polish mathematician Stefan Banach (1892-1945).

In this chapter, we review the basic notions and results of “Linear Functional
Analysis.” Moreover, we touch on “Operator Theory” and in particular, we discuss the
spectral properties of compact self-adjoint operators on a Hilbert space.

3.1 Topological Vector Spaces, Hahn—Banach Theorem

We start with the basic notion of a topological vector space. Recall that a vector space
or linear space is a set X equipped with two operations + : X x X — X defined by
(x, u) — x + u called the vector addition and - : K x X — X defined by (A, x) —» A-x
called the scalar multiplication where K = R or K = C.

Definition 3.1.1. A topological vector space is a vector space endowed with a Haus-
dorff topology 7, which makes the two vector space operations above continuous. Then
we say that 7 is a vector topology on X.

Remark 3.1.2. Continuity of vector addition means that if x,u ¢ Xand V € tisa
neighborhood of x + u, thatis, V € N(x + u), then there exist U, € N(x) and U, € N(u)
such that Uy + U, ¢ V. Similarly the continuity of the scalar multiplication implies
that if (1, x) e Kx X with K = Ror K = C and V € N(Ax), then there exist € > 0 and
Uy € N(x) such that uUy < V forall |[u — A| < €. Moreover, for a given x € X and a given
A € K we introduce

Tw)=x+u forallueX (the translation operator) ,

My(u)=Au forallu e X (the scalar multiplication operator) .

Clearly, these operators are homeomorphisms of X onto X. It follows that the vector
topology Tt is translation invariant, that is, U € t ifand only if x + U € 7 for all x € X.
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Hence, 7 is completely determined by any local basis, in particular by the local basis at
the origin. If the vector topology is induced by a metric d, then the metric is invariant,
thatis, d(x+v,u+v)=d(x,u) forall x, u, v € X.

An immediate consequence of these observations is the following simple lemma.

Lemma 3.1.3. Let (X, T) be a topological vector space.

(@) ForallU,V e Tand forall A € Kit follows U + V € Tand AU € 1.

(b) fAcXandU e 1,thenA + U = A + U and it is open.

(¢c) IfK c X is compact and C c X is closed, then K + C < X is closed.

(d) IfKi, K, < X are compact sets, then K, + K, < X is compact.

(e) Ifp: X — Ris linear, then ¢ is continuous if and only if ¢ is continuous at x = 0.

Proof. (a), (b), and (e) are clear. (c) Let {vq}aer € K + C be a net such that vy, — v.
We have that v, = x4 + u, with x4, € Kand v, € C for all @ € I. The compactness
of K implies that there exists a subnet {xg}ge; of {Xa}acs Such that x3 — x € K; see
Proposition 1.4.45(c). Then ug = vg - xg — v - x = u € C since C is closed; see
Proposition 1.2.36. Therefore v = x + u with x € K and u € C. Hence, we conclude that
K + Cis closed.

(d) Since “+” is continuous on X x X and K; x K, ¢ X x X is compact (see Theo-
rem 1.4.56) we conclude that + (K xK>) = K1 +K, <€ Xiscompact; see Theorem 1.4.51. [

Remark 3.1.4. The algebraic sum of two closed sets need not be closed. In R? equipped
with the usual Euclidean metric, we consider the sets

C = {(x,%):xe]R\{O}} and C ={(u,0): ucR}.

Then both are closed in R? but C1 + C» = {(x + u, 1/x) : x € R\ {0}, u € R} is not closed
inR x R.

Remark 3.1.5. Let X, Y be two vector spaces. Recall thatamap A: X — Yiscalled a
linear function if it is additive and homogeneous, that is,

Ax+y)=Ax)+A(y) forallx,ye X,
A(Ax) =AA(x) forallAl e Kandforallx € X.

By N(A) we denote the kernel of A, that is, N(A) = {x € X: A(x) = 0} and by R(4) the
range of A, that is, R(A) = {A(x): x € X}.

Now we introduce certain classes of sets that are important in the study of topological
vector spaces.

Definition 3.1.6. Let X be a vector space and A ¢ X.

(a) We say that A is convex if for all x, u € A and A € [0, 1], it holds (1 — A)x + Au € A.

(b) We say that A is absorbing if for any x € X thereis t = t(x) > O such that x € tA.
So every absorbing set contains the origin.
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(c) We say that A is balanced if AA ¢ A for all A € K with |A] < 1.
(d) We say that A is symmetric if A = —A.

Lemma 3.1.7. If (X, ) is a topological vector space and V € N(0), then there exists a
symmetric set U € N(0O) suchthat U+ U c V.

Proof. The continuity of the vector addition operation implies that there exist Uy, U, €
N() such that Uy + U, € V.Let U = U; n (-Uy) N U, n (=U3). Then U € N(0) is
symmetricand U+ U c V. O

Proposition 3.1.8. If (X, 1) is a topological vector space, K < X is compact, C < X is
closed, and K n C = 0, then there exists U € N(0) such that (K + U)n (C + U) = 0.

Proof. We assume that K # 0 or otherwise the result is obvious. Let x € K. Applying
Lemma 3.1.7 there is a symmetric U, € N(0) such that (x + Uy + Uy + Uy) N C = 0. Exploit-
ing the symmetry of Uy it follows that (x + Uy + Uy) N (C + Uy) = 8. The compactness
of K implies that there exist {x,}I"; ¢ K such that K < [Ji_;(xn + Uyx,). Let U =
e, Uy, € N(0). Then

m m

K+Uc | J0n+ Uy, +0) < | JOn+ Uy, +Uy,) .
n=1 n=1
We conclude that (K + U) n (C + U) = 0. O

Note that K + U is an open set containing K and C + U is an open set containing C; see
Lemma 3.1.3(b). Taking K to be a singleton we obtain the following result.

Corollary 3.1.9. Every topological vector space is regular; see Definition 1.2.7.

Proposition 3.1.10. Let (X, T) be a topological vector space.

(b) IfA,Cc X, thenA+CcA+C.

(c) IfA c X is convex, then int A and A are convex.

(d) IfA c X is balanced, then A is balanced and when O € int A, then int A is balanced.

Proof. (a) We know that x € A if and only if (x + U) n A # @ for all U € N(0). Hence,
x € Aifand onlyif x € A — U for every U € N(0). But U € N(0) if and only if -U € N(0).
(b) Let x € A, u € Cand let V € N(x + u). Then there exist Vy € N(x), Vy, € N(u)
such that V, + V, ¢ V. Then choose x' € An V, and u’ € C n V. The existence follows
sincex e Aandu € C. Then x’ + u' € (A + C) n V. Since V € N(x + u) we conclude that
x+ueA+C,thusA+CcA+C.
(c) Since int A ¢ A and A is convex, it follows that

(1-A)intA+AintAcA forallAe(0,1). (3.1.1)
Note that the left-hand side in (3.1.1) is an open set and so

(1-A)intA+AintA cintA forallde (0,1).
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Hence, int A is convex. For A € (0, 1), due to part (b) and since A is convex, one gets
1-MDA+AA=1-NA+AAc(1-NA+AACA.

Therefore A is convex.

(d) The proof that A is balanced is similar to the proof of part (c).

Let A € Kbe such that O < |A] < 1. Since A is balanced, we derive Aint A = int AA ¢
AA ¢ A, which shows that Aint A ¢ A. Moreover, since O € int 4, for A = 0, it follows
that Aint A ¢ int A and so int A is balanced. O

This leads to the following structural result for the topology of X.

Proposition 3.1.11. Let (X, 1) be a topological vector space.
(@) Every V € N(0) contains a balanced U € N(0).
(b) Every convex V € N(0) contains a balanced convex U € N(0).

Proof. (a) Let V € N(0). Exploiting the continuity of the scalar multiplication operation,
there exist § > 0 and U € N(0) such that AU c V for all A € K with |A| < . Let U be the
union of all these sets AU. Evidently, U € N(0), U is balanced and U ¢ V.

(b) Let V € N(0) be convex. Let A = (=1 AV. Applying part (@), let U € N(0)
be balanced such that U ¢ V. We have A"1U = U for all A € K with |A| = 1. Hence
U < AV and thus U ¢ A. This means that U ¢ intA € N(0). Moreover, intA c V.
The set A is convex, being the intersection of convex sets. Hence, int A is convex; see
Proposition 3.1.10(c). We claim that int A is balanced. According to Proposition 3.1.10(d)
it suffices to show that A is balanced. To this end, let t € [0, 1] and y € K with |u| = 1.
Then, since AV € N(0) is convex,

tuA= () tuAV= () tAVc [ AV.
Al=1 [Al=1 IAl=1
Therefore, tuA < A and so A is balanced. We conclude that U = int A € N(0) is the
desired balanced and convex neighborhood of the origin. O

Corollary 3.1.12. Every topological vector space has a local basis consisting of balanced
sets.

We introduce some particular types of topological vector spaces depending on the
structure of the local basis.

Definition 3.1.13. Let (X, 7) be a topological vector space.

(@) AsetA c Xissaid to be bounded if for every U € N(0) there is a ty > 0 such that
ActUforallt > ty.

(b) We say that X is locally convex if it has a local basis B consisting of convex sets.

(c) We say that X is locally bounded if it has a bounded set in N(0).

(d) We say that X is Fréchet if it is locally convex and the topology T is induced by a
complete translation invariant metric d.

(e) Anorm on X is a real function | - || such that
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(e)1 x|l = 0 for all x € X and ||x|| = 0 if and only if x = 0;

(e)2 lIAx] = |Allx|l for all (A, x) € K x X;

(@3 lIx + ull < x|l + lull for all x, u € X, which is called triangle inequality.

X equipped with a norm is called a normed space. The norm defines a translation

invariant metric d(x, u) = ||x — u|. If (X, d) is complete, then X is a Banach space.
(f) We say that X is normable if 7 is generated by the metric induced by a norm.

Remark 3.1.14. If X is locally bounded, then it is first countable. Indeed, if U € N(0) is
bounded and r,, — 0%, then {r,, U},en is a local basis for the origin.

Finite dimensional vector spaces exhibit some distinguishing properties. The
Euclidean norm on X being finite dimensional with dim X = n is defined by

N|—=

n
Ixl2 = (Z |ku2> forallx = (x)}f_, € X.

k=1

The topology on X induced by | - ||, is known as the Euclidean topology. It turns out
that the Euclidean space is the prototype of a n-dimensional vector space.

Definition 3.1.15. Let X be a vector space and let || - |, | - | be two norms on X. We say
that these norms are equivalent if there exist constants 7 > m > 0 such that

mlx|| < |x| < nlx] forallx e X.
Remark 3.1.16. Equivalence of norms is an equivalence relation and equivalent norms
generate the same topology on X.
Proposition 3.1.17. In a finite dimensional vector space any two norms are equivalent.

Proof. Let X be the n-dimensional vector space with norm ||-|| and consider R" equipped
with the norm | - ||». Let {ek};zzl ¢ X be a basis for X and consider the linear map
A: R" - X defined by

n
AQ) = ) Arer forall A= (A)}_, € R".
k=1

It is easy to see that A is an isomorphism. Moreover, we obtain the estimate

1

A < Y Axlllexl < <Z |Ak|2> <Z ||ek||2) < Al (3.1.2)
k=1

k=1 k=1

withn = (X}, ||ek||2)1/ 2, Therefore, A is continuous.
In addition, let £ = || - || e A: RY — R, that s,
n
Z Akek
k=1

&R = forall A = (A)f_; e RV. (3.1.3)
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Of course, ¢ is continuous. Moreover, 0B; = {A € RN : ||A|, = 1} is closed and bounded,
and thus compact; see Theorem 1.5.38. Hence, there exists 1* € 0B; such that

§A*) = Aieggl (AN =m=0;

see Theorem 1.4.52. If m = 0, then | Y}_; A;ex| = O (see (3.1.3)), a contradiction since
A* € 0B1. Hence, m > 0 and we get

mlAl; < |AQQ)|| forallA e R™. (3.1.4)

From (3.1.2) and (3.1.4) we infer that X and R" are linearly homeomorphic and so we
conclude that any two norms on X are equivalent. O

Corollary 3.1.18. Every finite dimensional normed space is complete, thus a Banach
space.

Corollary 3.1.19. Every finite dimensional subspace of a normed space is closed.

Next we will give a characterization of finite dimensional normed spaces in terms of the
topological properties of the closed unit ball B; = {x € X: |x|| < 1}. First we need an
auxiliary result known as the “Riesz Lemma.”

Lemma 3.1.20 (Riesz Lemma). If X is a normed space, Y < X is a proper, closed vector
subspace, and 0 < 9 < 1, then there exists xg € (X \ Y) N 0By such that d(xg, Y) = 3.

Proof. Letu € X\ Y. Since Y is closed it holds that d(u, Y) = m > 0. We choosey € Y
such that |u - y| < m/9 and set xg = (u — y)/(lu — y|l) € 0B1. Then for every v € Y it
follows that

1
xg-V]|=——Iu-(y+v|u- . (3.1.5)
lxg — vl Y lu-(+viu-ybl

Note that y + v|u — y|| € Y. Therefore, from (3.1.5) and the choice of y € Y, it results in
lxg = vl =m/(m/9) = §. O

Applying this lemma, we have the following characterization of finite dimensional
normed spaces.

Theorem 3.1.21. A normed space X is finite dimensional if and only if B is compact.

Proof. =: This direction follows from Theorem 1.5.38.
&: The set B is totally bounded; see Remark 1.5.32. Hence, there is {xx}}_, < B1
such that

El c LnJ (Xk + B%> (3.1.6)
k=1

withBip = {x € X: |Ix]| < 1/2}. Let Y = span{xk},’zzl. The Corollary 3.1.19 implies that
Y ¢ Xis closed. Suppose that Y # X. Then by Lemma 3.1.20 we find x € (X \ Y) n 0B;
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such that
dx, V)2 9> % . (31.7)

Comparing (3.1.6) and (3.1.7) we reach a contradiction. Hence X = Y and so X is finite
dimensional. O

Proposition 3.1.22. If X is a finite dimensional normed space, Y is a normed space and
L: X — Y is a linear map, then L is continuous.

Proof. Suppose dimX = n and let {ek}x=1 be a basis for X. Since L is linear, we de-
rive for x = Y;_; Axex € X with Ay € K that L(x) = Y_; AL(ex). Hence |L(x)|ly <
Yo Alllexllx < M (Y., |/lk|2)1/ 2 by the Bunyakowsky—Cauchy—Schwarz inequality
for finite sums with M = (2221 ||L(ek)||§)1/2. On the other hand we know from Propo-
sition 3.1.17 the existence of m > 0 such that ||A|]> < 1/m|x||x where A = ()lk);}=1 € R".
Therefore, it follows ||L(x)|ly £ M/m|x|x. Hence L is continuous. O

Remark 3.1.23. In particular, if X is a finite dimensional normed space, then every
linear functional f: X — R is continuous. In fact the converse is true as well.

We conclude our discussion of finite dimensional topological vector spaces with a result
closely related to Theorem 3.1.21. It says that there are no infinite dimensional locally
compact topological vector spaces.

Proposition 3.1.24. A topological vector space (X, T) is locally compact if and only if X
is finite dimensional.

Proof. =: Let U € N(0) be relatively compact. So there is {xx};_; < U such that
_ n 1 1
UgU(xk+—U>={x1,...,xn}+—U. (3.1.8)
e 2 2
Let span{xy};_,. Then from (3.1.8) it follows
1— 1 1
—_Uc= _ = —U.
Tes [Y + U] Y+—U

22

By induction we have
— 1
Uc Y+ﬁU foralln e N. (3.1.9)

We fix x € U. Then from (3.1.9) we see that x = y, + 1/2"u, with y, € Y, u, € U and
n € N. Since U is relatively compact we find a subnet {ug}ge; of {un}nenw such that
ug — u. Moreover, 1/2# — 0. Hence, yg = x - (1/2P)ug — x € Y. Therefore U c Y and
since U is absorbing, we conclude that X = Y. Hence, X is finite dimensional.

<: Since X is finite dimensional, we see that X is linearly homeomorphic to
(R™, | - I2). As X is a normed space, invoking Theorem 3.1.21, we get that B; is compact.
Thus, X is locally compact. O



186 —— 3 Basic Functional Analysis

Proposition 3.1.25. If (X, 1) is a topological vector space and A < X, then the following
statements are equivalent:

(a) A is bounded; see Definition 3.1.13(a).

(b) If{xntn>1 € A and {Ay}ns1 € Kwith A, — 0, then Apx, — 0in X.

Proof. (a) = (b): Let U € N(0) be balanced; see Corollary 3.1.12. Then A < tU for some
t > 0. Suppose {xu}n>1 € A and {A;}n>1 € Ksuch that A, — 0. Then there exists ng € N
such that |A,|t < 1 for all n > ng. Since U is balanced, it follows A, x, = A, t1/tx, € U
for all n > ng. We conclude that A,x, — Oin X asn — oo.

(b) = (a): Arguing by contradiction suppose that A is not bounded. Then there
exist t, — +ooand U € N(0) such that (X \t,U)NA # 6foralln ¢ N.Letx, € A
with x,, ¢ t,U for all n € N. We have 1/t,x, ¢ U for all n € N. Hence 1/t,u, does not
converge to 0, a contradiction to our hypothesis. O

Next we take a closer look at convex sets. In Proposition 3.1.10(c) we saw that the interior
and the closure of a convex set remain convex. In fact we can say more.

Proposition 3.1.26. If X is a topological vector space, C € X isa convexsetand0 <t < 1,
then (1 - t)int C + tC < int C.

Proof. Fort = 0, the result is trivially true. So, suppose that 0 < t < 1 and let x € int C
and u € C. Then there exists U € N(0) such that x + U c C. Note that u — (1 - t)/tU €
N(u) and so there exists y € Cn (u — (1 — t)/tU). Therefore t(u — y) € (1 — t)U. Let
V=@Q-t\(x+U)+ty=(1-t)x+ (1 -t)U + ty. This is a nonempty opensetand V ¢ C
due to the convexity of C. One gets

A-tx+tu=A-t)x+tlu-y)+tye(1-t)x+(Q1-t)U+ty=VcC,
which gives (1 — t)x + tu € int C. O

Proposition 3.1.27. If X is a topological vector space and C < X is convex, thenint C = C
and int C = int C.

Proof. From Proposition 3.1.26 it follows (1 — t)intC + tC < intC forall 0 < t < 1.
Letting t — 1~ gives C = int C.

Let u € int C and x € int C. Then there exists U € N(0) such that x + U < C. Since U
is absorbing there exists 9 € (0, 1) such that 9(x—u) € U. Then x+9(x-u) € C. Applying
Proposition 3.1.26 gives x — 9(x — u) = (1 — 9)x + Ju € int C. Applying Proposition 3.1.26
again yields

1 1
X = 5[X—-9(x—u)]+§[x+8(x—u)] eintC.
This shows int C < int C < int C and so int C = int C. O

Remark 3.1.28. Usually, sets C satisfying int C = C and int C = int C are called regular.

Clearly the intersection of any family of convex sets is again convex. So we can state the
following definition.
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Definition 3.1.29. Let X be a vector space and A < X a nonempty set. The convex hull
of A, denoted by conv A, is the intersection of all convex sets that contain A. Therefore,
conv A is the smallest convex set containing A. An alternative description is given by

n n
convA:{xeX:ElxkeA,tkzo,kz1,...,nwith Ztkzl,x=2thk} )
k=1 k=1

That is, conv A is the set of all convex combinations of elements in A. If X is a topological
vector space, the closed convex hull of A, denoted by conv 4, is the set conv A.

For finite dimensional vector spaces, the convex hull of a set is described more precisely
by the so-called “Carathéodory Convexity Theorem.”

Theorem 3.1.30 (Carathéodory Convexity Theorem). If X is an m-dimensional vector
space, A € X, and x € conv A, then x is the convex combination of at most (m + 1)-
elements of A.

Proof. From Definition 3.1.29 we know that x = Y}_; tixx with t; > 0,xi € A, k =

1,...,nand Y;_, t; = 1. Without any loss of generality we may assume that t; > O for
alk=1,...,n.
Suppose that n > m + 1, then {x) — x1}}_, must be linearly dependent. Hence, there
exist 2, ..., Bm € Rnot all of them equal to zero such that
n n
Zﬁkxk—<2ﬁk>xl =0.
k=2 k=2
Thus, there are 171, . .., nn € R not all of them equal to zero such that Y}_; nixix =0
and Y;_, i = 0.
We set
I, ={ke{l,...,n}: ni >0}, I_={ke{l,...,n}: ni <0},

.tk
= —_—, = k I . —_ = .
U rlgll? " J={kel,: ty — uny = 0}

The sets I, I_ and J are nonempty and u > 0. One obtains
n n
X = Z tkXy = Z(tk — UNK)Xk = Z(tk — UNK)Xk (3.1.10)
k=1 k=1 keJ

If k€ I,,then ty —unix >0.1fk € I_, then tx — unyx > 0.If k € I, \ J, then t; — uni > O.
Moreover, we get

n n n
Yt-pm) =Y ti—p Y me=1. (3.1.11)
k=1 k=1 k=1

From (3.1.10) and (3.1.11) we see that x is written as a convex combination with positive
weights of n’ elements with n’ < n. We repeat this process until n’ < m + 1. O



188 — 3 Basic Functional Analysis

Corollary 3.1.31. If X is an m-dimensional topological vector space and K < X is compact,
then conv K < X is compact as well.

Proof. LetD = {(t1, ..., tme1): tk 2 0,k =1,...,m+ 1, Y tx = 1} ¢ R™! and
consider the map &: R™*1 x (]! X = X) — X defined by

m+1
f((tk)?:ll, ) S Xm+1) = z kX .
k=1

It is easy to see that & is continuous. Since D ¢ R™"! and [[{*{'(Ck = K) ¢

el (Xx = X) are both compact, we get that Dx ([]f-' Ci = K) is compact as
well and so é(D, K, ...,K) ¢ X is also compact. But according to Theorem 3.1.30,
éD, K,...,K)=conv K. Hence, conv K < X is compact. O

The corollary fails in infinite dimensional topological vector spaces.

Example 3.1.32. Let ¢ = {(Xn)n>1: Xn € Rforall n € N with x, — 0} furnished with
the norm [|(x,)ns>1ll = sup{|xn|: n € N}. Then cq is a Banach space. Let ui, = (6x,n1/n)
with 8y, being the Kronecker delta. Evidently &, € co for all n € N. Let K = {i1,} U {0}.
Then K ¢ ¢ is compact, but

N 1. .
u=Z—unecoan, u¢conv K.
12k
n=

Thus, conv K is not closed, hence it is not compact.

In the next definition we extend the notion of total boundedness (see Definition 1.5.31),
to general topological vector spaces that are not necessarily metrizable.

Definition 3.1.33. Let X be a topological vector space with a local basis B. Aset A ¢ X
is said to be totally bounded if for every U € B there exists a finite subset F < X such
that A c F+ U.

Remark 3.1.34. The following assertions are easy to see:

(a) A totally bounded set is bounded; see Definition 3.1.13(a).
(b) The closure of a totally bounded set is totally bounded.
(c) Compact sets are totally bounded.

Proposition 3.1.35. If X is a locally convex space and A < X is totally bounded, then
conv A is totally bounded.

Proof. Let U € N(0) be convex. Since A is totally bounded, there exists a finite F ¢ X
such that A € F+1/2U. Corollary 3.1.31 implies that conv F is compact. Let x € conv A.
Then

n n
X:Zthk with thO,XkEA,kzl,...,n,ztk=1.
k=1 k=1
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Forevery k € {1, ..., n} thereis uy € F such that xx € ux + 1/2U. Then one gets

n n
1
X = te (X — ug) + tiug € =U + conv F

since U is convex. Hence
1
conv A c conv F + EU . (3.1.12)

As we already remarked, conv F ¢ X is compact. Thus, we find a finite set FE ¢
conv F such that conv F ¢ E + 1/2U, which gives, due to (3.1.12) and the fact that U is
convex, that conv A ¢ E + U and so we see that conv A is totally bounded in the sense
of Definition 3.1.33. O

From this proposition we deduce the following useful result.

Theorem 3.1.36. If X is a Fréchet space and A ¢ X is compact, thenconvA < X is
compact as well.

Proof. Since A < X is compact, it is totally bounded; see Theorem 1.5.36. Then Proposi-
tion 3.1.35 implies that conv A is totally bounded, hence conv A is totally bounded; see
Remark 3.1.34. Then Theorem 1.5.36 implies that conv A is compact. O

Next we introduce an important class of convex functionals that describes locally
convex spaces.

Definition 3.1.37. Let X be a vector space. A function p: X — Ris a seminorm if the
following hold:

(@) pissubadditive, thatis, p(x + u) < p(x) + p(u) forall x, u € X.

(b) p is absolutely homogeneous, that is, p(Ax) = |A|p(x) for all A € K and for all x € X.
If p(x) # O for x # 0, then the seminorm is a norm; see Definition 3.1.13(e). A family P
of seminorms on X is said to be separating if for each x + O there exists p € P such
that p(x) # 0. Given an absorbing set A < X, the real functional p4 : X — R defined by
pa(x) =inf[t > 0: x € tA] is the Minkowski functional of A (or gauge of A).

Proposition 3.1.38. If X is avector spaceand p: X — Ris aseminorm, then the following
hold:

(@ p(0)=0,|px)—p)|<p(x-u)forallx,u e X,p(x)>0forall x € X;

(b) N(p) = {x € X: p(x) = 0} is a vector subspace of X;

(c) B1 ={x € X: p(x) < 1} is convex, absorbing, balanced, and p = pg, .

Proof. (a) From Definition 3.1.37 we have p(0) = p(10) = |A|p(0) for all A € K, hence
p(0) = 0. Moreover,

px)=px-u+u)<px-u)+p(u) forallx,ueX,

hence, |p(x) — p(u)| < p(x — u) by interchanging the roles of x and u. If u = 0, then we
see that p(x) > O for all x € X.
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(b) Let A € Kand x, u € N(p). Then
0<pAx+u)<|Ap(x)+pu)=0.

Hence Ax + u € N(p) and so N(p) is a vector subspace of X.

(c) Let x,u € Byand t € (0,1). Then p((1 - t)x + tu) < (1 - t)p(x) + tp(u) < 1,
which implies that B; is convex.

If x € Xand 9 > p(x), thenp(1/9x) = 1/9p(x) < 1 and so B; is absorbing. Moreover,
it is clear that B is balanced. From the previous argument we see that pp, < p. Next let
0 <n <p(x).Then1 < p(1/nx) and so 1/nx ¢ B1. Therefore, p < pp, and we conclude
that p = pp, . O

For the Minkowski functional we obtain the following result.

Proposition 3.1.39. If X is a vector space and A < X is convex and absorbing, then the

following hold:

(@) pa is subadditive and positively homogeneous, that is, p 4 is sublinear;

(b) pa is aseminormif A is in addition balanced;

(c) ifB={x € X:pa(x) <1}andC = {x € X: pa(x) < 1}, then B ¢ A < C and
PB =pPA =pPc-

Proof. (a) For every x € X, let A(x) = {t > 0: x € tA}. Pickt € A(x) and 9 > t. Since
0 € A and A is convex, it holds 9 € A(x). Therefore, A(x) is a half-line starting at p 4 (x).
Suppose that pa(x) < §and pa(u) < pu. Let T = 9 + u. Then it follows that 1/9x € A,
1/pu € A and since A is convex

1 C(9\1_ (uy1
?(X+U)—<;)§X+(;)}—1LIEA.

This gives pa(x + u) < 7 and so p4 is subadditive. Of course, p, is also positively
homogeneous.

(b) This is immediate from Definition 3.1.6(c) and Definition 3.1.37.

(c) Suppose pa(x) < 1. Then 1 € A(x) and so x € X. On the other hand if x € A,
then pa(x) < 1 and so we conclude that B € A ¢ C. It follows that B(x) € A(x) < C(x)
for every x € X and so pg(x) < pa(x) < pc(x). Suppose pc(x) < 9 < u.Then1/9x € C
and so p4(1/9x) < 1, hence

<lx>— <§lx>—g (lx><§<1
PANKY) =P\ u9™) = wPa\e") = =+

Therefore, 1/ux € B, pp(1/ux) < 1, hence pp(x) < u. We conclude that pp = pg =
Pc. U

Seminorms characterize locally convex topologies. The following theorem can be found
in Yosida [311, p. 26].

Theorem 3.1.40. If X is a vector space and {p}q«c] IS a Separating family of seminorms
on X, then there is a weakest locally convex topology on X making all the seminorms
continuous. Conversely, any locally convex space is topologized by the seminorms defined
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by the Minkowski functionals of the convex, absorbing, balanced sets. Such sets are often
called barrels. Moreover, if F < RY is a set of R-valued linear functionals on X, then the
weakest topology on X making all elements of F continuous is locally convex.

What about normable spaces, the next more restrictive class of vector spaces after locally
convex spaces? We have the following theorem known as “Kolmogorov’s Normability
Criterion.”

Theorem 3.1.41 (Kolmogorov’s Normability Criterion). A topological vector space X is
normable if and only if it is locally convex and locally bounded, that is, it possesses a
bounded convex neighborhood of the origin.

Proof. = :Theopen unitball B; = {x € X: ||x|| < 1}is a bounded convex neighborhood
of the origin.

—: Let U € N(0) be bounded convex. We may also assume that U is balanced; see
Corollary 3.1.12. Let ||x|| = py(x) for all x € X with py being the Minkowski functional
of U. Note that {tU}¢ is a local basis for the topology of X. If x # 0, then there exists
t > Osuch that x ¢ tU and so ||x| = py(x) > t. Then, from Proposition 3.1.39(b) we
infer that || - || is a norm on X. Moreover, from Proposition 3.1.39(c) we conclude that
{x € X: ||x|| < t} = tU for all t > 0. Therefore the norm topology coincides with the
initial locally convex topology on X. O

Now we are ready for one of the most important results in analysis with far-reaching
consequences. This is the celebrated “Hahn-Banach Extension Theorem.”

Theorem 3.1.42 (Hahn—Banach Extension Theorem). If X is a vector space, p: X — R
is subadditive and positively homogeneous, that is, sublinear, V < X is a vector subspace,
f: V — Ris linear and f(x) < p(x) for all x € V, then there exists f : X — R being linear
such thatf|V =fand f(x) < p(x) for all x € X.

