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art B TORSION OF INELASTIC
CIRCULAR BARS

-13. Shear Stresses and Deformations in
Circular Shafts in the Inelastic Range

The torsion formula for circular sections previously derived is based on
Hooke’s law. Therefore, it applies only up to the point where the propor-
tional limit of a material in shear is reached in the outer annulus of a shaft.
Now the solution will be extended to include inelastic behavior of a mater-
ial. As before, the equilibrium requirements at a section must be met. The
deformation assumption of linear strain variation from the axis remains
applicable. Only the difference in material properties affects the solution.
A section through a shaft is shown in Fig. 6-28(a). The linear strain
variation is shown schematically in the same figure. Some possible
mechanical properties of materials in shear, obtained, for example, in
experiments with thin tubes in torsion, are shown in Figs. 6-28(b), (c),
and (d). The corresponding shear stress distribution is shown to the right
in each case. The stresses are determined from the strain. For example, if
the shear strain is @ at an interior annulus, Fig. 6-28(a), the corresponding
stress is found from the stress-strain diagram. This procedure is appliable
to solid shafts as well as to integral shafts made of concentric tubes of dif-
ferent materials, provided that the corresponding stress-strain diagrams
are used. The derivation for a linearly elastic material is simply a special
case of this approach.
After the stress distribution is known, torque 7 carried by these
stresses is found as before; that is,

T= f (tdA)p (6-27)
A

This integral must be evaluated over the cross-sectional area of the shaft.

Although the shear stress distribution after the elastic limit is exceeded
s nonlinear and the elastic torsion formula, Eq. 6-3, does not apply, it is
ometimes used to calculate a fictitious stress for the ultimate torque. The
omputed stress is called the modulus of rupture; see the largest ordinates
f the dashed lines in Figs. 6-28(f) and (g). It serves as a rough index of the
Itimate strength of a material in torsion. For a thin-walled tube, the stress
istribution is very nearly the same regardless of the mechanical proper-
ies of the material; see Fig. 6-29. For this reason, experiments with thin-
walled tubes are widely used in establishing the shear stress-strain Ty
iagrams.
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Fig. 6-28 Stresses in circular members due to torque.

| Elastic
‘ stress distribution

Inelastic
| stress distribution

Fig. 6-29 For thin-walled tubes the
difference between elastic and inelas-
tic stresses is small.




If a shaft is strained into the inelastic range and the applied torque is
then removed, every “imaginary” annulus rebounds elastically. Because of
the differences in the strain paths, which cause permanent set in the mater-
ial, residual stresses develop. This process will be illustrated in one of the
examples that follow.

For determining the rate of twist of a circular shaft or tube, Eq.6-13 can
be used in the following form:

40 _ Yoax _ Yo (6-28)

dx ¢ P,

Here either the maximum shear strain at ¢ or the strain at p, determined
from the stress-strain diagram must be used.

Example 6-13

A solid steel shaft of 24 mm diameter is so severely twisted that only an
~ 8-mm-diameter elastic core remains on the inside, Fig. 6-30(a). If the
_material properties can be idealized, as shown in Fig. 6-30(b), what resid-
ual stresses and residual rotation will remain upon release of the applied
torque? Let G = 80 GPa.

7MPa
160 77
/ /
/ /
/ /
/ /
gt .
2 J ¥ X103
(b)
51 MPa
160 MPa
89.7MPa
Y
' 70.3 MPa
+ _
89.7MPa 51 MPa
c) Elastoplastic stress (d) Elastic rebound (e) Residual stresses
istribution stresses

Fig. 6-30
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SOLUTION

To begin, the magnitude of the initially applied torque and the correspond-
ing angle of twist must be determined. The stress distribution corresponding
to the given condition is shown in Fig. 6-30(c). The stresses vary linearly
from 0 to 160 MPa when 0 < p < 4 mm; the stress is a constant 160 MPa for
p >4 mm. Equation 6-27 can be used to determine the applied torque 7.
The release of torque T causes elastic stresses, and Eq. 6-3 applies; see
Fig. 6-30(d). The difference between the two stress distributions, corre-
sponding to no external torque, gives the residual stresses.

c 4
T= f TpdA = f 2mrp? dp = J (B 160) 2mp® dp
A 0 o \4

12
+f (160)2mp? dp
4

= (16 + 558) X 10°N - mm = 574 X 10°N - mm
Note the small contribution to the total of the first integral.

_Tc_ 574 X 10° X 12

L (w/32) X 248

Atp =12 mm, T,gqua = 211 — 160 = 51 MPa.

