
Hardness of Approximation

We have seen several methods to find approximation
algorithms for NP-hard problems

We have also seen a couple of examples where we could
show lower bounds on the achievable approxmation
ratio under the assumption that P ≠ NP

We now discuss more formally the notion of gap
reductions which will make it easy to build on existing
results to prove hardness of approximation for new
problems or improve existing results

Let us first review the definition of NPO problems and
approximation ratio



Formal definition of NPO problems

P, NP: language/decision classes

NPO: NP Optimization problems, function class



Optimization problem

 Π is an optimization problem

 Π is either a min or max type problem
 Instances I of Π are a subset of Σ*

 |I| size of instance
 for each I there are feasible solutions S(I)
 for each I and solution S 2 S(I) there is a real/rational

number val(S, I)
 Goal: given I, find OPT(I) = minS 2 S(I) val(S, I)



NPO: NP Optimization problem

 Π is an NPO problem if

 Given x 2 Σ*, can check if x is an instance of Π in
poly(|x|) time

 for each I, and S 2 S(I), |S| is poly(|I|)
 there exists a poly-time decision procedure that
   for each I and x 2 Σ*, decides if x 2 S(I)
 val(I, S) is a poly-time computable function



NPO and NP

Π in NPO, minimization problem

For a rational number B
define L(Π, Β) = { I | OPT(I) · B }

Claim: L(Π, B) is in NP

L(Π, Β): decision version of Π



Approximation Algorithm/Ratio

Minimization problem  Π: A   is an approximation
algorithm with (relative) approximation ratio α iff

 A   is polynomial time algorithm
 for all instance I of Π, A produces a feasible solution A(I) such

that
   val (A(I)) · α val (OPT(I))
(Note: α ¸ 1)

Remark: α can depend in size of I, hence technically it is α(|I|).
Example: α(|I|) = log n



Maximization problems

Maximization problem  Π: A   is an approximation
algorithm with (relative) approximation ratio α iff

 A   is polynomial time algorithm
 for all instance I of Π, A produces a feasible solution A(I) such

that
   val (A(I)) ¸ α val (OPT(I))
(Note: α · 1)

Very often people use 1/α (¸ 1) as approximation ratio



Proving hardness of approximation

Proving hardness of approximation is essentially the
following:

Let Π be a minimization problem
Suppose we want to prove that Π is α(|I|) hard to

approximation where |I| is the instance size
We need to show that if there is a polynomial time

algorithm for Π with an approximation ratio α(|I|) then
we can use it to solve an NP-Hard decision problem (any
NP-Hard problem would do)

This implies that unless P=NP no α(|I|) approximation
ratio for Π



Reductions

Once we prove a particular problem Π is hard to
approximate to within an α factor, we wish to use this to
prove that another problem Π’ is hard to approximate to
within a β factor

To make it easy to compose reductions we need to define
a proper notion of reduction. This is somewhat more
involved than reductions to prove NP-Completeness for
decision problems since we have function problems with
solutions, quality of solutions etc.

We define two types of reductions



Approximation Preserving
Reductions

Π’Π f

g

Given an instance I of Π, I’ = f(I) is an instance of Π’

Given a solution s to I’, g(I, I’, s) is a solution to I

Both f and g are poly-time computable functions



Approx preserving reductions

Other properties of f, g
We assume that both Π, Π’ are minimization problems, the

definitions change for min-max, max-max, etc
1. OPT(I’) · OPT(I)
2. If  s 2 S(I’) then t = g(I,I’,s) is a solution to I and

Val(t, I) · Val(s, I’)
(recall that S(I) is the set of solutions to instance I and

that Val(t, I) is the objective function value for soln t)

If f, g satisfy above properties then (f,g) is an
approximation preserving reduction from Π to Π’



Approx preserving reductions

Using this notion of reduction allows us to claim a couple
of simple but useful features

Lemma: If (f,g) is an approximation preserving reduction
from Π to Π’ and (f’,g’) is an approximation preserving
reduction from Π’ to Π’’ then (f’’,g’’) is an
approximation preserving reduction from Π to Π’’
where f’’ = f’ ± f and g’’ = g ± g’



Approx preserving reductions

Lemma: If (f,g) is an approximation preserving reduction
for Π to Π’ then an α approximation to Π’ where α is a
constant implies an α approximation to Π

The converse of the above lemma is:
If (f,g) is an approximation reduction from Π to Π’ and if Π

does is NP-hard to approximate to a factor of β then Π’
is NP-hard to approximate to within a factor of β