Proof. Weassumethat V # Xandletu € X\ V.Let Y = span{V U {u}}. Theneachy € Y
can be written in a unique way as y = x + Au with x € V and A € R. Then any extension
f of f on Y must be of the form f (x + Au) = flx) + )lf (u). So, the main problem is to
define f(u). Recall that the extension f must satisfy f< p on Y. Therefore

OO + Af(u) < p(x +Au) . (3.1.13)

Taking A = 1 in (3.1.13) yields f(u) < p(x + u) — f(x). Similarly, if we take A = -1 and
replace x by —x in (3.1.13) we infer —f(x) — fu) < p(—x — u) because the subadditivity of
p implies —f(x) < f(—x). It follows that

—f(v)-p(-v-u) < f(u) <—f(x)+p(x+u) forallv,xeV. (3.1.14)

Therefore the value f (u) cannot be chosen arbitrarily but it must satisfy (3.1.14). However,
in order to make (3.1.14) possible, we need to have

—fv)-p(-v-u) < —f(x) +p(x+u) forallv,xeV. (3.1.15)
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But note that f(x) - f(v) = f(x-v) < p(x-Vv) =p(x+u+(-v-u)) < p(x+u)+p(-v-u)
and so (3.1.15) holds. Now we can define the extension f of f on Y. We can take for
example f(u) = inf[—f(x) + p(x + u): x € V] and obtain f(x + Au) = f(x) + Af(u). Clearly
fis linear on Y andf|V = f. We need to show that f < p. Sincef|v =fwegetf<p
when A = 0. So, let A # 0. Then we replace v, x € V by 1/Ax € V in (3.1.14). This gives

—f(%x) —p(—%x— u) <fu) < —f(%x) +p(%X+u) ,

which implies
f(%x> +fw<p (%x+ u) —f(%x) ~fw<p (—%x -~ u) . (3.1.16)

If A > 0, then if we multiply the first inequality in (3.1.16) with A, we obtain f (x+Au) <
p(x + Au). If A < 0, then multiplying the second inequality in (3.1.16) with —A gives
f(x + Au) < p(x + Au). In summary we have showed that]r <p.

Now let

£ ={(Y,f): Yisasubspace of X containing V and

f is a linear extension of f on Y with f <pt.

We order £ as follows: (Y, f) < (Y',f")if Y ¢ Y’ and f’|Y = f. Then every chain D
of £ has an upper bound in £ namely if D = {(Ya,fa)ael}, then Y = | J,¢; Yo is a linear
subspace of X and f (x) = fa(x) for x € Y, is a well-defined linear functional on Y.
Evidently, (Y, ) e Land (Yq, fa) < (Y, f)foralla € I. By Zorn’s Lemma (see Section 1.4),
L admits a maximal element (Y, f ). We must have Y = X or otherwise we repeat the
construction in the first part of the proof and contradict the maximality of (Y, f. O

Remark 3.1.43. It should be noted that the extension f is in general not unique.

A careful reading of the proof of Theorem 3.1.42 reveals that the complex variant of the
result requires a modification of the condition on p since positive homogeneity of p
makes in that case no sense.

Theorem 3.1.44 (Hahn-Banach Extension Theorem (Complex Variant)). If X is a com-
plex vector space, p: X — Ris a seminorm, V < X is a vector subspace, f: V — Cis
linear and |f(x)| < p(x) for all x € X, then there exists f : X — C being linear such that
fly = f and If (0| < p(x) for all x € X.

From now on, unless otherwise stated, all vector spaces will be over the reals.

Definition 3.1.45. Let X, Y be normed spaces. A linear operator A: X — Y is bounded
if |A(X)|ly < M| x|lx for some M > 0 and for all x € X. The smallest M > O for which the
inequality above holds, is called the operator norm of A and it is denoted by

IACOIly

Al = sup :xeX,x+0| .
llxIlx
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By L(X, Y) we denote the vector space of all bounded, linear operators from X into Y.
Evidently (L(X, Y), | - llz) is a normed space and the resulting norm topology is called
the uniform operator topology. If Y = R, then L(X, R) = X* is the topological dual
and its elements are called bounded linear functionals. If x € X and x* € X* we
usually write (x*, x) instead of x*(x) and call (., -) the duality brackets for the pair
(X*, X).

The proof of the next proposition is straightforward and so its proof is omitted.

Proposition 3.1.46. If X, Y are normed spaces and A: X — Y is a linear operator, then
the following properties are equivalent:

(a) A is bounded.

(b) A is continuous.

(c) A s continuous at x = 0.

Proposition 3.1.47. If X is a normed space and Y is a Banach space, then (L(X, Y), |- )
is a Banach space.

Proof. Suppose that {A,},>1 € L(X, Y)isa]| - |z-Cauchy sequence. Then it follows
l(An = Am) |y € 1An — Amlizllxl foralln,m e Nandforallx € X.

Since Y is complete, one gets that A(x) = lim,_,, An(x) exists for all x € X. Of course,
A: X — Yislinear and

140) - An()lly = lim [|An(x) = An(0)lly < limsup |Am — An[lL]ix]] -
—00

So, for given £ > 0, there exists ng = ng(¢) € IN such that

lA(x) - An(x)|ly < €llx] forallx e Xand foralln > ng . (3.1.17)
Hence
ANy = [A(X) = Apy O)lly + [|1An, O lly < (€ + [|An, L)X x -
This implies that A € L(X, Y) and |A, - Al — 0 as n — oo; see (3.1.17). O

Corollary 3.1.48. If X is a normed space, then X* is a Banach space and ||x*|. =
sup{[{x*, x)|: [Ix]| < 1} = sup{{x*, x) : [x]| < 1}

Proposition 3.1.49. If X is a normed space, V ¢ X is a vector subspace, and u* € V*,
then there exists x* € X* such that x*|V =u*and ||x* |« = Ju*|v-.

Proof. Applying Theorem 3.1.42 with p(x) = [[u*|ly-||Ix| for all x € X yields the assertion.
O

Proposition 3.1.50. If X is a normed space and xo € X, then there exists x; € X* such
that x|l = Ixoll and (xg, xo0) = lIxoll*.

Proof. Applying Proposition 3.1.49 with V = Rxg and x;(txo) = {(xg, txo) = tlxo |2 gives
the desired result [ x|« = llxoll. O
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Remark 3.1.51. The element x; € X* is not unique in general. In order to have unique-
ness we need additional structure on X*, for example, strict convexity; see Section 3.4.
The multivalued map F: X — 2X" \ {0} defined by F(x) = {x* € X*: |x*|l, = |x| and
(x*, x) = ||x||?} is called the duality map from X into X*. It is important in Nonlinear
Analysis and we will encounter it again in Section 6.1.

Proposition 3.1.52. If X is a normed space and x € X, then
lixll = sup [[{x*, x)|: x* € X*, x|« <1] =sup [(x*, x): x* e X*, [x*[l. <1] .
Proof. We assume that x # 0. Note that
sup [[{<x*, x)|: x* € X*, Ix* [l < 1] < [Ix|| - (3.1.18)

On the other hand from Proposition 3.1.50 we know that there is x; € X* such that
Ixgll. = lIxlland (x5, x) = lIx|I>. Let X5 = xg/Ilx|l. Then |IXG |l = 1 and (Xg, x) = |Ix||. This
combined with (3.1.18) implies the assertion of the proposition. O

Now we will produce some important geometric interpretations of the Hahn-Banach Ex-
tension Theorem; see Theorem 3.1.42. These are the well-known “Separation Theorems”
for convex sets.

Definition 3.1.53. Let X be a vector space. A hyperplane is a set of the form {f = 9} =
{x € X: f(x) = 9} with f: X — R being linear and 9 € R. A hyperplane determines
two half-spaces, namely {f > 9} = {x € X: f(x) > 9} and {f < 9} = {x € X: f(x) < 9}.
Given two sets A, C ¢ X, we say that the hyperplane H = {f = 3} separates A and C, if
AcH_={f <9 andC < H, ={f > 9}. We say that H strongly separates A and C if
there exists € > 0 such that

ACH:E ={f<9-¢ and CcH.={f>9+¢}.

Proposition 3.1.54. If X is a topological vector space, then a hyperplane H = {f = §} is
either closed or dense. H is closed if and only if f is continuous while H is dense if and
only if f is discontinuous.

Proof. Due to the linearity of f, we may assume that 9 = 0. If f is continuous, then H
is closed while if H is dense, then clearly f is not continuous. Now assume that H is
closed. Suppose that {x4}ac; € X and x, — 0. In addition, let u € X with f(u) = 1.
Arguing by contradiction, suppose that f(x,) + 0; see Proposition 3.1.46. Then, for at
least a subnet, we have |f(xy)| > eforall a € I. Let vy = u — f(u)/(f(xs))Xq. Thenv, € H
since § = 0 and v, — u. So, u € H, a contradiction. Therefore f(x,) — 0 and so f is
continuous; see Proposition 3.1.46.

Now suppose that f is discontinuous. Then there exist a net {x4}4c; € Xand € > 0
such that

Xg— 0 and |[f(xy)| > forallael.

Givenany u € X, let vy = u — f(u)/(f(xq))x4 € H for all a € I. We have v, — u and so
we conclude that H is dense. O
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Definition 3.1.55. Let X be a vector space and A ¢ X. A point x € A is said to be an
absorbing point of A, if A — x c X is absorbing; see Definition 3.1.6(b).

Remark 3.1.56. If X is a topological vector space and int A # @, then every x € int A is
an absorbing point. However, the set A can have absorbing points even if int A = 0.
Suppose that X is a normed space and A = 0B; U {0} where 0B; = {x € X: |x| = 1}.
Then x = 0 is absorbing but int A = @.

Next we present the “First Separation Theorem.”

Theorem 3.1.57 (First Separation Theorem). If X is a vector space, A, C < X are two
nonempty convex sets, A n C = ¢ and one of them has an absorbing point, then they can
be separated by a hyperplane H = {f = 9} with f + 0 and A U C is not included in H.

Proof. Suppose A has an absorbing point. Then A — C has an absorbing point x. Since
A n C = 0, we see that x # 0. Moreover, the set E = A — C — x is nonempty, convex,
and absorbing, and —x ¢ E since A n C = 0. Then Proposition 3.1.39 implies that pg is
sublinear.

Suppose that pg(—x) < 1. Then there exist O < t < 1 and e € E such that x = te.
Note that O € E being absorbing. So we have —x = te + (1 - t)0 € E, a contradiction.
Therefore

PE(-x) > 1. (3.1.19)

Let V = R(-x) and let f: V — R be defined by f(t(—x)) = t. Clearly, f is linear and
f < pgon V.Indeed, if t > 0, then pg(t(-x)) = tpp(-x) > t; see (3.1.19). If t < 0, then
f(t(=x)) < 0 < pg(t(—x)). Invoking Theorem 3.1.42 implies the existence of f : X—-> R
being linear such thatf|V =fandf < pk. Note that fx)=-1andsof #0.

We claim that f separates A and C. To see this, let a € A and ¢ € C. It holds

f(a)=fla-c-x)+f00+f(0) < prla-c-x)+f00) +f(c)
=pE(a—c—x)—1+f(c)s 1—1+f(c)=f(c).
Since a € A and c € C are arbitrary, we see that f separates A and C. Finally, since

0 € E,wehavex = a - cwitha € A and c € C. Recall thatf(x) =-1. Thenf(a) qbf(c)
and so we cannot have A and C to be subsets of the same hyperplane. O

Lemma 3.1.58. If X is a topological vector space, f : X — R is linear, and f is bounded
above or bounded below on a neighborhood of the origin, then f is continuous.

Proof. Let U € N(0) be symmetric and assume that f < M on U. Then, for given € > 0,
one gets, since U is symmetric, that x — u € ¢/MU implies |f(x) — f(u)| = |[f(x —uw)| <
e/MM = ¢. Hence, f is continuous. O

Using this lemma, we can state a topological version of Theorem 3.1.57.
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Theorem 3.1.59. If X is a topological vector space, A, C < X are nonempty convex sets,
A n C = @ and one of them has nonempty interior, then they can be separated by a closed
hyperplane H and A U C is not included in H.

Proof. Applying Theorem 3.1.57, we obtain a separating hyperplane H = {f = 9} with
f # 0. We only need to show that f is continuous. Suppose that int A # @. Then f(a) <
9 < f(c)forall a € A and for all ¢ € C. Note that if x € int A, then U = int A — x € N(0)
and so f | y is bounded above, hence f is continuous; see Lemma 3.1.58. O

b

Next we present the “Second Separation Theorem” called “Strong Separation Theorem.’

Theorem 3.1.60 (Strong Separation Theorem). If X is a locally convex space and A, C <
X are nonempty, disjoint, convex sets, then A and B can be strongly separated by a closed
hyperplane if and only if there exists U € N(0O) being convex such that (A + U)n C = 0.

Proof. =: Let f be the linear functional associated with the closed separating hy-
perplane. Then f is continuous; see Proposition 3.1.54. Moreover, taking € > 0 from
the strong separation (see Definition 3.1.53), U = {x € X: |f(x)| < &} is a convex
neighborhood of the origin and (A + U)n C = 0.

<: The set A + U is convex and open. So, we can apply Theorem 3.1.59 and find a
linear, continuous functional f: X — Rand 9 € Ras well as € > O such that f(a) < 9-¢
foralla € A and f(c) > 9 + € for all ¢ € C. Hence A and C are strongly separated by
H={f =9} O

Corollary 3.1.61. If X is locally convex, A, C < X are nonempty, disjoint, convex sets and
A is compact as well as C is closed, then A and C can be strongly separated by a closed
hyperplane.

Proof. Theset X\ Cisopenand A c X\ C. The compactness of A implies that there
exists a convex neighborhood U € N(0) suchthat A+ U < X\ C.Hence (A+ U)n C = 0.
Applying Theorem 3.1.60 gives the assertion. O

Proposition 3.1.62. If X is a normed space, V < X is a vector subspace, and V # X, then
there exists x* € X* with x* # O such that {x*,v) =0 forallve V.

Proof. Letu € X\ V. Then apply Corollary 3.1.61 with A = {xo} and C = V. Thus, we
find x* € X* with x* £ 0 and 9 € R such that (x*, xo) < 9 < (x*, v) forall v € V. But
since V is a vector space, we see that (x*, v) = 0 forall v € V since A{x*, v) > 9 for all
A € R, hence 9 < 0. O

Remark 3.1.63. This proposition is useful for determining whether a linear subspace V
is dense in X. We must have that the only element of X* vanishing on V is x* = 0.
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3.2 Three Fundamental Theorems

In this section we present three basic theorems that are the core results of linear func-
tional analysis. These are the “Uniform Boundedness Principle,” the “Open Mapping
Theorem,” and the “Closed Graph Theorem.” All three depend on the Baire Category
Theorem; see Theorem 1.5.68. We recall that the Baire Category Theorem, roughly
speaking, provides conditions for a set to be large in the sense that it has a nonempty
interior.

We start with the “Uniform Boundedness Principle.” This theorem asserts that
for any family of bounded linear operators, pointwise boundedness implies uniform
boundedness, that is, boundedness in the operator norm. As before, we consider real
vector spaces.

Theorem 3.2.1 (Uniform Boundedness Principle). If X is a Banach space, Y is a normed
space, and £ < L(X, Y) satisfies

sup [[AX)[ly: A € L] = M(x) <00,
then there exists My > 0 such that sup [||AllL: A € £] £ M.

Proof. Foreveryn € NletE, = {x € X: |A(x)|ly < nforall A € £}. The hypothesis
implies that
X=|JEn. (3.2.1)

nx1

Moreover, we claim that for every n € N, E,, € X is closed. To see this, let {x,}m>1 € En
and assume that x,;, — x in X. We obtain |A(x,,)|ly < nforall A € £ and forall m € N.
The continuity of A (see Proposition 3.1.46) implies that |[A(xn)lly — [A(X)|ly asm — co
for every A € L. Therefore, |A(x)|ly < nforall A € £ and so x € E,, which implies that
E, < Xis closed for every n € IN.

From (3.2.1) and the Baire Category Theorem (see Theorem 1.5.68 and Corol-
lary 1.5.67), we infer that there exists no € N such that int E,,, + 0. Hence, there exists
€ > 0 such that

Be(x0) € Eyn, with Bg(xo) = {x € X: |x - xollx < €} . (3.2.2)
Let x € X with ||x||x < €and A € £. Then, due to (3.2.2),
IACONY = IA(x + X0) = A(xo)lly < [[A(x + Xo)lly + | A(x0)lly

< ng +ng =2ng .

(3.2.3)

Thus, for all u € X with |Ju|lx = 1, it follows, because of (3.2.3), that
1 2
IA@Iy = 1AWy < % forall A € £ .

Hence,
2n
sup [l[A@Wly: llullx < 1] = |4l < T" forallA e £ . O
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Theorem 3.2.1 leads to the so-called “Banach-Steinhaus Theorem,” which says that the
pointwise limit of a sequence of bounded linear operators is a bounded linear operator.

Theorem 3.2.2 (Banach-Steinhaus Theorem). IfX, Y are Banach spaces and {A,}n>1 €
L(X,Y) is a sequence such that

Apn(x) > A(x) inYasn - ooforallxeX,

then the following hold:
(@) A€ L(X,Y)andsupysy | AnllL < co;
(b) AllL < liminfy e Anllz.

Proof. (a) Clearly, A: X — Y is linear. Since {A,(x)}n>1 € Y is convergent, it holds that

sup |[An(X)ly = M(x) < oo .

nelN
Applying Theorem 3.2.1, there exists My > O such that sup,en l1AnllL < My < o0,
which implies [|A,(x)|ly < Mollx|lx for all x € X and for all n € N. Therefore, we derive
Ay = lim,—e0 1AnCO)lly < Molix|x for all x € X, which, due to Proposition 3.1.46,
resultsin A € L(X, Y).

(b) It holds that [[A,(X)lly < lAnlLlxllx for all x € X and for all n € IN. This gives

Ay € liminf,_ o [AnllLlX]lx for all x € X and so, |A|; < liminf,_ |AnlL. O

Example 3.2.3. (a) Theorems 3.2.1 and 3.2.2 fail if X is only a normed space. To see
this, let us define the following subspaces:

[ = {)A( = (Xn)n>1 € RN: sup [xn| < 00} ,

n>1
coz{)?:(xn)nzl e RN: x, —>0asn—>oo} ,

X= {5( = (Xp)ns1 € RN : there exists ng € N such that x, = 0 forn > no} .

Evidently, X € co ¢ I®° and we furnish I*® with the supremum norm |x|| =
SUPpen |Xnl. With this norm, [*° is a Banach space, ¢y is a closed subspace hence
a Banach space itself, but X co.LetAp: X > Xwithn>1andA: X - Xbe

defined by
An(X) = (X, 2x2, ..., Xn, 0,0,...),  A(X) = (kxi)k=1 -

Then A,(X) - A(X)asn — coforall x € X and |A,|y = nforall n € N. Pre-
cisely, {A,}n>1 is pointwise convergent, hence pointwise bounded as well, but
Sup,s1 IlIAnll. = co and thus, A is not bounded.

(b) In Theorem 3.2.1(b) the inequality can be strict. Let

n>1

12 = {)A( = (Xn)nzl C IRIN: Z X% < OO}
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||fc||=(g1x,%)% .

With this norm, 2 becomes a Banach space. In fact it becomes a Hilbert space;
see Section 3.5. Let X = I, Y = R, and consider the bounded linear operators
Ag: 1> —» R with k > 1 defined by Ax(X) = xi for every X = (x;)n>1 € I? and for
every k € N. Evidently, Ax(X) — 0 as k — oo for every X € I? but |Ax|l; = 1 for all
neN.

furnished with the norm,

Theorem 3.2.1 leads to interesting characterizations of bounded sets in a Banach space X
and in its dual X*; see Definition 3.1.45. In the next section we will interpret these
results in terms of weak and weak” topologies, respectively.

Proposition 3.2.4. If X is a normed space and B < X is nonempty, then B is bounded if
and only if x*(B) = {{(x*, u): u € B} € Ris bounded for every x* € X*.

Proof. =: This follows from the fact that |(x*, u)| < [|x*||.|lu| for every x* € X* and
for all u € B. So, if B is bounded, then |u| < M for some M > 0 and for all u € B.
Therefore, x*(B) < [-p, p] with o = ||x*||. M.

«: Foreveryu € B, let A,(x*) = (x*,u) for all x* € X* where (-, -) denotes
the duality brackets for the pair (X*, X). Then A, € L(X*, R) for all u € B and by
hypothesis,

sup |Ay(x*)| = sup [{(x*, u)| < +oo .
ueB ueB

Since X* is a Banach space (see Corollary 3.1.48), we can apply Theorem 3.2.1 and find
M > 0 such that

[Au(x™)] = {x*, u)| < M| x*||, forallx* ¢ X* andforallu € B.
Because of Proposition 3.1.52 we infer that ||u|| < M, which shows that Bis bounded. [
There is also a “dual” version of this result.

Proposition 3.2.5. If X is a Banach space and B* < X* is nonempty, then B* is bounded
ifand only if x(B*) = {{u*, x): u* € B*} € Ris bounded for every x € X.

Proof. =—: This is as in the previous proof.
<: For every u* € B*,let Ay« (x) = (u*, x) forall x € X. Then A~ € L(X, R) for all
u* € B* and by hypothesis,

sup |Ay-(x)| = sup [(u*,x)| <oo.
u*eB* u*eB*

Since X is a Banach space, we can apply Theorem 3.2.1 and find M > 0 such that
Ay (X)| = [{u*, x)| < M|x|| forall x € Xand forallu* € B*.

Then, Corollary 3.1.48 implies that |u*|. < M for all u* € B*. O
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Next we will prove the “Open Mapping Theorem,” which asserts that a surjective
bounded linear operator between Banach spaces is an open map.
In order to prove this theorem, we will need two auxiliary results.

Lemma 3.2.6. If X, Y are Banach spaces and A € L(X, Y) surjective, then there exists
9 > 0 such that forany € > 0andy € Y we find x € X such that

1
[AX) —ylly <& and |xlx < gllylly .
Proof. Let BX = {x € X: |x|x < 1}. The surjectivity of A implies that

Y=|JAmBY).

n>1

Then by the Baire Category Theorem thereis n € IN such thatint A(nB)f ) # 0. Thisimplies

By (yo) < A(nB’f) for some n > O and yo € Y. Here B, (yo) = {y € Y: lly - yolly < n}.
Giveny € Y with |lylly < 1, let {x)}ks1, {ukk=1 € nBY such that

A(xx) - yo and A(ux) »yo+yinYask — oco.
Let v = ux — xi for k € N. Then
A(vy) >y inYask —-oco and |villx<2n forallkeN. (3.2.4)

Letw € Y\ {0} and let z = (n/2) - (W /[|lw]). Then z € Y and | z|ly < n. From (3.2.4) we
know that there exist {Vx}x>1 € X such that

A(f/k)—>z:2 inYask —> oo and |vk|x<2n forallkeN.
2 wllx
Hence,
2 - .

A(E”W”XV’(> —w inYask - oo. (3.2.5)
Note that

2 . 4n

E”W”X IVillx < THW”X forall k e N.
Finally let § = n/(4n) and apply (3.2.5) to obtain the result of the lemma. O

Using this lemma, we can prove the following proposition.

Proposition 3.2.7. If X, Y are Banach spaces, BY = {x € X: |xllx < 1},BY = {y ¢
Y: |lylly < 1}, and A € L(X,Y) is surjective, then there exists § > 0 such that 53}/ -
A(BY).

Proof. Let 9 > 0 be as postulated by Lemma 3.2.6. Let y € SB}' and £ = 1/29 > 0. Using
Lemma 3.2.6, there exists x; € X such that

9 1
[A(x1) —yly < 5 and [xi]lx < gllylly <1. (3.2.6)
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Now consider y — A(x1) € Y and € = 9/4. A new application of Lemma 3.2.6 gives x, € X
such that

9 1 1
1A0:) -y - Ay < o and xallx < glly - AG)lly < 5,

see (3.2.6). Suppose that we have produced {xk}zzl ¢ X such that

“ 9 1
A (kzlxk> -yl = >n and |xillx < Py forallk=1,...,n. (3.2.7)
= Y

Using Lemma 3.2.6, we obtain x,,;; € X such that

n+1 9
A(Z Xk) Y| = gpm and bl < g H (Z Xk>—y

k=1 Y k=1

1
< —
2Yl

Y

(3.2.8)

-

see (3.2.7). By induction we have a sequence {x,},>1 € X such that (3.2.8) holds.
Let u, = Zzzl Xx € X with n € IN. For m > n one gets

m moq
lum — unlx = Z Xk| < Z Sk H
k=n+1 X k=n+1

see (3.2.8). This implies that {u,},>1 € X is a Cauchy sequence. Since X is a Banach
space, we obtain u,, — u in X. Then

lulx < Y, el < Y, =5 =2
k>1

k=1

which shows that u € 2BY. From (3.2.8) it follows || A(un) - ylly < 9/2", hence A(u,) — y
in Y. But we also have A(u,) — A(u) in Y. Therefore, y = A(u). Recall that y € BBf is
arbitrary and x € 2BY. That means 9/2BY ¢ A(BY). Choosing § = 9/2 > 0, we obtain
the assertion of the proposition. O

Remark 3.2.8. This proposition provides estimates for the solutions x € X of A(x) =
y € Y in terms of y. That the equation A(x) = y always has a solution forally € Yisa
consequence of the surjectivity of A.

Once we have this proposition, we can easily prove the “Open Mapping Theorem.”

Theorem 3.2.9 (Open Mapping Theorem). If X, Y are Banach spaces and A € L(X, Y)
is surjective, then A is an open map, that is, it maps open sets in X to open setsin Y.

Proof. Let U ¢ X be nonempty and open, and let xo € U. Let V = U — xg € N(0). Then
there exists & > 0 such that éBY ¢ V. Using Proposition 3.2.7 we find § > 0 such that

A(V) 2 A(EBY) = ¢A(BY) 2 &6BY
which implies

A(U) = A(V + xq) = A(xo) + A(V) 2 A(xo) + £6BY .
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The last set is open in Y centered at A(xp) with a radius of £6 > 0. This means that
A(U) c Y is open. O

As an easy consequence of the Open Mapping Theorem we obtain the so-called “Banach
Theorem.”

Theorem 3.2.10 (Banach Theorem). If X, Y are Banach spaces and A € L(X,Y) is a
bijection, that is, A is surjective and injective, then A~ € L(Y, X).

Proof. First note that A™1: Y — X is a well-defined linear map. Let U < X be open. Due
to Theorem 3.2.9 it follows that (A~1)~1(U) = A(U) < Y is open. Then Proposition 3.1.46
implies that A~ € L(Y, X). O

Definition 3.2.11. Let X be a vector space and let | - ||, | - | be two norms on X. We say
that the two norms are equivalent if there exists a constant 9 > 1 such that

%lell <|x| <9Ix|| forallx e X.

Remark 3.2.12. This notion defines an equivalence relation on the set of all possible

norms on X. Thenorms ||-||, |-] on X are equivalent ifand only ifid : (X, ||-||) — (X, |-]) and
id: (X,|-|) — (X, ] - II) are both bounded linear operators. Two norms are equivalent
if and only if they generate the same metric topology on X. Finally, if | - ||, | - | are

equivalent norms, then (X, | - ||) is a Banach space if and only if (X, | - |) is a Banach
space.

Proposition 3.2.13. If V is a vector space, | - | and | - | are two norms on V with V being
a Banach space for both norms and there exists n > 0 such that

x| < nlx|l forallx eV,

then || - | and | - | are equivalent normson V.

Proof. Let X = (V|- D,Y = (V,]-]),and A = id: X — Y with id(x) = x for all
x € X. Then A € L(X, Y) is bijective and we can apply Theorem 3.2.10 and infer that
Al=id: Y=(V,|-]) = X=(V,| -|) is continuous. So, it follows that the norms | - ||
and | - | are equivalent; see Remark 3.2.12. O

Recall that a continuous map f: X — Y hasaclosed graph Grf = {(x,y) e Xx Y:y =
f(x)}. The converse is not true in general. To see this, let X = ¥ = R, and consider the
function f: R, — R, defined by

0 ifx=0,
f(X)={1 o

ifx>0.

Then Gr f is closed but f is not continuous at x = 0. For linear operators between
Banach spaces, the situation changes and we have the third basic theorem of linear
functional analysis, which is called the “Closed Graph Theorem.”
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Theorem 3.2.14 (Closed Graph Theorem). If X, Y are Banach spacesand A: X — Y is
a linear operator, then A € L(X, Y)ifandonly if GrA = {(x,y) e XxY: y=A(Xx)} c XxY
is closed.

Proof. «: The graph of any continuous map (linear or not) is closed.
=: On X we consider the following norms

IxIl = lxlx and [x| = lxlx + Ay forallx e X.

Note that | - | is called the graph norm. Since Gr A € X x Y is closed, (X, |-|) is a Banach
space. Moreover, the inequality ||x| < |x| for all x € X is clearly satisfied. Invoking
Proposition 3.2.13, we conclude that || - || and | - | are equivalent norms. Thus, there exists
M > 0 such that |x| < M]|x| for all x € X, which implies [|A(x)]ly < M| x| x for all x € X.
Then Proposition 3.1.46 finally gives A € L(X, Y). O

We can apply these results to quotient spaces (see Section 1.3), which in turn will lead
us to complemented spaces.

So, let X be a normed vector space and V ¢ X a closed subspace. We define the
equivalence relation ~ on X by

x~u ifandonlyif x-ueV. (3.29)

Let [x] denote the equivalence class corresponding to x € X. Then [x] = x+ V =
{x +v: v e V}and let X/V be the quotient space, that is, the set of all equivalence
classes under ~ defined by (3.2.9). So, the whole subspace V is collapsed in the quotient
space X/V and identified with the zero vector. The quotient space X/V becomes a vector
space under the following operations:

vector addition: X1]+ 2] =x1+V+x0+V=x1+x2+V,
scalar multiplication: Ax+V)=Ax+V,

forall x1, x2, x € X and for all A € R. As we already mentioned, the zero vector in X/V
is 0 + V = V. We can define a norm on X/V by setting

D]l = inflllx + v: v e V].
It is easy to check that this is a norm on X/V. Note that
Ix]ll = inf[lx +v||: ve V] =inf[|x - v|: ve V] forallx € X. (3.2.10)

Proposition 3.2.15. If X is a normed space and V < X is a closed subspace, then the

following hold:

@ Ixll = Ix]1 for all x € X;

(b) ifx € X and € > 0, then there exists u € X with u ~ x, that is [x] = [u], such that
lull < Iix]ll + €.

Proof. (a) This is an immediate consequence from (3.2.10).
(b) Let v € V be such that ||x — v|| < d(x, M) + € = |[x]]| + &; see (3.2.10). Set
u=x-ve [x]. Then |u| < |[x]| + €. O
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Remark 3.2.16. Suppose that x, y € X be such that ||[x — y]|| < d for some 9 > 0. Then
according to Proposition 3.2.15(b), there exists y' € X such that [x — y] = [x — y'] and
Ix-y'll < 9.

Proposition 3.2.17. If X is a Banach space and V < X is a closed subspace, then X/V is
a Banach space as well.

Proof. Suppose that {||[x,][}n>1 € X/V is a Cauchy sequence. By passing to a subse-
quence if necessary we may assume that

1
l[xn = xne1lll < >0 foralln e N.

According to Remark 3.2.16 we can find x} € X such that [x; — x;] = [x1 — x}] and
lx1 —x5]l < 1/2. Then [x,] = [x}] and so we may assume that x}, = x,. Now again by
Remark 3.2.16, there exists x} € X such that [x, - x3] = [x, - x}] and |x, — x5 < 1/22.
As for x,, we may assume that x} = x3. Inductively we obtain that ||x, — xp41ll < 1/2"
for all n € N. So, {x,}n>1 € X is a Cauchy sequence and we may say that x, — x € X.
Then, Proposition 3.2.15(a) gives

Ixn] = [xIll = %0 = X1 < IXn = X[«

Hence, [x,] — [x] and so X/V is a Banach space. O

Remark 3.2.18. In fact there is a kind of converse to the result above. Namely, if X is a
normed space, V < X is a closed subspace, and both V and X/V are complete, then X is
a Banach space; see Problem 3.10.