Two alternative residual stress diagrams are shown in Fig. 6-30(e). For
clarity, the initial results are replotted from the vertical line. In the entire
shaded portion of the diagram, the residual torque is clockwise; an exactly
equal residual torque acts in the opposite direction in the inner portion of

he shaft.

The initial rotation is best determined by calculating the twist of the
elastic core. At p = 4 mm,y = 2 X 107>. The elastic rebound of the shaft is
given by Eq. 6-16. The difference between the inelastic and the elastic
twists gives the residual rotation per unit length of shaft. If the initial
torque is reapplied in the same direction, the shaft responds elastically.

= 211 MPa

Inelastic:
dp vy, 2x107
dx N pa - 4 X 10—3 - 050 rad/m
Elastic:
dd r 574 x 103 x 103
dx 1,G = i
de I,G (mw/32) X 24* X 80 x 10° 22 rad/m
Residual:
L = 0.50 = 0.22 = 0.28 rad/m
dx




SEC.6-13.. SHEAR STRESSES AND DEFORMATIONS IN CIRCULAR SHAFTS [N THE INELASTIC RANGE 241

xample 6-14

etermine the ultimate torque carried by a solid circular shaft of mild
eel when shear stresses above the proportional limit are reached essen-
ally everywhere. For mild steel, the shear stress-strain diagram can be ide-
ized to that shown in Fig. 6-31(a). The shear yield-point stress, Typ 18 to be
ken as being the same as the proportional limit in shear, Tol-

“SOLUTION

If a very large torque is imposed on a member, large strains take place
leverywhere, except near the center. Corresponding to the large strains for
e idealized material considered, the yield-point shear stress will be
ached everywhere except near the center. However, the resistance to
e applied torque offered by the material located near the center of the
aft is negligible as the corresponding p’s are small, Fig. 6-31(b). (See the
ntribution to torque 7 by the elastic action in Example 6-13.) Hence, it
n be assumed with a sufficient degree of accuracy that a constant shear
ess Ty, 1s acting everywhere on the section considered. The torque cor-
sponding to this condition may be considered the ultimate limit torque.
igure 6-31(c) gives a firmer basis for this statement.] Thus,

c

2we
Lo =J’(Typ dA)p =f 21Tp2Typ dp = 3
A 0

3

T (6-29)

_dmpmct 4yl
3¢ 2 3 ¢

nce the maximum elastic torque capacity of a solid shaft is Lo = gl /6
g. 6-3, and T, is § times this value, the remaining torque capacity after
dis? of that at yield. A plot of torque T versus 6, the angle of twist per
it distance, as full plasticity develops is shown in Figure 6-31(c). Point A
esponds to the results found in the preceding example, line AB is the
astic rebound, and point B is the residual 8 for the same problem.

A
Ti symptote e
uit =3 'yp
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Fig. 6-31
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It should be noted that in machine members, because of the fatigue
properties of materials, the ultimate static capacity of the shafts as evalu-
ated here is often of minor importance.

6-14. Solid Bars of Any Cross Section

The analytical treatment of solid noncircular members in torsion is beyond
the scope of this book. Mathematically, the problem is complex.!3 The first
two assumptions stated in Section 6-3 do not apply for noncircular mem-
bers. Sections perpendicular to the axis of a member warp when a torque is
applied. The nature of the distortions that take place in a rectangular sec-
tion can be surmised from Fig. 6-32.14 For a rectangular member, the cor-
ner elements do not distort at all. Therefore, shear stresses at the corners
are zero; they are maximum at the midpoints of the long sides. Figure 6-33
shows the shear stress distribution along three radial lines emanating from
the center. Note particularly the difference in this stress distribution com-
pared with that of a circular section. For the latter, the stress is a maximum
at the most remote point, but for the former, the stress is zero at the most
remote point. This situation can be clarified by considering a corner ele-
ment, as shown in Fig. 6-34. If a shear stress T existed at the corner, it could
be resolved into two components parallel to the edges of the bar. However,
as shears always occur in pairs acting on mutually perpendicular planes,
these components would have to be met by shears lying in the planes of
the outside surfaces. The latter situation is impossible as outside surfaces
are free of all stresses. Hence, T must be zero. Similar considerations can be
applied to other points on the boundary. All shear stresses in the plane of a
cut near the boundaries act parallel to them.

Analytical solutions for torsion of rectangular, elastic members have
been obtained.!’> The methods used are beyond the scope of this book. The

13This problem remained unsolved until the famous French elastician B. de Saint Venant
developed a solution for such problems in 1853. The general torsion problem is sometimes
referred to as the St. Venant problem.

14An experiment with a rubber eraser on which a rectangular grating is ruled demon-
strates this type of distortion.

158. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd ed. (New York: McGraw-Hill,
1970), 312. The table of coefficients that follows is adapted from this source.