Both lemmas are straight forward exercises from the
definitions



An example

We give a reduction from the Set Cover problem to the
Node-Weighted Steiner tree problem

Set cover:
Given universe U of n elements and
sets S1, S2, ..., Sm where each Si is a subset of U
Solution: A µ {1,2, ..., m} s.t [i 2 A Si = U
Objective function: Val(A) = |A|
Goal: minimization



An example

Node-weighted Steiner tree problem:
Given graph G=(V,E) and node weighs w: V ! R+

T µ V, terminals
Solution: a (connected) subgraph H=(VH, EH) of G s.t

T µ VH

Objective function: w(VH)
Goal: minimization



Reduction

Given a set cover instance we obtain a node-weighted
Steiner tree instance as follows:

n elements in U, m sets S1,...,Sm

There are n+m+1 nodes in G one for each element, one
for each set and an extra one for a root

The edges of G are as follows:
- root r is connected to each node corresponding to a set
- a node corresponding to a set is connected to each

node corresponding to an element that is contained in
the set



Reduction

Weights are defined as follows
w(v) = 1 if v corresponds to set vertex, 0 otherwise
Terminals T is root and all the vertices corresponding to

the elements of U



Example

U = {1,2,3,4,5}, S1={1,3,4}, S2={1,5}, S3={2,4}

The graph constructed is given below

elements

sets

root
root is connected to each set

set is connected to each element

in the set

e1 e2 e4e3 e5

s1 s2 s3



Reduction

It is easy to see that given a set cover instance the
reduction to the node-weighted Steiner tree problem is
poly-time computable: this is the function f

Now we need to give the function g which maps solutions
to the node-weighted Steiner tree instance back to
solutions for the set cover instance

This is easy: given a subgraph H=(VH, EH) of G in which all
the terminals are connected,

g(H) = {i | si 2 VH }, that is all sets whose corresponding
nodes are in VH

Easy to see that g is polynomial time computable



Reduction

Let I be the Set Cover instance and I’ = f(I) be the node-
weighted Steiner tree instance.

We need to check that OPT(I’) · OPT(I) and if H is a
solution to I’ then  |g(H)| · w(VH)

Both are easy to check - exercise to the reader



Reduction

It is known that Set Cover is hard to approximate within a
factor of  c log n unless P=NP for some constant c

Thus we would like to conclude that node-weighted Steiner
tree is also c log n hard to approximate

Unfortunately we cannot do this in a straight forward way
using the current machinery we set up

What we can conclude is the following:
Since Set Cover is hard to approximate to within any

constant α, node-weighted Steiner tree problem is also
hard to approximate to within any constant α 



Reduction

Why aren’t we able to conclude that node-weighted
Steiner tree is hard to approximate to within c log n?

The main reason is because n related to the the size of the
Set Cover instance

The reduction f ensures that f(|I|) is polynomial size but
but we don’t the precise polynomial

Thus to conclude more from the approximation preserving
reductions we also need to address f and g

Further, pure approximation preserving reductions are not
as frequent as relaxed versions and hence we prefer to
use gap reductions that we define next



Gap Reductions

Gap reductions come in two flavors

The first is a gap reduction from an NP-Hard decision
problem/language L to an NPO problem Π that
establishes harness of approximation for Π

The second is a gap reduction from an NPO problem Π to
another NPO problem Π’ that establishes hardness for
Π’ from hardness for Π



Gap Reduction 1

Let L be an NP-hard/complete decision problem/language
and Π an NPO problem. Assume Π is a min problem

Then a (f, c1, c2) gap reduction from L to Π is the
following:

1. f : Σ* ! Σ* maps strings to instances of Π 
2.  c1, c2 are functions from Z+ to Q+

3. f, c1, c2 are poly-time computable functions
4. If x 2 L then OPT(f(x)) · c1(|f(x)|)
5. If x ∉ L then OPT(f(x)) > c2(|f(x)|)



Gap Reduction 1

What is the use of a (f, c1, c2) reduction?