Definition 3.2.19. Let X be a normed space and let V ¢ X be a closed subspace. The
map p: X — X/V defined by p(x) = [x] is called the quotient map.

Proposition 3.2.20. If X is a normed space and V < X is a closed subspace, then the
quotient map p € L(X, X/V) is surjective and open, and N(p) = V, and if V + X, then
Iplz = 1.

Proof. We only need to show that p is open. Let U ¢ X be open, x € U, and let B’f ={u e
X: |ull < 1}. Then we find 9 > 0 such that x + 9B ¢ U, hence p(x) + 9p(BY) < p(U).
We claim that p(BX) = BY'Y = {[x] € X/V: ||[x]| < 1}. To see this, let x ¢ BY. Then
Ilp)Il = llIx]ll < lxll < 1; see Proposition 3.2.15(a). Therefore, p(B)f) « B)f/ V. On
the other hand if [u] € B)f/v, then there is u’ ¢ B‘f such that p(u') = [u'] = [u]
(see Proposition 3.2.15(b)), and so B)f/ Ve p(B)f/ V). Thus finally p(B}f )= B)f/ Y and so

px) + SBf/V ¢ p(U). Hence, p is open. O

Proposition 3.2.21. If X, Z are normed spaces, V < X is a closed subspace and A €
L(X, Z) satisfies N(A) = {x € X: A(x) = 0} 2 V, then there exists a uniqueil e L(X/V,2)
such that A = A » p.
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Proof. The operator A: X/V — Z defined by A([x]) = A(x) is well-defined since
V < N(A). Clearly A is linear and

|AM@D|, = 140+ Wiz < IAlLlx + vx  forallve V,
since V ¢ N(A). Hence,
|ACxD),, < NAlL inf [Ix + viix: v e V] = |AILIX] -
This shows that A € L(X/V, Z) and A = A o p. Clearly A is unique. O

Remark 3.2.22. This is a factorization theorem and it can be better remembered if we
use the following figure:

x —4 .7

| 4
A

X/V

Proposition 3.2.23. If X, Z are Banach spaces, A € L(X, Z) is surjectiveand V = N(A) =
{x € X: A(x) = 0}, then X/V and Z are isomorphic, that is, there exists £: X|V — Z
being a linear, continuous bijection with a continuous inverse.

Proof. From Proposition 3.2.21 we know that there exists a unique A € L(X/V, Z) such
that A = A o p. If A([x]) = A([u]), then A(x) = A(u) and so x — u € N(A), which means
that A is one-to-one. Let z € Z and recall that A is surjective. Then we can find x € X
such that A(x) = z. Thus, A([x]) = z, which implies that A is surjective, that is, a
bijection. Invoking Theorem 3.2.10, we conclude that A is an isomorphism. O

Definition 3.2.24. Let X be a normed space and let D ¢ X. The annihilator of D is
defined by
Dt ={x" e X*: (x*,d)=0foralld € D} .

Evidently, D+ is a closed vector subspace of X*.

Using this notion we can characterize the dual of a quotient space.

Proposition 3.2.25. If X is a normed space and V < X is a closed subspace, then (X/V)*
and V+ are isometrically isomorphic.

Proof. Letl € (X/V)" and let x* = lop: X — R. Then x* € X* and x*|V = 0. So,
x* € V+. Conversely, let x* € V*. Then according to Proposition 3.2.21, there exists a
unique [ € (X/V)* such that x* = [ - p. So, the linear map &¢: (X/V)* — V* defined by
&(l) = Lo p is a bijection and

I([x]) = (€D, x) = (€D, x +v) < [EDN«lIx +v]| forallve V.
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Thus

IUx/vys < IEDI (3.2.11)
On the other hand, thanks to Proposition 3.2.15(a), one gets

(€D, x) = I[x]) < Nllexyvy NIXTN < Nl vyl

This gives

1EDN < Mlx/vys - (3.2.12)
From (3.2.11) and (3.2.12) we infer that [&(DIl. = Illx/v) and so & is an isometric
isomorphism. O

We present some additional properties of closed subspaces in Banach spaces.

Proposition 3.2.26. If X is a Banach space and V, W < X are closed subspaces of X
such that V + W is closed, then there exists ¢ > O such that every u € V + W admits a
decompositionu = v+ wwithv € Vandw € W as well as

v < cllul and |wll < cllull .

Proof. We consider the Cartesian product Vx W furnished with the norm || (v, w)| = |[v|+
[wl. Moreover, we consider on V + W the norm inherited from X. Let A: VxW — V+ W
be defined by A((v, w)) = v + w. Evidently, A € L(V x W, V + W) and is surjective.
Since V x W and V + W are Banach spaces, invoking the Open Mapping Theorem
(see Theorem 3.2.9), there exists ¢ > 0 such that u € V + W with |Ju| < ¢ implies
u=v+wwithveV,we Wand |v| + |w]| < 1. By the homogeneity, there holds for
everyu € V+ Wthatu =v+wwithv e V,we Wand ||v| + [w] < 1/c|lul. Then for
¢ = ¢! we have the result. O

Definition 3.2.27. Let X be a normed space. A closed subspace V ¢ X is called comple-
mented (or we say that it admits a topological complement), if there exists a closed
subspace W ¢ X suchthat VN W = {0} and X = V + W (we write X = V & W). Then we
say that V and W are complementary subspaces of X.

The next results shows that finite dimensional subspaces or subspaces with finite
codimension, are complemented.

Proposition 3.2.28. If X is a normed space and V < X is a closed subspace such that
dim V < co ordim (X/V) < oo, then V is complemented.

Proof. Letn = dim V < coand let {e;};_, be abasis of V. According to Proposition 3.1.49,

there exists {ey,}_; < X* such that

1 ifm=k,

(em>ex) = Omk = ]
0 ifm+k.

Let W={xeX: (e;,x)=0forallm € {1, ..., n}}.Clearly W ¢ X is a closed subspace
and X = Ve Wsincex - Y, _,(er,x)e, € Wforall x € X.
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Next let n = dim (X/V) < oco. We choose {xk};_; < X such that {[x]}}_, is a
basis of X/V. Then W = span{x};;_, < X is closed (see Corollary 3.1.19) and satisfies
X=VeoW. O

Remark 3.2.29. It is not true that every closed subspace of an infinite dimensional
Banach space is complemented. For example, co < [*° is a closed subspace, but it is not
complemented; see Phillips [237]. In fact a result due to Lindenstrauss-Tzafriri [201]
says that every Banach space that is not a Hilbert space admits a closed subspace that
is not complemented.

3.3 Weak and Weak" Topologies

In this section we study the weak topology on a normed space X and the weak” topology
on X*, which is always a Banach space; see Corollary 3.1.48. These are locally convex
topologies and are special cases of the weak topologies introduced in Definition 1.3.1
when Y; = Rfor alli € I and {fj}ic; = X* (for the weak topology) as well as {fi}ic; = X
(for the weak” topology).

The strong (norm) topology on an infinite dimensional normed space is too strong for
many purposes. In particular, note that a strongly compact set in an infinite dimensional
normed space has an empty interior. Indeed, if this is not the case, then the space is
locally compact, hence by Proposition 3.1.24, it is finite dimensional, a contradiction.
The main result of this section is “Alaoglu’s Theorem” (see Theorem 3.3.38), which says
that the unit ball in the dual space X* is compact for the relative weak” topology. This
result is reminiscent of the classical Heine—Borel Theorem; see Theorem 1.5.38.

Definition 3.3.1. Let X be a normed space. The weak topology on X is the weakest
topology on X with respect to which every element x* € X* (x*: X — R being norm
continuous and linear) is continuous. We denote the weak topology by w(X, X*) or
simply by w.

Remark 3.3.2. As we already mentioned, the w-topology is a particular case of the
weak (initial) topology introduced in Definition 1.3.1 when the initial space is X (the
normed space), Y; = Rforalli € I, I = X* and fy- : X —» Rwith x* € X* = I is the linear
functional fy~ (x) = (x*, x). Recall that (., -) denotes the duality brackets for the pair
(X*, X). Evidently the weak topology w is weaker than the norm (metric) topology on X.

Proposition 3.3.3. The weak topology w(X, X*) is Hausdorff.

Proof. From Corollary 3.1.61, we know that {fy- }+cx--5 is separating and so Proposi-
tion 1.3.7 implies that w(X, X*) is Hausdorff. O

The weak topology on X is clearly linear, that is, both operations, vector addition and
scalar multiplication, are continuous. Moreover, it is locally convex; see Theorem 3.1.40.
Note that R is regular and recall that regularity is hereditary and topological (see
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Proposition 1.2.10), and it is preserved in Cartesian products; see Proposition 1.3.13.
Therefore, we can improve Proposition 3.3.3 in the following way.

Proposition 3.3.4. The weak topology w(X, X*) is regular; see Definition 1.2.7.

Remark 3.3.5. In fact for the same reasons, w(X, X*) is completely regular; see Defini-
tion 1.2.19.

The linearity of the weak topology implies that in order to describe it we only need to
specify a local basis at the origin. Then by translation we obtain a local basis at any
other point. Remark 1.3.2 allows us to give a precise description of the local basis at the
origin.

Proposition 3.3.6. A typical basic weak neighborhood of the origin is given by
UO;x7,...,Xp, &) ={x e X: {xp, x)| < eforallk=1,...,n}

with {XZ}Z=1 cX*,neNande>0.Ase>0,n € Nand {XZ}Z=1 vary, we cover a local
basis for the weak topology at the origin. At any other point xo € X the local basis consists
of sets of the form

X0+ U(O5x7, ..., Xy, &) ={x € X: [{x,x-xo)| <eforallk=1,...,n}.

In infinite dimensional normed spaces the weak topology and the strong (norm) topology
never coincide. To see this we will need to recall some simple facts from linear algebra.
The first is an algebraic variant of the factorization result stated in Proposition 3.2.21.

Lemma 3.3.7. If X, Y, Z are vector spaces, f: X — Zand g: X — Y are linear maps and
N(g) € N(f), where N(g) = {x € X: g(x) = 0}, N(f) = {x € X: f(x) = O}, then there exists
alinearmap é: Y — Zsuchthatf =& o g.

Proof. Let ¢: g(X) — Z be defined by &(g(x)) = f(x) for all x € X. This linear map is
well-defined since if g(x1) = g(x3), then x; — x» € N(g) € N(f) and so f(x1) = f(x2).
Extending & to a linear mapon all of Y gives f = £ o g. O

Using this lemma, we can prove the second auxiliary result from linear algebra.

Lemma 3.3.8. If X is a vector space, f,f1,...,fn: X — R are linear maps and
Mi-1 N(fi) < N(f), then f is a linear combination of the f,is.

Proof. LetX = X,Y = R",Z = R,f = fand g = (fx);_, and apply Lemma 3.3.7 to
produce a linear functional & : R" — R such that f = £ o g. Then &) = Y}_; Akyi with
AM,..., AheR,y= (Yk);;l € R". It follows that f(x) = ZZ=1 Afr(x) forallx e X. O

These auxiliary results lead to the following important observations about the weak
topology.

Proposition 3.3.9. If X is an infinite dimensional normed space and U < X is nonempty
and w-open, then U is not bounded.
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Proof. Translating U if necessary, we may assume that O € U. By Proposition 3.3.6
there exist x7, ..., x;, € X* and € > 0 such that U(0; x], ..., x;, &) < U. Note that
V= ﬂzzl N(x;) < U. Of course, V is a vector subspace of X and we claim that V # {O}.
Indeed, if V = {0}, then it holds that V ¢ N(x*) for all x* € X* and so Lemma 3.3.8
implies that x* is a linear combination of the x;’s. This means that X* = span{x;}}_,
and so X* is finite dimensional, and hence X is finite dimensional, a contradiction.
Therefore U is not bounded since it contains V. O

Remark 3.3.10. This proposition implies that weakly open sets are large. In particular,
if x € V (see the previous proof), x # 0, then Rx < U. Therefore the open unit ball
B1 = {x € X: | x| < 1} is never w-open in an infinite dimensional normed space X.

Corollary 3.3.11. If X is an infinite dimensional normed space, then the weak and strong
(norm) topology do not coincide.

In finite dimensional normed spaces, which are then of course Banach spaces, the two
topologies coincide.

Proposition 3.3.12. If X is a finite dimensional normed space, then the weak topology
and the strong (norm) topology coincide.

Proof. By definition, the weak topology is smaller than the strong topology. So, in order
to prove the proposition, it suffices to show that every strongly open set is weakly open.
Let xo € X and let U be a strongly open set containing xo. Then there exists g > 0 such
that

By(xo) ={x e X: [x—xoll <p} < U. (3.3.1)
Let {ek}z=1 be a basis for X with |lex|| = 1 forall k =1, ..., n. Then every x € X admits
an expression x = Y ;_; Axex with A, € R. For every k = 1, ..., n the coordinate map
x — Ay, denoted by x;, is linear and continuous for every k = 1, ..., n. We consider
U(xo; X3, ..., Xy, 0/n) being the basic weak neighborhood of xo determined by these
coordinate maps. Then it follows
L 0 0
“xoll < “x-xo)l<n =p forall U< —)
Ix — xoll k;KXk X —Xxo)| nn p forallxe Xo; X{ X, -
which implies
U(xo;xj, cees Xns %) CBy(x0) < U,
see (3.3.1). That means that U is w-open and so the two topologies coincide. O

In what follows, we denote the convergence in the weak topology by Y and the
convergence in the strong (norm) topology by .

Proposition 3.3.13. If X is a normed space and {xy}qc; € X is a net, then the following
hold:

@) x4 “x if and only if (x*, xq) — (x*, x) for all x* € X*;

(b) x4 — ximplies x4 Al X;
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(©) xq % x implies ||x| < liminfyes [|xq|| and a weakly convergent sequence is norm
bounded;
(d) xq > XinX and x;, — x* in X* imply (x%, xo) — (x*, x).

Proof. (a) This is a consequence of Proposition 1.3.3.
(b) For every x* € X*, we have

[(x*, Xa) = (xX*, )] = [{X*, X = )] < IX* [« [1Xq — x| = O

(c) Suppose that there is a sequence {x,}nenw € X such that x, " x Then, it follows
(x*,xn — x) — Oforall x* € X*, which implies sup,n [{(x*, Xn — x)| < co. Taking
Theorem 3.2.1 into account there exists M > 0 such that ||x,|| < M forall n € N.

Evidently we may assume that x # 0. According to Proposition 3.1.50, there exists
x* € X* with |x*|l. = 1 such that (x*, x) = |x]|. So, ||lx|| = limges [{X*, Xq)|. Then, for
given £ > 0 we can find ag = ag(€) € I such that

Ixll — € < {x*, xa)| € Ixall foralla > ag .

Hence, ||x|| < liminfaer X4l
(d) Applying part (c), we derive, for some M > 0 and for every a € I, that

[(Xgs Xa) = {X*, 0] < [{xg = X%, Xg)| + [{X*, Xq = X))
< flxg = x* 1M+ [{x*, Xg = x)| — 0.
Thus, (x;, xq) — (X*, X). O

Remark 3.3.14. We emphasize that the boundedness in Proposition 3.3.13(c) holds
only for weakly convergent sequences and it fails for nets. Indeed, every infinite
dimensional normed space admits a net {x,}qc; € X such that x, ™ 0in X and
sup(llxyll: n = a, n € I] = +co. To see this let E denote the collection of all nonempty
finite subsets of X*. This set is directed by the set inclusion, thatis, ifa,n € E, a > np if
and only if a 2 n. For each a = (x,’:);:zl € E there exist some x, € ﬂLl N(x;) such that
Ixall = card a. The net {x,}4cr has the desired properties.

The weak topology is not metrizable in general and so sequences are not adequate to
describe it. In fact we have the following result.

Proposition 3.3.15. If X is a normed space and the weak topology on X is metrizable,
then X is finite dimensional.

Proof. Since the weak topology is metrizable, it is first countable. Hence, we can find

a sequence {x,;}n>1 € X* such that for any given U € N,,(0) being the filter of weak

neighborhoods of the origin, there exist € € (0, 1) N Q and ny € N such that
U(0;x7,...,Xp,,€)<U. (3.3.2)

For each x* € X*, we have U(0; x*, 1) € N,,(0) and so by (3.3.2) it follows that

U(O; Xiseuns X;(U(O;x*,l))’ e) c U(0;x*,1).
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Then
n(U(0;x*,1))

[ NOg) e NxY,
k=1

which, due to Lemma 3.3.8, results in

n(U(0;x*,1))
k=1 :

x* € span{x;}
Since x* € X* is arbitrary, it follows that X* = |J;-; Vi with each Vi being finite
dimensional. Recall that X* is a Banach space. So, invoking Corollary 1.5.67 we see that
int Vi, + 0 for some ko € IN. This means that Vi, = X* and so X* is finite dimensional.

Hence X is finite dimensional. O
In what follows, we define for a normed space
Bi={xeX:|x| <1} and o0B;={xeX:|x|=1}.

Both sets are strongly closed. However, the situation changes for a weak topology.
This is another illustration of the character of weak topology compared with strong
(norm) topology, in the case of infinite dimensional normed spaces, of course; see
Proposition 3.3.12.

Proposition 3.3.16. If X is an infinite dimensional normed space, then aB1W = Bj.

Proof. First we point out that the set B; is w-closed. Indeed, if {xq}acr € B; is a net
such that x, il x, then from Proposition 3.3.13(c) one gets | x| < liminfye; ||xql < 1.
Hence x € B; and so B; is w-closed. It follows that

OB1 < B. (3.3.3)

Nextlet xg € By = {x € X: ||x|| < 1} and take U € Ny, (xo) being the filter of weak
neighborhoods of xo. We may always assume that U is basic, that is,

U=U(x0;X],...,Xp,€) with {x;}}_; <X* and £>0.

We fixu € ﬂzzl N(xp),u # 0 (see the proof of Proposition 3.3.9) and consider the
function ¢: R, — R, defined by &(A) = |[xo + Aul for all A > 0. We see that ¢ is
continuous, £(0) < 1 and lim)_,; é(A) = +00. So, by Bolzano’s Theorem there exists
Ao > O such that £(Ap) = ||xo + Aoull = 1, hence x¢ + Agu € 0B;.

Moreover, for every k = 1, ..., n we obtain [{(x;, Xo + Aou — Xo)| = 0, which shows
that xo + Agu € 0B1 N U. Therefore it follows that B; < a_Blw and since the weak
topology is smaller we infer that B; ¢ B_1W C a_BlW. Finally, because of (3.3.3), we
conclude that By = 0B . O

Remark 3.3.17. Consider the infinite dimensional Banach space I' = {X = (xp)n>1 €
RN: Y n=1 IXnl < oo} which is called the space of all absolutely summable sequences
in R. One can show that weak and norm convergent sequences coincide in I*. This
is known as “Schur’s Theorem” and its proof can be found in the book of Diestel
[79, p. 85].
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Our previous discussion of the weak topology has established that in an infinite
dimensional normed space there are many more strongly closed sets than there are
weakly closed sets. In the next theorem we show that for convex sets both notions agree.
This is a remarkable result since a purely algebraic property, namely convexity, leads to
a purely topological conclusion, namely that weak and strong closures coincide. The
result is known as “Mazur’s Theorem.”

Theorem 3.3.18 (Mazur’s Theorem). If X is a normed space and C < X is convex, then
c=c".
Proof. Since the strong (norm) topology is larger than the weak topology we directly

obtain
ccc’. (3.3.4)

Arguing by contradiction suppose that the inclusion in (3.3.4) is strict. That means
there exists xo € C \ C. Invoking the Strong Separation Theorem (see Theorem 3.1.60),
we find x* € X* \ {0} and € > 0 such that

(x*,x0) +€< (x*,u) forallueC.

Weset 9 = inf[(x*,u): u e Cland U = {x € X: (x*, x) < 9}. Evidently U € N, (xo) with
Ny (xo) being the filter of weak neighborhoods of xo. Then U n C = ¢ and so xq ¢ Ew, a
contradiction. Therefore from (3.3.4) we conclude that C = C . O

Corollary 3.3.19. If X is a normed space and V < X is a vector subspace, then V = V.

Corollary 3.3.20. If X is a normed space and x, il X, then there exists a sequence
{untns=1 € X consisting of convex combinations of the x,,’s such that u, — x in X.

Proof. Let C = CONV {Xy}ns1. Theorem 3.3.18 gives x € C' = C and S0 X € CONV {Xp}ns1-
The result follows. O

Remark 3.3.21. This corollary known as “Mazur’s Lemma” says that if x, X x, then for
agiven & > O there exist t1, ..., tyn > Osuchthat };'; tx = 1and |x - X, tixi| < €.

Corollary 3.3.22. If X is a normed space and C < X is convex, then C is closed if and only
if C is w-closed.

The next result is a consequence of the projective character of the weak topology.

Proposition 3.3.23. If X, Y are normed spaces, then A € L(X,Y) if and only if A is
weak-to-weak continuous.

Proof. Note that A € L(X, Y) if and only if A(E)f) ¢ Y is bounded with E)f ={x €
X: |x|lx < 1}; see Proposition 3.1.46. From Proposition 3.2.4 we know that A(E)l() cY
is bounded if and only if y* (A (E)f)) ¢ R is bounded for every y* € Y*. But a linear
functional on a normed space is continuous if and only if it is weakly continuous.
Invoking Proposition 1.3.4 we conclude that A is continuous if and only if it is weak-to-
weak continuous. O
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From Proposition 3.2.4 we have the following result about bounded sets.

Proposition 3.3.24. If X is a normed space and A < X, then A is bounded if and only if
A is w-bounded.

Remark 3.3.25. We can formulate this result in a more general form. We say that
a locally convex topology 7 on X is compatible with the pair (X*, X) if and only if
(X7)* = X*.Then A ¢ X is bounded if and only if A is T-bounded. In short, we can say
that boundedness is duality invariant.

On the dual space X* we can define two topologies. The first is the usual strong (metric)
topology induced by the norm and the second is the weak topology w = w(X*, X**).
Recall that the weak topology w is the weakest topology on X* such that (X;;)* = X**.
There is a third topology that we can define known as the w*-topology. This topology
makes sense only on dual spaces.

Definition 3.3.26. Let X be a normed space and X* is the topological dual, that is,
X* = L(X, R). The weak” topology on X* is the weakest topology w* on X* such that
(Xy+)* = X. Consider now the linear functional fy: X* — R defined by fx(x*) = (x*, x).
Then the weak™ topology is the weakest topology on X* making the collection {fy}xex of
maps from X* into R continuous. The weak” topology on X* is denoted by w* or by
w(X*, X).

Remark 3.3.27. Since X ¢ X** it is clear that w* < w, that is, the weak” topology has
fewer open (resp. closed) sets than the weak topology.

Similarly to the weak topology (see Proposition 3.3.4 and Remark 3.3.5), we have the
following result.

Proposition 3.3.28. If X is a normed space, then X*, equipped with the weak" topology,
is a completely regular locally convex space.

Moreover, we obtain the next two propositions as a consequence from Proposi-
tion 3.3.12.

Proposition 3.3.29. If X is a normed space, then the w*, the w, and the strong topologies
on X* coincide if and only if X is finite dimensional.

Proposition 3.3.30. If X is a normed space, then the basic weak™ neighborhood of the
origin has the form

UO;X1,...,Xn, &) ={x" e X" |(x", xx)| <eforallk=1,...,n}

with {xk},r(’=1 c X,n € Nand ¢ > 0. Since the weak" topology is linear, we obtain the local
basis at any other point by translation.

The proof of Proposition 3.3.13 gives the following result. In what follows we denote the
convergence in weak” topology by .
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Proposition 3.3.31. If X is a normed space and {x;}qsc1 < X* is a net, then the following

hold:

(@ x; v x* ifand only if (x}, x) — (x*, x) forall x € X;

(b) X% — x* orx — x* implies X it X*;

() x3 N x* implies ||x*||. < liminfaes X3l and every weakly” convergent sequence is
norm bounded;

d) x; v x* and xq — x in X imply (x}, xq) — (x*, x).

Remark 3.3.32. From the definition of the weak” topology, we see that any linear
functional f: X* — R, which is continuous for the w*-topology, has the form f(x*) =
(x*, X) for some x € X.

Proposition 3.3.33. If X is a normed space and H € X* is a w*-closed hyperplane, then
there exist x € X, x + 0, and 9 € R such that

H={x"eX": (x*,x)=9}.

Proof. We know that H = {x* € X*: f(x*) = 9} with f: X* — R being linear and 9 € R;
see Definition 3.1.53. Since by hypothesis H is w*-closed, Proposition 3.1.54 implies that
f is w*-continuous. Finally, using Remark 3.3.32, we conclude that there exists X € X
such that H = {x* € X*: (x*,x) = §}. O

Recall that every x € X definesin a natural way a linear functional f, : X* — Raccording
to the formula fy(x*) = (x*, x). Indeed, we see that |[f,(x*)| = [{x*, x)| < [Ix*[«lxll,
which shows that fy is bounded, that is, f, € X*, and ||fy||. < ||x||. Thus we can define
themap j: X — X** by j(x) = f. Clearly j is linear, injective, and [|j(x)|. < |x]| for all
x € X. Additional information about this map is supplied by the next proposition.

Proposition 3.3.34. If X is a normed space and j: X — X** is the linear map defined
above, then j is an isometric isomorphism onto j(X).

Proof. We already proved that j is an isomorphism onto j(X) and [|j(x)| . < |x| for all
x € X. On the other hand, from Proposition 3.1.50, we know that there exists x* ¢ X*
such that |[x*||. = 1 and j(x)(x*) = (x*, x) = ||x||. This shows that |j(x)|l. > [|x| for all
x € X. Hence, j is an isometry. O

Definition 3.3.35. The isometry j: X — X** of Proposition 3.3.34 is called the canoni-
cal embedding of the normed space X into X**.

Remark 3.3.36. Using the canonical embedding we can identify X with a subspace of
X**. Moreover, j(X) is a closed subspace of the Banach space X**. Hence, V = j(X) is a
Banach space as well. Therefore j is an isometric isomorphism onto a dense subset
of the Banach space V. Hence, the canonical embedding provides a shortcut to the
completion of a normed space. Every normed space can be viewed as a dense subspace
of a Banach space. When the canonical embedding j is not surjective, then the weak
topology w(X*, X**) is strictly larger than the weak” topology. Indeed let i1 € X** \ j(X)
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and consider the subspace H = {x* € X*: (i, x*) = 0}. Then H is w-closed, but it is not
w*-closed; see Proposition 3.3.33. In fact this example shows that Mazur’s Theorem
(see Theorem 3.3.18) fails for the w*-topology. A strongly closed convex set need not be
w*-closed. Moreover, a normed space and its completion have the same dual space;
however, their weak™ topologies differ. So, one should be careful when dealing with the
weak” topology of the dual of a normed space and that of the dual of the Banach space
resulting from its completion.

Since X can be viewed as a subspace of X**, it is natural to ask what kind of subspace
it is. The answer is given by the so-called “Goldstine’s Theorem.” In what follows we set

=X
BY = {x e X: x| < 1}, B ={xeX: x|l <1},
% _X**

BY = {x** e X**: Ix**lux <1}, B} ={x"* e X**: |x*"|.. < 1}.

*

W X

Theorem 3.3.37 (Goldstine’s Theorem). If X is a normed space, then j (Bf) = B;
andjX)" = Xx**.

Proof. Clearly, the second equality is a consequence of the first. So, let us prove the
first one.

Let x** e X** \j(B’f)w . Since j (B’f)w € X** is convex and w*-closed, by the
Strong Separation Theorem (see Corollary 3.1.61), there exists x* € (X3%)" = X* with
x* # 0 such that

# s

*

—W

sup[(x*,u**): u** ej(Bf) ] < {x*,x**). (3.3.5)
We may always assume that ||x*||. = 1. Then, from (3.3.5), we have

L=1x" e < O x5 < I lX ™ s

*

W —_X**
Hence, 1 < [x**|l,. andsoj(BY) =B . O

The weaker a topology is, the more compact sets it has. The next theorem is the most
important feature of the weak” topology. It is reminiscent of the Heine—Borel-Theorem
and it is the reason why the weak” topology is important in the theory of Banach spaces.
The result is known as “Alaoglu’s Theorem.”

Theorem 3.3.38 (Alaoglu’s Theorem). If X is a normed space, then Ef* = {x* €
X*: |x*|l« < 1} is w*-compact. More generally every w*-closed and bounded sub-
set of X* is w*-compact.

Proof. Suppose that x* € E)f* . Then for each x € E)f it follows |{x*, x)| < 1. Therefore

x*(By)cI=eR: A <1}.
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We can identify each element of E)l(* with a point in Iﬁf. From Tychonoff’s Theorem,
see Theorem 1.4.56, IET equipped with the product topology is compact. Since the
weak” topology is by definition the topology of pointwise convergence on Bl, the
identification of B1 with a subset of IB1 leaves the weak” topology unchanged So,
it remains to show that 31 is closed in IB1 To th1s end, let {x;}qer < B1 be a net

and assume that it converges pointwise to g € IB1 . Evidently g is linear and so g is
s . =X . . .
the restriction on B; of a linear functional x* on X. Moreovet, since |g(x)| < 1 for all

x € B, it follows that x* € B, and this proves that B, is closed in 151, and hence
w*-compact.

Every bounded set C ¢ X* satisfies C < rﬁf* for some r > 0. Since Ef* is
w*-compact and C is w*-closed, we conclude that it is w*-compact. O

Remark 3.3.39. From the theorem above, we derive that if X is a normed space and
C c X*, then C is w*-closed and bounded implies that C is w*-compact.

For the converse to hold, we need to assume that X is a Banach space. To see this,
let X = {X = (@n)new: an = 0 forall n > no} equipped with the norm ||x|| = ¥, lanl-
Clearly this is a normed space but not a Banach space. Consider a sequence {&,}nen € R
with &, > O for all n € N such that &, — +ocoas n — co. Let {X;}nenw € X* be defined
by x;(x) = an foralln € N.

Let D = {0, &1X1, &2X2, . . ., énXn, . . .} € X*. This set is unbounded since ||, Xp |« =
&, — +0o. However, it holds &,x,(x) = é,a, — O for all x € X. So, é,x, N 0 and it
follows that D ¢ X* is w*-bounded.

From the previous remark, we have the following corollary.

Corollary 3.3.40. If X is a Banach space and C < X*, then C is bounded if and only if C
is w*-bounded, that is, x(C) € R is bounded for every x € X.

We conclude this section with a remarkable result of R. C. James, which provides a
necessary and sufficient condition for a set C in a Banach space X to be weakly compact.
The result is known as “James’ Theorem” and its proof is lengthy and can be found in
Holmes [155, p. 157].

Theorem 3.3.41 (James’ Theorem). If X is a Banach space and C < X is bounded and
w-closed, then C is w-compact if and only if every x* € X* attains its supremum
over C.

3.4 Separable and Reflexive Banach Spaces

In this section we examine two special classes of Banach spaces, namely separable
and reflexive Banach spaces. They exhibit special properties, which are important in
applications.
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Definition 3.4.1. (a) A normed space X is separable if it contains a countable dense
subset.

(b) A normed space X is reflexive if the canonical embedding j: X — X** (see Defini-
tion 3.3.35) is surjective. A reflexive normed space is necessarily complete, that is, a
Banach space.

Remark 3.4.2. Any subset of a separable normed space is a separable metric space.
Many important spaces in analysis are separable and/or reflexive. Every finite di-
mensional Banach space is separable and reflexive. In the definition of reflexivity it
is essential to use the canonical embedding j stated in Definition 3.3.35. R. C. James
produced in 1951 a remarkable example of a nonreflexive Banach space X that is iso-
metrically isomorphic to X**. In this example, the image of X under the canonical
embedding j: X — X** is a closed subspace of codimension one. A detailed construc-
tion of this space can be found in Megginson [212]; see Section 4.5. In what follows, for
the sake of notational simplicity, we drop the use of the map j. It is understood that X is
embedded into X** via the canonical embedding.

Proposition 3.4.3. If X is a Banach space and X* is separable, then X is separable.
Proof. Let {x;}n>1 € X* be dense. Thanks to Corollary 3.1.48 we know that
Ixall, = sup [(x, x): x € X, lIx] < 1]

for all n € IN. Hence, there exists x, € X such that
1 * *
Ix.l =1 and 5”)(" I« <{xp,xn), neNN. (3.4.1)

Let Vo = spang{xn}nen, that is, Vy is the set of all finite linear combinations with
coefficients in Q of the vectors {x}nen. This set is countable since Vo = ;51 Vin With
Vm being the set of linear combinations with coefficients in Q of {x,}/ ;. Each V,, is
countable, and so Vy = | J,51 Vm is countable as well.

Let V = span{x,}nen. We claim that V is dense in X. To this end, let x* € V+. Then
there exists {xy, }ken S {X;}nen such that

*

Xy, — X" inX*ask — oo. (3.4.2)

Then, because of (3.4.1) and since x* € V+, it follows that

*

el < 2060 Xm0 = 206, = X7, X)) < 2|, =7, || = 2 [, —x7), -

Hence, thanks to (3.4.2), one gets x;, — x* = 0in X*. This shows that V* = {0} and
so V is dense in X; see Remark 3.1.63. Since V is countable and dense in V, we conclude
that X is separable. O

Remark 3.4.4. The converse of this result is not true. Namely, separability of X does
not imply separability of X*. For example, X = L([0, 1]) is separable (see Proposi-
tion 2.3.24), but X* = L*°([0, 1]) is not separable; see Proposition 2.3.29. In Section 4.1
we will show that L>°([0, 1]) = L1([0, 1])*.
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Theorem 3.4.5. A Banach space X is reflexive if and only ifﬁf ={xeX:|x| <1}is
w-compact.

Proof. =: The reflexivity of X 1mp11es that X = X**. Hence Ef = Ei{** . By Alaoglu’s

Theorem (see Theorem 3.3.38), 31 is w*-compact and from Proposition 1.3.5, we know
that
w(X™", X)| = w(X, X*) . (34.3)

Therefore, Ef is w-compact.
«=: Since by hypothesis, E}f is w-compact, it is w*-closed in X**; see (3.4.3).

W* * %k J—
The Goldstine’s Theorem (see Theorem 3.3.37), gives B1 = E)f and since B)l( is
w*-closed in X**, we obtain B1 = B1 . Therefore X = X** and so we conclude that X

is reflexive. O
Proposition 3.4.6. A Banach space X is reflexive if and only if X* is reflexive.

Proof. =: Since X is reflexive, we know that X = X** and so the weak and weak”

topologies on X* coincide. Alaoglu’s Theorem (see Theorem 3.3.38) implies that E)f* =
{x* € X*: ||x*||« <1} is w-compact and so Theorem 3.4.5 implies that X* is reflexive.
«: Since X* is reflexive, by the previous part of the proof we have that X** is

reflexive as well. Then Theorem 3.4.5 implies that B1 ={x*" e X**: ||x** s < 1}is
w-compact. The set B1 is closed, convex, hence a w-closed subset of B1 ; see Mazur’s
Theorem (Theorem 3.3.18). Therefore B1 is w-compact in X**. Since the w*-topology on

X** is weaker than the w-topology, it follows that E)f is w*-compact in X**. Hence it is
w-compact in X; see (3.4.3). We conclude by using Theorem 3.4.5. O

Proposition 3.4.7. If X is a reflexive Banach space and V is a closed subspace of X,
then V is a reflexive Banach space.

Proof. We know that
w(V, V™) =W(X,X*)|V; (3.4.4)

see Proposition 1.3.5. The set E‘l/ ={x € V: |x| < 1} is a weakly closed subset of the

weakly compact set B, ; see Theorem 3.4.5. Combining this with (3.4.4), we infer that B}
is w-compact in V. Then invoking Theorem 3.4.5 we conclude that V is reflexive. [

Combining Propositions 3.4.3 and 3.4.6, we obtain the following.

Proposition 3.4.8. If X is a Banach space, then X is separable and reflexive if and only
if X* is separable and reflexive.

Proposition 3.4.9. If X is a reflexive Banach space and V < X is a closed subspace, then
X/V is reflexive.

Proof. From Proposition 3.2.25, we know that (X/V)* and V+ are isometrically iso-
morphic. Let £: (X/V)* — V* be this isometric isomorphism. If p: X — X/V is the
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quotient map (see Definition 3.2.19), then from the proof of Proposition 3.2.25 we know
that

&D)=1lop foralll e (X/V)*.
Let I* € (X/V)**. The map I* - {~1: V* — R is a bounded linear functional on a

subspace of X*. Hence, by Proposition 3.1.49 there exists x** € X** such that (x**, x*) =
(I*, & 1(x*)) for all x* € V+. This implies that

(x**,lop)y =(I",1) foralll e (X/V)*. (3.4.5)

The reflexivity of X implies that there exists x € X such that j(x) = x** with j being
the canonical embedding. Let u = [x] = p(x) € X/V. Combining Definition 3.3.35 and
(3.4.5), it follows that

(1) =", Lo p) = (j(xX), Lo p) = (Lo p,x) = (I, p(x)) = (L, u) .

Hence, j(u) = I* with j being the canonical embedding for X/V. Since I* € (X/V)** is
arbitrary, it follows that j is surjective and so X/V is reflexive; see Definition 3.4.1(b). [J

We know that on an infinite dimensional normed space and on its dual, the weak and
weak” topologies are never metrizable. Nevertheless, the traces of these topologies on
certain subspaces can be metrizable. The results that follow investigate this issue. We
start with a general topological result.

Lemma 3.4.10. If (X, 1) is a compact topological space and {f,}n>1 is a separating
sequence of continuous functions on X (see Definition 1.3.6), then the topology T is
metrizable.

Proof. We may assume that |f,(x)| < 1 for all x € X and for all n € IN. On X we consider
the metric d defined by

dx,u)= ) % Ifn(0) = fa)] forallx,ueX.
nelN

Let 74 be the metric topology induced by this metric on X. For every fixed u € X,
x — d(x, u) is T-continuous as the uniform limit of 7-continuous functions. So, for
every € > 0, it follows that B.(u) = {x € X: d(x,u) < €} € 7, which means that
T4 € 7. Using Theorem 1.4.54, we see that the identity map ix: (X, 7) — (X, 74) isa
homeomorphism. Hence 7 = 7. O

Using this lemma, we can state the first metrizability result for the weak” topology.

Theorem 3.4.11. If X is a separable normed space and C ¢ X* is w*-compact, then C
equipped with the w*-topology is metrizable.

Proof. Let {xp}n>1 € Xbedensein X. Ifj: X — X** is the canonical embedding, then
(J(xn), x*y = (x*,xp,) foralln e Nand forall x* € X*;

see Definition 3.3.35. So, if {j(x,), x*) = 0 for all n € N, we derive that (x*, x,) = O for
all n € N and the density of {x,,},>1 in X implies that x* = 0. Therefore {j(x,)}n>1 € X**
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is separating and each j(x,) is w*-continuous. Applying Lemma 3.4.10, we conclude
that (C, w*) is metrizable. O

We can improve this result in the following way.

Theorem 3.4.12. If X is a normed space, then the following hold:
(a) (Ef , w*) is metrizable if and only if X is separable;

(b) (E)l(, w) is metrizable if and only if X* is separable.

Proof. (a) =: Since (E)f , w*) is metrizable we can find a countable basis {Up},>1 at
the origin. We obtain

Uy = {x* e By 107, 0l < & foraHXGFn} » MEN

with F,, ¢ X finiteand €4, ..., &, > 0. Let E = | J,51 Fr. Then E ¢ X is countable and
x*(E) = 0 implies x* € U, forall n € IN and so x* = 0. Moreover, if x*(spanE) = 0,
then x* = 0. Therefore spanE = X and so we conclude that X is separable.

&: This follows from Theorem 3.4.11.

(b) =: As before, let {U,}n>1 be a countable local basis at the origin of X. We
obtain

U, = {x eﬁf: l(x*, x)| < €, forall x* € F;“,} , neN (3.4.6)

with F;; ¢ X* finiteand €1, ...,&, > 0. Let E* = | J,5; F;,. Then E* ¢ X* is countable
and so spanE™* is separable. We will show that X* = spanE*. Arguing by contradiction,
suppose that there exists x* € X* \ spanE*. Let d = d(x*, spanE*). Then we can find
X** € X** such that

1

1., = 7 Xx**(SpanE*) =0 and x**,x*)=1; (34.7)
see Proposition 3.1.50. We introduce
- . d
V:{xeB’f: |<x*,x>|<5} . (3.4.8)

Then V is a weak neighborhood of the origin in X and so Uy, < V for some ng € IN.
Note that dx** ¢ E)f and so by Goldstine’s Theorem (see Theorem 3.3.37), there is
% € B} such that

N

{dX™™ = X, x")| < &p, forallx* € F;~ and [{(dX™* - X, X") <
Then, due to (3.4.7),
(x*, X)| < &, forallx® e F; and |(5c*,5c)|>g.

This gives, with view to (3.4.6) and (3.4.8), that X € Uy, and X ¢ V, a contradiction to
the fact that Uy, € V. Therefore X* = spanE*, and so X* is separable.
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sk

&: According to Alaoglu’s Theorem (see Theorem 3.3.38), we know that B1 is
w* compact Smce X* is separable, from part (a) we derive that (B1 , W*) is metrizable.
Since Bl - B1 via the canonical embedding and w(X**, X*)| x = WX, X"), we

conclude that (E)f, w) is metrizable. O

Remark 3.4.13. In particular, this theorem says that if X (resp. X*) is separable and
C < X* (resp. C ¢ X) is bounded, then (C, w*) (resp. (C, w)) is metrizable.

A subset C of a normed space X is said to be weakly sequentially compact (resp.
weakly countably compact, weakly limit point compact) if it is sequentially com-
pact (resp. countably compact, limit point compact) in the weak topology; see Defini-
tion 1.4.57.

A remarkable result known as the “Eberlein-Smulian Theorem” says that all these
notions are equivalent to weak compactness. The proof of this result is lengthy and can
be found in Dunford-Schwartz [94, p. 430] and Megginson [212, p. 248].

Theorem 3.4.14 (Eberlein-Smulian Theorem). If X is a normed space and C < X, then
the following properties are equivalent:

(@) Cis (relatively) weakly compact.

(b) Cis (relatively) weakly sequentially compact.

(c) Cis (relatively) weakly countably compact.

(d) Cis (relatively) weakly limit point compact.

Remark 3.4.15. The theorem above is not true for the weak” topology.

Combining Theorems 3.4.5 and 3.4.14, we infer the following sequential characterization
of reflexivity.

Theorem 3.4.16. A Banach space X is reflexive if and only if every bounded sequence in
X admits a weakly convergent subsequence.

Two other consequences of Theorem 3.4.14 are the following two results.

Theorem 3.4.17. If X is a separable normed space and C < X is weakly compact, then
(C, w) is metrizable.

Theorem 3.4.18. If X is a reflexive Banach space, C € X is bounded, and x ¢ EW, then
there exists a sequence {x,}n>1 € C such that x, % xinX.

The next proposition provides a way to identify weakly compact sets.

Proposition 3.4.19. If X is a Banach space, C < X is w-closed, and for every € > O there
is a weakly compact set K. € X such that C € K + eﬁ)f, then C is weakly compact.

Proof. Viewing C as a subset of X** via the canonical embedding, we directly obtain

s *

. w —wW

C" K.+ SET = K‘!* + eﬁf = K¢ + eEi(** ,
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since K, is w-compact and due to Theorem 3.3.37. Therefore

EW* c ﬂ(Kg+£§fH) cX,

e>0

which shows that C is w-compact since C is w-closed. O

Continuing with weakly compact sets, we show that this property is preserved if we
take the closed convex hull of the set.

Proposition 3.4.20. If X is a Banach space and C < X is w-compact, thenconv C € X is
w-compact as well.

Proof. Let x* € X*. Then
sup [(x*,x): x € C] =sup [(x*,u): u e conv (] . (3.4.9)
Because C ¢ X is w-compact, there exists X € C such that
(x*,X) =sup [(x*,x): x € C].
This implies, due to (3.4.9), that
(x*,X) =sup [(x*,u): ueconv(|.

Since x* € X* is arbitrary, invoking James’s Theorem (see Theorem 3.3.41), we conclude
that conv C is w-compact. Note that conv C is w-closed by Theorem 3.3.18. O

Next we introduce some new classes of Banach spaces based on some geometric
properties of the unit ball.

Definition 3.4.21. Let X be a Banach space.

(a) We say that X is strictly convex if for all x, u € X with x # u and |x|| = ul| = 1 it
holds ||(1 — t)x + tu|| < 1 forall t € (0, 1).

(b) We say that X is uniformly convex if for every € > O there exists § = §(¢) > 0 such
that

1
x,ueX,|xl<1,llull <1,x-ull >¢e imply §||X+ uf<1-6.

(c) We say that X is locally uniformly convex if for every € > 0 and x € X with || x| = 1
there exists 6 = 6(e, x) > 0 such that

1
uelX,ul=1,lx-ull>¢ imply 5||x+ ul<1-46.
Remark 3.4.22. Evidently it holds
Uniformly convex = Locally uniformly convex = Strictly convex .

Note that these implications are not reversible in general. For finite dimensional spaces,
the three notions are equivalent.



3.4 Separable and Reflexive Banach Spaces = 223

Proposition 3.4.23. Let X be a Banach space. The following properties are equivalent:

(a) X is strictly convex.

(b) The boundary of the unit ball called the unit sphere contains no line segments.

(¢) x#uand|x| = |ul|l = 1 implies | x + u| < 2.

(d) Iflx -yl = llx —ull + lu -yl for x,u,y € X, then there exists t € [0, 1] such that
u=(1-tx+ty.

(e) Every x* € X* \ {0} attains its supremum on E)f on at most one point.

Proof. (a) = (b): This is obvious from Definition 3.4.21(a).
(b) = (a): Arguing by contradiction suppose that we can find x, u € X, x # u, ||| =
lull = 1 and ¢y € (0, 1) such that ||(1 - to)x + toul = 1. Let t € (0, to). Then we obtain

1-+¢g to—t
1-to)x+tou = 1-Ox+tu)+ u,
(1= to)x + tou = ——=((1 = O0x + tw) + T—
which gives
1-t¢ to—t
1< O = )x + tul + 2— .
1-t 1-t¢

Hence ||(1 - t)x + tu]| = 1 and so ||(1 — t)x + tu] = 1.

Similarly we treat the case t € (o, 1). Therefore the line segment [x, u] is on the
unit sphere of X, a contradiction to the hypothesis.

(a) = (c) and (c) = (b): These implications are obvious.

(@) = (d): Let x, u, y € X be such that ||x — y|| = [x — u|| + [|lu — y||. We may assume
that |x — u|| # 0, |u — y|l # 0 and |x — u|| < |lu — y|l. Then we derive

Hl X—-U +l u—yH

20x-ull 2 u-yl

e - 1
20x—ull 2 [x—ul 2 x-ull  2fu-yl

_llx =yl 1 ju—yl-lx—ul

T 20x-ul 2 x-ul
1 1
-~ DJlx-u|=1.
2 |Ix—ul
Hence we obtain
X—-u u-y

+ =2,
IM—MIIW—Hw

which finally gives
X-u _ u-y
Ix—ul — lu-yl"
Therefore u = (1 — t)x + ty with t = (|x — u|))/(lx — yl) € (0, 1).
(d) = (c): Letx,y € X,x + ywith x| = |yl = 1/2|x +y| = 1. Then |x + y| =
x|l + llyll, which gives u = 0 = (1 — t)x — ty for some t € (0, 1). Hence x = t/(1 — t)y and
sot =1/2, thatis, x = y, a contradiction. Therefore we conclude that ||x + y| < 2.
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(a) = (e): Let x* € X*\{0}, and suppose that there exist x, u € X with ||x|| = JJul| = 1
such that (x*, x) = (x*, u) = [x*| .. For t € (0, 1) it follows that

X = (X =", x) + X", u) = (X, (1 - Ox + tu) < Ix* N1 - O)x + tul,

which implies 1 < ||(1 — )x + tu|| < 1, a contradiction. Thus, x* € X* \ {0} has at most
one maximizer on the closed unit ball of X.

(e) = (c): Suppose that there are x, u € X, x # u with |x|| = |ul| = 1, |x + u| = 2.
Invoking Proposition 3.1.50, there exists x* € X* such that ||x*|, = 1and (x*, 1/2(x+u))
=1/2|x + u|| = 1. Hence

xXF,x) + (xF,u)=2. (3.4.10)

It holds {(x*, x) < 1 and {(x*, u) < 1. So, from (3.4.10) it follows that (x*, x) = (x*, u) =
1, which contradicts the hypothesis. Therefore ||x + u| < 2. O

From the proposition above and its proof we directly obtain the following corollary.

Corollary 3.4.24. Let X be a Banach space. The following properties are equivalent:
(@) Xis strictly convex.

(b) Ifx,u € X, |x| = llul = 1 and ||x + u|| = 2, then x = u.

(c) Ifx,u € X satisfy 2|x||? + 2|lull®> = |Ix + ull?, then x = u.

(d) Ifx,u e X\ {0} satisfy |x + u| = ||x|| + |ull, then x = tu for some t > O.

A sequential reformulation of Definition 3.4.21(b),(c) gives the following characterization
of uniform convexity and local uniform convexity.

Proposition 3.4.25. Let X be a Banach space.

(@) X is uniformly convex if and only if for every {xn}n>1, {Un}n>1 € E)f such that ||x, +
Un| — 2, we have |x, — uy|| - 0asn — oo.

(b) X is locally uniformly convex if and only if for any x € X, |x| = 1 and for every
sequence {Xn}tn>1 € X with | x,|| = 1 for all n € N such that ||x, + x| — 2, we have
Ixn = x| — 0.

Remark 3.4.26. In the characterizations above, the sequence can be replaced by nets.
Another characterization of uniform convexity is given by the next proposition.

Proposition 3.4.27. If X is a Banach space, then X is uniformly convex if and only if for
every sequences {Xn}n>1, {Untn>1 S X with {x,}n>1 bounded such that

21xnll* + 2lunll® = Ixn + unll> 50 asn — oo,
we have || x, — uy|| — 0as n — oo.
Proof. =—: Note that

2 2 2 2
(xnll = lunl)® = 2lxal1* + 2llunl” = (ixnll + luxl)

2 2 2
< 2|xnll” + 2[unll® = lIxn + unl
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for all n € IN. Hence ||xu| = llunll — 0 as n — oo. Therefore if ||x,|| — O or |uy| — O,
then || x,, — u,|| — 0. So we may assume that there exists € > 0 such that

Ixall =€ and |luy]|>€e forallnelN.

Let yn = xn/lIxall, Vo = un/lluyll with n € N. Then |y,|| = llvall = 1 foralln € N and
lyn + vnll — 2.1t follows that ||y, — v4|| = O and so |x, — un| — O.
«: This implication is obvious; see Proposition 3.4.25. O

Uniformly convex Banach spaces are reflexive. The result is known as the “Milman—
Pettis Theorem.”

Theorem 3.4.28 (Milman—Pettis Theorem). If X is a uniformly convex Banach space,
then X is reflexive.

Proof. Let x** ¢ E)f Invoking the Goldstine’s Theorem (see Theorem 3.3.37), we

can find a net {xg}qer < E)lf such that x, ‘L x** in X**. Exploiting the w*-lower
semicontinuity of the norm | - ||.. on X** (see Proposition 3.3.31(c)), we see that
[xa + xgll — 2. Applying Proposition 3.4.25(a) gives ||x4 — xgll — 0, which implies that
{xq}aer € X is a Cauchy net. The completeness of X implies that x, — x** € X and so
X = X**, that is, X is reflexive. O

In Remark 3.3.17 we mentioned that in the Banach space I* for sequences, weak and
norm convergences are equivalent. More generally, any Banach space having this
property is said to have the Schur property.

Example 3.4.29. The Banach space (in fact Hilbert space; see Section 3.5) I> = {X =
(Xn)n>1 € RN: Y1 xfl < 0o} does not have the Schur property. Since I? is a Hilbert
space, we have (I?)* = I?, see Theorem 3.5.21. Lete,, = (0, ..., 1,0, ...) with 1 at the
nth-spot. Then for every x* € (1?)* = I?> we have (x*, e,) — 0, thatis, e, ¥ 0. On the
other hand |e,| = 1 forall n € N and so e, + 0 in the norm topology.

However I? as well as every Hilbert space has the following weakened version of the
Schur property.

Definition 3.4.30. A normed space X is said to have the Kadec-Klee property if it
satisfies the following condition:

w .
For every sequence {x,},>1 € X such that x, —» xin X
and ||x,|| — |Ix|, we have x,;, — xin X.

Remark 3.4.31. The names Radon-Riesz property or property (H) are also used in
the literature.

Proposition 3.4.32. If X is a locally uniformly convex Banach space, then X has the
Kadec-Klee property.
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Proof. Consider xj, % xinX. Evidently we may assume that x # 0. Let u € X, u # 0.
Let y, = xn/lxnll, v = x/|Ix|| with n € N. Then |y,|| = lyl = 1 forall n € N and y, Al y
in X. Hence

2 = 20yl < iminf Iy, + vl < kimsuplya -+ Yl < Hm lyal + Iyl = 2

see Proposition 3.3.13(c). Then lim, o, [|yn + ¥l = 2. Proposition 3.4.25(b) implies that
lyn — yll — O since X is locally uniformly convex. O

3.5 Hilbert Spaces

In this section we turn our attention to Hilbert spaces, which are Banach spaces with
some additional structure, resulting from the presence of an inner product. The inner
product supplies a very rich structure, which leads to important simplifications and
makes Hilbert spaces the infinite dimensional analog of Euclidean spaces.

Definition 3.5.1. Let H be a vector space over the field IF with IF = R or IF = C. An inner
product on X isamap (-, -): H x H — FF such that

@ Ax+u,y)=Ax,y)+ (u,y)forall x,u,y € Hand for all A € F (linearity);

(b) (x,u) = (u, x) for all x, u € H (conjugate symmetry);

(¢) (x,x)>=0and (x,x) = 0ifand only if x = O (positive definiteness).

Remark 3.5.2. Linearityin (a) in fact means linearity in the first argument. In the second
argument the map is conjugate linear. Property (b) is sometimes called Hermitian
symmetry.

The next result is of fundamental importance and is known as the “Cauchy—-Bunyakowsky-
Schwarz inequality.”

Proposition 3.5.3 (Cauchy—-Bunyakowsky-Schwarz inequality). If H is a vector space
with inner product (-, -), then |(x, u)|? < (x, x)(u, u) forall x, u € H.

Proof. Let x,u € H and let A € IF. Then it follows that
0<(x-Au,x-Au) = (x,x) - Z(X, u) — Ax, u) + AP (u, u) .

Choosing A = (x, u)/9 with 9 > 0 results in

1 (u, u) 5
0<(x,x) - 3 (2— T)I(x,u)l .

If u # 0, then choose 9 = (u, u) to get the desired inequality. If u = 0, then (x, u) =0
and so the inequality holds trivially. O

Proposition 3.5.4. If H is a vector space with inner product (-, -), then || x|| = (x, x)1/? for
all x € H defines a norm on H.
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Proof. We only need to verify the triangle inequality. So, let x, u € H. Then, using
Proposition 3.5.3, it follows that

||)(+u||2 =(x+u,x+u)=0,x)+x,u)+ u,x)+(u,u)
= IxII* + 2 Re(x, w) + ull? < lIxlI* + 21(x, w)| + [lull®

< [Ixll® + 2/l + lull® = (xll + ful)? .
This shows the assertion. O

Remark 3.5.5. A vector space with an inner product will be referred as an inner prod-
uct space. Usually we will not explicitly mention the inner product unless we want to
distinguish between different inner products defined on H. The norm || - || defined in
Proposition 3.5.4 is the norm defined (induced or generated) by the inner product (-, -).

At this point it is natural to ask when a norm is defined by an inner product. The next
proposition will lead to a necessary and sufficient condition for this to happen.

Proposition 3.5.6. If H is an inner product space, then the following hold:
(a) Parallelogram law: For all x, u € H we have

b+ ull® + lx = ull® = 2 (Ix0? + lull?) .
(b) Polarization identities: For all x, u € H we have

O u) = — [Ix+ull® - lIx - ull® +illx + ful® - ilx - iul’] if F=C,

1
4
1

06 w) = 2 [+l = e = ul?] if F=R.

Proof. (a)For all x, u € H and for all A € IF one gets

Ix + Aull? = x| + 2 Re(A(x, w)) + A1 [[ul?

= |IxlI* + 2[ Re ARe(x, u) — im Aim(x, u)] + [A[*[lu]l? .

(3.5.1)

Choosing A = 1 and A = -1 in (3.5.1) and adding these equalities, we obtain the desired
parallelogram law.

(b) Choosing A = 1 and A = -1 in (3.5.1) and subtracting, we get the real polarization
identity, that is, the case IF = R. Choosing A = i and A = —i in (3.5.1) and subtracting, we
obtain the complex polarization identity, that is, the case IF = C. O

The next theorem provides a necessary and sufficient condition for a norm to be
generated by an inner product. For a proof of this result, we refer to Weidmann [307, p. 9].

Theorem 3.5.7. A norm on a vector space H is defined by an inner product if and only if it
satisfies the parallelogram law. Moreover, if the norm on H satisfies the parallelogram law,
then the unique inner product defining the norm is given by the polarization identities; see
Proposition 3.5.6(b).
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Definition 3.5.8. A Hilbert space is a complete inner product space.

Remark 3.5.9. So, according to Theorem 3.5.7, a Hilbert space is a Banach space whose
norm satisfies the parallelogram law.

Theorem 3.5.10. Every Hilbert space H is uniformly convex, hence reflexive; see Theo-
rem 3.4.28.

Proof. Lete > Oandlet x,u € Hwith ||x|]| < 1, ]lu]l £ 1 and ||x - u]| > . Using the
parallelogram law (see Proposition 3.5.6(a)), we derive ||(x + u)/2||*> < 1 — £2/4, which
implies that

€

1 N
§||x+u||§1—5 with 6:1_<1_Z> 0.

Therefore H is uniformly convex; see Definition 3.4.21(b). O

The next notion is particular to inner product spaces and gives them the extra structure
with respect to general Banach spaces.

Definition 3.5.11. Let H be an inner product space and x, u € H. We say that x, u are
orthogonal denoted by x_Lu if (x,u) = 0. If x € H and C < H, then we say that x is
orthogonal to C denoted by x L C if x Lu for all u € C. Finally if C, D < X, we say that the
two sets are orthogonal, denoted by C_LD if x Lu for all x € C and for all u € D. We say
that C ¢ X is an orthogonal set if x_Lu for all x, u € C with x # u.

Remark 3.5.12. Clearly, x Lu ifand only if u1 x. Hence C_LD ifand only if D_L C. Moreover,
CLD implies Cn D = {0}.

The next result is an extension of the classical “Pythagorean Theorem.”

Theorem 3.5.13 (Generalized Pythagorean Theorem). If H is an inner product space
and {x};_, < H is a finite orthogonal set, then

n 2 n

2
Z Xkl = Z [l .
k=0 k=0

Proof. First suppose that n = 1, that is, we have a pair xo, x; € X of orthogonal vectors.
Since xo1x; we derive

2 2 2
lIxo + X117 = (Xo + X1, X0 + x1) = lIxoll* + 2 Re(x0, x1) + Ix111* = lIxoll* + Ix1 1% .

So, the result holds for n = 1. Proceeding by induction, suppose that it holds for some
n € N, that is

2 n
= Z Ixkll>  for every orthogonal set {Xi}eo <H. (3.5.2)
k=0

n
Z Xk
k=0
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Let {xk}z;ré € H be an arbitrary orthogonal set. Since x,1 L{xk},r(’:0 it follows that

Xn+1L Y_o Xk, and hence

2 2

2 n+1
2 2
+ Xnsal? =) x5
k=0

n+1

n
Y X Y xi
k=0 k=0

see (3.5.2). So, the induction is complete and the Generalized Pythagorean Theorem
holds. O

n
Z Xk + Xn+1
k=0

We can state an infinite version of the Pythagorean Theorem.

Theorem 3.5.14. If H is an inner product space and {xy}x>1 € H is an orthogonal se-
quence, then the following hold:

(@) Yjoq Xk exists in X implies that ¥ ., Ixkl? < co and | ¥ sy Xk|* = Tasr Xkl

(b) IfH is a Hilbert space and ¥ ;., Ixkl*> < oo, then ¥ ., x exists in H.

Proof. (a) By hypothesis we have

n
Zxk—> Zxk inHasn — oo,
k=1 k>1

which implies that

2 2

— asn — oco. (3.5.3)

> x

k>1

n

> x
k=1
From Theorem 3.5.13 we obtain

n
> x
k=1

2 n

Ixkll> foreveryneN.
k=1

Hence, due to (3.5.3)
2

> x

k>1

asn—oo.

n

2
Y Il -
k=1

Therefore ,

=Y Ix? < oo.

k>1

>

k>1

(b) For m > n, it holds

m n 2 m 2 m
Yo=Y x| =) Y x| = ) Ixl?;
k=1 k=1 k=n+1 k=n+1

see Theorem 3.5.13. Hence

ixk—ixk —0 asn— oo.
k=1 k=1
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Therefore, {}}_; xx}new < H is a Cauchy sequence. Since H is a Hilbert space it follows
that Y}_; xx = Y1 Xk in Hasn — co. O

Corollary 3.5.15. If H is a Hilbert space and {xx}x>1 € H is an orthogonal sequence, then
Yio1 IXkll? < +coif and only if Y i1 Xx exists in H and || Y o1 Xill> = Y jq 1%kl

Example 3.5.16. Two classical examples of Hilbert spaces are the following ones:
(a) RY equipped with the Euclidean inner product

N
(x, 1) = Z XUy Withx = (xk);(vzl, u= (uk)f(\’:1 eRN.
k=1

(b) The Banach space 12 = {X = (xi)i>1 € RN: Y1 xi < oo} equipped with the inner
product
(%, @) = Y xpuy forallx, it el”.
k=1
Remark 3.5.17. The other sequence Banach spaces I’ = {X = (xi)i>1 € RN: Yot 1XklP
< oo} with 1 < p < co and p # 2 are not Hilbert spaces. We can easily see that the
parallelogram law fails; see Theorem 3.5.7.