We can say the following: If there is such a reduction from
L to Π then unless P=NP there is no c2(n)/c1(n)
approximation for Π where n is the size of an input for
Π

Proof: exercise



Examples

We have seen such gap reductions before:
For k-center problem we gave a reduction from the

domination set problem to the k-center problem where
c1(n) = 1 and c2(n) = 2-ε for any fixed ε > 0

For bin-packing problem we gave a reduction from the 2-
partition problem where c1(n) = 2 and c2(n) = 3-ε for
any fixed ε > 0

We will later state the PCP theorem as giving a gap
reduction from SAT to Max-3SAT



Gap Reduction 2

A gap reduction from an NPO problem Π to another NPO
problem Π’ is defined similarly. Assume both are min
problems

(f, c1, c2, c1’,c2’) is a gap reduction from Π to Π’ if
1. f:Σ* ! Σ* maps instances of Π to instances of Π’
2. c1,c2,c1’,c2’ functions from Z+ to Q+

3. f,c1,c2,c1’,c2’ are poly-time computable functions
4. If I is an instance of Π and if OPT(I) · c1(|I|) then

OPT(f(I)) · c1’(|f(I)|)
5. If OPT(I) > c2(|I|) then OPT(f(I)) > c2’(|f(I)|)



Gap Reduction 2

We have the following easy composition:

If (f, c1, c2) is a gap reduction from a language L to a
problem Π and (g, c1, c2, c1’, c2’) is a gap reduction from
Π to Π’ then (g ± f, c1’, c2’) is a gap reduction from L to
Π’

Therefore it follows that if L is NP-hard then Π’ is hard to
approximate to c2’(n)/c1’(n)

We will see an example of the use of compositions



More on reductions

Gap reductions are a convenient way to compose
reductions to obtain hardness. However note that gap
reductions, unlike approximation preserving reductions
do not yield an algorithm for Π from an algorithm for Π’
- there is no mapping from solutions to f(I) to solutions
to I

The definition of the reduction does not say anything
about instances in the “middle”. What if c1(|I|) < OPT(I)
· c2(|I|) ? The reduction does not care about such
instances

Gap reductions are thus mainly tools for proving hardness
of approximation and not algorithmic reductions



Assumption for hardness

Typically we wish to show that unless P=NP some NPO
problem Π is hard to approximate to within a factor of
α(n).

However sometimes we can only show hardness under a
stronger assumption such as RP ≠ NP where RP is
randomized polynomial time

This happens because the mapping function f that maps
instances to instances might not be a polynomial time
algorithm but a randomized polynomial time algorithm.

Similarly, sometimes the function f is not polynomial time
but quasi-polynomial



Assumption for hardness

Similarly, sometimes the function f is not polynomial time
but quasi-polynomial - often the main reason for this is
that the new instance size is not polynomial in the
original instance size

To be concrete, say (f, c1, c2) is a reduction from a NP-
complete language L to Π but f maps instances of size n
to instances of size nc log n

Then we can conclude the following: if Π has an
approximation ratio of c2(|f(I)|)/c1(|f(I)|) then there is a
quasi-polynomial time algorithm to decide L



Techniques for proving hardness

Although proving hardness of approximation results requires considerable
knowledge of the problem domain, there are a few broad methods used

1. Use existing hardness results and gap reductions to obtain hardness
results for new problems. The gap reductions can be very sophisticated.
Sometimes they are akin to complicated gadget reductions for NP-
Completeness proofs but also need to pay attention to the gap properties

2. Amplification: some problems exhibit self-reducibility even in the
approximation sense. Examples are clique, chromatic number, some
lattice problems etc. This allows one to use a given hardness factor to
something larger

3. PCPs (probabilistically checkable proofs) and other sophisticated
technology like the parallel repetition theorem which establish gap
reduction for some basic constrain satisfaction problems

4. To obtain gadgets and constructions, it is often useful to understand
integrality gaps for natural linear programs.



Hardness of Max-3SAT

Recall that Max-3SAT problem:
Given m 3-CNF clauses on n boolean variables, find an assignment to

maximize the number of satisfied clauses

Max-3SAT(k) is the restriction of Max-3SAT in which each variable
occurs in at most k clauses. In this case it follows that m · nk and
if each clause is exactly length 3 (the uniform case) then m · nk/3

Recall that we discussed a 3/4 approximation for Max-SAT and hence
also for Max-3SAT. Question is whether Max-SAT and in particular
Max-3SAT is hard to approximate to within a constant factor or if
there is a PTAS for it



Hardness of Max-3SAT

A fundamental and quite difficult result which is equivalent to the PCP
theorem and in fact derived from it is the following:

Theorem: There is a gap reduction f from 3SAT to Max-3SAT with the
following properties:

there exists an absolute constant ε0 such that
if φ is satisfiable then f(φ) is also satisfiable
if φ is not satisfiable then less than (1-ε0) fraction of clauses in f(φ) are

satisfiable by any assignment to f(φ)