Now we present a basic property of closed convex sets in a Hilbert space. From now on
all Hilbert spaces considered are real, that is, IF = R.

Theorem 3.5.18. If H is a Hilbert space and C < H is nonempty, closed, and convex, then
for any given x € H there exists a unique element p¢(x) € Csuch that |[x-pc(x)| < lIx-ul
forallu € C.

Proof. By translating things if necessary, we assume that x = 0. Let n = inf[||u||: u € C]
and consider the minimizing sequence {u,}n>1 € C, thatis, [u,|| \ nasn — oco. From
the parallelogram law (see Proposition 3.5.6(a)), one gets for m > n, that

Um + Up ||?
2

2 2 2 2 2 2
Nt — tnl? = 2t + 2l —4” < 2lumll? + 2llunl? - 412,

since C is convex. Hence ||u,, — up||> — 0 as m, n — oo and so, {un}n=1 < C is a Cauchy
sequence. Thus u, — uin H and |lu|| = 1.

Now we show the uniqueness of this best approximation (minimum norm) point u.
Suppose that some v € C satisfies ||v|| = n. A new application of the parallelogram law
gives

2
0 < fu-vI? = 2pul? + i - 4| 22| < an? - 4n? <0,
recall again the convexity of C. Then u = v. So, u = p¢(x) is the unique best approxima-

tion of x in C. ]

Definition 3.5.19. The map p¢: H — C assigning to each x € H its unique best approx-
imation from C is called the metric projection of H onto C.
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The next proposition establishes the main properties of the metric projection map.

Proposition 3.5.20. If H is a Hilbert space, C < H is nonempty, closed, and convex, and
pc: X — Cis the metric projection map. Then the following hold:

(a) pClc = idc;

(b) ifx e X\ C, thenpc(x) € bd C;

(c) x=pcx),u-pc(x))<0forallu e C;

(d) pc) —=pcWI < lIx -yl forallx,y € H;

(e) if Cis a closed vector subspace of H, then x — pc(x)LC and p¢ € L(H).

Proof. (a) This is obvious.
(b) Let t € (0, 1) and let x; = (1 — t)x + tpc(x). We get

Ix = x¢ll = tx = pcON < lIx = pcOll -

So, if pc(x) € int C, then for t € (0, 1) close to 1 it follows x; € C, a contradiction. Hence
pc(x) e bd C.
(c)Letx € X,u € Cand t € (0, 1). The convexity of C implies
Ix = pcOl* < Ix = (1 = )pc(x) + tw)l|* = |x = pc(x) - t(u - pc(x)I?
= |x = pcOOII* = 2t(x = pc(x), u — pc(x)) + llu - pcXII?,
which implies 2(x — pc(x), u — pc(x)) < tlu — pc(x)||*>. We let ¢ \, 0 and obtain (x —

pc(x),u—-pcx)) <Oforallu € C.
(d) Let x, y € H. Using part (c) with u = p¢(y) € C it follows that

(x=pc(x), pc(y) —pc(x)) <0. (3.5.4)

Reversing the roles of x, y € H we also obtain

(v = pc(y), pc(x) —pc(y)) < 0. (3.5.5)

Adding (3.5.4) and (3.5.5) yields

x =y, pc(y) —pc(x) + (pc(y) = pc(x), pc(y) —pc(x)) <0,
which leads to
IpcC) = pecWI? < Ix = ylllpc(x) = pcWI 5

see Proposition 3.5.3. This finally gives |[pc(x) — pc()Il < Ix - y| forall x, y € H.
(e) Forevery u € C and 9 € R we get

Ix = pcO)I? < lIx - [pc(x) + I=wW]|?
= Ix = pc(O)I> F 29(x - pc(x), u) + 9*|ul?,
which turns into
+2(x — pc(x), u) < Iull? .
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Letting 9 \ 0, it results in +(x — pc(x), u) < Oforallu € C and so (x — pc(x), u) = 0 for
all u € H since C € H is a subspace. This gives

X-pc(x)LC. (3.5.6)
Finally note that using (3.5.6), for all u, x € H, leads to

(pc(x+y) - (pcx) +pcy)),u)=0 forallueC.

Hence, pc(x +y) = pc(x) + pc(y), that is, pc is additive. Clearly p¢(0) = 0 and for all
A € R\ {0} it follows that (pc(Ax) — Apc(x), u) = O for all u € C, which shows that
pc(Ax) = Apc(x), that is, p¢ is homogeneous. Therefore p¢ € L(H). O

A remarkable application of this result is a characterization of the topological dual of a
Hilbert space. The result is known as the “Riesz-Fréchet Representation Theorem for
Hilbert Spaces.”

Theorem 3.5.21 (Riesz-Fréchet Representation Theorem for Hilbert Spaces). If H is a
Hilbert space and x* € H*, then there exists a unique xo € H such that (x*,y) = (xo, y)
forally € H and | x*|. = lIxol-

Proof. Let V = (x*)~1(0). This is a closed subspace of H. We may assume that V # H
otherwise x* = 0 and the result is trivially true with xo = 0. Let ugp € H\ V,u; =
pv(ug) and u = (ug — u1)/(JJug — u1ll). Then |jul| = 1 and (u, x) = O for all x € V; see
Proposition 3.5.20(e). Therefore u ¢ V. For any y € H, we set

x*, ¥
(x*,u)y

z=y-tu with t=

Note that (x*, u) # Osince u ¢ V. Then (x*, z) = 0 and so z € V. Therefore (u, z) = 0,
which implies that

(x*,y)=(x*,u)(u,y) forally e H. (3.5.7)

So if we set xg = (x*, u)u, then it follows that (x*, y) = (xo, y) forall y € H. Clearly
this x is unique. Evidently, thanks to Proposition 3.5.3 one gets || xo|l < [{x*, u)||u| =
[{x*, u)| < |Ix*|.. Moreover, from (3.5.7) and Proposition 3.5.3 we conclude that [x*||, <
[{(x*, w)lllull = lxoll, which implies [|x*|l.. = [xol. U

Remark 3.5.22. According to this theorem there is a surjective linear isometry from H*
into H. This means that we can identify H* with H, that is, a Hilbert space is self-dual.
However, it is not always possible to do this identification. This is the case of evolution
triples, which we will discuss in Section 4.2.

Definition 3.5.23. Let H be a Hilbert space and C ¢ H. The orthogonal complement
C* of C is the set
Ct={xeH: (x,u)=0 foralluecC}.
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On account of Theorem 3.5.21 the orthogonal complement of C is simply the annihilator
of C introduced in Definition 3.2.24. Evidently C* is a closed vector subspace of H.
Moreover, C++ = (C+)*.

Remark 3.5.24. Clearly {0}* = H, H* = {0}. Moreover C1L.C*, Cn C*+ c {0} andif0 € C,
then C n C*+ = {0}. Also, if C, D ¢ H are nonempty sets, then C_LD if and only if C < D*.
Since 1 is a symmetric relation, that is, C_1LD if and only if D1 C, we also obtain that
D c C*+. Moreover, CLD implies that C n D < {0}. We can easily see that

C ¢ D implies that D* ¢ C* and C** ¢ D+,

(3.5.8)
C* = (span C)* = (span(C)* .

In addition, since CLC* and C*1C*+, we derive that C ¢ C*+ and C* ¢ C++4, here
C+++ = (C*)*. Therefore we have C ¢ C** and C*+ = C+**. Finally, if C ¢ H is a vector
subspace, then C*+ = C and C* = {0} if and only if C is dense in H.

Proposition 3.5.25. If H is a Hilbert space and V is a closed vector subspace of H, then
H = V & V*; see Definition 3.2.27.

Proof. It is easy to see that V @ V+ is a closed vector subspace of H. Suppose that H #
Ve V+.Then thereexistsu € H,u # OsuchthatulVeV+t.Wehaveu € VtnV+t = {0},
a contradiction. Therefore, H = V@ V*. O

From Propositions 3.5.20 and 3.5.25 we infer at once the so-called “Projection Theorem.”

Theorem 3.5.26 (Projection Theorem). If H is a Hilbert space and V is a closed vector
subspace of H, then there exists a unique pair of continuous linear operators P: H — V
and Q: H — V* such that

(a) x € Vimplies that P(x) = x, Q(x) = 0 and y € V* implies that P(y) = 0, Q(y) = y;
(b) P(x) = pv(x) and Q(x) = py:(X);

(c) forall x € Hone has ||x||? = |[P())? + 1Q(X)]12.

Now we turn our attention to orthogonal sets that lead to bases for Hilbert spaces. First
we recall the following basic notion from linear algebra.

Definition 3.5.27. Let X be a vector space and C ¢ X. We say that C is linearly in-
dependent if every x € C is not a linear combination of vectors in C \ {x}, that is,
x ¢ span[C \ {x}]. A set C ¢ X that is not linearly independent is said to be linearly
dependent.

Remark 3.5.28. The empty set @ is linearly independent. Also, the singleton C = {x}, x #
0 is linearly independent. Any set C < X, which contains the origin, is linearly inde-
pendent. Finally, C < X is linearly independent if and only if every finite subset of C is
linearly independent.

Proposition 3.5.29. If H is an inner product space and C < H is an orthogonal set
consisting of nonzero vectors, then C is linearly independent.
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Proof. Arguing by contradiction, suppose that there is a sequence {xx};_, withn > 1
such that x¢ = Z,'(lzl Axxx with Ay e R, k=1, ..., n; see Remark 3.5.28. Exploiting the
orthogonality of the set C yields ||xo|*> = Z,r('zl Ak(xk, xo) = 0, a contradiction. O

Definition 3.5.30. Let H be an inner product space and C < X. We say that C is an
orthonormal set if it is an orthogonal set consisting of vectors with unit norm, that is,
unit vectors.

Remark 3.5.31. Every orthogonal set consisting of nonzero vectors can be normalized.
Indeed, if C is an orthogonal set such that x # 0 for all x € C, then {x/|x||: x € C}isan
orthonormal set.

From Proposition 3.5.29 we directly obtain the following result.

Proposition 3.5.32. If H is an inner product space and C < H is an orthonormal set,
then C is linearly independent.

The next proposition is an immediate consequence of Definition 3.5.30.

Proposition 3.5.33. If H is an inner product space, C < X is an orthonormal set, and
x € Hwith ||x|| = 1 and x1C, then C U {x} is an orthonormal set as well.

Definition 3.5.34. Let H be an inner product space and let £ be the family of all or-
thonormal subsets of H. Evidently £ # @ since C = {x} with ||x| = 1 is orthonormal.
A set C € £ is maximal orthonormal if there is no set C' € £ such that C' # C and
cccC.

Proposition 3.5.35. If H is an inner product space and C < H is an orthonormal set, then
the following statements are equivalent:

(a) Cis a maximal orthonormal set.

(b) There is no unit vector x € X, that is, ||x|| = 1, such that C U {x} is an orthonormal set.
(c) ct={0}.

Proof. (a) = (b): Otherwise C U {x} contradicts the maximality of C.

(b) = (c): Let y € H be such that y_1C. Let x = y/|lyll. Then | x| = 1 and C U {x} is
an orthonormal set, a contradiction.

(c) = (a): Arguing by contradiction, suppose that there exists an orthonormal set
C' c Xsuchthat C'\ C # 0.Letx € C'\ C. Then ||x|| = 1 with x_LC, a contradiction. O

Proposition 3.5.36. If H is an inner product space and C < H is an orthonormal set, then
there exists a maximal orthonormal set Co < H such that C < Cy.

Proof. Let L = {D € 2H: Dis an orthonormal set, C ¢ D} and let D be a chain in
Lc.Let UD = Upep D and consider x, u € |JD with x # u. Then x € Dy € D and
u € Dy € D. Since D is a chain, we may assume that D, < D,.. Hence x, u € D, and so
D € L. Invoking Zorn’s Lemma (see Section 1.4), £ has a maximal element Cy such
that C ¢ Cy and Cy is orthogonal. If we can find a unit vector x € H such that Cy U {x} is
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orthonormal, then Cy U {x} € £¢ and this contradicts the maximality of C¢. This proves
that Cy is a maximal orthonormal set. O

Now that we have established that maximal orthonormal sets exist, we can show that
they span H.

Proposition 3.5.37. If H is an inner product space and C < H is an orthonormal set, then
the following hold:

(a) spanC = H implies that C is maximal orthonormal.

(b) If H is a Hilbert space and C < X is maximal orthonormal, then spanC = H.

Proof. (a) From (3.5.8) we know that C*+ = (spanC)* = H* = {0}. Then Proposition 3.5.35
implies that C is maximal orthonormal.

(b) From Proposition 3.5.35 and (3.5.8), we deduce that 0 = C* = (spanC)+. Hence
spanC = H; see RemarKk 3.5.24. O

Definition 3.5.38. Let H be an inner product space. A set B € H is an orthonormal
basis of H if the following hold:

(a) Bisan orthonormal set.

(b) spanB = H.

Remark 3.5.39. According to Proposition 3.5.37, every Hilbert space admits an orthonor-
mal basis. In fact, for Hilbert spaces, the notions of maximal orthonormal set and of
orthonormal basis coincide. That is, if H is a Hilbert space, then B ¢ H is a maximal
orthonormal set if and only if B € H is an orthonormal set. In finite dimensional Hilbert
space all orthonormal bases are finite and have cardinality equal to the dimension of
the space.

The next proposition establishes a fundamental inequality for inner product spaces
known as “Bessel’s inequality.” First let us see how we interpret summation over an
arbitrary index set.

Definition 3.5.40. Let (X, ) be a Hausdorff topological vector space, I be an arbitrary
index set,and I > @ — x4 € X be amap. Then the sum } ,.; x, is defined as follows: Let
J be the family of all finite subsets of I ordered by inclusion. Then ) ,.; xo = x if and only
if the net {} ,cr Xa}reg T-converges to x. This is called unconditional convergence
since it does not depend on any ordering on the index set I. If I = N, then } ., x, = x

means that Y7 ; x, %, xas m — oo. Then the series Y n>1(=1)"1/nis convergent but
not unconditionally convergent.

Remark 3.5.41. If X = R, then } ,.;xo = x € R means that for a given € > 0 there
exists a finite set F ¢ I such that [x — Y, X4| < € for all finite F ¢ G < I. On the other
hand ) ,.; Xa = +0o means that for any given M > 0 we can find a finite set F c I such
that } ;. Xxa > M forall F ¢ G < I. Also recall that absolutely convergent series can
be rearranged (see Amann—Escher [8, p.201]) and we mention a remarkable result
known as the “Orlicz—Pettis Theorem,” which says that a series } ., x, in a Banach
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space X is weakly unconditionally convergent if and only if it is strongly unconditionally
convergent. Finally we mention another important result, the “Dvoretzky—Rogers
Theorem,” which says that if X is infinite dimensional, then there exists a sequence
{Xn}n=1 € X such that ) ., x, is unconditional convergent and } ., [[xn| = +oo.

Lemma 3.5.42. If X = R and {x4}qer € [0, +00), then

Zxazsup Zxa:Finsﬁnite

ael a€eF

Proof. First suppose that ) ,.; x4 < +00. Then for a given € > 0 there exists a finite set

F ¢ I such that
ZXQZZXQ—E.

acF ael

Hence,
Y Xa2 ) Xa2 ) Xa2 ) xq—¢ forallfinite FcGcl.

ael aeG acF ael

Therefore
ZX“ =supl2xa: FgIﬁnite] )
ael a€eF

Now assume that ) ,.; Xo = +00. Then for any given M > O there exists a finite F < |
such that ) ,.r Xq > M, which implies that ) ,.; xo > M for all finite F G < I. Hence,

suplea:FgIﬁnite]=+oo. O
acF

Remark 3.5.43. If I is uncountable and uncountably many x, are different from zero,
then ) ,.; xq cannot converge to a finite limit.

The next result is a fundamental inequality in the theory of Hilbert spaces and is known
as “Bessel’s inequality.”

Proposition 3.5.44 (Bessel’s inequality). If H is an inner product space and {x4}qc; € H
is an orthonormal set, then Y ,; |(x, Xo)|? < |Ix||? for all x € H.

Proof. Onaccount of Lemma 3.5.42, we may assume that I is finite. Letu = ), ;(x, Xa)Xq.
Then (x, u) = ) (%, xq«)? = (u, u); see Theorem 3.5.13. Therefore x — uLu and so
Ix11? = Ix — ul|? + |ul|> due to the Generalized Pythagorean Theorem; see Theorem 3.5.13.
Hence, |Ix|I* 2 lull®> = (u, u) = ¥4 (X, Xa)*. O

Corollary 3.5.45. If H is an inner product space and {x,}4c; € H is an orthonormal set,
then for every x € H the set {a € I: (x, xq) # 0} is countable.

Remark 3.5.46. We have already mentioned that every Hilbert space has an orthonor-
mal basis. In fact all orthonormal bases of a Hilbert space have the same cardinality, that
is, every maximal orthonormal set in an inner product space has the same cardinality.
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Proposition 3.5.47. If H is a separable inner product space, then every orthonormal set
in H is countable.

Proof. Let B = {x4}qec; € H be an orthonormal set and let D = {u,},>1 € H be dense,
which is possible since H is separable. Then for any a € I, By /2(Xxq) N D # 0. So, there
exists ny € N such that ||xq — up, |l < 1/2.

Let ¢: I —» N be defined by ¢(a) = n,. We claim that ¢ is injective. Using the
parallelogram law and the Generalized Pythagorean Theorem, it follows that

V2 = [Xa = Xgll = IIXa = Un, = Xp + Uny + Un, — Uny|

< lxa = un, |l + l1xg = ungll + lun, = ungll < 1+ ||un, — un,l -

Hence, V2 - 1 < |luy, - Un, |l for all a, B € I with a # B. This proves the injectivity of ¢,
which means that card I < card N and so I is countable. O

This leads to the following useful characterization of separable Hilbert spaces.

Theorem 3.5.48. A Hilbert space H is separable if and only if it has a countable orthonor-
mal basis.

Given a linearly independent sequence one can produce an orthonormal set with
the same linear span. The process to achieve this is known as the “Gram—-Schmidt
Orthonormalization Process.”

Proposition 3.5.49 (Gram-Schmidt Orthonormalization Process). If H is an inner
product space and {un}n>1 < H are linearly independent, then there exists an or-
thonormal sequence {x,}n>1 € H such that span{uy,}n>1 = span{x,}n>1.

Proof. Letxy = u1/|uzll. So, the result holds for n = 1. Proceeding by induction suppose
that we have produced x4, ..., x,_1. Then we set

n-1
Moo= Un = Y (Ui, Xp)X -
k=1

Evidently h,1xy forallk =1,...,n -1 and h, + O since u, ¢ span{uk}z;}, due to

the linear independence of the sequence {u,},>1 € H. According to the induction
hypothesis, we have span{u k}z;} = span{xk}z;}. Let x, = hy/||hy|. Then by induction
we have produced the desired orthonormal set {x,},>1 € H. O

We conclude this section with a brief look at the notion of the basis for a vector space X.
If X is finite dimensional, then it is well-known that a basis is a set {ek},’;=1 such that
every x € X can be written in a unique way as x = Y ;_; Axex with Ax € R known
as the coordinates of x for the given basis. How do we extend this notion to infinite
dimensional vector spaces?

Definition 3.5.50. (a) Given a vector space X, a Hamel basis is a set {e4}qc; € X such
that every x € X can be written in a unique way as x = ) ,.; A¢ X With only finite
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numbers of the real A, different from zero. If X is finite dimensional, then a Hamel
basis is the usual basis. But in infinite dimensional spaces there are no obvious
Hamel bases although they can be shown to exist via Zorn’s Lemma.

(b) Let X be a Banach space. A sequence {x,},>1 € X is a Schauder basis for X if for
each x € X there exists a unique sequence {An},>1 € Rsuchthatx =} ., AnXp.

Remark 3.5.51. The Hamel basis is an algebraic notion that does not relate to any
topology. A Banach space with a Schauder basis is necessarily separable. Banach [25,
p. 111] asked if every infinite dimensional separable Banach space has a Schauder basis.
This question was settled in the negative by Enflo [104] who produced a separable
reflexive Banach space with no Schauder basis.

3.6 Bounded and Unbounded Linear Operators

Let X, Y be Banach spaces. Recall that by L(X, Y) we denote the Banach space of all
bounded linear operators from X into Y. The norm of L(X, Y) is defined by

IACOlly |

|AllL = sup :x € X\ {0}] ; (3.6.1)
llxllx

see Definition 3.1.45. If X = Y, we write L(X, X) = L(X).

Definition 3.6.1. (a) The norm (metric) topology induced on L(X, Y) by the norm
|- Iz (see (3.6.1)) is called the uniform operator topology or simply the norm
topology.

(b) The strong operator topology on L(X, Y) is the weakest topology on L(X, Y) for
which the maps ey: L(X,Y) — Y with x € X defined by e,(A) = A(x) for all
A € L(X, Y) are continuous. Then a local basis at the origin consists of the sets

{AeLX,Y): |[Axi)lly <efork=1,...,n}

withn € Nand € > 0. A net {Ag}aer € L(X, Y) converges to A € L(X, Y) in this
topology if and only if |[A4(x) — A(x)|ly — O for all x € X. We write A, 2 Ain

L(X,Y).

(c) The weak operator topology on L(X, Y) is the weakest topology on L(X, Y) for
which the maps ey - : L(X, Y) - Rwith x € Xand y* € Y* defined by ey - (4) =
(y*, A(x)) are continuous. Then a local basis at the origin consists of the sets

{AeLX,V): y;, Axi)l <efork=1,...,n,i=1,...,m}

withn,m e Nand € > 0. Anet {Aq}aer € L(X, Y) converges to A € L(X, Y) in this
topology if and only if |[(y*, As(x)) — (y*, A(x))| —» Oforall x € X,y* € Y*. We
write Aq — Ain L(X, V).
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Remark 3.6.2. Evidently it holds that
weak topology < strong topology < norm topology.

We should not confuse the weak operator topology with the weak topology that we can
define on the Banach space L(X, Y). Let V be a third Banach space and consider the map
9: L(X,Y)x L(Y, V) — L(X, V) defined by (A4, B) = B~ A. Then 9 is jointly continuous
for the uniform operator topology but only separately continuous for the strong and
weak operator topologies. In general, the strong and weak operator topologies are not
first countable and this complicates their study.

Proposition 3.6.3. If H is a Hilbert space and {An}n>1 € L(H) is a sequence such that
{(y, An(x))}ns1 is convergent for all x, y € H, then there exists A € L(H) such that A, * A

Proof. For given x, y € H we derive sup,-1 |(y, An(x))| < co. Invoking Theorem 3.2.1
we obtain that sup,.1 [An(x)]| < oo. A second application of Theorem 3.2.1 gives
SUp,s1 lAnlL < oo.

Let é(x, y) = lim,—,00 (¥, An(x)). Evidently £ is bilinear and

1§0x, y)| < limsup |(y, An(O))| < llyllix/I(sup [AnlL) .
n—o0 n>1
Hence ¢ is bounded. Then there exists A € L(H) such that (y, A(x)) = &(x,y); see
Theorem 3.5.21. Therefore we get A, “ Ain L(X,Y). O
In a similar way we obtain the corresponding result for the strong operator topology.

Proposition 3.6.4. If X, Y are Banach spaces, {Ap}ns1 € L(X,Y)and {A,(X)}ns1 € Yis
a Cauchy sequence for each x € X, then there exists A € L(X, Y) such that A, 5 A

Remark 3.6.5. Both results fail for nets of operators.

Definition 3.6.6. Let X, Y be normed spaces and A € L(X, Y). The adjoint (or dual)
operator of A is the unique operator A*: Y* — X* defined by

A*(y*)=y* oA forally* e Y*.

Continuing, the second adjoint (or second dual or bidual) (A*)* of A is the unique
linear map A**: X** — Y** such that

A" (x*™)=x"" 0 A" forallx* e X**.

The next proposition summarizes the main properties of A* and A**.

Proposition 3.6.7. If X, Y are normed spaces and A, S, T € L(X, Y), then the following
hold:

(@) A" e L(Y*,X*) and |A* L = |AlL.

(b) If/ll, Az € R, then ()l1$ + AzT)* = Als* + AzT*.
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() A**|y = A.

(d) IfVis a third normed space and B € L(Y, V), then (B - A)* = A* o B*,

(e) IfAisinvertible, thatis, A~ exists and A~! € L(Y, X), then A* is invertible as well
and (A*)™1 = (A~1)*.

Proof. (a) For all x € X and for all y* € Y* one gets

A", x) =" ACO) < Mly* I 1A < Iy* I NAlLlx]

hence |A*(y*)| < lly*Il«IlAllL, and so [A*|l; < |AlL. Given € > O there exists xg € X
with |xo]l = 1 such that |A|l; — € < [[A(Xo)|. Let y* € Y* with |y*|. = 1 such that
(y*, A(xo0)) = |A(xo)|); see Proposition 3.1.50. Then it follows that

(A*(y*), xo0) = (y*, A(x0)) = |A(x0)ll > |AllL - €,

which gives |A*|l; > |AllL — €. Letting € \, 0, we obtain |A*|; > ||A|r. Therefore,
A* e L(Y*,X*)and [|A*|L = [|AllL.

(b) This follows immediately from Definition 3.6.6.

(c) This is also clear from Definition 3.6.6.

(d) For all x € X and for all v* € V* we derive

(A*(B*(v¥)), x) = (B*(v"), A(x)) = (v*, B(A(x)))

and so we conclude that A* « B* = (Bo A)*.
(e) Since A is invertible we have A™1 o A = ix = A - A~L. Then using part (c) we
obtain
Ao (A =iy =iy = (A1) 0 A",
Hence, A* is invertible and (4*)™! = (471)". O

Remark 3.6.8. According to this proposition the map A — A* from L(X, Y) into
L(Y*, X*) is an isometric isomorphism. It is also continuous for the weak operator
topologies but not for the strong operator topology. When X = Y = H is a complex
Hilbert space, that is, over IF = C, then, since H is self-dual, that is, H = H*, we want
to define A* on the space H. From the Riesz-Fréchet Representation Theorem (see
Theorem 3.5.21), we know that H is isometric with its dual H* but the isometry is a
conjugate isomorphism j: H — H*. Weset A’ = j~1 o A* o j and get that

06 AW)) = (00, AY)) = (A*(00), ¥) = GTHA* (X)), )

(3.6.2)
=(A'(x),y)

forall x,y € H. Then A’ € L(H) is the Hilbert space adjoint and now the map A — A’ is
conjugate linear, that is, AA — AA! forall A € C because A’ is defined on H rather than
on H* and H is identified with H* by a conjugate isometric isomorphism. However, in
what follows for notational uniformity we denote A’ by A* with the understanding
that A* is defined on H. When H is a real Hilbert space, we define again A’ = A* on H
as above.



3.6 Bounded and Unbounded Linear Operators = 241

Proposition 3.6.9. If H is a Hilbert space over R or C and if A € L(H), then ||A||i =
[A* o AllL.

Proof. Taking Proposition 3.6.7(a) and (3.6.2) into account yields

IAI7 = sup [IACOI: lIx]l < 1] = sup [(A(), A()): Ix]| < 1]
= sup [(A*(A(0)), 0): Ixll < 1] < 1A* = AllL < IA*ILIAlL = IAIIf - O

Example 3.6.10. Section 4.1 shows that (I')* = I®°. Consider the right shift operator
A ¢ L(I') defined by A(X) = (0, x1, X2, ...) forall X = (Xy)ns1 € I'. Then A*: [® — [*®
is defined by A*(&1) = (uz,us,...) forall t = (up)p>1 € I°. In this case we have
IAllL = 1A% = 1.

Proposition 3.6.11. If X, Y are normed spaces and A € L(X, Y), then A* € L(Y*, X*) is
weak”-to-weak" continuous.

Conversely, if T: Y* — X* is a weak’-to-weak™ continuous linear operator, then
there exists A € L(X, Y) such that A* = T.

Proof. Let {y;}aer € Y* be a net such that y; it y* in Y*. Then for every x € X, it
follows that

(A*(Ya), X) = (Yo AX)) = (¥*, A0) = (A" (y"), X)) ,

hence, A*(y}) e (y*) and so A* is weak”-to-weak” continuous.

Letjx: X - X** and jy: Y — Y** be the canonical embeddings; see Defini-
tion 3.3.35. For every x € X, jx(x)T is a w*-continuous linear functional on Y*, hence
jx(X)T € jy(Y). Then j}l(jX(X)T) € Y. So, we can define an operator A: X — Y by
setting A(x) = j}l (jx(x)T) for all x € X. Clearly A is linear. Moreovetr, let {x4}4c; € X

be a net such that x, ™ x.Then jx(xq) N jx(x); see Proposition 3.3.23. Hence, for all
y* € Y*, we have
Ux(xa)DY*) = (x(0)D(y*) inR,

thus jx(xq)T Vl» jx(x)T in Y**. Therefore,
A(xq) = j3 (ix(xa)T) = j31 (ix(0T) = A(x) inY.

This means that A: X — Y is weak-to-weak continuous, hence A € L(X, Y); see
Proposition 3.3.23. Moreover, with view to Definition 3.3.35, we get

(A*(y*), x) = (y*, A)) = V", jy x0Ty = Gx(OT, y*) = (T(y*), x) .
Thus, A* =T. O

Corollary 3.6.12. If X, Y are normed spaces and S: X* — Y* is weak’-to-weak" contin-
uous, then S € L(X*, Y*).

Next we introduce some important special classes of linear operators.
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Definition 3.6.13. (a) Let X be a vector space and let P: X — X be a linear operator.
We say that P is a projection if P? = P, that is, P(P(x)) = P(x) for all x € X.

(b) Let H be a Hilbert space and A € L(H). We say that A is self-adjoint (or hermitian)
if A=A, thatis, (A(x),y) = (x, A(y)) forall x, y € H.

(c) Let H be a Hilbert space and P € L(H). We say that P is an orthogonal projection
if P is a projection and P is self-adjoint.

Proposition 3.6.14. If H is a Hilbert space and T, S € L(H) are self-adjoint and commut-
ing, thatis, ToS =S T,then T - S € L(H) is self-adjoint as well.

Proof. For every x, y € H we see that
(T(S(x)), y) = (S(x), T(y)) = (x, S(T(y))) = (x, T(S(y))) -
This shows that T - S is self-adjoint. O

Proposition 3.6.15. If H is a Hilbert space and A € L(H) is self-adjoint, then for every
m € N, A™ is self-adjoint and |A™||; = |A|™.

Proof. That A™ is self-adjoint for every m € N follows from Proposition 3.6.14. From
Proposition 3.6.9 we see that

417 = a* - 4l = 4], . |4, =[4%; = vaig
and so on. Therefore we obtain
|14, = nanz" . (3.6.3)
If1 <m < 2", then

4%

=A™ e AT, <A™ NAI T < NANT AL T = 1Al
which, due to (3.6.3), results in
la™ | nAanz ™ = 14z
Thus, |A™]; = |A]}. O

Proposition 3.6.16. If H is a Hilbert space and A € L(H) is self-adjoint, then |A|L =
sup [[(A(x), 0l lIx] < 1].

Proof. For x € H with ||x|| < 1 we infer
[(AG), )| < TAGONIx] < 1AILIXI* < 1AL ,
which gives
sup [I(A(x), ¥l lIxll < 1] < JAllL - (3.6.4)

Let n = sup [[(A(x), X)|: lIx|| < 1]. Then |(A(u), u)| < nllull? forallu € H. For u € H with
u#0letA=(lAw)|/lul)*? andy = 1/AA(u). Since A is self-adjoint, (A(Au), y) € R
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and, due to the parallelogram law, we obtain

A2 = (A(u), A(w)) = (A(Au), %A(u)) - (A(w), y)

= %[(A(Au +y),Au+y) - (AAQu-y), Au-y)]

IN

1 1

31 (M I+ WA= yi2) = S (1wl + liyl?)
1 22 4 L 2) _

=31 (A [l + 5 IAGI* ) = nlull A1

where we used the fact that AJu|| = 1/A]|A(u)|. Hence [|A(u)| < nllul for every u € H,
which gives ||A|; < n and so, because of (3.6.4), the result follows. O

Next we present a useful factorization result.

Proposition 3.6.17. If X, Y, V are Banach spaces, A € L(X,Y),T € L(V,Y),and A is
injective, then the following statements are equivalent:

(@) R(T) < R(A).

(b) Thereexists S € L(V, X) suchthat A oS =T.

Proof. (a) = (b): LetS = A™1 o T: V — X, where we recall that A is injective. Then S is
linearand A-S = T. We claim that Gr S € V'xXis closed. To this end, let {v,,},>1 € V such
that v, — vin Vand S(v,) — xin X. Then A(x) = lim,_c A(S(Vy)) = limy 00 T(Vy) =
T(v) = A(S(v)). Since A is injective it follows that x = S(v) and so GrS ¢ V x X is
closed. Hence, by the Closed Graph Theorem (see Theorem 3.2.14), we conclude that
SeL(V,X).

(b) = (a): It holds that R(T) = R(A - S) € R(A). O

Next we present two theorems relating operators with the same range space and their
adjoints. We start with an auxiliary result.

Lemma 3.6.18. If X, Y are normed spaces, A € L(X, Y) and x* € X*, then the following
statements are equivalent:

(a) x* € R(A*).

(b) |<x*, x)| < cllAX)|y for all x € X and for some ¢ > O.

Proof. (a) = (b): Of course, x* = A*(y*) for some y* € Y*. Then
[(x*, )] = KA (y), ) = Ky, A < ly* I IAX)]ly forallx € X,

which gives [(x*, x)| < c[|A(x)|ly with ¢ = [|y*|.

(b) = (a): There exists a continuous, linear functional g: R(A) — R such that
x* = g o A. According to Proposition 3.1.49, there exists y* € Y* such that y*| R(A) = &
Then x* = y* o A = A*(y™*); see Definition 3.6.6. O

Theorem 3.6.19. If X, Y, V are Banach spacesand A € L(X,Y), T € L(V, Y) with R(T) ¢
R(A), then |T*(y*)||« < cllA*(y*)|« for all y* € Y* and for some c > O.



244 =— 3 Basic Functional Analysis

Proof. Let X = X/N(A) with N(A) being the kernel of A and p: X — X being the
quotient map. Then p*: X* — X* is an isometric embedding onto N(A)* < X*; see
Proposition 3.2.25. Let A: X — Y be defined by A o p = A. Then A* = p* « A*, and so

A, = |Zl*(y*) forally* e Y*.

*

By hypothesis, R(T) € R(A) = R(A)and A is injective. So, we can use Proposition 3.6.17

and produce S € L(V, X) such that A o S = T. Then, since A~ S = T,

[ (T*(v* ,V
IT* (") = sup | S0V >:veV,v¢O]
T v

[ y*, T(v)
vilv
[(A*(y*), S())
Ivilv

[ A* * . S R
< sup IA* () (V)||X: VeVv40
Ivilv

= ISILIA*(y*)l. forally* e Y*.

= sup :veV,VqEO]

= sup :veV,v;eo]

So, the conclusion of the theorem holds with ¢ = ||S||;.

O

Theorem 3.6.20. If X, Y, V are normed spaces and A € L(X, Y), T € L(X, V), then the

following statements are equivalent:
(a) R(T*) < R(A™*).
(b) ITX)|lv < cllA(X)|ly for all x € X and for some ¢ > 0.
Proof. (a) = (b): Using Theorem 3.6.19, we infer
IT**x*)|,, <c|A**(x**)|,, forallx** e X** and for somec > 0.
Applying Proposition 3.6.7 gives
ITOly = [T X)|,, <c|AX)|,, = clA()ly forallx eX.
(b) = (a): Let x* € R(T*) < X*. Using Lemma 3.6.18 yields

[{(x*, x)| < col| T(x)|ly forall x € X and for some ¢cq > 0,

which implies
[{(x*, x)| < cocl|A(x)|ly forallx € X.

Hence, with view to Lemma 3.6.18 we see that x* € R(A*). Thus, R(T*) € R(A*).

O

Theorem 3.6.21. If X, Y, V are Banach spaces, X is reflexive, A € L(X, Y), T € L(V, Y)

and
IT**)|, <c|A*(v™)|, forally* € Y* and for somec >0,

then R(T) € R(A).
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Proof. Applying Theorem 3.6.20 we obtain R(T**) ¢ R(A**). Let v € V and let x €
X** = X such that A(x) = A**(x) = T**(v) = T(v); see Proposition 3.6.7(c). Hence
R(T) < R(A). O

Motivated from Definition 3.2.24, we introduce a similar notion for sets in X*.

Definition 3.6.22. Let X be a normed space and E ¢ X*. The preannihilator of E is
defined by
tE={xeX: (x*,x)=0forallx* € E}.

Evidently *E is a closed linear subspace of X.

Remark 3.6.23. Itis easy to see thatif E ¢ X* is a vector subspace, then FW* =(*E)E
is w*-closed if and only if E = (*E)*, and E' = X* ifand only if *E = {0}.
Moreover, if Y, V are closed vector subspaces of X, then

VnY=-(Vt+Yh), (VnY):aVEisye,
VinYt=W+Yv*+, *vtnyH=v+Y.

Proposition 3.6.24. If X, Y are normed spaces and A € L(X, V), then the following hold:

(a) R(A)* = N(A*) and *R(A*) = N(A).

(b) R(A) = Yifand only if A* is injective.

(c) Aisinjective if and only if R(A"‘)W = X*.

Proof. (a) Note that

y* e R(A)* ifandonlyif (y*,A(x))=0 forallxeX
ifand onlyif (A*(y*),x)=0 forallx e X
ifandonlyif A*(y*)=0.

Hence R(A)* = N(A*). Similarly, we have

x € *R(A*) ifandonlyif (A*(y*),x)=0 forally* € Y*
ifand onlyif (y*,A(x))=0 forally* e Y*
ifand onlyif A(x)=0.

Thus, *1R(A*) = N(A).

(b) =: It holds that R(A)* = {0} and so with part (a), N(A*) = {0}. Hence A* is
injective.

&: It holds that N(A*) = {0} and so with part (a), R(A)* = {0}. Hence R(A) =Y.

(c) = It holds that N(A) = {0} and so with part (a), *R(A*) = {0}. Hence,
R(A%)" = X*; see Remark 3.6.23.

«:Itholds that * R(A*) = {0} (see Remark 3.6.23), and so with part (a), N(A) = {0}.
Hence, A is injective. O



246 —— 3 Basic Functional Analysis

Remark 3.6.25. If X, Y are Banach spaces with X or Y finite dimensional and A ¢
L(X,Y), we know from linear algebra that
A is surjective if and only if A* is injective ,
A* is surjective if and only if A is injective .
Indeed in this case R(A) is closed if dimY < oo and R(A*) is closed if dim X < oo
and so the equivalences above follow from Proposition 3.6.24. In the general infinite
dimensional case we only have the following implications (see Proposition 3.6.24(a))
A issurjective = A" isinjective,
A* is surjective = A isinjective.
The reverse implications fail. To see this, let X = Y = H = [?, which is a Hilbert space

and let A € L(H) be defined by A(x) = (1/nxp)ns1 forall X = (xp)ns1 € I>. Then A* = A
and A is injective but not surjective since R(A) = R(A*) is only dense in H.

Next we present some results dealing with the basic properties of projections.

Proposition 3.6.26. If X is a normed space and P € L(X), then P is a projection if and
only if P* € L(X*) is a projection.

Proof. =: For all x € X and for all x* € X* we directly obtain
(P*(x*), x) = (x*, P(x)) = (x*, P(P(x))) = (P*(P*(x")), X) .

This shows that P*(x*) = P*(P*(x*)) for all x* € X*. Hence P* is a projection as well.
<: This is proven in a similar fashion. O

Proposition 3.6.27. If X is a normed space and P € L(X), then P is a projection if and
only if I — P is a projection.

Proof. =: For every x € X one gets
I-P)I-P)(x)=x-2Px)+P(Px))=x-PxX)=(I-P)(x).

Hence I — P is a projection.
<: Note that P = I — (I — P) and so the implication follows from the previous
part. O

Proposition 3.6.28. If X is a normed space and P € L(X) is a projection, then N(P) =
R(I - P) and R(P) = N(I - P).

Proof. Let x € N(p). Then (I — P)(x) = xand so N(P) € R(I — P). Letu € R(I — P). Then
u = (I - P)(x) with x € X. Then P(u) = P(x - P(x)) = P(x) - P(P(x)) = P(x) - P(x) =0
and so u € N(p). Therefore we conclude that N(P) = R(I — P). Applying this result to
the projection I — P we get R(P) = N(I - P). O
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Corollary 3.6.29. If X is a normed space and P € L(X) is a projection, then R(P) = {x €
X: P(x) = x} and R(P) is closed.

Corollary 3.6.30. If X is a Banach space and P € L(X) is a projection, then X = N(P) &
R(P).

If V and W are complementary subspaces of a Banach space X (see Definition 3.2.27),
then we obtain in a unique way, for every x € X, that x =v+wwithv e Vandw € W.
Let Py: X — V be the linear operator such that Py(x) = v. Evidently P?, = Py.

Proposition 3.6.31. Py € L(X), that is, Py is a projection.

Proof. Suppose that x, — xin X and Py(x,) — vin X. Then (I - Py)(x,) — x —yin X.
Note that v € Vand x - v € W. So, v = Py(x) and by the Closed Graph Theorem (see
Theorem 3.2.14), it follows that Py € L(X). O

Corollary 3.6.32. If X is a Banach space and V < X is a subspace, then V is comple-
mented if and only if V = R(P) with P € L(X) being a projection.

Corollary 3.6.33. If X is a Banach space and V, W < X are complementary subspaces,
then V and X/ W are isomorphic.

Next we use complemented subspaces to obtain a kind of Hahn—Banach Extension
Theorem for vector valued maps.

Proposition 3.6.34. If X is a Banach space and V < X is a subspace, then the following

statements are equivalent:

(a) For every Banach space Y and every A € L(V, Y), thereis A € L(X, Y) such that
Al, = A.

(b) V is complemented in X.

Proof. (a) = (b): Let ip: V — V be the bounded linear operator defined by io(v) = v
forall v € V, that s, the identity map on V. Then by hypothesis there exists iy € L(X, V)
such that io|,, = io. Due to the continuity of iy we directly obtain that io|;; coincides
with the identity operator of V. Therefore, iy € L(X) is a projection with R(ig) = V. Then
Corollary 3.6.32 implies that V is complemented.

(b) = (a): Corollary 3.6.32 implies that V = R(P) with P € L(X) being a projection.
Let Y be a Banach space and A € L(V, Y). Then there exists Ay € L(V, Y) such that
Aol = A; see Theorem 1.5.27. One gets Ag o P € L(X, Y) and Ao « P|, = A. So, A=
ApoPeL(X,Y). O

Proposition 3.6.35. If X is a Banach space, Y is a normed space, and A € L(X,Y),
then A=! ¢ L(Y, X) if and only if R(A) is dense in Y and there exists ¢ > 0 such that
Ay = clix|x for all x € X.

Proof. =: This is obvious.
&: Evidently A is injective and A~! € L(V, X) with V = R(A). Hence A~ ¢ L(Y, X)
since by hypothesis V = Y. Moreover, note that [|[A~1|; < 1/c. O
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Using this proposition we can improve Proposition 3.6.7(e).

Proposition 3.6.36. If X is a Banach space, Y is a normed space, and A € L(X,Y),
then A is invertible if and only if A* is invertible.

Proof. =: This follows from Proposition 3.6.7(e).
&: From Proposition 3.6.24(a) one has that R(A)* = N(A*) = {0} and soR(A) ¢ Y
is dense. Let x € X and let x* € X* be such that

(x*, %) =lxlx and |x*|=1;
see Proposition 3.1.50. Then
Ixllx = (x*, x) = (A" (A*) "M (x*)), x) = (A") 1 (x*), A(x))
< 1A LAy < 1A LIA)]y -

This implies |[A(X)lly > clxlx with ¢ = (I(A*)"!|1)"!. Now we may apply Proposi-
tion 3.6.35 and conclude that A~! € L(Y, X). O

Corollary 3.6.37. If X is a Banach space, Y is a normed space, and A € L(X, Y), then the
following statements are equivalent:

(a) A isinvertible.

(b) A* isinvertible.

(c) There exist c, ¢ > O such that

Ay = clixllx forallx € X,

1A* (X))« = Cllx*|l« forallx* e X* .
In the last part of this section we deal with unbounded linear operators.

Definition 3.6.38. Let X, Y be Banach spaces. An unbounded linear operator is a
linear map A: D(A) € X — Y from a linear subspace D(A) into Y. The subspace D(A)
is called the domain of A. We say that A is closed if Gr A ¢ X x Y is closed. By N(A)
we denote the kernel of A, that is, N(A) = {x € D(A): A(x) = 0} and by R(A) the range
of A, thatis, R(A) = {A(x): x € D(A)}.

Remark 3.6.39. In this context, A is closed if and only if for every {x,},>1 € D(A) such
that x, — xin X and A(x,) — yin Y, it follows that x € D(A) and A(x) = y. Note that
now it is not enough to check that if x, - 0in X and A(x,) — yin Y, theny = 0.
Moreover, if A is closed, then N(A) is closed but R(A) need not be closed. In applications
most unbounded linear operators are densely defined, that is, D(A) = X, and closed.

We can extend the notion of adjoint to unbounded linear operators. So, let A: D(A)
X — Y be an unbounded linear operator that is densely defined, that is, D(A) = X. Let

DA*) ={y* e Y*: |{y*, A(x))| < clx| for all x € D(A) and for some ¢ > 0} . (3.6.5)

Evidently D(A*) ¢ Y* is a vector subspace. Let y* € D(A*) and consider the functional
f: D(A) — R defined by f(x) = (y*, A(x)) for all x € D(A). Because of (3.6.5) it follows
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that [f(x)| < c|x| for all x € D(A). Since D(A) is dense in X, extending by continuity,
there exists a unique functional f: X — R such that f | D) = fand |[f(x)| < c|x| for all

x € X. Thus,f € X*. Then we set
A*(y")=f". (3.6.6)

Definition 3.6.40. The unbounded linear operator A*: D(A*) ¢ Y* — X* defined by
(3.6.6) is called the adjoint of A. So, according to the previous construction, we obtain

(y*,A(x))y = (A*(y*),x) forall x € D(A)andforally* € D(A"). (3.6.7)

Remark 3.6.41. In general, we cannot say that A* is densely defined. However, if A is
also closed, then D(A*) is w*-dense in Y*. Therefore, if Y is reflexive and A: D(A) <
X — Yis closed and densely defined, then A*: D(A*) € Y* — X* is densely defined as
well.

Next we show that A* is always closed.

Proposition 3.6.42. If X, Y are Banach spaces and A: D(A) ¢ X — Y is a densely
defined unbounded linear operator, then A* is closed.

Proof. Suppose thaty, — y*in Y* withy,, € D(A*)foralln e Nand A*(y;,) — x* in
X*. Thanks to (3.6.7) we have

(Vns A(X)) = (A*(y,), x) forallx e D(A)andforalln e N,
which implies
(y*,Ax)) = (x*,x) forallx e D(A).

This gives
Ky™, AGO) < Ix*ll«lIxllx  forall x € D(A),

which yields, because of (3.6.5), that y* € D(A*), which in combination with (3.6.7)
results in
(A*(y*), x) = (x*,x) forallx e D(A).

This implies x* = A*(y*). Hence, A* is closed; see Remark 3.6.39. O

Letip: Y* x X* — X* x Y* be the isomorphism defined by io(y*, x*) = (-x*, y*) for all
y* € Y* and for all x* € X*.

Proposition 3.6.43. If X, Y are Banach spaces and A: D(A) ¢ X — Y is a densely
defined unbounded linear operator, then io(Gr A*) = (Gr A)*.

Proof. Let (y*, x*) € Y* x X*. Then, thanks to (3.6.7), one has
(y*,x*) e GrA* ifandonlyif (y*,A(x)) = (x*, x) forall x € D(A)

ifand only if (y*, A(x)) - (x*,x) =0 forall x € D(A)
ifand only if (-x*,y*) € (GrA)*. O
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The next result is an extension of Proposition 3.6.24 to unbounded linear operators. Its
proof can be found in Brézis [48, Theorem 2.19, p. 46].

Proposition 3.6.44. If X, Y are Banach spaces and A: D(A) ¢ X — Y is a closed,
densely defined, unbounded linear operator, then the following statements are equivalent:
(a) R(A) c Yis closed.

(b) R(A*) c X* is closed.

() R(A)= tN(A*).

(d) R(A*)=N(A)*L.

The next two theorems provide useful characterizations of surjective operators.

Theorem 3.6.45. If X, Y are Banach spaces and A: D(A) ¢ X — Y is a closed, densely
defined, unbounded linear operator, then the following statements are equivalent:

(@) A issurjective, thatis, R(A) = Y.

(b) ly*ll« < cllA*(y*)| for all y* € D(A*) and for some c > 0.

(¢) R(A*) c X*isclosed and N(A*) = {0}.

Proof. (a) = (b): It suffices to show that
D* ={y* e D(A"): [|A*(y")Il. < 1}

is bounded. Then according to Proposition 3.2.5 we need to show that forally € Y,
(D*, y) <€ Ris bounded. Exploiting the surjectivity of A, there exists x € D(A) such that
y = A(x). Then

Y5y =" AM) =AY, x),

which implies [(y*, y)| < ||x|| for every y* € D*. Thus, D* is bounded.
(b) = (c): Let x;; € R(A*) for all n € N and assume that x}, — x* in X*. We can
find y; € D(A*) such that x;; = A*(y};) for all n € IN. From (b) we see that

Wi =val, <clA*Gm -yl = clA* ) - A ). -

This shows that {y;}n>1 € Y* is a Cauchy sequence and so, we conclude that y;, — y*
in Y*. But from Proposition 3.6.42, we know that A* is closed. Hence, x* = A*(y*), and
so R(A*) c X* is closed. From (b) it is clear that N(A*) = {0}.

(c) = (a): From Proposition 3.6.44 one has R(A) = *N(A*) =Y. O

In a similar way we can prove a dual version of this theorem.

Theorem 3.6.46. If X, Y are Banach spaces and A: D(A) ¢ X — Y is a closed, densely
defined, unbounded linear operator, then the following statements are equivalent:

(@) A*issurjective, thatis R(A*) = X*.

(b) lIxllx < clA()|y for all x € D(A) and for some ¢ > 0.

(¢) R(A) c Yisclosed and N(A) = {0}.



3.6 Bounded and Unbounded Linear Operators = 251

Definition 3.6.47. Let X, Y be Banach spaces and let A: D(A) ¢ X — Y be an un-
bounded linear operator. We say that A is closable if there is a closed unbounded
linear operator A: D(A) ¢ X — Y such that

D(A) < D(A) and Ay, =A.

Every closable operator A has a smallest closed extension called the closure of A
denoted by A.

The next proposition characterizes closable operators.

Proposition 3.6.48. If X, Y are Banach spaces and A: D(A) € X — Y is an unbounded
linear operator, then the following statements are equivalent:

(@) Ais closable.

(b) If {xp}n>1 € D(A) are such that x, — 0in X and A(x,) — yinY, theny = 0.

(c) The projection map px: Gr A — X is injective.

Proof. (a) = (b): For every closed extension A of A one hasy = A(0) = 0.

(b) = (c): GrA ¢ X x Y is a vector subspace and so px: GrA — X is linear. By
hypothesis, N(px) = {0} and so py is injective.

(c) = (a): Let D(A) = px(Gr A) < X. This is a vector subspace. Let py: GrA — Y
be the projection on the second factor. Then A = py o py' : D(A) — Y is an unbounded
linear operator with Gr A = Gr A and so 4 is a closed extension of A. O

Proposition 3.6.49. If X, Y are Banach spaces and A: D(A) ¢ X — Y is a closable
unbounded linear operator, then Gr A = Gr A.

Proof. Let A be a closed extension of A. Then Gr A < Gr A and so if (0, y) € GrA, then
y =0.Let Ag: D(Ao) — Y be defined by D(Ao) = {x € X: (x,y) € Gr A for some y € Y}
and Ao(x) = y with y € Y being the unique element such that (x, y) € Gr A. One has
GrAo = GrA and so Ay is a closed extension of A. But A < A, which is an arbitrary

closed extension of A. Therefore, Ag = A. O

Remark 3.6.50. Note that the domain D(A) of an unbounded linear operator A: D(A) <
X — Y is a normed space with the graph norm defined by |x| = ||x|x + |A(X)|y for all
x € D(A); see the proof of Theorem 3.2.14. Therefore an unbounded linear operator
can be viewed also as a bounded linear operator from its domain equipped with the
graph norm. It is easy to see that A: D(A) € X — Yisclosed ifand only if D(A) € Xisa
Banach space when furnished with the graph norm.

Example 3.6.51. (a) Let X = C[O, 1] be equipped with the supremum norm. This is a
Banach space. Let A: D(A) € X — X be the unbounded linear operator defined by
A(u) = u' forall u € D(A) = C'[0, 1]. Evidently A is closed and densely defined.
Moreover, the graph norm on D(A) is the usual C!-norm.

(b) Let H be a separable Hilbert space. From Theorem 3.5.48, we know that H has a
countable orthonormal basis {e,}n>1. Let A= (A)i>1 € RN and consider the linear
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operator A;: D(A3;) € H — H defined by

A(x) = z An(x, en)e, forallx € D(4;),

n>1
where
D(4;) = {x €H: ) |An(x,en)l” < oo} :
nx>1

This is a closed, densely defined unbounded linear operator. Note that A; € L(H) if
and only if A= (An)n>1 is bounded.

We extend the notion of self-adjoint operator to unbounded linear operators.

Definition 3.6.52. Let H be a Hilbert space and A: D(A) ¢ H — H is a densely defined
unbounded linear operator. Then the adjoint of A is the unbounded linear operator
A*: D(A*) ¢ H — H defined by

D(A*)={u e H: |(u, A(x)| < c|x| for all x € D(A) and for some ¢ > 0}

and
(A*(w), x) = (u, A(x)) forallx e D(A)andforallu € D(A").

We say that A is symmetric, if A ¢ A*, thatis, D(A) € D(A*)and A* |D(A) =A,s0A"is
an extension of A. We say that A is self-adjointif A = A*.

Remark 3.6.53. Evidently A is symmetric if and only if (A(u), x) = (u, A(x)) for all
X, u € D(A). A symmetric operator is always closable (see Proposition 3.6.42). Recall
that D(A*) 2 D(A) is dense in H. If A is symmetric, then A* is a closed extension of A.
So, we consider the smallest closed extension A** of A. We have A** ¢ A*. Therefore
for symmetric operators we obtain A ¢ A** ¢ A*. If A is closed and symmetric, then
A = A** ¢ A*. Finally, if A is self-adjoint, then A = A** = A*. Therefore, a closed
symmetric operator A is self-adjoint if and only if A* is symmetric.

3.7 Compact Operators — Fredholm Operators

In this section we study a class of operators that closely resemble the operators on
finite dimensional spaces. These operators are similar to N x N matrices and so are
small in the sense that they map the closed unit ball to a small set.

Definition 3.7.1. Let X, Y be Banach spaces and let D ¢ X be nonempty subset. A map
f: D — Y, not necessarily linear, is said to be compact if it is continuous and for every
bounded set B < D, the set f(B) c Y is compact. By K(D, Y) we denote the family of all
compact maps. If D = X, then we define L.(X, Y) = K(X, Y) n L(X, Y).

Remark 3.7.2. If Yis finite dimensional, then every continuous bounded mapf: D —» Y
is compact. If A € L.(X, Y), then R(A) is separable.
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Another notion closely related to compactness is the following one.

Definition 3.7.3. Let X, Y be Banach spacesand D ¢ X isnonempty. Amapf: D — Yis
said to be completely continuous if for every sequence {x,},>1 € D such that x,, " x
with x € D, it follows f(x,) — f(x)in Y.

Remark 3.7.4. Completely continuous operators A € L(X,Y) are also known as
Dunford-Pettis Operators. It is easy to see that a linear operator A: X — Y is
completely continuous if and only if A(C) ¢ Y is compact for every weakly compact
CcX.

In general the classes of compact maps and of completely continuous maps are distinct.
However, for linear operators we can relate the two classes.

Proposition 3.7.5. If X, Y are Banach spaces and A € L.(X, Y), then A is completely
continuous.

Proof. Let xy ™ xin X. Then {Xn}n>1 € Xisbounded and so {A(x)},>1 € Y is compact.
Thus there exists a subsequence {x, }k>1 Of {xn}n>1 such that A(x,,) — yin Y. From
Proposition 3.3.23, one has A(x;,) A A(x) in Y. Therefore y = A(x), and so we conclude
that A(x,) — A(x) in Y. This proves that A is completely continuous. O

Example 3.7.6. The converse is not true in general. Recall that in I*, weak and norm
convergent sequences coincide; see Remark 3.3.17. Then the identitymap i: I' — ' isa
completely continuous linear operator, but clearly it is not compact.

However, if we strengthen the structure of X, then the converse of Proposition 3.7.5
holds. In fact we obtain the following result.

Proposition 3.7.7. If X is a reflexive Banach space, Y is a Banach space, D ¢ X is
nonempty, w-closed, and f : D — Y is completely continuous, then f € K(D, Y).

Proof. Evidently, f is continuous. Let B ¢ D be a bounded set. We need to show that
@ ¢ Y is compact. So, let {y}n>1 € f(B) € Y. Then y, = f(x,) with {x,}s>1 € B. The
reflexivity of X implies that B is relatively weakly compact. So, the Eberlein—Smulian
Theorem, Theorem 3.4.14, says that there exists a subsequence {xp, }k>1 0f {Xn}n>1 such
that xp, % x e D.We get yn, = flxn,) — f(x) € f(B), which means that f(B) c Y is
compact. O

Corollary 3.7.8. If X is a reflexive Banach space, Y is a Banach space, and A € L(X, Y),
then A € L.(X, Y) if and only if A is completely continuous.

The next theorem explains why compact maps resemble maps between finite dimen-
sional spaces. First a simple lemma about relatively compact sets in a Banach space Y.

Lemma 3.7.9. If Y is a Banach space, K < Y is nonempty and for every € > 0, there exists
a relatively compact set K. < Y such that for everyy € K we can find y. € K, such that
ly = yelly < &, then K < Y is relatively compact.
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Proof. Let € > 0 be given. There exists a relatively compact set K./, < Y as postulated
by the hypothesis of the lemma. The total boundedness of K/, implies that there exist
{yK}* | < K¢/2 such that

m
K5 < (JBe (v) -
k=1

By hypothesis, given y € K, there exists y,/» € K¢/» such that ly — y¢2lly < €/2. Since
Vej2 € Bg/z(ylg") for some ko € {1,...,m} one has |yg» - y’éO”y < &/2. Therefore
ly - y'§° ly < €, which implies K < (i, Bg(y’;). Hence, K is totally bounded and so
relatively compact. O

Theorem 3.7.10. If X, Y are Banach spaces, D < X is nonempty, bounded, andf: D — Y,

then the following two statements are equivalent:

(@) feK(D,Y).

(b) For every € > O there exists a continuous, bounded map f.: D — Y such that
IfO0) = fe(X) |y < € forall x € D and f.(D) < conv f(D) as well as dim(span f:(D)) <
Q.

Proof. (a) = (b): Since f is compact, f(D) < Y is relatively compact. So, for every € > 0
there exists a sequence {yk},rc"=1 C f(D) such that

min |f(x) - yklly <& forallxeD. (3.71)
ke{l,...,m}

.....

Recall that f(D) is totally bounded. Let Ax(x) = max{e - |f(x) - yklly, 0}. Clearly Ax: D —
R, with k =1, ..., m are continuous functions and do not all vanish simultaneously
for x € D, see (3.7.1). We introduce the map f.: D — Y defined by

Y Ak
fe) = . (372)
Y Akx)
k=1

Evidently f; is continuous, bounded, and

Y MOk -fo)| Y Ae
k=1

k=1

&

Ife () = fXOlly = - < =
Y A(x) Y Ak

k=1 Y k=1
for all x € D; see (3.7.1). Then the boundedness of f(D) implies the boundedness of f. (D)
while from (3.7.2) we see that dim(span (D)) < co. Therefore, f, is compact, and it is
clear from (3.7.2) that f.(D) < conv f(D).

(b) = (a): Let € = 1/n with n € N. Then there exist continuous, bounded maps
fi/n: D — Y such that

[Feo —f%(X)"Y < % forallx e D,
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which shows that f is continuous since it is the uniform limit of continuous maps.
Let y = f(x) with x € D. Then it follows that

1
ly =yl < - with yn =f1(x) €f1(D).

The set 1/, (D) is relatively compact. So, invoking Lemma 3.7.9 we conclude that f(D) < Y
is relatively compact, that is, f € K(D, Y). O

Definition 3.7.11. Let X, Y be Banach spaces and A € L(X, Y). We say that A is a
finite rank operator (or finite dimensional operator or degenerate operator) if
dim R(A) < co. We denote the space of all finite rank operators by L¢(X, Y). Clearly
L¢(X,Y) € Le(X, Y). This inclusion is strict in general.

According to Theorem 3.7.10, every A € L.(X, Y) can be approximated uniformly on
bounded sets by compact maps with finite dimensional range. However, we cannot
say that these approximating maps are in L¢(X, Y). So, we are led to the following
definition.

Definition 3.7.12. We say that the Banach space Y has the approximation property
[l

if for every Banach space X, Lf(TY) =L(X,Y).