From above, one can use another gap reduction using expanders to
prove that Max-3SAT(5) is also hard to approximate to within some
(1-ε0’) factor for some other fixed constant ε0’



Reductions from Max-3SAT

We will now use a reduction from Max-3SAT to prove hardness for the
maximum independent set and vertex cover problems

Given a graph G=(V,E)
-  α(G) : size of the maximum independent set in G
-  ω(G) : size of the maximum clique in G
-  β(G) : size of the minimum vertex cover in G

Simple known facts:
 α(G) + β(G) = |V|
 α(G) = w(Gc) where Gc is the complement of G



Reduction for α(G)

Given a 3-SAT formula φ we assume wlog that it has
exactly 3 literals in each clause - otherwise we can
duplicate a literal

Let φ has clauses C1, C2, ..., Cm on n variables x1,x2, ..., xn

Given φ we obtain a graph Gφ as follows:
Gφ has 3 nodes per clause, for a total of 3m nodes
For clause Ci, let the nodes be vi

1, vi
1, vi

3

We label the nodes of Ci with the literals in Ci

(see example next slide)



Reduction

The edges in Gφ are as follows:
The three nodes corresponding to a clause Ci form a

triangle (clique)
We also add an edge between vi

k and vj
l if they are labeled

by two different literals of the same boolean variable in
φ: example x1 and x1’

Example: φ = (x1 Ç x2’ Ç x3) Æ (x1’ Ç x3’ Ç x5)
Gφ

x1

x2’ 

x3 x1’ 

x3’ 

x5 



Reduction

Let OPT(φ) be the maximum number of clauses satisfiable
in φ. Then

Claim: OPT(φ) = α(Gφ)
It is left as a relatively easy exercise
Note Gφ can be obtained from φ in polynomial time
The implication of the above is the following:
Since it is NP-hard to decide if OPT(φ) = m or OPT(φ) <

(1-ε0) m it is also NP-hard to decide if α(Gφ) = m or
α(Gφ) < (1-ε0)m

Hence max independent set is hard to approximate to
within (1-ε0)



Reduction for β(G)

We can use the same reduction to also prove that β(G) is
hard to approximate to within a constant factor.

Note that β(Gφ) = 3m - α(Gφ)
Therefore if
OPT(φ) = m then β(Gφ) = 3m - m = 2m
If OPT(φ) < (1-ε0)m then
β(Gφ) = 3m - α(Gφ)
         = 3m - OPT(φ) > 3m - (1-ε0)m >  (2+ε0)m
Thus it is NP-hard to approximate β(G) to within
   (2+ε0)/2 = (1+ε0/2)



Amplification for hardness of clique

Note that α(G) = ω(Gc), hence approximating maximum
independent set and maximum clique is equivalent
(there is an approximation preserving reduction in both
directions)

We have seen that α(G) is hard to approximate to within a
(1-ε0) factor for some fixed ε0 > 0. Note that this also
implies the same hardness for ω(G)

We now see how to boost/amplify this hardness using a
simple graph product operation. For this purpose it is
more convenient to work with ω(G) instead of α(G)



Amplification for clique

Given two graphs G1=(V1,E1) and G2=(V2,E2) we define
G = G

1
 £ G2 as follows:

Let E1’ = E1 [ { (u,u) | u 2 V1 }
     E2’ = E

2
 [ {(a,a) | a 2 V2 }

G = (V, E) where
V = V1 £ V2

E = {((u,a),(v,b)) | (u,v) 2 E’1 and (a,b) 2 E’2 }

Note that G1 £ G2 is not necessarily same as G2 £ G1



Amplification for clique

Lemma: ω(G) = ω(G1) ω(G2)

Relatively simple exercise to prove
For an integer k we define Gk as Gk-1 £ G where G1 = G

It follows that ω(Gk) = (ω(G))k

We can compose this with the hardness of (1-ε0) shown
via reduction from Max-3SAT to get a hardness of c for
any constant c > 0



Amplification for clique

We say that it was NP-hard to distinguish whether
α(Gφ ) = m or α(Gφ) < (1-ε0) m

Hence it is NP-hard to distinguish whether ω( (Gc
φ)k) = mk

or ω((Gc
φ)k) < (1-ε0)k mk

Hence clique is hard to approximate to within (1-ε0)k

How large can be choose k?
The reduction from G to Gk needs to be polynomial time.

Hence k has to be a constant (Why?).
Thus by choosing k large enough we obtain a hardness of

c for clique for any c > 0