Remark 3.7.13. The first example of a Banach space without the approximation property
was produced by Enflo [104] who considered a separable reflexive space. A Banach
space with a Schauder basis has the approximation property. So, Enflo’s example also
showed that not every separable reflexive Banach space has a Schauder basis, another
long-standing open problem; see Remark 3.5.51.

Proposition 3.7.14. If X, Y are Banach spaces, then L.(X, Y) is a Banach space.

Proof. We only need to show that L.(X, Y) is a closed subspace of L(X, Y). So, let
A, > Ain L(X, Y). Then sup[||An(x) —AX)|y: lIxllx < 1] > 0asn — oco. Given € > 0,
there exists ng € N such that |A,(x) — A(X)|ly < &/2 forall x € El and for all n > ng.
The set Ap, (E)f) is totally bounded; recall that A,, € L.(X, Y). Hence, there exists a

—X . . =X .
finite €/2-net F ¢ A,,(B; ); see Definition 1.5.31. Given x € B; there exists y € F such
that [[An,(x) — ylly < €/2. Then

& &
1AG) = ylly < IAG) = An(Olly + 1An () = ¥lly < 5 + 5 =€

Hence, F is an &-net for A(E)f), thus, A(E)f) is relatively compact. Therefore, A €
LC(Xs Y)- D

Proposition 3.7.15. If X, Y, V are Banach spaces, A € L(X,Y), T € L(Y,V),and Aor T
is compact, thenT- A € L.(X, Y).

Proof. First suppose that A is compact. Then A(E)f) ¢ Y is compact, hence T(A (E)f)) c
V is compact. This means that T o A € L.(X, V).
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Now suppose that T is compact. The set A(E)f) ¢ Yis bounded. Since T € L.(Y, V)
we have that T(A(E)f)) ¢ V is relatively compact. This means that To A € L.(X, V). O

Corollary 3.7.16. If X is a Banach space, then L.(X) is a closed ideal of L(X).

The next characterization of operator compactness is very useful in many occasions
and is known as “Schauder’s Theorem.”

Theorem 3.7.17 (Schauder’s Theorem). IfX, Y are Banach spaces and A € L(X, Y), then
AeL(X,Y)ifandonlyif A* € L(Y*, X*).

Proof. =: LetK = A(E)f). Then K ¢ Y is compact. Moreover, let B € Y* be bounded.
Then

[Ky*,v1 -y <clyr —y2ll forally* e By, forally,,y, € K, forsomec >0.

This shows that B ¢ C(K) is bounded and equicontinuous. So, invoking the Arzela—
Ascoli Theorem (see Theorem 1.6.16), we infer that B is relatively compact. Then, if
{yn}n=1 < B, there exists a subsequence {yn 1 of {y;}n=1, which is a uniformly Cauchy

sequence on K. This implies that {y;, A}i>1 is a uniformly Cauchy sequence on E)f.
Therefore, {y; A}x>1 € X* is convergent. But by Definition 3.6.6, y; A = A*(yy, ). Thus,
we conclude that A* € Lo (Y™, X*).

<: From the previous implication we obtain that A** € L.(X**, Y**).Letjx: X —
X**andjy: Y — Y** be the corresponding canonical embeddings. Then A = j}l °
A** o jx and so Proposition 3.7.15 implies that A € L.(X, Y). O

Definition 3.7.18. (a) If X is a vector space and V is a vector subspace of X, then the
codimension of V in X is the dimension of the quotient vector space X/V.

(b) Let X, Y be Banach spaces and A € L(X, Y). We say that A is a Fredholm operator
if N(A) is finite dimensional and R(A) has finite codimension. The number i(4) =
dim N(A) — codim R(A) = dim N(A4) — dim(Y/R(A)) is called the index of A.

Remark 3.7.19. If A € L(X, Y) is a Fredholm operator, then X = N(A) ® V and A|V isan
isomorphism of V onto R(A). Moreover, R(A) < Y is closed.

Lemma 3.7.20. If X is a Banach space, A € L(X),T = ix - A, and V - R(T)is a
proper closed subspace of X, then for every € > O there exists xo € El such that
d(A(x0), A(V)) 21 -¢.

Proof. According to the Riesz Lemma (see Lemma 3.1.20), there exists xo € X with
Ixoll = 1 such that d(xg, V) > 1 — €. One has T(xg) € Vand A(V) = (ix — T)(V) c Y.
Therefore,

d(A(xo), A(V)) > d(A(xo) + T(xo), V) =d(xo, V) 21 - €. O

Using this lemma we can prove the following theorem, which gives an important class
of Fredholm operators.
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Theorem 3.7.21. If X is a Banach space, A € L.(X), and A # 0, then Aix — A is a Fredholm
operator.

Proof. Clearly, we may assume that A = 1. Let N = N(ix — A). For every x € N one has
A(x) = x. Therefore A| y is an isomorphism with a subspace of X and Al y is compact as
well. It follows that N is finite dimensional. Proposition 3.2.28 implies that there is a
closed subspace Vof X suchthat X =Ne V.Let T =ix—Aand T = T|V. We obtain
that R(T) = T(V) = R(T) and N(T) = N n V = {0}, hence T is injective. We claim that

inf [|T(0|: x e V; Ix = 1] > 0. (3.73)

Arguing by contradiction, suppose that (3.7.3) does not hold. Then there exists x, € V
with || x,|| = 1 for all n € IN such that || T(xn)” — 0. Since A € L.(X) we may assume that
A(xn) — uin X. Note that A(x,) = x,, forall n > 1, so |Ju|| = 1. Moreover, T(u) = 0 and
this contradicts the injectivity of T.

From (3.7.3) we infer that | T(x)| > c|x| for all x € V and for some ¢ > 0. Then,
Theorem 3.6.45 implies that R(T) = R(T) < X is closed.

We will show that codim R(T) < oco. Inductively we define

T°=ix, T'=T and T'=TTK forallkeNy.

Moreover we set Ny = N(T¥). Since T¥ = (ix — T)¥ and powers of compact operators are
again compact operators (see Proposition 3.7.15), we get TX = ix — Sy with Si € L(X).
From the first part of the proof we see that dim Nj < oo for all k € No.

Let Z; = R(T¥) = TX(V1) with k € No. We have that

{Ni}ken, is increasing and {Zy}ken, is decreasing . (3.74)

For some n € Ny we obtain Z,, = Z,.1. Indeed if all the inclusions Zy > Zy, are strict,
then with Lemma 3.7.20 there exists u, € Ef“ such that d(A(uy), A(Zn+1) = 1/2. Then
IlA(u,) — A(um)ll = 1/2 for n # m, a contradiction to the fact that A € L.(X).

Similarly, for some m € Ny, it holds Ny, = Nysq. Indeed if x € Ny, that is, TX(x) =
0, then T*"1(T(x)) = 0 and so T(x) < Nx_1 < Ny; see (3.74). Therefore, again via
Lemma 3.7.20, we conclude that N,,, = Ny,41 for some m € Ny. Thus, we obtain

Zn=Zy foralln’>n and Np =N, forallm'>m.

Let i = max{n, m}. We claim that X = N; @ Z;. Let x € X. Then T!(x) € Z; and T!(Z;) =
TH(TY(X)) = T2 (X) = T{(X) = Z;. Therefore there exists u € Z; such that T(u) = T!(x),
hence Ti(u — x) = 0. Therefore, u — x € N;and x = x — u + u. Since X = N; ® Z;, the
codimension of Z; and also of Z; 2 Z; is finite. O

Example 3.7.22. (a) If X, Y are finite dimensional Banach spaces, then every linear
operator A: X — Y is a Fredholm operator and i(4) = dim X — dim Y.

(b) If X, Y are Banach spaces and A € L(X, Y) is a bijection, then A is a Fredholm
operator and i(4) = 0.
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(c) LetX =1P with1 < p < ocoandlet A € L(IP) be defined by
A(X) = (Xpsi)ns1 forall X = (xp)p>1 € IP and for some k € IN .

Recall that for everyn € N, e, = (0,...,0,1,0...) where 1 is located at the
n tilentry. We see that N(A) = span{en}ﬁzl, R(A) = {entnsks+1, and R(A) = IP.
Therefore A is a Fredholm operator and i(A) = k.

Let us consider the case where X = Y are Banach spaces and A € L.(X). Then according
to Theorem 3.7.21, ix — A is a Fredholm operator. The next theorem, known as the “Fred-
holm Alternative Theorem,” asserts that either the nonhomogenous linear equation
x — A(x) = u has a solution x € X for every u € X or the corresponding homogeneous
equation x — A(x) = 0 has a nontrivial solution. The result has interesting applications
in boundary values problems.

Theorem 3.7.23 (Fredholm Alternative Theorem). If X is a Banach space, A € L:(X, Y)
and A # 0, then the equation Ax — A(x) = u has a solution for every u € X if and only if
the equation x — A(x) = 0 only has the trivial solution.

Proof. Again we may assume that A = 1. Let T = ix — A. If A(x) — x = 0 only has the
trivial solution, then N = N(T) = {0} and so T is an isomorphism into. We will show
that it is surjective.

Let Vi = R(T¥) for all k € Ny. From the proof of Theorem 3.7.21 we know that there
exists n € Ny such that V = V, for all k > n. We claim that V; = Vo = X. If this
is not the case, let m € N be the smallest integer such that Vy,_1 # Vi = V1. We
picku € Vy_1 \ V. Then T(u) € Vy, = Viypy1. Hence, there exists v € V,,, such that
T(u) = T(v) and u # v since u ¢ Vy,. But this contradicts the injectivity of T.

Next, assume that T is surjective. Let Ny = N(TX) for k € N. We need to show
that Ny = N(T) = {0}. Recall that {Ny}x>1 is increasing. Arguing by contradiction,
suppose that there is x; # 0 such that x; € N;. Inductively we will generate a sequence
{xx}i=1 € X such that T(xy.1) = xx and xx € Ny \ Ni_; for all k € N. Suppose that
X1, ..., Xy have been constructed. Since R(T) = X, there exists x;,1 € X such that
T(Xk+1) = Xk- Then T¥(xge1) = T (xp) = -+ = x1 # 0 and T¥(xxs1) = T(x1) = O.
This completes the induction. Since N, = Ny,,1 for some m € Ny (see the proof of
Theorem 3.7.21), we have proven the assertion of the theorem. O

Next we prove a duality property of Fredholm operators, thatis, we showthat A € L(X, Y)
is Fredholm if and only if A* € L(Y*, X*) is Fredholm. We start with a simple lemma.

Lemma 3.7.24. If X, Y are Banach spaces, A € L(X,Y) and dim(Y/R(A)) < oo, then
R(A) ¢ Yis a closed subspace.

Proof. Let m = dim(Y/R(A)) < co. Then there exist vectors {yx};-, € Y such that

m
k=1

vkl =yk + R(A) € Y/R(A) forallke{1,...,m}
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form a basis of Y/R(A). We introduce the space
X=XxR™ withnorm ||(x, A)llg = Ixlx + A|

forall x € X and forall A = (/1k)km:1 € R™. Of course X with the norm above is a Banach
space. Let A € L(X, Y) be defined by

m
A(x,A) = A(x) + Z AkYi -
k=1
Then A is surjective and
N(A) = {(x,)) e Xx R™: A(x) = 0, A = 0} = N(A) x {0} .

Invoking Theorem 3.8.19, there exists ¢ > 0 such that

m
inf[lx + ulx: ue NAT+ Al < c|A@) + Y Ay forallx e X,A e R™.

k=1

Y
Let A = 0. Then

inf[|x + ullx: u e NA)] <cl|AX)|y forallxe X,
which shows that R(A) ¢ Y is closed; see Theorem 3.8.19. O
Using this lemma, we can prove the duality property for Fredholm operators.

Theorem 3.7.25. If X, Y are Banach spaces and A € L(X, Y), then the following hold:

(a) A is a Fredholm operator if and only if A* is a Fredholm operator.

(b) If A is a Fredholm operator, then dim N(A*) = dim(Y/R(A)) and dim N(A) =
dim(X*/R(A*)).

Proof. According to Theorem 3.8.19, R(A) < Y is closed if and only if R(A*) € X* is
closed. So, we may assume that both R(4) € Y and R(A*) ¢ X* are closed subspaces.
Then

R(A*) =N(A)* and R(A): =N(4%); (3.7.5)
see Proposition 3.6.44. Applying Proposition 3.2.25, one has
N(A)* = X*/N(A)* = X*/R(A*) and (Y/R(A))" = R(A)* = N(4");
see (3.7.5). This completes the proof of both statements (a) and (b). O

The last part of this section is devoted to the spectral theory of bounded linear operators.
First, let us recall some standard results about invertible operators. Recall that A €
L(X,Y) is invertible if and only if it is an isomorphism of X onto Y with X, Y being
Banach spaces. Moreover, from Proposition 3.6.7(e) we know that A € L(X, Y) with X, Y
being Banach spaces is invertible if and only if A* is invertible and (A1)* = (4*)~L.
In addition, if X, Y, V are Banach spacesand A € L(X, Y), T € L(Y, V) are invertible
operators, then T o A € L(X, V) is invertible as welland (T - A)~! = A-1T-1,
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Lemma 3.7.26. If X is a Banach space, A € L(X) and |A|L < 1, thenix — A € L(X) is
invertible and (ix - A)™! = ¥, ., A™ with the series being absolutely convergent.

Proof. Note that
Y 14 < Y 1Al < oo

n=0 n=0
since by hypothesis |A|; < 1. Hence },.4 A" is absolutely convergent in L(X). Then we
obtain
(ix—A) Y A"=(ix-A)+(A-A*)+... =iy,
n=0
which is called the telescoping sum. Similarly we get (} .o A™)(ix —A) = ix. Therefore
we conclude that iy — A € L(X) is invertible and (ix - A)~! = YnsoAm. O

Lemma 3.7.27. If X is a Banach space, A, T € L(X), A is invertible and |A — T|; <
1/I|A7 Y|, then T is invertible aswelland | T ' -A~Y|; < (||A‘1||%|| T-AlL)/ A=A YLIT-
AllL)-

Proof. Note that
IATMA =Dl <IA M IT- Al < 1.

Using Lemma 3.7.26 it follows that ix — A™1(A - T) = A~!T e L(X) is invertible. Hence
T € L(X) is invertible since T = A(A~1 T). Moreover, we get

(ix-ATA-T) ' =Y A TA-1)";

n>0

see Lemma 3.7.26. Therefore

T'=(A-(A-D) ' =Alix-ATA-T) =Y AT A-T)"A".

n=0

Thus,

IT -AY < Y @ t@-m)"a™, <At Y, (A7 ILlA - TiL)"
n>1 nx1
_IATMIA =TI .
1- AT - Al

Corollary 3.7.28. IfXis a Banachspace and £ < L(X) is the set of all invertible operators,
then L is an open set in L(X) and the map A — A~ is a homeomorphism of £ onto L.

Now we introduce the spectrum of a bounded linear operator. In order to have a complete
spectral theory we need to assume that X is a complex Banach space.

Definition 3.7.29. Let X be a complex Banach space and let A € L(X). The spectrum
0(A) of A is the set

0(A) = {1 € C: Aix — A is not invertible} .
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The resolvent set p(A) of A is the complement of o(A), that is, p(A) = C \ o(A).
The elements of p(A) are called regular values of A. Moreover, if A € p(A), then
R(A) = (Aix — A)~! € L(X) is called the resolvent of A at A. The spectrum of A is
decomposed in the following way:

Po(A) = {A € C: Aix — A is not injective} ,

Ro(A) = {A € C: Aix — A is injective but R(Adix — A) € X is not dense} ,

Co(A) = {A € C: Aix — A is injective, R(dix — A) € X is dense

but Aix — A is not surjective} .

We call Po(A) the point spectrum of A, Ro(A) is the residual spectrum of A, and
Ca(A) is the continuous spectrum of A. Given A € C we see that A € Pg(A) if and

only if there exists x € X \ {0} such that A(x) = Ax. The elements of Pg(A) are called
eigenvectors for A and N(Aix — A) is the eigenspace for A.

Remark 3.7.30. If X is finite dimensional and n = dim X, then 0(4) = Po(A) and
card 0(A) < n. If X is infinite dimensional and A € L.(X), then O € 0(A) or otherwise A
would be a compact isomorphism, a contradiction.

Proposition 3.7.31. If X is a Banach space and A € L(X), then d(A) = a(A*).

Proof. From Proposition 3.6.7(e), we know that (dix — A) is invertible if and only if
(Aix — A)* is invertible. To conclude the proof just note that (Aix — A)* = Aix- —A*. O

On account of Remark 3.6.8, we can state the following corollary concerning operators
defined on a Hilbert into itself.

Corollary 3.7.32. If H is a complex Hilbert space and A € L(H), then 0(A*) = A: he
o(A)}.

Proposition 3.7.33. If X is a Banach space and A € L(X), then a(A) < C is compact and
ifAea(A),then|A| < ||AllL.

Proof. Corollary 3.7.28 implies that p(A) < C is open. Hence, 0(A) = C \ p(A) is closed.
Let A € C such that |A| > |A|l. Then Aix — A = A(ix — 1/AA) and so with Lemma 3.7.26,
Aix—A isinvertible. Therefore, if A € o(A4), then |A| < ||A|; and 0(A) € Cis compact. [

The next result is valid only for complex Banach spaces. That is why we said that in
order to have a complete theory, we need to consider Banach spaces over C.

Proposition 3.7.34. If X is a complex Banach space and A € L(X), then a(A) # 0.
Proof. We fix A € 0(A) and consider A € C such that |A - Ag| < |[(Agix —A)~! ||il. Using

Lemma 3.7.27 for the operators Agix — A and Aix — A, we get
R() = Aix - A) = Y [(Aoix — A) 1 (Ao - Nix]" (Aoix — A)!

n>0

= Y (Ao = )"(Aoix = A) ™V = 3 (Ao - H)"R(A)™ ;

n=0 n>0
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see the proof of Lemma 3.7.27. Note that the series is absolutely convergent. So A — R(A)
is an analytic function from p(A) into L(X). From the proof of Proposition 3.7.33 we
know that if |A| > [A]z, then R(A) = } -0 1/A1A" hence |[R)|L < 1/(A] - IAllL).
Arguing by contradiction, suppose that p(A) = C. Then R(A1) — 0 as |A] - +c0. So with
Liouville’s Theorem, we obtain that R = 0, a contradiction since the values of R are
invertible operators. Therefore p(A) # C and so o(A) # 0. O

As we already pointed out (see Remark 3.7.30), if dimX < oo and A € L(X), then
0(A) = Po(A), just recall that in this case A is injective if and only if A is surjective.
However, it is not true in general that every point of 0(A) is an eigenvalue. For compact
operators every nonzero element of 0(A) is an eigenvalue.

Proposition 3.7.35. If X is a Banach space, A € L.(X) and A € a(A)\{0}, then A € Pa(A).

Proof. Suppose that A # 0 is not an eigenvalue of A. Then according to Definition 3.7.29
we obtain N(Aix — A) = {0}. Then with the Fredholm Alternative Theorem (see Theo-
rem 3.7.23), we have R(Aix — A) = X. Hence, according to Theorem 3.2.10, Aix — A is
invertible, which means that A ¢ o(4). O

Lemma 3.7.36. If X is a Banach space, A € L(X), {Ax};_, are distinct eigenvalues of A
and ey is an eigenvector corresponding to Ay foreachk = 1,...,nwithn € N, then
{ek}z=1 ¢ X are linearly independent.

Proof. The proof goes by induction. So, suppose that {ek},f;i are linearly independent.
Lete, = Z;i Jrer with 95 € C. Then Z,’:;i An9kex = Anen = Alen) = Y1 Ak9kex.

k=1
Hence, ZZ;}(/\H — Ax)Ixex = 0. Since by the induction hypothesis {ek}z;} c X are
linearly independent and A, — Ax # O, we must have 9, = Oforallk = 1,...,n.
Therefore {ex};_, < X are linearly independent. O

Proposition 3.7.37. If X is a Banach space, A € L.(X), and € > 0, then A has only finitely
many eigenvalues A € C such that || > &.

Proof. Arguing by contradiction, suppose that there exist distinct eigenvalues {Ax}x>1
such that |Ax| > € for all k € IN. For every eigenvalue Ay, we choose an eigenvector
ex.Forn e Nlet X, = span{ek}zzl. With Lemma 3.7.36 it follows that A(X,) = X,, and
Xn-1 # Xp. Invoking the Riesz Lemma (see Lemma 3.1.20), there is a u, € X, such
that

and |upl=1 foralln>2. (3.7.6)

N| -

d(un, Uns1) =

Let y, = 1/A,u, and note that ||y, < 1/€. Then A(y,) € X, and u, — A(yn) € Xn-1. To
see this second inclusion, note that y,, = ZZ=1 9rex with 9y € C. Then

n Ak n-1 Ak
u, - Alyn) = Z (1 - /1_> Jrex = Z <1 - /1_> Irex € Xn-1 .
k=1 n k=1 n
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Let n > m. Then A(ym) € Xm < Xp-1 and u, — A(yn) € Xp-1. Therefore one
has

IA(yn) = A(ym)ll 2 d(A(yn), Xn-1) = d(A(yn) + tn — A(Yn), Xn-1)

= d(un, Xn-1) 2

(3.7.7)

N|

b

see (3.7.6). But {yn}n>1 < A(B;) and the latter is relatively compact, a contradic-
tion to (3.7.7). This proves that only finitely many eigenvalues A € C satisfy |A| > €.
O

Combining this proposition with Theorem 3.7.21 we obtain the following corollary.

Corollary 3.7.38. If X is a Banach space and A € L.(X), then 0(A) = {0} U Pa(A) with
Pa(A) either a finite set possibly empty or a sequence {Ax}x>1 < C exists such that Ay — 0
as k — oo and each Ay has a corresponding eigenspace that is finite dimensional.

Now we focus on self-adjoint operators defined on a Hilbert space.

Proposition 3.7.39. If H is a Hilbert space and A € L(H) is self-adjoint, then Pa(A) € R
and eigenvectors corresponding to different eigenvalues are orthogonal.

Proof. Since A € L(H) is self-adjoint, from Definition 3.6.13(b) it follows that
(Ax),y) = (x,A(y)) forallx,ye H.
Suppose x =y € H. Then
(A(x), x) = (x, A(x)) = (A(x), x) forallxeH.
Hence
(A(x),x) e R forallx e H. (3.7.8)

Suppose that A € Pa(A). then (A(x), x) = (Ax, x) = A||x|?, which implies, because of
(3.7.8), that A = (A(x), x)/||x||> € R.

Next let A, u € Pa(A) with A # u and suppose that x, u € H are eigenvectors
corresponding to A, p, respectively. Then one gets

(A(x), u) = (Ax, u) = A(x, u),
(A(Xx), u) = (x, A(w)) = (x, pu) = u(x, u)

since the eigenvalues are real; see above. It follows that (A — p)(x, u) = 0. As A + u we
conclude that (x, u) = 0. O

Proposition 3.7.40. If H is a Hilbert space and A € L(H) is self-adjoint, then A € o(A) if
and only if inf [||Ax — A(X)]: ||x|| = 1] = O.
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Proof. =: Suppose thatinf [||(Aig — A)(x)|: lIx]| = 1] > 0. Then there exists ¢ > 0 such
that

lAig = A)X)|| = cllx|| forallx € H. (3.7.9)

We will show that (Aig — A)™! € L(H) and so A € p(A). According to Proposition 3.6.35,
it suffices to show that R(Aiy — A) is dense in H. If this is not the case, then there exists
it € H\ {0} such that ((Aig — A)(x), it) = O for all x € H. This gives (x, (Aig — A)it) = 0
for all x € H. Therefore Ait = A(i1), that is, A € Pa(A).

But from Proposition 3.7.39 we know that Po(A) < R. Hence, A = Aand so (Aig —
A)(1) = 0, a contradiction to (3.7.9). It follows that R(dig — A) is dense in H and so
Proposition 3.6.35 implies that (Aiy — A)~! € L(H), and thus A € p(A).

&=:Let A € p(A). Then (Aig — A)~! € L(H). So, for x € H with ||x|| = 1 we get

1 = |Ixll = (Aig — A" QAig = A < I(Aig — A) LAy - A) 0]
< Aig - Al 1(Aig - A .
Hence, |Aig — Al < |(Aig — A)(x)||, which gives
IAig = A)7MIH <inf [|(Aig — A)OIl: lIxl = 1] .
So, if inf [||((Aig — A)(X)|: x|l = 1] = 0, then we must have A € o(4). O

Using this proposition we can conclude that the spectrum of a self-adjoint operator is
real; compare with Proposition 3.7.39.

Proposition 3.7.41. If H is a Hilbert space and A € L(H) is self-adjoint, then o(A) < R.
Proof. Let A = n +i9 with 9 # 0. For every x € H with ||x|| = 1 we obtain

(Ax — A(x), x) — (x, Ax — A(x)) = A = D|Ix||12 = 2i9.
Hence,

2191 = [(Ax = A(0), %) = (X, Ax = A())| < [(Ax = A(X), )| + |(x, Ax = A(¥)|
< 2[l(Aig = A)X)l .

Therefore,
|9 < inf[|(Aig = A)CO = lIx]| = 1] . (3.710)

So, from (3.7.10) and Proposition 3.7.40, we see that A € o(A) implies that 9 = 0. Thus,
o(A) c R. O

Using this fact we can locate more precisely the spectrum of a self-adjoint operator.
Proposition 3.7.42. If H is a Hilbert space, A € L(H) is self-adjoint, and
my = inf[(A(x), x): x| = 1], Mga =sup[(A(x), x): x|l = 1],

then o(A) € [my, M4].
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Proof. Note thatif T = A + uip, then T € L(H) is self-adjoint and mr = my4 + p as well
as Mt = M4 + u. So, without any loss of generality we may assume that 0 < my < Mjy.

From Proposition 3.6.16, we know that M4 = ||A| 1, while from Proposition 3.7.41, we
know that 0(A) ¢ R. We will show that, for every 9 > 0, A = M4 + 9 ¢ 0(A). According
to Proposition 3.7.40, it suffices to show that

inf[||(Aig = A)X)Il: lIx = 1] > 0.
For every x € H with ||x|| = 1 one has
(Aig = A)(x), X) = (Ax, x) = (A(X), %) = (A = Mp)lIx]I> = 9lIx|* = 9.

This gives 0 < 9 < ||(Adig — A)(x)| for all x € H with | x| = 1. Therefore, 0 < 9 <
inf[||(Aig — A)()|: |Ix|| = 1]. Then, due to Proposition 3.7.40, this finally proves that
A ¢ a(A).

Similarly we show that for every 9 > 0, A = my — 9 ¢ 0(A). Hence, we conclude
that 0(A4) € [mga, M4]. O

Proposition 3.7.43. If H is a Hilbert space and A € L(H) is self-adjoint, then my, M4 €
d(A); see Proposition 3.7.42.

Proof. As before (see the proof of Proposition 3.7.42), we may assume that 0 < my < My.
Recall that M4 = ||A|;; see Proposition 3.6.16. Let {x,}n>1 € H with |x,|| = 1 for all
n € N such that

(A(xn), xn) > My = ||AllL. asn — co. (3.711)
Then, using the fact that (A(x), x) > O for all x € H and the validity of (3.7.11), it follows
that
0 < [((Maig — A)(xn)II* = (MaXy = A(Xn), Maxn — A(xn))
= M} + IACn)I1? ~ 2Ma(A(xn), Xn) < M5 + M — 2Ma(A(Xn), Xn)) — O
as n — oo. Hence inf[||[(Maig — A)(X)|: x| = 1] = 0, which gives M4 € o(A); see

Proposition 3.7.40.
Similarly we show that my € o(A). O

Next we restrict further ourselves to compact self-adjoint operators.
Proposition 3.7.44. If H is a Hilbert space and A € L.(H) is self-adjoint, then Pa(A) + 0.

Proof. If A = 0,then A = 0 € Pa(A). So, suppose that A # 0. Then Proposition 3.7.43
gives |A|lL € o(A). Since ||A|; # 0, Corollary 3.7.38 implies that |A[; € Pa(A). O

Proposition 3.7.45. If H is an infinite dimensional Hilbert space and A € L.(H) \ {0} is
self-adjoint, then o(A) = {0} U {Ax}k>1 With A being distinct nonzero eigenvalues of A,
one of these eigenvalues equals || Al and {Ax}k>1 is either finite or a countable sequence
such that Ay — 0. Moreover, the Hilbert space H admits an orthonormal basis consisting
of eigenvectors corresponding to the eigenvalues of A.
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Proof. This is basically Corollary 3.7.38. From Proposition 3.7.43 we also know that one
of the eigenvalues equals |A| ;. It remains to prove the last part of the proposition
concerning the basis of H. Let A € Po(A) and let Ny = N(Aig — A). From Theorem 3.7.21
we know that dim N; < +oo. Let By be an orthonormal basis for Ny and let B =
Uiepo(a) Ba- From Proposition 3.7.39 we know that B ¢ H is an orthonormal set and
spanB contains all the eigenvectors of A. Suppose that H # spanB and let V = (spﬁB)l.
Note that SpanB is A-invariant. Hence so is V. One has 0(4) = 0(A|m3) + o(4]y).
But 0(A|V) contains an eigenvalue (see Proposition 3.7.44), and so a corresponding
eigenvector u as well. Then u is also an eigenvector of A and so u € V n spanB,
u # 0, a contradiction. This means that H = spanB, and so B is an orthonormal basis
of H. O

Corollary 3.7.46. IfHis a Hilbert space and A € L.(H) is self-adjoint, then 6(A) = Pa(A).

Proof. If H is finite dimensional, then 0(4) = Po(A) and it is compact; see Propo-
sition 3.7.33. If H is infinite dimensional, then Pg(A) is a countable sequence or a
finite sequence. If it is a countable sequence, then the conclusion follows from Propo-
sition 3.7.44. If it is a finite sequence, then since the eigenspaces for the nonzero
eigenvalues are finite dimensional (see Corollary 3.7.38), and H is infinite dimen-
sional, then on account of Proposition 3.744 we must have that A = 0 € Po(4).

O

We have reached the main result on the spectral analysis of compact self-adjoint
operators defined on a Hilbert space. The result is known as the “Spectral Decomposition
Theorem.”

Theorem 3.7.47 (Spectral Decomposition Theorem). If H is an infinite dimensional sep-
arable Hilbert space and A € L.(H) is self-adjoint, then there exists an orthonormal
basis {ex}k>1 € H consisting of eigenvectors corresponding to the distinct eigenvalues
{Ak}k=1 € Rand

A(x) = z Ax(x, ex)ex forallx e H.
k=1

Moreover, for every A € p(A) and x € H, it holds that

(Xs ek)

RA)(x) = 1A ek -

k>1

Proof. Let {ex}x>1 € H be an orthonormal basis of H consisting of eigenvectors; see
Propositions 3.7.43 and 3.5.47. Then, for 1 < n < m, one has

m 2 m m
Y Ax, eer| =Y IAi(x, en)l” < IAlL Y |(x, el — 0
k=n k=n k=n

as n — oo; see Proposition 3.7.33. Hence, Y ;. Ak(X, ex)ex converges in H.
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If | x| < 1, then, for every n € N, we derive

2

n n n
> Al eer| = ) ARI(x e <Al Y. 1(x, el
k=1 k=1 k=1
<IAIE Y 16 e = IAIZ X -
k=1

Consider the operator T defined by T(x) = ., Ak(x, ex)ek. Of course, T € L(H). Hence,
A(ex) = T(ex) forallk e Nandso A = T.

Now suppose that A € p(A). Recalling that d(A) = C \ p(A) is compact, it follows
that d(A, o(A)) > 9 > 0. Hence, |A — Ax| > 9 for all k € N. Therefore,

I(x, ek) C e 1 & 2
—— < = ) l(x,en)|".
" 2 honE <5 Lo

This shows that ) ;. (x, ex)/(A — Ax)ex is convergent in H for all x € H.
Let T(x) = Y151 (x, ex)/(A = Ag)ex. Then, for [ x| < 1, we obtain

i (x, ek)ek
P A=A

2

k 9?

1 & 1 1
<5 2 1 enl? = ol < o
k=1

Thus, T € L(H).
Since x = Y ;.1 (x, ex)ex, we have A(x) = Y., Ak(x, ex)ex and

(Aig = A)(x) = Y (A= A)(x, ex)ex .
k>1

As (ex, e;) = 6x,; we then get

(i~ AT = Y -1 %D ey, eper = Y (x, enen = x

k,i>1 L k>1

Similarly we show that T((Aig — A)(x)) = x for all x € H. Therefore, T = R(A). O

We conclude this section by introducing two more classes of bounded linear operators
of Hilbert space into itself.

Definition 3.7.48. Let H be a Hilbert space and A € L(H).
(a) Wesay that A isnormalif A-A* = A* - A.
(b) We say that A is unitary if A is invertible and A=! = A*.

Remark 3.7.49. Clearly every unitary operator is normal and every self-adjoint operator
is normal.

Proposition 3.7.50. If H is a Hilbert space and A € L(H), then A is normal if and only if
AN = |1A* ()|l for all x € H.
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Proof. For every x € H, we derive

IACOI? = I1A* (0I* = (A(X), A(X)) = (A* (%), A* (%))
= (A" (A(x)), x) - (A(A™ (x)), X) (8712)
=((A" 0 A-A-A")(x),x).

From (3.7.12) it follows that A is normal if and only if |A(x)|| = |A*(x)|| forallx € H. [

Proposition 3.7.51. If H is a Hilbert space and A € L(H) is surjective, then the following
statements are equivalent:

(@) A isunitary.

(b) (A(x),A(u)) = (x,u) forall x,u € H.

(c) Aisanisometry.

Proof. (a) = (b): For every x, u € H it holds that
(A(X), A(y)) = (A" (A(X)), u) = (x, u) .

(b) & (c): This follows from the polarization identities; see Proposition 3.5.6(b).
(c) = (a): The operator A is an isometry and surjective, and hence, A~! € L(H);
see Theorem 3.2.10. Moreover, for all x, u € H, one has

(A*(A(X)), u) = (A(x), A(u)) = (x, u),

since (b) is equivalent to (c). Hence, A* o A = iy and similarly A - A* = iy, and so
A1 =A*, O

Remark 3.7.52. So according to the proposition above, A € L(H) is unitary if and only
if it preserves inner products.

3.8 Remarks

(3.1) The major development of mathematics in the twentieth century was the emphasis
on the axiomatic method. This abstract tendency with emphasis on the structural
properties led to the development of whole new areas such as “Functional Analysis”
with the seminal contributions of Banach, von Neumann, and Riesz to mention only a
few major figures and to “Modern Algebra” where prominent figures were Noether and
van der Waerden. In this approach, the emphasis is not on the objects but on the rules
used to handle them, which are the same for many different classes of objects. The
power of the axiomatic method can be traced back in the work of Euclid who provided
a model for space locally. The first breakthrough in the abstract axiomatic approach
was achieved by Fréchet who introduced abstract metric spaces in this thesis [117]. He
was the first to go beyond the familiar concrete Euclidean space setting. The normed
space axioms (see Definition 3.1.13(e)) were first introduced by Banach [23] in this
thesis. Normed spaces are a subset of metric spaces. The thing that makes normed
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spaces such a prolific concept is the linkage between the algebraic and the topological
structures of the space. This is expressed by the requirement that the two algebraic
operations, namely vector addition and scalar multiplication, are continuous. This
leads at a higher level of generality to the notion of a topological space. Moreover,
the convexity of the balls in a normed space lead to topological vector spaces with
a local neighborhood basis consisting of convex sets. These are the locally convex
spaces (see Definition 3.1.13(b)) first introduced by von Neumann [303]. Until the mid-
forties, the study of functional analysis focused on normed spaces. The first major
paper on the theory of locally convex spaces was that of Dieudonné-Schwartz [84]
motivated by Schwartz’s construction of the theory of distributions. Lemma 3.1.20,
called Riesz Lemma, was proved by Riesz [246] and turned out to be a fruitful result for
many occasions. Theorem 3.1.30 is due to Carathéodory [62] and Theorem 3.1.41, due
to Kolmogorov [179], seems to be the first theorem about locally convex spaces. The
Hahn-Banach Theorem (see Theorem 3.1.42) is crucial in the development of the theory
of normed spaces. The first version of it was due to Minkowski, who proved that every
boundary point in the closed unit ball of a finite dimensional normed space admits at
least one supporting hyperplane through it. Later Helly [143] generalized the ideas of
Minkowski to certain separable spaces. Fifteen years later, in 1927, Hahn [138] starting
from the work of Helly, proved an extension theorem in a more general form without
any separability hypothesis. Soon thereafter, we have the result of Banach [24] (see also
Banach [25]), who proved the theorem in general vector spaces apart from any topology.
The Hahn-Banach Theorem turned out to be a major tool in the development of the
theory of locally convex spaces. Although the original proof uses transfinite induction,
this part of the argument was later replaced by use of the Zorn’s Lemma. The complex
version of the result (see Theorem 3.1.44) is due to Bohnenblust-Sobczyk [38] and
Suchomlinov [280]. Theorem 3.1.59, the First Separation Theorem, is due to Edelheit [96].
Theorem 3.1.60, the Strong Separation Theorem, is due to Tukey [287] and Klee [176].

(3.2) Theorem 3.2.1, the Uniform Boundedness Principle, was first proved by
Hahn [137] for sequences of linear functionals. A more general form was produced by
Hildebrandt [148]. The general version of the result and a proof based on the Baire
Category Theorem were provided by Banach—-Steinhaus [26]; see also Theorem 3.2.2.
Theorem 3.2.9, the Open Mapping Theorem, was proved by Schauder [263] for Banach
spaces. Banach [25] extended the result to Fréchet spaces; see Definition 3.1.13(d).
Theorem 3.2.10 and Theorem 3.2.14, the Closed Graph Theorem, are due to Banach [25].
Banach [25] extended both the Open Mapping Theorem and the Closed Graph Theo-
rem to topological groups. The book of Banach [25] turned out to be one of the most
influential books in analysis and remains a reference even today.

Definition 3.8.1. Let P be a property of normed spaces. Suppose that if X is a normed
space and V ¢ X is a closed subspace such that if two of the spaces X, V, X/V have
property P, then so does the third. Then we say that P is a three space property.

Using this notion we can improve Proposition 3.2.17 in the following way.
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Proposition 3.8.2. Completeness is a three space property.

(3.3) We point out that Banach [25] worked only with weakly convergent sequences and
did not use the notion of “weak topology.” In certain occasions this led to unnecessary
separability assumptions. The first explicity description of weak neighborhoods in
a Hilbert space was given by von Neumann [301] who was the first to recognize that
the weak topology is indeed a topology. He also realized the nonmetrizability of the
weak topology in an infinite dimensional normed space; see Proposition 3.3.15. Further
discussion on this issue can be found in Wehausen [306]. Proposition 3.3.16 was
first proven for X = I?> by von Neumann [301]. Theorem 3.3.18 is due to Mazur [210].
Earlier particular versions of this result for the Banach space C[0, 1] can be found in
Gillespie—Hurwitz [128] and Zalcwasser [312]. That bounded linear operators are weakly
continuous was first observed by Banach [24]. The converse (see Proposition 3.3.23) is
due to Bade [19]. Theorem 3.3.37, Goldstine’s Theorem, is naturally due to Goldstine [132]
and Theorem 3.3.38, Alaoglu’s Theorem, was proved by Alaoglu [2]. For separable Banach
spaces the theorem can be found in Banach [25]. For this reason some people call it the
“Banach—Alaoglu Theorem”; see, for example, Megginson [212, p. 229]. Theorem 3.3.41
is due to James [164] and is one of the most influential results in Banach space theory.

Another locally convex topology on X* being the dual of the normed space X is the
bounded weak” topology introduced by Dieudonné [83].

Definition 3.8.3. Let X be a normed space. The bounded weak” topology (or the bw*-
topology) is the strongest topology on X* which coincides with the relative w*-topology

on each set tB1 ={x* e X*: ||x*||+ < t]. Therefore aset U ¢ X* is bw"-open if and
onlyif Un t31 is relatlvely w’-open in tB1 for every t >0and C c X* is bw"-closed if
and only if Cn tB1 is relatively w*-closed in B1 forall t > 0.

Remark 3.8.4. It can be shown (see, for example Dunford—Schwartz [94, Lemma V.5.4,
p. 427]) that a local basis at the origin for the bw*-topology is given by the sets

B(S)={x* e X*: [{(x*,x)| < 1forall x € S},

where S = {xy}x>1 € X is a sequence converging to zero. We have w* € bw™ < norm.
These inclusions are strict if X is an infinite dimensional normed space. Directly
from Definition 3.8.3 we see that if {x;}acr € X* is a bounded net and x* € X*, then

. bw*
Xy % x*ifand only if x; = x*. Of course X o 1S @ locally convex space.
Proposition 3.8.5. If X is a Banach space, then X = (X3,.)" = (X, -)".

Using this proposition one can show the following theorem known as the “Krein—
Smulian Theorem.”

Theorem 3.8.6 (Krein-Smulian Theorem). If X is a Banach space and C € X*isa
nonempty convex set, then C is w*-closed if and only if C n r‘B1 is w*-closed for every
t > 0, that is, C is w*-closed if and only if C is bw™-closed.
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Remark 3.8.7. Asin Mazur’s Theorem (see Theorem 3.3.18), in the theorem above we
see that an algebraic property, namely the convexity of C, has topological consequences.

Corollary 3.8.8. If X is a separable Banach space and C < X* is a nonempty convex set,
then C is w*-closed if and only if it is weakly" sequentially closed.

We can introduce one more locally convex topology on X*. Recall that the weak”
topology is the weakest topology 7 on X* such that (X;)* = X. Suppose we ask for the
strongest (finest) topology m on X* for which (X};)* = X is satisfied.

Theorem 3.8.9. There exists a strongest topology m on X* such that (X},)* = X. This
is the topology of uniform convergence on all w-compact sets, that is, x; 5 x*inX*
if and only if sup[{(x; — x*,u): u € K] — O for all w-compact K < X. The space
X} is locally convex and m is called the Mackey topology on X* and is denoted by
m(X*, X).

We have already seen how important the notion of convexity is. Next we will see that
in some convex sets we can isolate special points of them that in fact generate the
set.

Definition 3.8.10. Let X be a topological vector space and C < X be a nonempty, closed,
convex set. A set E ¢ Cis extremal in C if E is nonempty, closed, convex and if x, u € C
and (1 — A)x + Au € E for some A € (0, 1), then x, u € E. An extreme point of C is an
x € C such that {x} is an extremal subset of C, that is, x is an extreme point of C if it
does not lie in the interior of any nontrivial closed line segment of C. By ext C we denote
the set of extreme points of C.

The following is the basic theorem about extreme points and it is known as the “Krein—
Milman Theorem.”

Theorem 3.8.11 (Krein—Milman Theorem). If X is a locally convex space and C < X is
nonempty, compact, and convex, then ext C # ¢ and C = conv ext C.

For more on the structure of convex sets, we refer to Giles [127]. The books of Aliprantis-
Border [6], Beauzamy [29], Brézis [48], Denkowski-Migorski-Papageorgiou [77], Dies-
tel [79], Fabian et al. [106], Giles [127], Holmes [155], Megginson [212], Rudin [260], and
Yosida [311] discuss in detail the weak and weak” topologies.

(3.4) Reflexive Banach spaces were introduced by Hahn [138]. He called them reg-
ular. The term “reflexive” is due to Lorch [204] and Theorem 3.4.5 is due to James [163].
There are other useful characterizations of reflexivity. We mention three of them. The
first is due to Smulian [273].

Theorem 3.8.12. If X is a Banach space, then X is reflexive if and only if for every de-
creasing sequence {Cn}n>1 of nonempty, bounded, closed, convex subsets of X, it holds
that ()51 Cn # 0.

The second is due to James [165].
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Theorem 3.8.13. If X is a Banach space, then the following statements are equivalent:

(@) X is not reflexive.

(c) Forevery A € (0, 1) there exists a sequence {xy}n>1 € X with |x,|| = 1 foralln ¢ N
such that d(conv {Xk}Z=1’ conv {Xy}isn+1) = A forevery n € IN.

(c) Forsome A € (0, 1) there exists a sequence {Xn}n>1 € X with |xy|| = 1 foralln ¢ N
such that d(conv {xy}}_,, CONV {Xk}r>n+1) = A for every n € N.

Remark 3.8.14. The interesting feature of the theorem above for reflexivity is that it is
intrinsic. Namely, it does not require any knowledge of X* or X**.

The third is also due to James [165].

Theorem 3.8.15. If X is a Banach space, then X is reflexive if and only if every x* € X* is
norm attaining, that is, there exists xg € X, || xoll < 1 such that ||x*|. = {x*, xo).

It is easy to check the next proposition.

Proposition 3.8.16. Separability and reflexivity are three space properties; see Defini-
tion 3.8.1.

The direct assertions in Theorem 3.4.12 are due to Banach [25] and concerning Theo-
rem 3.4.14, the Eberlein—-Smulian Theorem, Smulian [274] showed that weakly compact
sets are weakly sequentially compact. Later Eberlein [95] proved the converse. Whit-
ley [308] provided an elementary proof of the theorem. Theorem 3.4.18 reveals the
distinctive character of weakly compact sets. They are sequentially compact and each
subset of a weakly compact set has a sequentially determined closure. These properties
are a particular instance of a more general class of spaces known as angelic space; see
Floret [113].

Strict convexity and uniform convexity (see Definition 3.4.21(a),(b)) were introduced
by Clarkson [68]. Local uniform convexity was introduced by Lovaglia [205]. In the paper
of Smith [272], we find examples of reflexive Banach spaces that are locally uniformly
convex but not uniformly convex, and of reflexive and nonreflexive Banach spaces that
are strictly convex but not locally uniformly convex. The Kadec—Klee property is also
called the Radon-Riesz property or the H-property; see Day [73].

Proposition 3.8.17. If X is a uniformly convex Banach space and V < X is a closed
subspace, then X/V is uniformly convex as well.

(3.5) The notion of abstract Hilbert spaces was introduced by von Neumann [300]. His
definition is for a separable space and his aim was to develop the spectral theory for
classes of operators on this abstract space. Earlier special realizations of Hilbert spaces
were examined by many authors. In particular, Hilbert [147] published between 1904
and 1910 a series of six papers collected in book form developing Hilbert space methods
to study integral equations. The name Hilbert space was first used by Riesz [241] for
what we know today as I2. Theorem 3.5.21 was stated by Riesz [242] and Fréchet [118]
as separate notes in the same issue of the “Comptes Rendus.” In addition to Bessel’s



3.8 Remarks =— 273

inequality (see Proposition 3.5.44), we should also mention the so-called Parseval’s
identity.

Proposition 3.8.18 (Parseval’s identity). If H is a Hilbert space and {en}n>1 < H is
an orthonormal set, then {ey}ns1 is an orthonormal basis for H if and only if |x|? =
Y s1(x, en)? forall x € H.

The Gram-Schmidt Orthonormalization Process was first discovered by the Danish
statistician Gram. It was elaborated further by Schmidt [265] who demonstrated its
usefulness in the study of Hilbert spaces.

(3.6) The operator topologies in Definition 3.6.1 were introduced, in the context
of Hilbert spaces, by von Neumann [301]. The notion of adjoint operators (see Def-
inition 3.6.6) was first introduced by Banach [25]. Of course the notion was used
earlier in the context of matrix theory. The notion of projection operator (see Defini-
tion 3.6.13(a), (c)) is due to Schmidt [265]. The theory of unbounded linear operators
was stimulated by attempts in the late 1920s to give quantum mechanics a rigorous
mathematical foundation. The first fundamental works on this subject are those of von
Neumann [300, 301], [302], and Stone [279]. A more detailed treatment of unbounded lin-
ear operators can be found in the books of Goldberg [131], Hille-Phillips [149], Kato [170],
Reed-Simon [239], and Weidmann [307].

We state a theorem related to the material of this section.

Theorem 3.8.19. If X, Y are Banach spaces and A € L(X, Y), then the following state-
ments are equivalent:

(a) R(A) c Yisclosed;

(b) inf[]x + v|]x: A(v) = 0] < c||Ax|ly for all x € X and for some c > 0;

(c) R(A*) c X* is closed;

(d) inf[ly* + x*|ly»: A*(v*) = 0] < c|A*y*|x- forall y* € Y* and for some ¢ > 0.

(3.7) The notion of compact operators (see Definition 3.7.1) is essentially due to
Hilbert [147]. However, the general definition was given by Riesz [246]. Theorem 3.7.10 is
due to Schauder [263]. It is the starting point of the Leray—Schauder degree theory;
see Section 6.2. Theorem 3.7.17 is due to Schauder [263]. The terminology “Fredholm
Operator” was introduced in recognition of the pioneering work of E. Fredholm on
integral equations. The work of Fredholm influenced Hilbert. Fredholm operators
exhibit nice composition and stability properties.

Proposition 3.8.20. If X, Y, V are Banach spaces and A € L(X,Y), T € L(Y, V) are
Fredholm operators, then T- A € L(X, V) is a Fredholm operator and i(T-A) = i(A) +i(T).

Proposition 3.8.21. If X, Y are Banach spaces and A € L(X, Y) is a Fredholm operator,

then the following hold:

(a) A+ Lis aFredholm operator forevery L € L.(X,Y) and i(A + L) = i(A);

(b) there exists € > O such thatif T € L(X, Y) with |T|. < &, then A + T is a Fredholm
operator and i(A + T) = i(A).
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The terminology “spectrum” of A € L(X) comes from Hilbert who published some
papers in book form [147] initiating modern spectral theory. The mathematical setting
of self-adjoint operators on a Hilbert space was an important mathematical tool for the
development by physicists of the theory of quantum mechanics.

Definition 3.8.22. Let H be a Hilbert space and A € L(H). We say that A is positive (or
monotone) if (A(x), x) > O for all x € H. Then we write A > 0. Moreover, if A, T € L(H),
then we write A > Tifand onlyif A - T > 0.

Remark 3.8.23. Every positive A € L(H) with H being a complex Hilbert space is
automatically self-adjoint. This is false for real Hilbert spaces. Moreover, A* « A > O for
any A € L(H).

Proposition 3.8.24. If H is a Hilbert space, A € L(H) and A > 0, then there exists
a unique T ¢ L(H), T > O such that T?> = A. Moreover, T commutes with every
bounded linear operator, which commutes with A. We denote T by A'/2, the square
root of A.

Definition 3.8.25. Let H be a Hilbert space and A € L(H). Then |A| = (A* - A)Y/2; see
Proposition 3.8.24.

Finally let us state a result on the usage of unitary operators (see Definition 3.7.48), to
identify compact self-adjoint operators.

Proposition 3.8.26. If H is a separable Hilbert space and A, T € L.(H) is self-adjoint,
then there exists a unitary operator U € L(H) such that U* o T o U = A if and only if
dim N(AU — A) = dim N(AI - T) for all A € C. We say that the operators A and T are
unitarily equivalent.

Problems

Problem 3.1. Let X be a vector space and let p: X — R, be a function such that
(@) p(x) =0ifand only if x = 0;

(b) p(Ax) = |A]p(x) for all x € X and for all A € F.

Show that p is a norm if and only if B ={xeX: p(x) < 1} is convex.

Problem 3.2. Let X be a vector space and let | - ||, | - | be two equivalent norms on X,
that is, they generate the same topology. Show that (X, || - |I), (X, | - |) are either both
Banach spaces or both are noncomplete.

Problem 3.3. Let X be a topological vector space and let {C};_, be a finite family of
compact, convex subsets of X. Show that conv (| J;_; C) is compact.

Problem 3.4. Let X be a normed space, Y < X be a closed subspace, and let V ¢ X be a
finite dimensional subspace. Show that Y + V={y+v: y € Y,v € V} € X is closed.
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Problem 3.5. Let X be a normed space and V ¢ X is a finite dimensional subspace.
Show that there exists x € X with | x|| = 1 such that 1 = d(x, V).

Problem 3.6. Let X be a normed space that is a Polish space for the norm topology.
Show that X is a Banach space.

Problem 3.7. Show that a normed space X is complete, that is, X is a Banach space, if
and only if every absolutely convergent series in X is convergent.

Problem 3.8. Let K be a compact topological space and let D < K be a closed set. Show
that C(D) is isomorphic to a quotient of C(K).

Problem 3.9. Let K, D be compact topological spaces and let A: C(K) — C(D) be a
linear operator such that f > 0 implies A(f) > 0, that is, A is positive. Show that A is
continuous and ||A[l. = [[A(1)l ¢y with 1 € C(K) is the constant function equal to 1.

Problem 3.10. Let X = C[0, 1], u € X, and f: X — R be a linear function defined by
f) = [, y(Ou(t)dt forall y € X. Show that f € X* and |l = [ [u(t)ldL.

Problem 3.11. Let X be a normed space and C ¢ X be a nonempty set. Show that
convC = {x € X: (x*,x) < oc(x*) = sup{{(x*,c): ¢ € C}, whereby o¢: X* —» R =
R U {+00} is called the support function of C.

Problem 3.12. Show that every normed space is isometrically isomorphic to a subspace
of C(K) for some compact topological space K.

Problem 3.13. Let X, Y be Banach spaces and let A € L(X, Y) be surjective. Show that
there exists M > 0 such that for every y € Y thereis x € A~1(y) satisfying |x[lx < M|yly.

Problem 3.14. Let X, Y be Banach spaces and let A € L(X, Y) be surjective. Show that
Y is isomorphic to X/N(A).

Problem 3.15. Let X be a Banach space and let C ¢ X be a weakly compact set. Show
that C is bounded.

Problem 3.16. Let X be a normed space and {x;;}n,>1 € X*. Suppose that there exists a
sequence {€x}n>1 € (0, +00) with €, — 0 such that for every x € X there exists n, > 0
with [(x}, X)| < nxen for all n € N. Show that x; — 0.

Problem 3.17. Show that separability and reflexivity are three space properties; see
Definition 3.8.1.

Problem 3.18. Show that a normed space X is reflexive if and only if each separable,
closed subspace V ¢ X is reflexive.

Problem 3.19. Show that if Y is an infinite dimensional subspace of I*, then Y is not
reflexive.
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Problem 3.20. Let X be a separable Banach space. Show that there exists x;, € X* with
x|« =1 for all n € N such that {x;},>1 is separating on X.

Problem 3.21. Let X, Y be Banach spaces with X being reflexive and let A € L(X, Y) be
surjective. Show that Y is reflexive as well.

Problem 3.22. Let X be a Banach space with a separable dual X*. Show that B(X*) =
B(X,+). Recall that if Z is a Hausdorff topological space, then B(Z) denotes the
Borel o-algebra of Z.

Problem 3.23. Let X be a normed space and let C € X* be a nonempty, w*-closed set.
Show that for any given x* € X* there exists u; € C such that |x* - ujll. = d(x*, C). A
set that has this best approximation property for every element in the space is called
proximinal.

Problem 3.24. Show that a Banach space X is reflexive if and only if every closed
convex set is proximinal; see Problem 3.23.

Problem 3.25. Let X, Y be two nontrivial normed spaces and assume that L(X, Y)
equipped with the operator norm is a Banach space. Show that Y is a Banach space.

Problem 3.26. Let X be a reflexive Banach space and let Y be another Banach space
that is isomorphic to X. Show that Y is reflexive as well.

Problem 3.27. Let X, Y be Banach spaces with X being nonreflexive and Y being
reflexive. Suppose that A € L(X, Y) is injective. Show that R(A) < Y cannot be closed.

Problem 3.28. Let X be a Banach space and let C € X* be a w*-compact set. Show that
conv" C is w*-compact.

Problem 3.29. Let X be a separable Banach space. Show that X* is w*-separable.

Problem 3.30. Let H and V be real Hilbert spaces and let k: H x V — R be a bilinear
form that is bounded, that is, there exists ¢ > 0 such that |k(u, v)| < clu]g|v|v for
all u € H and for all v € V. Show that there exists a unique A € L(H, V) such that
k(u,v) = (A(u),v)y forallu € Hand forallv € V.

Problem 3.31. Let H be a Hilbert space and let {e,,},>1 € H be an orthonormal set.
Suppose that u = )., anen. Show that a, = (u, e,) forall n € N.

Problem 3.32. Let H, V be infinite dimensional separable Hilbert spaces, let {e,};>1 €
H be an orthonormal basis for H, and let {£,},51 € V be an orthonormal basis for
V.Suppose that A € L(H, V) and A = (en) = },;51 Anmém for all n € N. Show that
Yo Mnml? < IA]Z foralln € Nand ¥,,5; Anml|* < Al forall m € N.

Problem 3.33. Let H be a Hilbert space and let A € L(H) be a self-adjoint positive
operator. Show that the following statements are equivalent:
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(a) R(A) c His dense.
(b) N(A) = {0}.
(c) (A(x),x)>O0forallx + 0.

Problem 3.34. Let H be a Hilbert space and let A, T: H — H be two linear operators
such that (A(x), u) = (x, T(u)) forall x,u € H. Showthat A e L(H)and T = A*.

Problem 3.35. Let H be a Hilbert space and let {A,},>1 € L(H) be such that
SUP,s1 |(An(x), u)| < oo for all x, u € H. Show that sup,,51 [[AnllL < co.

Problem 3.36. Let H be a Hilbert space and let {A,},>1 € L(H) be such that
lim,, e [(An(x), u)] = 0 for all x,u € H. Can we say that ||A,|; — 0? Justify your
answer.

Problem 3.37. Let K, D be compact spaces, let g € C(K, D), and let A: C(K) — C(D)
be the operator defined by A(f)(t) = f(g(s)) for all s € K and for all ¢ € D. Show that
(@) A € L(C(K),C(D))and find |A]|.

(b) R(A) = C(D) if and only if g is injective.

(c) Aisanisometry if and only if g is surjective.

Problem 3.38. Let X be a Banach space, let V be a normed space, and let A € L(X, V).
Show that: A~ € L(V, X) if and only if R(A) ¢ V is dense and | A(x)|ly > c||x]||x for all
x € X and for some ¢ > 0.

Problem 3.39. Let H be a Hilbert space and let A ¢ L(H) be normal. Show that
. nyl/n
limp 0 [IA™;" = AL

Problem 3.40. Let H be a Hilbert space and let P € L(H) be a projection, that is, P> = P.
Show that the following properties are equivalent:

(a) Pisan orthogonal projection.

(b) Pisnormal.

() (P(x),x)=|Px)|?forall x € H.

Problem 3.41. Let X, Y be Banach spaces with X being reflexive, A € L.(X, Y), || - lx
being the norm of X, and | - |[x being another norm on X, which generates a weaker
topology on X. Show that for every € > O there exists c. > 0 such that

Ay < elixllx + celx|x forallx € X .

Problem 3.42. Let X be a normed space and let P € L.(X) be a projection, that is,
P? = P. Show that P € L¢(X).

Problem 3.43. Let H be a Hilbert space and let A € L(H) be self-adjoint. Assume that
A > Jiy for some 9 > 0; see Definition 3.8.22. Show that A is invertible.

Problem 3.44. Let H be a Hilbert space and let A € L(H) be self-adjoint. Show that the
residual spectrum Ra(A) of A (see Definition 3.7.29) is empty.
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Problem 3.45. Let X be a Banach space and let A € L(X) and A € C. Suppose that there
exists a sequence {Xn}n>1 € X with | x,]| = 1 for all n € N such that A(x,) - Ax, — 0
in X. Show that A € g(A).

Problem 3.46. Let H be a Hilbert space and let P € L(H) be an orthogonal projection.
Show that O < P < ig; see Definition 3.8.22.

Problem 3.47. Let H be a Hilbert space and let A € L(H) be such that (A(x), x) > c|x||?
for all x € H and for some ¢ > 0. Show that A is an isomorphism.

Problem 3.48. Let X be an infinite dimensional Banach space and let A € L.(X). Show
that there exists h € X such that there is no x € X for which we have A(x) = h.

Problem 3.49. Let X be a Banach spaceandlet A: D(A) € X — X be an unbounded
linear operator. Suppose there exists A € C such that (4 — AI)~! € L(X). Show that A is
closed.

Problem 3.50. Let X, Y be Banach spacesandlet A: D(A) € X — Y be an unbounded
linear operator such that ||A(x)|ly = c|x|x for all x € D(A) and for some ¢ > 0. Show
that A is closed.

Problem 3.51. Let H be a Hilbert space, let {u,},>1 € H be an orthonormal set and let
A € L.(H). Show that A(u,) — Oin H.

Problem 3.52. Let X, Y be Banach spaces, let A: X — Y be a linear operator, and
suppose that for every y* € Y* one has y* - A € X*. Show that A € L(X, Y).

Problem 3.53. Let X be a Banach space and let P ¢ L(X) be a projection, that is, P> = P.
Show that P* is a projection in X*.

Problem 3.54. Let H be a Hilbert space and let A € L.(H). Show that there exists x € H
with ||x|| < 1 such that |[A(X)| = [|AllL.

Problem 3.55. Let X, Y be Banach spaces with Y # 0. Show that X is reflexive if and
only if for every A € L.(X, Y) there exists x € X with ||x||x < 1 such that |[A(X)|y = [|AllL.

Problem 3.56. Let X, Y be Banach spaces and let A € L.(X, Y). Show that R(A) € Yis
separable.

Problem 3.57. Let X, Y be Banach spacesandlet A € L(X, Y), which satisfies |[A(x)|y =
c|lx|lx for all x € X and for some ¢ > 0. Is it possible for A to be compact? Justify your
answer.

Problem 3.58. Let X be an infinite dimensional Banach space and let A € L.(X). Show
that 0 € A(0By).

Problem 3.59. Let X be a Banach space that is w-separable. Show that X is separable.
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Problem 3.60. Let X be an infinite dimensional Banach space and let K € X be a
nonempty, compact set. Show that int K = @.

Problem 3.61. Let X be a Banach space and assume that there exists an uncountable
family {U;}ic; such that

(a) foreachi € I, U; ¢ X is nonempty and open;

(b) U;n Uj=0ifi+]j.

Show that X is nonseparable.



